Tech Tip: Is my Database Cache Big Enough for my Data?
Written by Bill Bach, President of Goldstar Software Inc.

The Pervasive PSQL Summit v10 database engine has multiple levels of cache, including L1 cache (Cache
Allocation Size), L2 cache (Max Microkernel Memory Usage), OS cache (Use System Cache), and
XtremelO cache (for 32-bit systems with more than 4GB of available server RAM). Determining the best
configuration for your environment is possible, but requires having a LOT more information on hand
before you can do any real tuning.

In this tech tip, we are going to start with a simple analysis of your database engine cache statistics so
that you can evaluate whether or not your database engine configuration needs to be adjusted to
improve your system performance.

Locating Your Cache Statistics Data
Let's start by going into the Pervasive Monitor tool and looking at the Microkernel/Active Users screen.

5| MicroKemel Active Users Connection: Local ﬁ
Active Microkemel Users: 1 Selected User's Handles: 1
C:A\PEOGRAMDATAVPERYASIYE SOFTWAREAPSALADEMODATAAP
4| m 3 4 | 1} 3
- User Information: bill -Handle Information: PERSON_MED
Connection Mumber: NA Open Mode: Mormal
Tazk Humber: 3356 | | Record Lock Type: None
Site: Local wait State: Hone
Rl Lol Tranzaction State: Mone
Locks Uszed:]
Tranzachon State: None

Records Read: [+ Automatic Refresh Refresh

Records Inserted:
Records Deleted:

1

0

0 Delete Current User Close
Records Updated: 0 Delete All Users Help

2

3

Dizk Accesses:
Cache Accesses:

e

Pay special attention to the numbers in the lower left corner. The statistic for "Disk Accesses" indicates
the total number of times that a page has been read from the database. The "Cache Accesses" number
indicates the total number of times that a page has been accessed that is already in memory.

In this simple example, the file has been opened, and a single record has been read with a GetFirst
command on Key 0. This has resulted in 5 page accesses in all, with two coming from disk and three
being used that are already in memory. Watch how it changes if we issue the GetFirst command a

second time:
5| MicroKemel Active Users Connection: Local lﬁ
Active Microkemel Users: 1 Selected User's Handles: 1
C:APBOGRAMDATAVPERYASIVE SOFTWAREAPSOLADEMODATAAP
4 i F r Tl F
- User Information: bill -Handle Information: PERSOM . MED -
Connection Number: MA | | Open Mode: Mormal
Tazk Number: 3356 RBecord Lock Type: MNone
f.llte: Lzl Wwait State: Mone
RIS Leel Tranzachion State: Hone
Locks Used: 0
Transaction State: Hone
Records RBead: 2 Iv Automatic Refresh Refresh
- 1]
T —— Delete Current Uszer Lloze
Records Deleted: 0
Records Updated: 0 Delete All Users Help
Dizk Accesses: 2
Cache Accesses: b

Of course, the disk accesses have not changed, but the cache accesses increased by three, indicating
that three pages (like two index pages and one data page) have been accessed. If, instead of a GET
operation (which uses an index), we issue a "StepNext" command (which does not use an index), then
we see that the cache accesses counter increases by only one. This happens because the index pages
are not referenced, as only the data page is actually accessed by the engine:

Disk Accesses: 2
Cache Accesses: ¥

As you can see, as the application runs and requests data for a given user, these counters continue to
increase on every page access. When we examine a running system with numerous users, we can then
see a small slice of the accesses by clicking on each user in turn and noting the results:

Dizk Accesses: 146
Cache Accesses: 3030
Dizk Accesses: 390

Cache Accesses: 368517

Dizk Accesses: 505
Cache Accesses: 132220

Using the Cache Statistics Data

So, how can | use this information? Simple. In a system running in "steady state", meaning that no
unusual operations are taking place, the ratio between cache and disk should be a minimum of 100:1,
and preferably 1000:1 or better. This represents a cache hit ratio of 99.9%. If we examine these three
users, the first seems to be a very poor ratio of about 30:1. The second is looking good at 1000:1, and
the third is about 2600:1 -- even better!

