Tech Tip: Interpreting Server Memory Counters
Written by Bill Bach, President of Goldstar Software Inc.

This tech tip is the conclusion of our in a series of tips designed to help you understand the way that

your Pervasive PSQL Summit v10 database engine utilizes memory on the database server, and thus

provide you with insights on optimizing that memory usage to get the best performance out of your

system. In the previous Tech Tips, we reviewed some server memory counters and explained how to

find those values on your own system. In this tip, we extend that information to show how we can use
those counters to answer some critical questions about your server's environment, and to also locate

some problems that may occur.

Do I Have Enough Memory in my Server?
Let's first examine the Available Physical RAM and System Memory In Use values from the PerfMon

screen that we used in our previous Tech Tip.

E windows Task Manager

File Cptions Yiew Help

=1olx

Applications I Processes

CPU Usage —

I Networking | Users |

— CPU Usage History

I it
P (R T
[4 || |||'| II| ||| |II|”.r|
I'-.||I|| ||IJ|}| I|,‘|||u| ll,‘."l ll"_'l I |]|

H
I

1 i I
Ity f
ILI‘ I

—PF Usage

r—Page File Usage Hiskory

Available Physical RAM

r~ Totals
Handles
Threads
Processes

—Physical Memory (K)

33219 Tatal
952 Awvailable
9z System Cache

8387656
4574300
4616448

—Commit Charge (K)
Total
Lirnit
Peak

—Kernel Memary (k)

2445956 <l Total 165504
10284512 | | Page
g617152 | | Monpaged System Memory In Use

|Pr0cesses: az

|cPu Usage: 119

|Commit Charge: 2355M [10043M [

According to this screen, the Available Physical RAM is 8GB, and the System Memory In Use is 2.4GB.

Note that because of the way that virtual memory works, if the System Memory In Use is larger than

the Available Physical RAM, the OS will be forced to write memory pages out to the swapfile, and

severe performance degradation will usually follow. The OS allows such a configuration to enable a

server to "do more with less", but due to the performance penalty of disk (easily 1000x slower than

memory), the server will be notably sluggish. This same problem is also very common on workstations
with less than 1GB of RAM, so you may wish to check your workstations, too!

The server indicated in the picture is using well below is rated maximum memory, and we can use that
fact to add more work or increase memory usage on existing processes (if we want to efficiently use our
hardware). If your picture shows the opposite, say 3GB of System Memory In Use and only 2GB of
Available Physical RAM, then you have a few choices to avoid swapping:

1. Add Memory: Physically adding more RAM (up to the maximum supported memory of the OS)
is a cheap solution that will solve performance woes for a lot of servers. However, the cost of
the memory is only a small part of the real cost of this solution. You must also consider the cost
in time to investigate the hardware to see what kind of memory can go in the box (and if there
are open DIMM slots), purchase the RIGHT memory for your server, install the memory (within
a requisite downtime window), and deal with any problems that may result, especially if the
memory turns out to be bad.

2. Disable Unused Services: We find many cases where servers are running loads of services that
are either not configured or not being used. These services should be disabled.

3. Upgrade Services and Applications: In some cases, applications may have bugs that lead to a
memory leak, and you may be able to easily upgrade these applications to address the leak. If
you see a process using an abnormally high amount of memory, especially if memory usage
increases over time, check with the vendor about any updates.

4. Decrease Memory Usage in Existing Processes: You can sometimes adjust memory usage, like
decreasing the Pervasive database L1 and L2 caches, or changing memory allocations in other
applications (like SQL Server), to free up memory. Remember that decreasing memory for
applications (like your PSQL database) will usually result in lower performance for that
application, but should leave more free memory for the server as a whole.

How Much memory Is My Database Engine Really Using?
Next, let's compare Process Memory Usage to Process Virtual Memory Size. We get this information
from the Processes tab of Task Manager, as explained in the last Tech Tip.

