APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

Apple lIGS
Programmer's
¢ Workshop C

Version 1.0

K25002

@. Apple.ll Apple IIGs Programmer’s
=———— Workshop C Reference

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this mariual
or the software may not be
copied, in whole or part, without
written consent of Apple, except
in the normal use of the software
or to make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies
as were affixed to the original.
This exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with all
backup copies) may be sold,
given, or loaned to another
person. Under the law, copying
includes translating into another
language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© Apple Computer, Inc.,
1985-88

20525 Mariani Ave,
Cupertino, California 95014
(408) 996-1010

© AT&T, 1985

Apple, the Apple logo,
Apple IIGS, LaserWriler,
Macintosh, and ProDOS are

registered trademarks of Apple
Computer, Inc.

SANE is a trademark of Apple
Computer, Inc.

UNIX is a registered trademark of
AT&T.

DEC, VAX, and PDP are
trademarks of Digital Equipment
Corporation.

IBM is a registered trademark of
International Business Machines
Company.

NS16000 is a trademark of

Narional Semiconductor
Corporation.

Z8000 and Z8070 are trademarks
of Zilog Corporation.

Simultaneously published in the
United States and Canada.

Preface

Part I:

Chapter 1:

Contents

Figures and tables viil

About this manual ix

A road map to the Apple IIGS technical manuals ix
Introductory manuals xi
The technical introduction xi
The programmer’s introduction xi
Machine reference manuals xi
The hardware reference manual xii
The firmware reference manual xii
The toolbox manuals xii
The Programmer’s Workshop manual xii
Programming-language manuals xiii
Operating-system manuals xiii
"All-Apple manuals xiii
How to use this manual xiv
What this manual contains xiv
Visual cues xv
New terms xv
Notes and warnings xv
Language notation xv
Other reference materials you'll need xvi

Programmer's guide

Overview 1-1

About the Apple IIGS Programmer's Workshop 1-2
The APW Shell 1-2
The APW Editor 1-3
The APW Linker 1-3
About APW C 1-3
Mode of operation 1-4
Standard Apple Numeric Environment 1-4
Object module format 1-4
About the Apple TIGS system software 1-5
‘What you need 1-5
APW C concepts 1-6
Relocatable load files 1-6
Program segmentation 1-8
Dvnamic segments 1-12

iv

Contents

Chapter 2:

Chapter 3:

Library files 1-13
Program interactions . 1-14
Using the APW C libraries 1-17

Using the APW C Compiler 2-1

Installing APW C 2-2
Backing up your APW C disk 2-2
Installation 2-2
Running APW C on 3.5-inch disks 2-3
Writing and running a sample program 2-4
Writing the sample program 2-4
Compiling and linking the sample program 2-5
Running the sample program 2-5
The APW C Compiler 2-5
The compilation process 2-5
Suspending or canceling the compilation 2-6
C compiler erfor messages 2-6
C compiler shell commands 2-6
Editing a source file 2-6
Compiling and linking a program 2-7
Command notation 2-7
cc 2-9
CHANGE 29
CMPL 2-9
CMPLG 29
COMPILE 2-10
EDIT 2-13
LINK 2-14
RUN 2-15
Examples of these commands 2-16
Appending files 2-16
Partial compilation or assembly 2-17
The linker 2-17
Making a library 2-17
Files for compiling and linking 2-17
Include-file search rules 2-18
Library files 2-18

Sample Programs 3-1

General procedure 3-2
Writing and editing the sample source code 3-3
Creating object code: compiling and assembling 3-5
Creating load files: linking 3-6
Running your program 3-7
Creating a compact load file 3-7
Building a larger application: BONES 3-8
Writing desk accessories in APW C 3-8
Writing new desk accessories in APW C 3-8
A sample C desk accessory 3-10

Partll: Language Reference
Chapter4: The APW C Language 4-1
Language definition 4-1
Variable names 4-1
Data types 4-1
Numeric constants 4-3
Type void 43
Type enum 4-4
Register variables 4-5
Structures 4-5
Reserved symbols 4-6
Standard Apple Numeric Environment extensions 4-6
Constants 4-7
Expressions 4-7
Comparison involving a NaN 4-8
Parameters and function results 4-8
Numeric input and output 4-8
Numeric environment 4-8
About the SANE routines in CLIB 4-8
Programming with IEEE arithmetic 4-9
The in-line assembler 4-9
In-line assembly-code declarations and
definitions 4-10
In-line assembler syntax 4-10
Pascal-style functions 4-12
Pascal-style function declarations 4-13
The inline declaration 4-13
Pascal-style function definitions 4-14
Pascal-style strings: \p 4-14
Parameter and result data types 4-15
Global and external data types 4-16
How parameters are passed 4-16
C-style functions 4-16
Pascal-style functions 4-17
Sample program 4-17
Implementation notes 4-19
Size and byte-alignment of variables 4-19
Byte ordering 4-19
Variable allocation 4-19
Variables of type void 4-19
Array indexing 4-19
Types unsigned char, unsigned short, and
unsigned long 4-21
Bit fields 4-21
Evaluation order 4-21
String substitutions in def ine statements 4-21
Assignment operators 4-22
Language anachronisms 4-22
Assignment operators 4-22
Initialization 4-22
Compiler limitations 4-22
Performance tips 4-23
The segment command 4-23
The #append directive 4-23
START.ROOT, restartability, and Standalone 4-23
Code-generation memorv model 4-24
Contents

vi

Contents

Chapter 5:

