

Fixing Status 146 Problems
with

Actian PSQL/Zen

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 8

Fixing Status 146 Problems with Actian PSQL/Zen
Last Updated: July 2022

This paper discusses the Status 146 message that can be returned from an Actian PSQL/Zen database
environment in some depth. This is a fairly complicated issue, so the description is complicated as
well.

What is a Status 146?
Status 146 is defined by Actian in the Zen v15.10 documentation as:

146: Duplicate system key: The same key number was generated by two different threads
generating system keys.

However, even this text description is not entirely accurate, as it actually can be returned when ANY
duplication of the system data values is seen – not just from two threads at the same time.

To understand this error, we need to first review the concept of System Data.

What is System Data?
System Data was first introduced with the Pervasive.SQL 7 database engine and the v7 file format.
System Data is a special, hidden, 8-byte data block that can be optionally stored with database
records that provides a guaranteed unique value that can be used for transaction tracking purposes,
including the ability to roll changes forward after an engine failure. It is accompanied by a hidden
data file key (Unique Key Number 125) that allows it to be used to directly look up any record by its
SysData value.

System Data was later used as a unique identifier for records from other environments, including
Actian’s DataExchange and Goldstar Software’s GSSync replication solutions, since it offered a way
to uniquely identify ANY record with a static value that would not change for the life of the record,
making it suitable as a tracking value for such solutions.

According to the original PSQL7 documentation, the system data value was supposed to be a
Timestamp value that indicated the time at which the record was inserted into the system. However,
this was eventually removed from the documentation when it was found that the value was off by a
month – it used the OS call that counted January as 0 instead of 1 – and therefore it was not a true
PSQL Timestamp value. From that point forward, it was simply called “an 8-byte binary value,
guaranteed to be unique in the file.”

[N.b. In the v15 database engine, the v13 file format was extended with a new feature called
SysData2, which changes this data value to a TRUE septa-second Timestamp field, eliminating this
extra issue. However, that is not really germane to this discussion.]

Can I See System Data Values in an Existing File?
Although the System Data is invisible to the typical application, it is still accessible from the Btrieve
interface (and from SQL, in v15). To find out if you have System Data in your database files, do a
simple BUTIL -STAT operation on the file and look for this block of text:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 8

This text indicates that the System Data block is present in the file, and that the System Data Key
(Key Number 125) is also available. Further, it confirms that the SysKey is being used for the
transaction logging on this file.

Further, you can see the System Data values by opening up the database file within the Function
Executor. Then ,select the Get (Logical) radio button, select Key Num 125, and the issue a GetFirst
or GetLast operation:

The Key Buffer will now show you the System Data value for that record. As this is a 64-bit value in
little-endian format, you read it backwards, so it is 0x08BA7CA8907AB21C, which is a decimal
value 628,952,161,391,915,548. If you want, you can right-click on the first byte and select Show As
Timestamp to see the value interpretted as a timestamp:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 8

In this sample file, the data record was actually generated on 2022-07-13, but due to the off-by-one
error on the month (and the fact that there are 31 days in July), it gets displayed as 2022-08-12 in this
utility instead.

What is the LastInsertTimestamp?
To ensure that the System Data values are always increasing, and never experience any duplicate
values, the engine keeps track of the latest time used for every file in the environment. It does this by
storing a value within each file’s header page (the File Control Record, or FCR), called the
LastInsertTimestamp. This value represents the timestamp (or System Data value) in use when the
last insert operation was attempted on that file. The engine maintains this value for all files, even
those not using System Data, because the System Data key can always be added later on.

Can I See the LastInsertTimestamp in an Existing File?
The LastInsertTimestamp value is an internal value which typically has no importance outside of the
database environment, to the developer, or to the end user. As such, Actian does not offer a way to
view the LastInsertTimestamp value from the FCR from their own tools.

However, the Goldstar Software tool GSRecover can expose this value for you and provide a window
into the data values used therein.

What is Synthetic Time?
As mentioned above, the System Data value should always be increasing, and it must be guaranteed
to be unique. However, there are times when “clock time” moves backwards, such as in the Daylight
Savings Time fall-back, or if the clock on the server was set incorrectly and suddenly gets adjusted.
Such a change can cause a specific time to be used twice, and therefore create a duplicate System
Data value, which would not be good.

The Actian database engine is smart enough to handle this possibility. The engine is able to see the
current time (as reported by the OS), but it also tracks the highest time value recently seen in any file.
If it detects that the time has moved backwards, it changes from using the real time to a synthetic time
value. This synthetic time is then used as a simple counter, adding one with each insert operation. By
jumping to this linear counter, this special synthetic time computation can allow the engine to survive
periods of time where the clock moves backwards without generating any duplicate System Data

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 8

values, and maintaining uniqueness among these values as well. Once the real time surpasses the
synthetic time, the real time can be used again.