E windows Task Manager [} i
File Options Wiew Help Process Virtual Memory Size 3
Applications |PerF0rmance| Mekbwarking I Users I '
Imags Name | pio | user Mame | cpu| cPuTime | Mem Usage WM Size 1/ Read Bytes | 10 Writs Bytes | «| ™
nbdbsmar. exe 2560 SYSTEM ili] 0:03; 155,164 K 454,552 K 76,657,925 445,778, 964
SEAMSvE, exe 7968 SYSTEM a0 69,876 K 299,57ZK 239,714, 227,856 79,823,676,896
CEDEMari, exe = n07:43 1S5,683K 148,068 K 196,531,299 79,516,335 :
CEW3EZ EXE Process Memory Usage mO0:Z3 141,588k 82,044K 342,465,717 262,667
CEDEMari, exe mOn:0z 3E,412K 72,244K 11,034 11,416
lsass. exe S04 SYSTEM (i} 01833 60456K 45,E76K 901,678,114 117,565, 453
dsm_om_ronnsveaz.exe 3048 SYSTEM i} mOS:6 66,276k 45,584K 14,827,580 2,619
slservr.exe 2308 SYSTEM i} MO39 63,196K 44,564K 76,528,210 127,798,548
dns.exe 2088 SYSTEM i} mO0:2z4 62,796K 39,004K 3,831 676
ava, e 1864 SYSTEM 00 nhl7 66,37 34,080 K 9,017,333 1,372
el """‘m.ar\x.-"" e AP 29 e QA .ZJ’i&A Mmoo . S i gt a2

Why is the actual memory usage lower than the VM Size? When the PSQLv10 database engine starts
up, it requests memory from the OS for data structures to maintain your database, as well as a sizeable
block of memory equivalent to the L1 cache size (the Cache Allocation Size setting in the PCC). However,
the OS is smart -- it knows that no data has been put in those cache memory pages yet, so it creates a
"virtual allocation" and lets the engine think it has the memory without having to go through the work

of physically allocating the memory pages. When the database engine performs a memory write to one
of these pages for the first time, the OS traps the memory access (via a page fault), allocates "real"
memory to the page, writes "0" values to every byte, and then allows the memory write to continue. As
this happens, the Mem Usage value increases. As the engine continues to work, loading data into L1
cache, all of this memory is eventually allocated, and Mem Usage will be nearly equal to VM Size.

Is My Database Engine Running Slow Due to OS Thrashing?

We can use these numbers to monitor for swapfile "thrashing" in the OS. Thrashing occurs when the OS
makes a decision to swap a process out of memory (by writing it to the swap file) and then is forced to
reverse its decision and re-allocate the pages in physical RAM again. This problem often occurs when a
server's memory gets low (or when the large file system cache is enabled). When the OS decides to
page out the database engine, the Mem Usage value decreases dramatically, because the OS has written
the memory pages to the swap file and marked the physical memory as "free for use". When the
database services its next request, it needs to access its memory, which is now unavailable. The OS
generates a page fault, finds that the page is still in memory, and marks the page as in-use again. This is
a fairly fast process, but it does take real time, and the database runs slowly in the meantime due to the
overhead. Thrashing can be confirmed by monitoring disk writes to the swapfile, which will see a large
number of disk writes, but very few disk reads. You can also see this in Task Manager by adding Page
Faults/Sec to the column list, and you'll see that Mem Usage drops, then quickly increases, accompanied
by a large number of page faults whenever this thrashing is evident.

What Happens When a Process Reaches the Process Maximum Addressing Space?

The Process Maximum Addressing Space is one of the most critical, and least understood, settings.
What is not documented very well is the fact that this is a hard, upper limit. You can call it the "glass
ceiling" of memory use, but a more appropriate term is a thick, concrete wall -- you are NOT going to get
past it! If a process attempts to allocate memory beyond the Process Maximum Addressing Space
(again, this is 2GB for a 32-bit process on a 32-bit server), then the memory allocation will fail. Some
code (pointing fingers at OS vendors is bad form, so we won't do that here) may not properly handle
situations where the memory allocations fail, and this can cause the application to fail, overwrite
memory, or even halt completely. In a Pervasive environment that has run out of memory, we usually
see the database engine stop responding to SQL requests, slow down, and then eventually stop
responding to Btrieve requests shortly thereafter.

Can My Database Engine Really Be Out of Memory?
There is one very common question that confuses a lot of people: | have 16GB of RAM on my Win32
server. How can my database be running out of memory?

To answer this, we need to peer a bit deeper into what is included in this process memory space. Of
course, you know that the L1 database cache (Cache Allocation Size) is included. But what else? Lots!
The Process Addressing Space In Use value also includes the memory for L2 cache (Max Microkernel
Memory Size), as well as memory structures for tracking things like files, handles and clients (which used
to be configured via settings for Maximum Files, Maximum Handles and Maximum Clients). What is NOT
readily apparent is that the addressing space value ALSO includes a minimum of 1MB stack space for

EVERY thread spawned by the process, in addition to the memory actually needed by the thread. This
means that a database engine configured with 100 I/O Threads is losing 100MB of addressing space right
off the bat. Configuring the server for 128 Communications Threads (used by Btrieve communications)
sacrifices another 128 MB of addressing space. Add in a SQL application that spawns another 250 SQL
sessions (each SQL session is implemented in its own thread), and you've now lost over 1/4 of your 2GB
address space (500MB) to thread overhead alone! Add in a healthy L1 cache (800MB), and then turn on
the L2 cache to use up a bunch of what's left, and you'll quickly exceed the Process Maximum
Addressing Space and crash the engine. Ugh!