The Standard C Library 5-1

About the Standard C Library 5-2

Error numbers 5-3

abs—return integer absolute value 5-5

atof—convert ASCII string to floating-point number 5-6

at oi——convert string to integer 5-7

close—close a file descriptor 5-8

conv—iranslate characters 5-9

creat—create a new file or rewrite an existing file 5-10

ctype—lassify characters 5-11

dup—duplicate an open file descriptor 5-13

ecvt—convert a floating-point number to a string 5-14

exit—terminate the current application 5-15

exp—exponential, logarithm, power, square-root functions 5-16

faccess—named file access and control 5-17

fclose—<lose or flush a stream 5-18

fent 1—file control 5-19

ferror—ferror status inquiries 5-20

floor—floor, ceiling, mod, absolute value functions 5-21

fopen—open a buffered file stream 5-22

fread—binary input/output 5-24

f rexp—manipulate parts of floating-point numbers 5-25

£ seek—reposition a file pointer in a stream 5-26

getc—get a character or a2 word from 2 stream 5-27

getenv—access exported APW Shell variables 5-28

get s—get a string from a stream 5-29

hypot—Euclidean distance function 35-30

ioctl—<control a device 5-31

lseek—move read/write file pointer 5-33

malloc—memory allocator 5-34

memory—memory operations 5-36

onexit—install a function to be executed at program
termination 5-37

open—open for reading or writing 5-38

print f—print formatted output 5-39

putc—oput character or word on a stream 5-42

puts—wrile 2 string to a Stream 543

gsort—quicker sort 5-44

rand—a simple random-number generator 5-45

read—read from file 5-46

scanf—converl formatted input 5-47

setbuf—assign buffering to a stream 5-51

set jmp—nonlocal transfer of control 5-53

sinh—hyperbolic functions 5-54

stdio—standard buffered input/output package 3-35

string—siring operations 5-58

strtol—convert a string o a long 5-60

t rig—trigonometric functions 5-61

ungetc—push a character back into the input stream 5-62

unlink—delete a named file 5-63

write—write on a file S04

i

Chapter é6: Shell Cails 6-1

How (0 make a shell call 6-2
How a program makes a shell call 6-3
Call descriptions 6-3
GET_LINFO and SET_LINFO 6-3
GET_LANG 66
SET_LANG 6-6
ERROR 6-7
SET_VAR 6-7
VERSION 6-7
READ INDEXED 6-8
INIT_WILDCARD 6-8
NEXT_WILDCARD 6-9
GET_VAR 6-9
EXECUTE 6-10
DIRECTION 6-11
REDIRECT 6-11
STOP 6-12
WRITE_CONSOLE 6-12

Appendix A: Calling Conventions A-1

C cailing conventions A-1
Parameters A-1
Function results A-1
Register conventions A-2
Pascal-style calling conventions A-2
Parameters A-2
Function results A-2
Register conventions A-2

Appendix B: Files supplled with APW C B-1

Appendix C: Comparison with Macintosh Programmer’'sWorkshop € C-1

Darta types C-1

Register variables C-1

Structured variables C-1

Pascal-compatible function declarations C-2
Preprocessor statements C-2

Dangling case in switch statements C-3
In-line assembly-code declarations C-3

Appendix D: Library Index C-1
Appendix E: ASCIl Table E-1
Appendix F: APW C Compiler Error Messages F-1

Glossary GL-1
Index IN-1

Contents vii

viii

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 6

Figures and tables

About this m_q__nual ix

Figﬁre_a P:1 A roadmap 1o the technical manual x
Table P-1 The Apple IIGS technical manuals ix

Overview 1-1

Figure 1-1 Creating an executable C program on the
Apple IIGs 1-8

Figure 1-2 Creating object segments in source code 1-9

Figure 1-3 Assigning load segments in source code 1-10

Figure 1-4 Relationship between objects segments and load
segments 1-11

Figure 1-5 Relationship between object files and library
files 1-14

Figure 1-6 Program interactions 1-15

. Figure 1-7 APW C library interacuons 1-17

Using the APW C Compiler 2-1
Table 2-1 Include-file search rules 2-18

Sample Programs 3-1

Table 3-1 Tool sets loaded and available to new
desk accessories 3-9

The APW C Language 4-1

Table 4-1 Size and range of data types 4-2
Table 4-2 Parameter and result data types 4-15

Shell calls 6-1
Table 6-1 Shell calls

Preface

About This Manual

This manual contains the information about Apple® HGS® Programmer's Workshop C
that you need when writing C programs for the Apple IIGS computer. It assumes that
most readers already know the C programming language, as defined in Kernighan and
Ritchie’s The C Programming Languagge. For this reason, it does not repeat their
definition of the C language, bur instead defines the differences between APW C and
“K and R” C. However, this manual can also be used by those learning C for the first
time. The introductory chapters tell how to write, compile, link, and run a simple C
program. From there, you can follow Kernighan and Ritchie’s book or any other
standard textbook on C.

A road map to the Apple liGs technical manuals

The Apple IIGS personal compuler has many advanced features, making it more
complex than earlier models of the Apple II computer. To describe the Apple IIGS
fully, Apple has produced a suite of technical manuals. Depending on the way you
intend to use the Apple IIGS, you may need to refer to a select few of the manuals, or
you may need to refer to most of them.

The technical manuals are listed in Table P-1. Figure P-1 is a diagram showing the
relationships between the different manuals.

Table P-1

The Apple lles technical manuals

Title Subject

Technical Introduction to the Apple [IGS What the Apple IIGS is

Apple IIGS Hardware Reference Machine internals—hardware

Apple IIGS Firmware Reference Machine internals—firmware

Programmer’s Introduction to the Apple IIGS Concepts and a sample program

Apple IIGS Toolbox Reference, Volume 1 How the tools work and some toolbox
specifications

Apple IIGS Toolbox Reference, Volume 2 5 More toolbox specifications

Apple IIGS Programmer’s Workshop Reference The development environment

Apple IIGS Programmer's Workshop Assembler Reference Using the APW Assembler

Apple IIGs Programmer’s Workshop C Reference Using C on the Apple IIGS

ProDOS 8 Technical Reference Manual 2roDOS for Apple II programs

Apple IIGS ProDOS 16 Reference ProDOS and loader for Apple I1IGS

Human Interface Guidelines: The Apple Desktop Interface Guidelines for the deskiop interface
Apple Numerics Manual Numerics for all Apple computers

To start finding out
about the Apple IIGS

Ta learn how
the Apple HGS works

To start learning to
program the Apple IIGS

To use the toolbox

To use the development
environment

To operats on flles

To program in C

To program in
assembly language

Figure P-1
A road map to the technical manuals

X Preface: About This Manual

The following sections briefly describe the manuals listed in Table Pref-1 and
Figure Pref-1.

Introductory manuals

‘These books are introductory manuals for developers, computer enthusiasts, and
other Apple IIGS owners who need technical information. As introductory manuals,
their purpase is to help the technical reader understand the features of the Apple IIGS,
particularly the features that are different from other Apple computers. Having read
the introductory manuals, the reader will refer to specific reference manuals for details
about a particular aspect of the Apple IIGS.

The technical introduction

The Technical Introduction to the Apple IIGS is the first book in the suite of technical
manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the toolbox, and the
development environment.