What Happens When Synthetic Time Goes Bad?
In certain situations which have yet to be fully understood, something can happen to the operating
system, database engine, real-time clock, or some other component that causes an artificially-high
time value to be seen by the engine. If the engine gets a strange return value that is LESS than the
current time, then it uses the current time and it uses real time for the System Data values as expected.
However, if some OS call returns a value that is HIGHER than the current time, the engine can flip to
using synthetic time (based on that value) from that point forward.

As previously noted, using synthetic time isn’t normally an issue, as it will eventually get caught up.
However, in some cases, that value is substantially higher – like hundreds or thousands of years
higher – and this can force the engine to return synthetic time from that point forward. This synthetic
time value is then used as the System Data value when needed in any subsequent file operations.
However, due to the mechanism behind ensuring that time never goes backwards, the
LastInsertTimestamp value in each file touched ALSO gets updated to the new value.

Under normal operations, it shouldn’t matter whether you are using real or synthetic time – the
system operates and performs equally well. However, when a synthetic time with a large difference
is used, then things can get a bit dicey when the engine is restarted. When the engine first starts, it
will always use the current “real time” value for all operations. However, once an insert is attempted
on a file, it will update its internal counter to the maximum of either the current time or the
LastInsertedTimestamp value +1 of the file being inserted into. The sudden “jump” in the values can
cause some System Data values to be “normal” timestamp values, and some to be synthetic times.
Again, this is not a problem normally, as System Data values are still always increasing (even with
the big jump), and this works perfectly.

However, there are a few cases where we have seen issues reported:

1. Wrap-Around Values: We have seen cases where a very large value gets picked for a
synthetic time, with one file seeing its first System Data value of 0xFFFFFFFFFFFFFFF8.
Once 8 records have been inserted into this file, it wraps around to 0 reports a Status 146.

2. Out-of-Order System Data Values: We have seen cases where a file is rebuilt after an
engine restart and all normal SysData values are used. Then, a second file is accessed with a
LastInsertTimestamp using a synthetic time value causes the SysData value to jump. A
subsequent insert into the first file will create a record with the synthetic value. If you restart
the engine once again, rebuild the file (retaining System Data values with the -sK option), and
attempt another insert, the engine will use normal time again, and you will be inserting
records with System Data values that are LOWER than the highest System Data value in the
file, resulting in a System Data that jumps backwards in time.

3. Duplicate System Data Values: Similar to the above, it is possible to flip a data file to
synthetic time after accessing a second data file, which then starts using that value as the base
for new System Data values. If you then restart the engine and rebuild the first file with the -
sK option, and then attempt an insert on the second file again, the internal synthetic time value
will be the same value that was already inserted. When you attempt the next insert on the first
file yet again, you’ll find that this value is already in use, and get a Status 146 back.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 8

As a result, once these values go bad, you need to take some steps to fix the problem and hopefully
prevent it from recurring.

Fixing a Status 146 in a Data File
Fixing a Status 146 problem in an environment may be easy, or it may be difficult. It could be as
simple as restarting the database engine. Or, it could require restarting the engine and rebuilding the
files in question to use new System Data values. Or, if you are not reliant on the System Data values
for anything (i.e. not using replication) and the files already have a unique key, then you might be
able to simply drop the SYSKEY index from the file entirely.

Do I Need to Fix a Synthetic Time?
If you have read this far, then you ALSO realize by now that these fixes are more of a band-aid fix to
address the specific issue being seen, without doing anything about the root cause, which is the
synthetic time. If the system is working on synthetic time, then there must be one or more files that
have flipped the engine to that synthetic time, and even if you fix the file reporting the Status 146, the
engine always has the chance to flip back to the same synthetic time value again in the future, and the
problem can recur. In short, you may be fighting this for a long time to come.

The better question is whether you should even care about the synthetic time at all. As long as the
synthetic time value is not inordinately huge (as in the example 0xFFFFFFFFFFFFFFF8 above), then
it should not present any issues. Even a seemingly large value like 0xFFFFFFFF00000000 still
leaves room for 4 billion more insert operations, which may never be exceeded in your environment
for decades to come. If your values are “reasonable”, then, perhaps the best solution is to simply
ignore the problem and deal with the one-off Status 146 issues that do arise. However, if your system
has experienced repeated Status 146 issues, then it may trying to tell you something – you should do
what it takes to eliminate synthetic time from your environment.

Searching for Files Using Synthetic Time
To address this problem in its entirety, you must eliminate all use of synthetic time within the
environment (and keep it on real time from then onwards). The only way to do this is to first
understand where the synthetic time is being generated from (which you now know after reading the
first part of this document), and then to search every file in your environment to find files so affected.

