

Accessing Zen v15
from C# on Windows

Using ADO.NET

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 10

Accessing Zen v15 from C# on Windows Using ADO.NET
Last Updated: August 2022

The Actian Zen database engine (formerly known as Actian PSQL) supports a wide variety of
application programming interfaces (APIs) to access the data. Some of these interfaces leverage a
lower-level interface, commonly known as the Btrieve API to provide the needed performance and
flexibility. However, for rapid development of applications, it is hard to beat the productivity of the
more advanced interfaces like ADO.NET.

This paper defines the minimum of steps required to build a simple ADO.NET application using the
Actian Zen v15 database environment. The example is a bit contrived – we use a single button in the
GUI dialog box to open a single SQL table and display its records in a simple grid. However, this is
mainly done to keep the sample code easy to understand and to concentrate on the core requirements.

Important Pre-requisites
The following pre-requisites should be in place before you start.

1) You should have a Windows operating system properly installed.
2) You should have Microsoft Visual Studio properly installed. Screenshots within this paper are

from VS2019, but the requirements should be similar for both newer and older versions. If you
need help with this, please see Microsoft’s documentation.

3) You should have Actian Zen v15 installed and running. If you are working on a stand-alone
development machine, you can install either the Workgroup Engine or the Server Engine. (Both
will work just fine with a 30-day trial.) If you are working within a shared environment, you
should have a Zen v15 Workgroup Engine or Server Engine installed where the database files
are located, and the Zen v15 Client installed on your development computer. See our install
documentation at http://www.goldstarsoftware.com/ineedzen15.asp for complete instructions if
needed.

Download and Install the ADO.NET SDK
Actian has a formal SDK download for the ADO.NET components, which you can find on their web
site following these directions.

1) Go to https://esd.actian.com/product/Zen_PSQL in a web browser.
2) In the boxes provided, select SDKs and ADO.NET.

3) Scroll down and open up the link for ADO.NET, then click on the DOWNLOAD button to

download the needed SDK component.(Note that there are multiple versions – for both
ADO.NET 4.4 and 4.5, as well as different downloads for .Net Framework and .Net Standard,
so be sure to grab the correct version for your environment.)

4) After it downloads, double-click the EXE file to launch the installer.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 10

5) Change the Unzip to Folder to your project base folder (C:\Develop\ in my example) and
click Unzip.

6) You will now have the ADO.NET components and sample code in a folder on your
workstation. If you are using the .Net Framework, you will want to install the components into
the Visual Studio envioronment as documented in the README file, which should look like
this if it worked correctly:

Create a New Visual Studio Project
We need to create a new project within Visual Studio with basic starter code.

1) Start Visual Studio.
2) From the Getting Started screen, select Create a new project.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 10

3) In the template search, select C#, Windows, and Desktop, and then select the Windows Forms
App (.Net Framework) and click Next.

4) From the next screen, enter your project name, location, and other required information and

click Create to generate your new project with some starter code:

5) If you wish, you can build this program and it will run (though it won’t do anything yet).

Add the Visual Elements to the Form
We are going to drop two visual elements onto the form.

1) If your Toolbox is not pinned to the screen, consider pinning it now with this button:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 10

2) Drag & drop one Button object and one DataGridView object onto your new form. Align and
resize as desired, until you have something like this:

3) To make it more “pretty”, click on the button1 and change its Text in the Properties window.

In our case, we are going to create a query that reads data from the Person table, so we are
changing the text to “Person”:

Add the ADO.Net Provider to the Project
We are next going to add the needed provider to the environment. Note that for this to work, you do
NOT need to have the SDK installed – the proper provider is already available as part of your Zen v15
installation.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 10

1) In Solution Explorer, right-click on the project name, select Add, then Reference…:

2) Click the Browse button in the lower right:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 10

3) Navigate to the directory containing the ADO.NET Provider, as shown in the dialog box below,
and select the Pervasive.Data.SqlClient.dll file, then click Add:

Specify the Button Fucntionality
We are next going to add functionality to the button.