Where the Apple ITGS Qumer's Guide is an introduction from the point of view of the
user, the Technical mtroduction to the Apple IIGS describes the Apple IIGS from the
point of view of the program. In other words, the manual describes the things the
programmer has to consider while designing a program, such as the operating features
the program uses and the environment in which the program runs.

You should read the Technical ntroduction to the Apple IIGS no matter what kind of
programming you intend to do, because it will help you understand the powers and
limitations of the machine. If you are going to be doing assembly-language or system
programming, this book is essential. To find out all about any one aspect of the
Apple 1IGS, you should read one of the following specific technical manuals.

The programmer’s introduction

When you start writing programs that use the Apple IIGS user interface (with windows,
menus, and the mouse), the Programmer's Mntroduction to the Apple IIGS provides
the concepts and guidelines you need. It is not a complete course in programming,
but is only a starting point for programmers writing applications for the Apple IIGS. It
introduces the routines in the Apple IIGS Toolbox and the program environment they
run under. The manual includes a sample event-driven program that demonstrates
how a program uses the toolbox and the operating system.

Machine reference manuals

There are two reference manuals for the machine itself: the Apple IIGS Hardware
Reference and the Apple IIGS Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

If you are doing system programming or are writing programs that are designed to
recognize whether they are running on the Apple IIGS or older Apple I computers,
these books are essential.

A road map to the Apple lics technical manuals

Xi

The hardware reference manual

The Appie IIGS Hardware Reference is required reading for hardware developers,
and is also of interest to anyone else who wants 10 know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware, which provide a better understanding of the
machine’s features.

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs and subroutines that are
stored in the machine’s read-only memory (ROM), with two significant exceptions:
Applesoft BASIC and the toolbox, which have their own manuals. The Apple IIGS
Firmware Reference includes information about interrupt routines and low-level /O
subroutines for the seral ports, the disk port, and for the Desktop Bus interface, which
controls the keyboard and the mouse. The reference also describes the Monitor, a
low-level programming and debugging aid for assembly-language programs.

The tocolbox manuals

Like the Macintosh, the Apple [IGS has a built-in toolbox. The Apple [IGS Toolbox
Reference, Volume I, introduces concepts and terminology, and tells how to use some
of the tools, The Apple IIGS Toolbox Reference, Volume 11, contains information
about the rest of the tools, and describes how to write and install your own tool set.

Of course, you don'’t have to use the toolbox at all. If you only want to write simple
programs that don't use the mouse, windows, menus, or other parts of the desktop
user interface, then you can ger along without the toolbox. However, if you are
developing an application that uses the desktop interface, or if you want o use the
Super Hi-Res graphics display, you'll find the toolbox indispensable.

The Programmer’s Workshop manuai

The development environment on the Apple IIGS is the Apple IIGS Programmer’s
Workshop (APW). APW is a set of programs that enable developers to create and 1o
debug application programs on the Apple IIGS. The Apple [IGS Programmer’s
Workshop Reference includes information about the parts of the workshop that all
developers will employ, regardless which programming language they use: the shell,
the editor, the linker, the debugger, and the utilities. The manual also tells how to write
other programs, such as custom utilities and compilers, to run under the APW Shell.
(For brevity, this text will usually refer to the Apple IIGS Programmers Reference as
the APW Reference.)

The APW Reference describes the way you use the workshop to create an application
and includes a sample program to show how this is done.

xii Preface: About This Manual

Programming-language manuais

Apple currently provides a 65816 assembler and a C compiler. Other compilers can
be used with the workshop, provided that they follow the standards defined in the APW
Reference.

There is a separate reference manual for each programming language on the
Apple 1IGS. Each manual includes the specifications of the language and of the
Apple IIGS libraries for the language, and describes how to write a program in that
language. The manuals for the languages Apple provides are the Apple IIGS
Programmer’s Workshop Assembler Reference and the Apple IIGS Programmer’s
Workshop C Reference.

Operating-system manuais

There are two operaling systems that run on the Apple 1IGS: ProDOS 16 and ProDOS
8. Each operating system is described in its own manual: ProDOS 16 Technical
Reference Manual and Apple IIGS ProDOS 8 Reference. ProDOS 16 uses the full
power of the Apple IIGS and is not compatible with earlier Apple If computers. The
ProDOS 16 manual includes information about the System Loader, which works
closely with ProDOS 16. If you are writing programs for the Apple IIGS, whether as an
application programmer or as a sysiem programmer, you are almost certain to need
the ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compalible with the models of Apple 1T
that use 8-bit CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8
only if you are developing programs to run on 8-bit Apple II's, as well as on the

Apple 1IGS.

All-Apple manualis

In addition to the Apple 1IGS manuals just mentioned, there are two manuals that
apply to all Apple computers: Human Interface Guidelines—The Apple Desktop
Interface; and the Apple Numerics Manual. If you develop programs for any Apple
computer, you should know about these manuals.

The Human terface Guidelines describes Apple’s standards for the desktop
interface to any program that runs on an Apple computer. If you are writing a
commercial application for the Apple IIGS, you should be fully familiar with the
contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANE™), a full implementation of the IEEE standard for [loating-point
arithmetic. The functions of the Apple IIGS SANE tool set match those of the
Macintosh SANE packages and of the 6502 Assembly-Language SANE™ software. If
your application requires accurate or robust arithmetic, you'll probably want to use
the SANE routines in the Apple IIGS. The Apple IIGS Toolbox Reference tells how to
use the SANE (ool set routines in your programs. The Apple Numerics Manual is the
comprehensive reference for the semantics of the SANE routines.

A road map to the Apple lics technical manuals

xiii

How to use this manual

If you are an experienced C programmer but have never written a program for the
Apple TGS, Chapters 1, 2, and 3 will give you enough information to get standard C
programs running. (If you have written other programs for the Apple IIGS, Chapter 1
will be redundant) The remaining chapters tell you what you need to write C programs
that use the capabilities of the Apple 1IGS.

If you are new to C, Chapter 1 will tell you what you need to go through a C textbook,
such as Kemnighan and Ritchie’s, which you should read next. After you are familiar
with C, you can learn about the capabilities of the C compiler and this particular
implementation.

What this manual contains
This manual is divided into two major sections. Part I, "Programmer’s Guide,”
introduces you to APW C and its programming environment.

O Chapter 1, “Overview,” introduces the environment in which you’ll use the C
compiler. The chapter discusses the Apple IIGS Programmer’s Workshop, ProDOS
16, and the Apple IGS tools, and lists the hardware and software you'll need.

o Chapter 2, “Using the APW C Compiler,” describes the compilation process, lists
the shell commands you'll need working with the compiler, and discusses the
linker, the debugger, and other utilities.