Goldstar Software has released a free tool, called CheckSysData, which can handle this onerous task
for you. You can find this tool and its documentation here:

 http://www.goldstarsoftware.com/tools.asp

The easiest way to run the tool is to navigate to the root of your data volume and then to run the tool
with the following command:

 CheckSysData *.* /s

This will look at every file in the current directory and all subdirectories and attempt to locate any file
where the highest System Data value is greater than 0x0900000000000000 (which is some time in the
2100’s.) You will then have a list of files with synthetic time used for actual System Data records,
and can decide if you are able to rebuild these files with new System Data values.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 8

The above command is good, but it doesn’t identify every file with problems. Were you paying
attention enough to already see the shortcoming here? If a file cannot be opened or has no data
records, then there will be no System Data values to examine. However, the LastInsertTimestamp
may have already been set to a synthetic time, which can then impact other files! To address this,
there is a more complete version of the scanner inside CheckSysData:

 CheckSysData *.* /si

This command will not only look for the System Data values, but it will ALSO check the
LastInsertTimestamp value. Note that Actian does not expose this field through normal means, so it
has to be extracted by accessing the file directly through a read-only OS file handle. With Zen v15
though, this direct file access is blocked when the File Close Delay feature is enabled, which is why
this check is not automatically enabled. For this to work as expected, please disable this feature (by
setting File Close Delay to 0 in the ZenCC) and restart the engine to ensure that all files are closed.

In addition to scanning your data volume, you may ALSO wish to scan your boot/OS volume. At a
bare minimum, though, you should scan the C:\ProgramData\Actian folder (or
C:\ProgramData\Pervasive Software for older versions). We have seen cases where the synthetic
time has migrated into the DBNAMES.CFG file, as well as DDF files inside the various system
directories, and as you now know, attempting an insert into ANY table with a synthetic time will
result in synthetic time being used again by the engine until the next restart. As such, it is critical to
locate and address this issue in EVERY database file in your environment.

Eliminating Synthetic Time in the Environment
Once you know which files are using synthetic time, you can concentrate on the task of cleaning them
up so that only real time is used internally. Luckily, this is the easy part!

WHEN YOU DO NOT RELY ON SYSTEM DATA

If you do not rely on any System Data values for your environment (i.e. you are not using
DataExchange or other replication solutions that are dependent on static values for each record), then
the process to eliminate synthetic time is actually pretty easy:

1. Restart the database engine to ensure that you are working with real times.

2. Rebuild the affected data files using the -sK option to generate all new System Data values.
While you can use the GUI Rebuild Utility to do this, you may find it far easier to use the
command line rebuild utility (rbldcli) and wildcards to do entire folders at one time.

Note that the database files cannot be used while they are being rebuilt, so you will need to find a
suitable system downtime window to complete this process. This fact also presents a problem with
the special system files DBNAMES.CFG and the DEFAULTDB database DDF files, as these files
are opened as part of opening any other file, so rebuilding will fail every time on these special files.
To get around this inherent limitation, rename or copy these files to a new location, rebuild them
there, and then copy them back.

Since you are rebuilding the files anyway, if you ever wanted to change file formats or move to a
larger page size, now is the perfect time to consider that, too.

WHEN YOU DO RELY ON SYSTEM DATA

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 8

If you do rely on System Data values for your environment for things like replication, then things get
infinitely more difficult. You cannot simply start rebuilding files willy-nilly, because the new System
Data values won’t exist in the related data files.

If you are running DataExchange, then you will need to re-deploy these files manually, which will
likely require rebuilding the primary file, blanking the PDC file on the source server, blanking the
PDC file and target file on the target server, and then running DXSyncTables. Alternatively, if
MANY files are impacted, you may find it easier to tear down the DX environment and rebuild it
from scratch, especially if many files are impacted. Note that this can create an extensive downtime
window, so may also be important to reflect on the current synthetic time being used and determine if
this will cause a problem any time soon.

Ensuring Synthetic Time Doesn’t Come Back
Once you’ve spent the time to eliminate synthetic time from your environment, you need to be
vigilant about making sure that it doesn’t come back. This could mean scheduling periodic scans
(annually?) to look for synthetic times used inside data files with CheckSysData.

If you periodically receive database files from other companies, then you may also want to be vigilant
about scanning these files before accessing them on your system. If you are a developer and a
customer sends you files with synthetic time, then your engine could flip to that time from that point
forward, and you could then send files with synthetic time to other customers propagating the issue
from site to site.

Alternatively, instead of a full system scan every so often, you can set up a process that periodically
creates a new file (with System Data), inserts a new record into it, and then reads back the System
Data value to ensure that it is within a normal time range. If you find a synthetic time here, then you
know that your engine is impacted, and you can quickly schedule the downtime window needed to
restart the engine and rebuild files once again. Of course, running a full scan at that point might be
prudent, too, as even ONE file with a synthetic time can make it come back.

I‘m so Confused!
As with most database issues, Goldstar Software is able to help you with anything you might need, so
you can contact our support team for assistance with the analysis and clean-up.