1) Double-click on your Person button to open the code window, and add the “using” line as
shown here in Line 10 to allow it to work with the provider:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 10

2) Locate the button1_Click() function and change the code to match the following:

(See Appendix A if you want to copy/paste the text instead of typing it.)

Build and Test the Application
Your application is now complete! To test it:

1) Click on the Start button on the toolbar to compile and launch the app:

2) Click on the Person button to load the DataGrid with the data from the SQL table called Person:

From there, the ADO.NET world is at your beck and call!

A Few Notes About the Source Code
Now that we have built the code and it is working, let’s review a few key components of that source
code:

 Line 25 instantiates a new PsqlConnection object called pconn, which defines the SQL
connection to be used. In this example, we are connecting to the database engine on the local

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 9 of 10

machine (i.e. localhost) and opening up the DEMODATA database. You can change the
connection string to connect to any database on any accessible Zen database server by simply
changing this text. If your database is secured, you may need to add the UID and PWD options.
See the ODBC Connection String documentation in the on-line help for a complete list of
connection string options.

 Line 26 opens the connection. Any good application would use a separate try block to capture
errors here in case the server is down or the database is otherwise unavailable.

 Line 27 instantiates a new PsqlDataAdapter object called da, connects it to the existing
PsqlConnection object pconn, and assigns it a static SQL query as shown. To increase
flexibility, you may wish to perform these operations separately.

 Line 28 instantiates a new DataSet object called ds.
 Line 29 handles the database magic here – it calls the PsqlDataAdapter object to fill the given

data set object with data, and then assign that to the “table1” table name which will be assigned
to the dataGridView1 object later on.

 Lines 30-32 close the database connection and dispose of the connection. You may not want to
do this in your application until it is ready to close completely – but like we learned in
kindergarten, you should always clean up your mess before going home.

 Lines 33-34 take the DataSet object that we created and populated in lines 28-29 and assign it to
the DataGridView object on the form. [Note that if you were playing around and have created
multiple DataGridView objects, you may need to change the name of this object to match the
one currently showing in the Form Design.]

Expanding Your Knowledge
Want to know if you understand what is going on? Try these modifications:

1) Add a second button to the form called Faculty, and query from the Faculty table instead of the
Person table. You will need to populate the button2_Click function.

2) Add a third button that displays each Faculty member’s name and Salary, sorted by Last Name.
If you are not familiar with the DEMODATA database, we’ll give you the SQL query here:
Select Person.First_Name, Person.Last_Name, Faculty.Salary from Person INNER JOIN
Faculty on (Person.id = Faculty.Id) ORDER BY 2

3) Change your application to connect to your own database and your own tables. This should
only require changing the connection string and the SQL statements (lines 25 and 27).

From here, you’re only limited by your imagination!

Finding More Help
If you have other problems getting this to work, you can contact Actian directly through their web
forums at https://communities.actian.com/s/ for more help. If you need some additional hand-holding,
Goldstar Software may be able to assist you as well through our Developer Jump Start Program. You
can contact us at 1-708-647-7665or via the web at http://www.goldstarsoftware.com.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 10 of 10

Appendix A: Sample Form1.cs Code
The following application makes use of the ADO.NET API and can be used as instructional and sample code.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using Pervasive.Data.SqlClient;

namespace TestADO
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 try
 {
 PsqlConnection pconn = new PsqlConnection("Server=localhost;DBQ=Demodata");
 pconn.Open();
 PsqlDataAdapter da = new PsqlDataAdapter("Select * from Person", pconn);
 DataSet ds = new DataSet();
 da.Fill(ds, "table1");
 pconn.Close();
 pconn.Dispose();
 pconn = null;
 this.dataGridView1.DataSource = ds;
 this.dataGridView1.DataMember = "table1";
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }
 }
}