O Chapter 3, “Sample Program,” takes you step-by-step through the process of
building a C program that has an assembly-language subroutine.

Part II, “Language Reference,” is a detailed description of the structure and
components of the APW C and its libraries.

0 Chapter 4, “The APW C Language,” describes Apple extensions to C and clarifies
aspects of the language definition as they apply to this implementation.

0 Chapter 5, “The Standard C Library,” documents functions for standard {/0O, string
manipulation, math routines, and other useful features not built into the language.

0 Chapter 6, “Shell Calls,” lists the C interfaces to the APW Shell.
O Appendix A, “Calling Conventions,” tells how to write calls between C and Pascal.

O Appendix B, “Files Supplied with APW C,” contains a list of all the files that are
supplied with this product.

O Appendix C, “Comparison with Macintosh Workshop C," describes the differences
between MPW C and APW C.

O Appendix D, “Library Index,” is a combined index of identifiers in the Standard C
Library and the Apple 1IGS Interface Libraries.

O Appendix E, "ASCII Table,” contains decimal, octal, and hexadecimal equivalents
of each character in the Apple extended ASCII character set .

Xiv Preface: About This Manual

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, o
the introduction of a new term and important or useful information. These are
described in this section. Typographical conventions are described in the next
section, “Language Notation.”

New terms

When a new term is introduced, it is printed in boldface the first time it is used.
Boldfacing lets you know that the term has not been defined earlier and that there is an
entry for it in the glossary.

Notes and warnings
Special messages to note are marked as follows:

< Note: Text set off in this way presents sidelights or interesting points of information.

Important

Text set off in this way presents important information or instructions that you
should read before proceeding.

Warning

A warning set off like this alerts you to something that could cause loss of data or
damage to software.

Language notation

This manual uses certain conventions in common with other Apple [IGS language
manuals.

O Words and symbols that are part of the C language, as well as anything that you type
on the keyboard or that can appear on the screen, are presented in a monospace
font:

int ndigitc[10]

O Metalanguage expressions, which are used in syntax diagrams to indicate items that
are replaced by C, are in italic:

else if (condition)
siatement

Here condition and statement are expressions that are replaced by actual C
expressions”. The else if and the parentheses are C code.

Language notation

XV

In addition, the following conventions are observed:

Convention Meaning

[1

Square brackets indicate that the enclosed item is
optional.

A horizontal ellipsis indicates that the preceding
item or items can be repeated as necessary.

A vertical ellipsis indicates that not all of the
statements in an example or figure are
shown.

Other reference material you’ll need

In order to write C programs for the Apple IIGS, you'll need to be familiar with these
additional reference materials:

a

Apple IIGS Programmer’s Workshop Reference. This book describes the APW
environment in which the C compiler operates, including the shell, editor, linker,
debugger, and other important utilities.

The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie
(Prentice-Hall, 1978). This is a standard reference book for the C language in its
original form. Appendix A of this book is a formal definition of K and R C.

C: A Reference Manual, by Samuel P. Harbison and Guy L. Steele (Prentice-Hall,
1985). This is a complete reference book for standard C, as implemented by the
Portable C Compiler, including the Western Electric extensions to K and R C.

Apple IIGS Toolbox Reference, Volumes I and II. These books contain everything
you need to program using the Apple 1IGS ROM and associated RAM routines. The
two volumes cover windows, alert boxes, menus, graphics, the SANE tool set, and
much more.

Apple Numerics Manual. This book describes in detail the floating-point arithmetic
used in Apple computers. See the Toolbox Reference for a detailed description of
the calling sequence for SANE routines.

xvi Preface: About This Manual

I

o
Q
—

Programmer’s Guide

Chapter 1

Overview

1-1

This chapter introduces the Apple IIGS Programmer's Workshop (APW). The first
section, "About the Apple IIGS Programmer’s Workshop,” describes the various parts
of APW. The second section, “About Apple IIGS Systemn Software,” describes ProDOS
16, the System Loader, and the Memory Manager. The third section, “What You
Need,” describes the hardware and software you need to run APW C. The fourth
section, "APW C Concepts,” describes the relationships between source, object,
load, and library files. The fifth section, “Program Inieractions,” describes the
process of building a program. The sixth section, “Using the APW C Libraries,” shows
the libraries that mediate between an application and the Apple TIGS.

About the Apple liGs Programmer’s Workshop

The Apple TIGS Programmer’s Workshop is a suite of software designed to assist
developers in writing Apple IIGS applications programs. This development
environment includes a command interpreter, known as the shell; a text editor; a
Linker; and a set of utilities. APW supports C and 65816/65C02 assembly-language
programming; other languages are planned. Further support for developers is
provided by a comprehensive set of routines known as the Apple IIGS Toolbox. The
toolbox routines are accessed from APW, but are not part of APW. For a
comprehensive description of APW, refer to the Apple IIGS Programmer’s Workshop
Reference. For detailed information on the Apple 1IGS Toolbox, refer to the

Apple IIGS Toolbox Reference: Volumes I and II.

The APW Shell

The APW Shell provides the interface that allows you to work with the C compiler and
perform tasks such as file, directory, and disk management. The shell also acts as an
extension to ProDOS 16, providing several functions that can be called by programs
running under the shell. The C compiler can use a set of shell calls to perform the
following functions:

O pass parameters and operations flags between the shell and APW programs
O read the current language number

O set the current language number

O return the address of the command table

O get filenames using wildcards

APW C provides C interfaces to the shell calls. The calls and their C interfaces are
discussed in Chapter 6, “Shell Calls.”

Commands most often used while working with the C compiler are described in
Chapter 2, “Using the APW C Compiler.” The APW Shell is fully described in
Chapters 2 and 3 of the APW Reference.

1-2 Chapter 1: Overview

The APW Editor

The APW Editor is a full-screen text editor that operates under keyboard control.
You can send commands to the shell o perform tasks such as

manipulating text

searching for and replacing text strings

moving your position in the file

scroiling the screen

setting and clearing tab stops

oo o oo a

defining and using keyboard macros
The APW Editor is fully described in Chapters 2 and 4 of the APW Reference.