Of course, you cannot look at just one individual connection -- you have to take an approximate average
of all user connections. Further, you should ignore any "outlying samples" which may be caused by
automated processed constantly re-reading the same records, or by reporting systems which constantly
troll through old data not normally in memory. In short, just rapidly run through the list and "eyeball"
the results.

If you constantly see user connections doing "normal" activities with a low cache ratio, then this may be
an important indication that you should reallocate memory on the server to provide more cache. Of
course, if the server is running low on memory as well, then increasing physical RAM may be a very

inexpensive solution to enjoy huge performance gains.

Helpful Shortcuts
If you have hundreds of users, collecting these statistics can be a painful affair for your mousing hand.
Here are a few important shortcuts to make the task of collecting data much easier.

Use the Down Arrow

Instead of clicking on each user, use the mouse to click on the FIRST user in the list. Then, tap the down
arrow key to go to the next user, and continue all the way down the list. This works great if your users
typically establish connections and then stay in the system.

If your users create more transient connections, then you may experience problems with this, too. One
issue is that if the current connection being selected in the list gets closed, you will be taken back up to
the top of the list again. This can be minimized by decreasing the auto-refresh rate (or disabling it
altogether). Another issue arises when the NEXT connection has disconnected when you click the down
arrow, and the cursor simply refuses to move. You have to go back to the mouse and click down TWO
connections to continue. This can be minimized by increasing the auto-refresh rate.

Use BMON

Pervasive Software provides a free Java tool with PSQLv10 called BMON to display the Monitor/DTI data.
Using BMON requires that you have Java enabled, and it requires that you edit the configuration file
monconfig.txt to provide connection info and a list of items you want to see. However, once you have it
set up, it will quickly dump the entire block of user connections to a log file with a simple command like

this: "bmon -f monconfig.txt -runonce". You can then scroll through the log and find the numbers you

want to see. Here's an example of one user connection from BMON:

START RECORD 1/29/10 11:56 AM

ACTIVE USER INFO: #1

User Name:
Client ID:

Connection Number:

Task Number:
Site:

Network Address:
Locks Used:

Transaction State:

Records Read:
Records Inserted:
Records Deleted:
Records Updated:
Disk Accesses:
Cache Accesses:

Use PSConfig

NA
6936
Local
Local

None
56

o o

126

Goldstar Software provides a tool called PSConfig that can generate the same result, but in a tabular

format for easier reading. PSConfig uses the command line to specify its display options instead of a

configuration file. When used with the /MUT (Monitor, Users, Totals) options, you get a display like this:

PSConfig Version 3.32: 01/28 (C)2010 Goldstar Software Inc.

Number of Users: 3

Site Platform Hndls Read

Locl Unknown 1 14K
Locl Unknown 1 401
Locl Unknown 1 56

Total Btrieve Reads
Total Btrieve Inserts:
Total Btrieve Updates:
Total Btrieve Deletes:
Total Cache Accesses :
Total Disk Accesses
Cache:Disk Ratio

Ins Updt Del Cached NetAddress

0
0
0

0
0
0

15288
0

0

0
50655
34
1489:1

0 1460:1 Local
0 Cached Local
0 Cached Local

UserName
bill
bill
bill

Note that PSConfig scales the counters to keep the display data succinct, and it also provides your

cacche:disk ratio for each user, in addition to providing totals for all users at the end of the report.

Additional data, such as the raw disk and cache counters, network address and more, can be displayed

by including the "E" option on the command line. You can download a trial copy of PSConfig from

http://www.goldstarsoftware.com/tools.asp

Use the Distributed Tuning Interface

Of course, you don't have to use any existing solution! The Pervasive Monitor uses published API calls to
display its data. If you're really ambitious, then can write your own program to access this data directly
and collect your own statistics. See the online manuals for DTl or Distributed Tuning Interface for more
information.

Author Information:

Bill Bach is the Founder and President of Goldstar Software Inc., a Pervasive reseller in the Chicago area
that specializes in providing Pervasive products, services, and training to its customers in North America
and abroad. Bill has written numerous tools and utilities to help system administrators and database
developers work with their Pervasive database environments, and his training classes for Pervasive PSQL
and DataExchange are the most comprehensive classes available. Get more information from
http://www.goldstarsoftware.com.