How Can I Use More Memory on a 32-bit Server?
If you are running a 32-bit server, you're limited to the 2GB addressing space limit imposed by the
operating system, so let's look at some options and their respective trade-offs:

1. Use the /3GB Switch: This switch increases the Process Maximum Addressing Space from 2GB
to 3GB. This can greatly increase the amount of memory space available to your database
engine. However, there is a trade-off -- the OS is now limited to 1GB of addressing space, and
this can have adverse effects on a large number of other processes. In short, we do NOT
recommend this option. If you go this option and start getting Windows Status 1450 Resource
Allocation Errors, then you need to turn this option off immediately.

2. Reduce L2 cache and Enable System Cache: For servers with LOTS of memory, this may make
sense, as the Use System Cache setting allows the operating system to provide caching for the
database files above and beyond what the database can do. This uses memory above the 2GB
limit for database files, and can really improve disk read performance. The trade-off here is that
the setting ALSO enables the use of write caching, which can actually slow down the disk writes
sent to the disk by the database, hampering database write performance. Users with a hefty
amount of disk writes should avoid this option. If you do enable the System Cache, you should
decrease or disable the L2 cache, since it will likely cache the same files as the OS cache. You
may also be able to further increase the size of the L1 cache, though, if you have the available
memory space to do so.

3. Use the Xtreme 1/0 Cache with PSQLv10: When PSQLv10 is installed on a 32-bit server with
more than 4GB of RAM, you can optionally install the Xtreme I/O (X10) kernel-level cache driver
for your database files. This cache driver allows you to leverage the memory that lies outside of
the 2GB addressing space for database file cache. If you enable XIO, be sure to disable the OS
cache by setting Use System Cache to OFF and set Max Microkernel Memory Usage to 0 to
disable the L2 cache. One trade-off with XIO is a documented issue with NTFS volumes that are
dynamically attached to the server (like portable/USB hard disks). If you are using detachable
hard disks, do not use the XIO cache, or you may experience server hang when a drive is
connected or disconnected.

Are There Other Solutions?

If you don't like any of the above solutions, or if your database is sufficiently large that you still don't
have enough memory to cache most of your database, then you are a great candidate for moving to a
64-bit operating system. A 64-bit server operating system can leverage as much as 2TB of installed RAM

(depending on your OS version), and it increases the Process Maximum Addressing Space for 32-bit
processes from 2GB to 4GB, which may be enough to cache all of your data and get you the
performance and stability that you really want. Of course, the cost of a server with 2TB memory is
prohibitive today, but some companies are successfully running servers with 128GB of RAM already, and
larger memory configurations are certainly possible with the latest hardware.

Of course, a 64-bit operating system is only one part of the answer. The other part is to consider moving
to a 64-bit Pervasive PSQL Summit v10 server engine. Using a 64-bit process on a 64-bit operating
system enables a whopping 8TB for the Process Maximum Addressing Space, eliminating just about
anyone's memory concerns! With this 64-on-64 combination, it is quite easy to configure a server with
128GB of memory to use 100GB for the L1 database cache, and you can safely run hundreds of users
(and forget any worries about the number of SQL connections or threads) on your Pervasive database.

Note, though, that even the 64-bit PSQLv10 engine still contains a 32-bit SQL engine. As such, while
you'll have eliminated the problems of a large cache sucking up your addressing space on the
NTDBSMGR64.EXE process, you may still need to watch out for the 32-bit NTDBSMGR.EXE process
exceeding its 4GB maximum.

Summary

Users with small Pervasive databases supporting a handful of users can leverage the power of
Pervasive's "no DBA required" installation process to get great performance out of their applications. In
fact, Pervasive PSQL works with just about ANY configuration you want to throw at it, and it works
pretty darned well. [Heck, | still have a laptop running NetWare and PSQLVS8 with only 128MB of RAM!]
However, sites with larger databases and hundreds of users may want to do a little bit more work to
tune their server, and understanding the memory allocation and usage on your database server is the
key to getting started with that tuning.

Author Information:

Bill Bach is the Founder and President of Goldstar Software Inc., a Pervasive reseller in the Chicago area
that specializes in providing Pervasive products, services, and training to its customers in North America
and abroad. Bill has written numerous tools and utilities to help system administrators and database
developers work with their Pervasive database environments, and his training classes for Pervasive PSQL
and DataExchange are the most comprehensive classes available. Get more information from
http://www.goldstarsoftware.com.