The APW Linker

The APW Linker takes the object files produced by the C compiler and generates load
files that the System Loader can load into memory. Although the linker is a single
program, conceptually there are two APW linkers:

1. Normally the linker is called by a shell command, such as LINK or CMPL (compile
or link). These commands provide a lirited set of options, setting other options to
default values. This linker is referred to as the standard linker.

2. Alternatively, all functions of the APW Linker can be controlled by compiling a file
of linker commands. The linker command language, called LinkEd, allows you to
do such things as place specific object-file segments in specific load-file segments,
search specific libraries, and control linker printout. The aspect of the linker
controlled by LinkEd files is called the advanced linker.

|

About APW C

APW C is a complete implementation of the C programming language. APW C
consists of a C compiler, the Standard C Library, the Apple IIGS Interface Libraries,
and the C SANE Library.

The C Programming Language by Kernighan and Ritchie is an authoritative written
definition of C in its original form: this version of C is referred 10 as K and R C.
However, the language has changed in several ways since the book was written. In
additior;, numerous details of the language definition are open (o interpretation, with
the result that the de facto standard definition of C differs in several ways from the
language originally defined by Kernighan and Ritchie. This de facto standard is
TIoosely defined by the most widely used implementation of C, the Portable C Compiler
(PCQC).

About APW C

1-3

This manual, uses the term Standard C for C as defined and implemented by the
Berkeley 4.2 BSD VAX implementation of PCC, including the documented Western
Electric extensions: type void, enumeration data types, and structures as function
parameters and results. C' A Reference Manual, by Harbison and Steele, describes
Standard C fully. APW C is based on this de facto standard and not on the proposed
ANSI standard currently under development

Apple has extended Standard C to facilitate writing programs for the Apple IGS. In
addition to the Western Electric extensions, APW C includes a function modifier that
allows calls to and from Pascal programs and the Apple IIGS Interface Libraries.
APW C also supports the Standard Apple Numeric Environment (SANE), described
later in this chapter.

Mode of operation

The APW C Compiler, arid APW C itself, operates in the Apple IIGS's native mode. In
native mode, the full instruction set of the 65816 processor is available to the
compiler.

Standard Apple Numeric Environment

The APW C Compiler provides full support for the Standard Apple Numeric
Environment (SANE), APW C and the SANE routines in CLIB compose a fully
conforming implementation of extended-precision binary floating-point arithmetic
as specified by IEEE Standard 754. This standard specifies data types, arithmetic, and
conversions, as well as tools for handling exceptions such as overflow and division by
zero. SANE supports all requirements of the {EEE standard and goes beyond the
specifications of the standard by including a library of high-quality scientific and
financial functions. Thus, SANE provides a numerics environment sufficient for a wide
range of applications.

Source programs that use only the float and double types, and standard C
operations compile and run without modification.

Object module format

The object module format (OMF) on the Apple 1IGS is the general format used in
object files, library files, and load files. On the Apple Ilc and lle, there is only one
loadable file format, called the binary file format, which consists of one absolute
memory image along with its destination address. On the Apple IIGS, object module
format allows, while a program is running, dynamic loading and unloading of load
segments containing program code and data. Additionally, each APW language
produces its object code in the object module format, allowing you (o link together
subroutines written in different languages.

There are currently two OMFs: Version 1, produced by the APW Assembler, APW C
Compiler, and APW Linker; and Version 2, produced when you run an executable
load file through the Compact utility. To make an application written in C restartable,
you must run Compact on the load file (or files) that contains the application.

1-4 Chapter 1: Overview

About the Apple lIGS system software

System tasks are handled by ProDOS 16, the System Loader, and the Memory
Manager. ProDOS 16 is the core, or kemel, of the Apple IIGS’s operating system. It
provides file management and input/output (I/O) capability.

Working closely with ProDOS 16, the System Loader is responsible for loading all code
and darm into the Apple I1IGS memory. The System Loader is capable of static and
dynamic loading and relocating of load segments.

The Memory Manager is responsible for allocating memory. It provides space for
load segments, tells the System Loader where to place them, and moves segments
within memory when additional space is needed.

ProDOS 16 and the System Loader are documented in the Apple IIGS ProDos 16
Reference. The Memory Manager is documented in both the Apple IIGS ProDos 16
Reference and the Apple IIGS Toolbox Reference, Volumes I and II.

What you need
To use the Apple IIGS Programmer’s Workshop, you must have the following hardware
and software. The Preface gives a list of Apple IIGS manuals that you will find useful.

T An Apple [IGS computer, or an Apple e computer with an installed Apple 1IGS
upgrade, with 256K bytes of RAM. '

O An instailed Apple [IGS memory-expansion card with 1 megabyte (1M-byte) of
RAM. With this card, the Apple IIGS has 1280K of RAM.

The 3.5-inch Apple IIGS System Disk.
The two 3.5-inch APW disks.
The 3.5-inch APW C disk that contains the files shown in Appendix B.

Two 800K disk drives (only one is needed if you have a hard disk, but two are handy
for such operations as copying disks).

oo a a

o Disks containing any other APW languages you intend to use with this system. You
must install the files on these disks onto the Apple IIGS disk as described in the
manuals that came with them.

Important

APW requires 1M-byte of available memory. That means that if you have 1280K of
RAM in your Apple llcs, you cannot assign more than 256K to a RAM disk.

For serious development, you must have a hard disk, such as the Apple Hard Disk 20
SC. It is possible to run APW C from two 800K drives, but it requires considerable disk-
swapping. If you use the C compiler with the assembler or the advanced linker, you will
have considerable difficulty without a hard disk or at least three 800K drives.

Many developers find that an additional Apple II (not Apple IIGS) memory-expansion
card is very useful. You can use the card for a large RAM disk on which you can place
library files, compilers and assemblers, the linker, and utility programs. Since these
programs are loaded into memory from disk each time they are used, placing them on
a RAM disk can speed up the system’s operation during program development.

What you need

1-5

< Note: If you haven't yet read the Preface, go back and read it now. In addition to
providing a list of the manuals you'll need to develop programs for the Apple IIGS,
it explains the Izyout of this book, the relationships of the books in the Apple IIGS
Technical Library suite, and the conventions used to describe commands in this
book.

