

SQL Query Optimization Part 1
 Determining the Workload

of a SQL Query on Actian Zen

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 5

SQL Query Optimization Part 1:

Determining the Workload of a SQL Query on Actian Zen
Last Updated: 02/04/2022

Note #1: This paper is part 1 of a multi-part series on SQL query optimization. You may
wish to start with Part 1 before looking at the other parts, as each takes a specific area of
query optimization and breaks it down into manageable steps.

Note #2: This paper includes screenshots from the Actian Zen v15 product specifically,
but the information presented herein relates to all versions of the Actian Zen, Actian
PSQL, and Pervasive PSQL – all the way back to the Pervasive.SQL 2000i, in fact!

Introduction

One common complaint we hear about the Actian PSQL/Zen database environment is
that SQL queries are running “slowly” for some reason. Now, it is known that the SQL
Relational Database Engine (SRDE) is internally single-threaded, so working on large
data sets won’t see parallelization that other SQL engines may offer, but “slow” queries
are usually the result of a SQL query that is either improperly designed, overly
complicated, or simply a query that is requiring a lot of effort to complete.

Before a query can be optimized, we need to first understand the workload of our query
so that we can understand exactly what the database engine is attempting to do when it
runs the query. Once we know how much work was required to run the query in its
current state, we can then analyze the query in detail to see exactly what decisions the
database engine made about the data and how the data was eventually accessed at the
Microkernel level. Finally, we can make small changes to the query in an attempt to
optimize the query. As we make the changes, we can then observe the difference in the
workload and decide if the change we made is good or bad.

This paper covers the first part of the process, determining the workload of the SQL
query itself.

Selecting the Right Metric

Most people use the clock as their optimization metric. (Admittedly, some queries may
require a calendar.) This is easy to understand, because the query run time is easy
enough to measure, and when you are waiting 5 minutes for your report to appear on the
screen, it becomes obvious that there is a lot of work going on behind the scenes.

It is possible to monitor incoming SQL queries with the Zen Monitor utility in the SQL
Active Sessions tab, which looks like this:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 5

If you look for connections with a Connection Status of “Active”, the time immediately
to the right (the Active/Idle Period) will tell you for how long that query has been
running. Queries that have been running for more than 30 seconds are indeed suspect
queries and worth a second look. Remember, though, that this screen refreshes only
every 5 seconds by default, and once a query goes away, it is hard to tell exactly how
long it took.

Although this sounds quite easy, the “clock time” required to run a query is not really a
good metric. In order to complete a given query, a set amount of data must be examined.
If this data is not already in the database engine cache memory, then each page that is
accessed will see a delay waiting for the disk drive to provide that page, and the query
will seem to run quite slowly. If you run the same query a second time, then the pages
are already in the cache, eliminating the disk latency, and the query runs quite rapidly.
However, don’t be fooled – you didn’t just optimize the query – you just traded slowness
due to disk for high CPU utilization.

Luckily, the Zen Monitor utility provides additional data in the MicroKernel Sessions
tab instead.

Note that there are TWO separate MKDE sessions for this Zen Control Center SQL
session. You will have to click on each MKE session to see the data files (in the lower
section of the screen) that are currently opened in order to tell them apart, but one will
usually have your data file(s) open, while the other will have some temporary files
opened as support for the SRDE and the Control Center itself. In this example, the first
session is the actual one that the SRDE is using to retrieve data from the files.

At first glance, you might think that the Read Records reported by the Zen Monitor is a
good metric. However, this is not always the case. This counter does not always count
each record accessed, but only those calls actually reading records, so GetNextExtended
calls can reduce the apparent number of records reported here.

So, what should we use instead? As mentioned above, the SRDE needs to access a
certain number of database file pages in order to examine all of the data to satisfy a
query. This is reported in the last two columns, Disk Accesses and Cache Accesses. If
you add these two values together, you will get a total for the number of pages actually
accessed by the query, regardless of whether they were satisfied by the database engine
cache or if they required a read from the disk.

Determining the Workload

Now that we have a usable metric, we can use the number of pages accessed as a way to
determine the workload required to run a specific query. If we use the Zen Monitor to
look at these values both before and after the query, then some simple math tells us the
page access count.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 5

Let’s look at a specific example. We first start by examining the counters prior to
starting the test query:

We can then run our query in the same Control Center window and observe the changes:

Based on this result, we can see that the query itself generated 109 – 105 = 4 page
accesses from the disk and 1061 – 937 = 124 page accesses from the cache. Of course, if
your engine cache is large enough to hold the entire data set, the math gets quite a bit
easier once the data is completely in cache. (You can force the data into the cache by
running the query once, record the current values, then re-run the query a second time
and record the new numbers:

This time, we see that the Disk Accesses values do not change, as all of the data was
already cached. We now need to only keep track of a single number changing and
calculate the difference between the two runs, which gives us 1185 – 1061 = 124 page
accesses from cache for this sample query.

A More Complex Example

The above tests were done with small files, and relatively little workload. As such, any
optimization we do is likely to not provide much in the way of gains. However, let’s see
what it looks like when a very nasty query is submitted to the engine.

While the query is running, we see the clock time increase in the SQL Connections tab:

Obviously, this query is taking a REALLY long time to finish. Note that the Active/Idle
Period is in milliseconds, but even the last snapshot above indicates that the query has
been actively running for over 4385 seconds, or over 73 minutes. [In the end, I gave up

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 5

waiting for the query and went to lunch, so I was unable to get a true runtime for this
query. It is not surprising the end user was complaining about it being slow!]

When the query had finally finished, I switched over to the MicroKernel Sessions tab to
get the page counts. There I saw the following:

Here you can see that the entire query required a LOT of work, generating over 36-
million record reads, which in turn required 2.2-million page accesses from the disk and
over 97-million page accesses from cache.

And, in a sad twist of fate, the date range we used did not hit ANY valid data within our
database, so this effort returned 0 rows of data, and essentially generated a report with
NO data on it. Yikes!

Conclusion

Understanding the SQL query workload is only the first step in the optimization process,
of course. The next step is to capture the SQL query plan and examine it in more detail,
and hopefully find out why this query takes so long to run. This is covered in the next
white paper in our series, so look for Part 2!

If you still can't get it to work, contact Goldstar Software and let us help!