The APW C disk contains the files shown in Appendix B. Use the index of this manual
to get more information on any of these files. To examine the contents of your APW C
disk, boot the disk, type CAT and press Return, To examine the contenis of a
subdirectory, include the pathname of the subdirectory; for example, to obtain a
listing of the files in the subdirectory /APWC/LIBRARIES, use the following
command:

CAT /APWC/LIBRARIES
To obtain a listing of all files in the volume /APWC, use the command
FILES +L +R /APWC

This command prints the contents of all directories in the volume and the files in each
directory, with information about each file.

e ——

APW C concepts

This section describes a variety of features and concepts that you must understand in
order to write application programs for the Apple 1IGS computer, While some of these
concepts may be familiar to you from your work with other computers, you must stili
be familiar with the way in which they are implemented on the Appie IIGS to get the
most out of the Apple IIGS Programmer's Workshop, and to use the operating system
and the memory of the Apple IIGS effectively.

—_— e —

Relocatable load files

The Apple 1IGS Programmer’s Workshop deals with three fundamental types of files:
source flles, object files, and load files. Source files are ASCII files consisting of the
text of your program, and follow the conventions of a particular programming
language; object files and load files are binary files conforming to the Apple IIGS
object module format (OMF) defined in Chapter 7 of the APW Reference.

A C source file consists of C statements, preprocessor directives, function definitions
and declarations, and so forth, together with variable declarations, which may
include initialized data. In the source code, each specific function, variable, data
structure labelled with a name. You can refer to the name in another part of the
program: for example, you execute a function by using its name in a statement. A
name or label of code or data used in this way is referred 10 as a symbolic reference
(that is, a symbol that can be referenced or referred to). In high-level programming
languages like C, symbolic references are usually the only means available to jump
from one place in a program to another.

C uses a special kind of source file—a header or include file—containing code
shared by many programs: for instance, lists of constants or interfaces to libraries.
The header file is named in an #include statement in your source file, and the C
compiler copies the header file in place of the #include statement before doing the
actual compilation. '

1-6 Chapter 1: Qverview

In assembly language, it is possible to specify actual locations in the computer’s
memory to which you want the program to jump: that is, you can write absolute code.
The APW C Compiler only produces relocatable code segments; code segments
that can be loaded into any location in memory. Note that such a program can be
relocated only when it is loaded: once loaded, it can’t be moved. (A program or block
of code that can be moved from one location in memory to another while the

program is running is called position-independent.)

The Apple IIGS system software and APW are both designed to support relocatable
code.

When a source program is compiled, the compiler converts the source code into
65816 machine-language instructions, data declarations, and symbolic references.
Before the program is actually run, the symbolic references must be resolved; that is,
the routine being referenced must be found, and the reference must be replaced with
code that the loader can use to relocate the code at load time. The program that
resolves the symbolic references is called the APW Linker. (The linker gets its name
from the fact that it can combine, or link together, several object files and library files
to create a single executable load file.)

As shown in Figure 1-1, the conversion of a source file into 65816 machine language
and data thar are resident in memory is done in several steps:

1. The source code is compiled. The APW C Compiler first executes preprocessor
directives, such as inserting include files, before compiling the source code and
writing out one or more object files. Object files, then, consist of machine-
language instructions and unresolved symbolic references to other routines.

Your program can consist of several source files, each of which can be in any of the
APW programming languages. Each source file is converted into one or more
object files by the APW Assembler, the APW C Compiler, or any other APW
compiler.

2. The object files are input to the APW Linker, which combines all of the object files
into a single load file and resolves symbolic references. The linker verifies that
every routine referenced is included in the load file. If there are any routines that
the linker has not found when it has finished processing all of the object files, then it
searches through any available library files for the missing routines. The linker
removes symbolic references, and replaces them with entries in special tables it
creates called relocation dictionaries. The load file consists of blocks of machine-
language code that can be loaded directly into memory (called memory
images), and relocation dictionaries that contain the information necessary 1o
palch addresses into the memory images when the program is loaded into
memory.

3. At program-execution time, the load file is loaded into memory by the System
Loader. The loader calls the Apple IIGS Memory Manager to request blocks of
memory for the load file, loads the memory images, and uses the relocation
dictionaries to patch the acrual memory addresses into the machine-language code
in memory. The entire load file is not necessarily loaded into memory at one time;
all OMF files are divided into segments, which can be processed independently.

OMF-file segmentation is a fundamental Apple 1IGS concept, which is discussed in
the next section.

The Memory Manager is the Apple IIGS tool set that allocates blocks of memory as
needed and keeps track of which blocks of memory are available.

APW C concepts

1-7

1 [
| -
1 [
U-J_ C source fie ' 65816 source file J—U

1_

u =
g, £
Cinclude file

) Y
APW APW
C Compiler Assembler

s

=1 L |
1 o

object file (object file ‘u

]l APW Linker J

‘ Load file }

x\ System Loader J

Y
executable code
in memaory
Figure 1-1

Creating an executable C program on the Apple lIGs

Program segmentation

In general, any computer program that consists of more than a few lines of code
contains one or more subroutines; you may also segregate large blocks of darta into
separate parts of the program.

In APW C, each subroutine (called a function) is translated into a segment in the
source file: the function name is the segment name. As illustrated in Figure 1-2, when
you compile a program, each source-code segment is translated into one object
segment.

1-8 Chapter 1: Overview

C Source File Object File

main) object seg main

i
Fd

7/

F g

object seg pave

I
o |
< |
(1
|
N
|
- |
|
|
|
|
= |
|
/! \ //\
ryi i
7/
_//
/

object seg Mike
~ [== J] e R
NN] \"- =~
L e S ™~
l?ike ¢) object seg Jason
[=
_ : 3
[
__} __________ object seg last
Jason () Ny
‘ ~
[
o [
T\ | |
O
last)

Figure 1-2
Creating object segments in source code

The object segment is the smallest linkable unit. For example, it can be selected from
an object file for independent linking with a LinkEd command. Some compilers also
can compile a segment (function) independently, this is called partial compilation.

% Note: The APW C Compiler does not perform partial compilation. If you request a
partial compilation, the entire file will be compiled.

In addition to creating one code segment per function compiled, the APW C
Compiler also creates two data segments for each object file created (that is, for
each source file compiled). These segments are used for storing any global variables
declared in the corresponding source file. Global scalar variables are stored in a
segment called ~globals, and global array and structure variables are stored in a
segment called ~arrays. Although this segmentation scheme means that each file
will have the svmbols ~arrays and ~glcbals defined, they are flagged as privare
symbols, which indicates thev can only be accessed from within the object module
thev are contained in. The symbols for the variables themselves conuined with the
segments, are public. The compiler needs to generate two different data segments for
the two different types of variables becauses it uses two different kinds of
addressing—16-bit and 24-bit, respectively—to access them. Chapter 4 discusses the
general implications of the code-generation memory model, as well as the
implications for use with the advanced linker.

APW C concepts

Apple IIGS load files also are segmented. Each load-file segment can incorporate any
number of object-file segments. You can use a LinkEd command file to create load
segrents and to specify which object segments go in each load segment.

Alternatively, APW C lets you specify load-segment names in the source code by using
the segment command. If you do not use a LinkFEd file, the linker places all code
segments with the same load-segment name into the same load segment. The data
segments ~globals and ~arrays are automatically identified as belonging to load
segments of the same name; these must be collected into their own load segments so
that the system loader can be assured of loading the ~globals segment within a single
bank as required by the code-generation model, and so that the data segments can be
reloaded independently of the code when a program is restarted. Again, the linker
does this automatically unless you use a LinkEd file to control your link, Use of source-
file load-segment names are illustrated in Figure 1-3.

C Source File Object File

segment FIRST object seg main
rlnain « load seg FIRST
[

[

/L
77/

~
N object seg pave
} load seg FIRST L
____________ \
<
Dave) [~
{ 5
[object seQg Mike
Jd - load seg FINISH

object seg Jascen

segment FINISH
load seg SECOND

Mike {)

M ¢ object seg last
load seg INISH

segment SECOND
Jason ()

L —Lyy

segment FINISH
last [

{

—

L
T E=

Figure 1-3
Assigning load segments in source code

The relationship of object segments to load segments is illustrated in Figure 1-4.

1-10 Chapter 1: Overview

C Source File

object seg main

load seg FIRST Object File

Iy
7/

segment FIRST
contains: main
Dave

object seg pave
load seg FIRST

Y
7/

~
I~

/L
7/

segment SECOND
contains: Jason

1/

object seg Mike
load seg FINISH L
T~

segment FINISH
contains: Mike
last

object seg Jason
load seg SECOND

/L 4
7/ 4
ya yi
\§<
/1 Y
Iy S i
7/ 7/

N
iy

segment ~globals
contains: ~globals

object seg last

load seg FINISH

R
™S

g ~

segment ~arrays
contqins: ~arrays

:)

object seg ~globals
load seg ~globals

I44
i

i
Iy
/ \\
/ /

VY

object seg ~arrays
load seg ~arrays

Figure 1-4
Relationship between object segments and load segments

Every OMF file consists of one or more segments, each comprising a segment
header and a segment body. The segment header is divided into fields described in
“Segment Header” in Chapter 8 of the APW Reference.

A load-segment header contains the name of the segment; an object-segment header
contains the name of the segment and the name of the load segment into which it
goes. The linker uses the name of the object segment in resolving function references;
also, you specify the names of object segments when using the advanced linker to
extract specific segments for linking (see “Using the Advanced Linker” in Chapter 5 of
the APW Reference).

Each segment in a program must have a unique object-segment name: in APW C,
each function is compiled to a separate object segment, whose name is the function
name. Each object segment is also assigned a load-segment name, As illustrated in
Figure 1-4, APW C lets you assign your cwn load-segment name to an cbject segment.
Any number of object segments can have the same load-segment name. The standard
linker places all object segments that share the same load-segment name into the same
load segment (as long as they will fit into 64K).

APW C concepts

For example, suppose your object file contains the following segments:

0. Object Segment Name: main
Load Segment Name: FIRST

1. Object Segment Name: Dave
Load Segment Name: FIRST

2. Object Segment Name: Mike
Load Segment Name: FINISH

3. Object Segment Name: Jason
Load Segment Name: SECOND

4. Object Segment Name: last
Load Segment Name: FINISH

5. Object Segment Name: ~globals
Load Segment Name: ~globals

6. Object Segment Name: ~arrays
Load Segment Name: ~arrays

When the standard linker processes this file, object-segment names main, Dave,
Mike, Jason, and last are treated as references that must be resolved. Object
segments main and Dave are placed in the same load segment, which is named
FIRST; object segments Mike and last are placed in the same load segment, which
is named FINISH; and object segment Jagon is placed in a separate load segment,
which is named SECOND. Additionally, the object segment ~globals is placed in the
load segment ~globals, and the object segment ~arrays is placed in the load
segment ~arrays. -

On the Apple 1IGS computer, no single block of code can occupy more than 64 K of
contiguous memory. To load a larger program than that, you must split the program
up into two or more load segments. When most of memory is already in use, the
loader may be able to load a program that is divided into several small load segments
even if the same program in one or two load segments wouldn't fit. The Apple 1IGS
Memory Manager takes care of assigning each segment to a memory block; the System
Loader keeps track of where in memory the segment has been loaded and patches
intersegment calls in each segment as it is loaded.

Dynamic segments

On the Apple IIGS computer, the combination of load segments, the System Loader,
and the Memory Manager makes possible the creation of dynamic segments. The
loader and memory manager can load a dynamic segment automatically during
program execution simply by calling a function contained within the dvnamic
segment, if the segment is not currently in memory, the loader will load it
automatically. A dynamic segment that is not needed at a given time can be removed,
freeing the memory used 1o allow room in which to load another dynamic segment or,
indeed, for any other purpose. In additional, the loader and Memory Manager
actually purge a dynamic segment from memory only if the memory is needed for
something else; otherwise, the segment remains in memory and need not be reloaded
the next time it is called, even if the user has “unloaded” it.

1-12 Chapter 1: Overview

A segmenit that is not dynamic is static. A static segment is loaded at program boot-
time and is not unloaded or moved during execution. The first segment of any
program that is loaded is static; any other segments may be static, but (especially for
large programs) the system will be more memory efficient if all infrequently used
segmenis are dynamic. These dynamic segments may make development of large
applications for smaller memory configurations practical. To specify that a load
segment is dynamic, you must use a LinkEd command or specify the dynamic
option to the segment command.

library files

Library files contain routines that are useful to many different programs. On the

Apple IIGS, all library files are in object-module format, regardless of the language of
the source file. An Apple IIGS library file (ProDOS file type $B2) can therefore be used
by a program wrifien in any source language. Some languages, such as APW C, come
with a set of library files used by that language. When the linker processes one or more
object files and cannot resolve a symbolic reference, it assumes that the reference is to
a segment in a library file, If you use the standard linker, it automatically searches all
library files in the APW library prefix (2 /). (If you use a LinkEd command file, then
the advanced linker searches only the library files that you specify.) Unless you are
using the advanced linker, you do not even need to know the names of the library files
in order to use them: the standard linker automatically finds the files and extracts the
segments it needs.

You can create your own library files from one or more object files by using the
MakeLib APW utility program. Figure 1-5 illustrates the process of creating a library
file. You specify one or more object files to be included in the library file. MakeLib
concatenates the files and creates a special segment at the beginning of the file called
the library dictionary segment. The library dictionary segment is the first segment
of a library file, and contains the names and locations of all global symbols in the
file. (A global symbol is a label in one segment that can be referenced in another
segment, as opposed to a local symbol, which can be used only within the segment in
which it is defined.) The linker uses the library dictionary segment to find the segments
it needs.

The library dictionary segment allows the linker to search a library file for global
symbols much more rapidly than it can search an object file. Consequently, the linker
will search a library dictionary segment more than once, if necessary, to find
segments referenced by other segments in the library file. Therefore, the sequential
order of the segments in a library file is therefore not important. However, if you were
to use several library files, the order in which the files were searched wotdd be
important. If the linker first searched file A and then file B, for example, it could
resolve a reference made in file A to a global symbol in file B, but could not resolve a
reference made in file B to a symbol in file A. It is for that reason that MakeLib allows
you to include several object files in a single library file.

APW C concepts

Libfile

Object] Library List of cbject files
g1] dictionary
= segment F
sog3) segl Cross reference
T T between fienames,
3 segments, and
. o symbol names
L3 9994 \
- . \
= - $ List of symbeol ngmes
: -~ o
segn .
segn
sag]
seg2
seg3
sogd
L]
Makelib »
€ &
segn
sagl
sag2
sagld
seg4
-~ o
,'.77“_—"',]/ sagn
- hl
segn
Figure 1-5

Reiaticnship between object files and library files

Program interactions

This section illustrates the interactions among the various programs in the Apple 11GS
Programmer’s Workshop by presenting a typical sequence of procedures and events.
For this purpose, this manual assumes that you are developing an application written
mostly in C, with some routines written in 65816 assembly language. In this section,
only the sequence of operations is listed; Chapter 3 provides an actual example of
the sequence described here. The process described in this section is illustrated in
Figure 1-6. See the Apple IIGS ProDOS 16 Reference for a complete description of
the program-load process.

1-14 Chapter 1: Qverview

Shalt: saf longuage
to ASMAS816

Shell: call M!l; 45816
Ausmpier Source
= '~
1 1
|
: C Cornpiler: '
i
) |
¥ i
t 1
1
: :
|
1 :

Linker: lirk fles
info a lood Me

Figure 1-6
Program interactions

I

Using an APW Shell command, set the current language for APW (o CC. (Every
APV file has an APW language type; if you open a new file, it is given the current
APW language type.)

2. Call the APW Editor and open a new file.

Use the editor to write the C language routines. You can divide the program
among as many files as you wish. You do not have to return to the shell between
files; you can save one file and open another within the editor. In APW C, you can
use the segment command to specify which object segments go in which load
segments. Until you use a shell command to change it, or until you open a non-C
file, the current language remains CC.

Quit the editor, change the current language to ASM65816, call the editor, and
open a new file. You can divide the 65816 assembly-language routines among as
many files and as many segments per file as you wish. The APW Assember lets you
specify which object segments go in which load segments. Make the assembly-
language routines relocatable; that is, use no absolute addresses—use labels and
relative addressing only.

If you have used macros in your assembly-language program, you can run the
MacGen uiility to generate a custom macro file for the program.

APW C concepts

8.
9.

10.

Until you use a shell command to change it, or open a non-assembly-language
file, the current language remains ASM65816.

Quit the editor, call the APW Assembler to assemble the 65816 assembly-language
routines, and call the APW C Compiler to compile the C routines. You can use the
same command for both.

Use the APW Linker to link the object files into a load file. Normally, you can use
the standard linker to link the program. The standard linker places all object
segments with the same load-segment name into a single load segment.

a. If you want to change load-segment assignments, or if you want to respecify
dynamic load segments, you must use the advanced linker. Write a LinkFd file
like a language source file: first set the system language to LINKED and then use
the editor to write the file.

Run the program by typing the name of the load file and pressing Return. (You can
also automatically execute a program after linking by using the CMPLG command.)
When a program is run on the Apple IIGS, the following events occur:

a. The System Loader loads the first segment into memory (calling the Memory
Manager to request the block of memory it needs). This segment is static; that
is, it remains in memory during the execution of the program. The loader uses
the relocation dictionary of the segment to relocate the code to its present
location in memory.

b. The loader loads all other static segments into memory, relocating them as
necessary.

c. The loader passes control of the system to the program, and the program
begins execution. .

d. When the program encounters a reference to a subroutine in a dynamic
segment, control is returned to the System Loader through the jump table. If
the segment is already in memory, the loader transfers control to the
segment. If not, the loader uses the jump table to locate the load file,
segment, and offset of the subroutine, loads the segment into memory, and
transfers control to the segment. The System Loader creates and maintains a
table (the Memory Segment Table) to keep track of all the segments in
memory.

9 Note: If the program does not run correctly, you can use the Apple IIGS

Debugger (available as a separate product from APDA) to step through or
trace the code, to insert breakpoints, to disassembie the machine code, and
to examine the contents of registers and memory locations. You can modify
the code in memory and rerun the program until the bug is fixed

Correct the source code and recompile (or reassemble) the program.
Relink the program and rerun it.

When the program is completely debugged, you can use the CRUNCH command to
compress the files created by partial assemblies into two object files, and then link
the program one last time. Using CRUNCH is optional: if you have performed

several partial assemblies, compressing the object files speeds up the link process.

1-16 Chapter 1: QOverview

Using the APW C libraries

APW C programs can use the Standard C Library, the Apple IIGS Toolbax, the APW
Shell, and ProDOS to talk to the Apple IIGS hardware. All of the interface code to make
these calls is in the file CLIB which is installed in the APW library prefix (2/). (Any
header files containing declarations needed to make the calls are installed in the
CINCLUDE directory in the library prefix.) Figure 1-7 shows how these libraries
interact. Your application can make calls to the Standard C Library, the APW Shell,
the Apple IIGS Toolbox, or ProDOS. The Standard C Library contains a number of
high-level routines familiar to C programmers, which deal with file handling, memory
management, and so on. The Standard C Library in turn calls the Toolbox or

ProDOS. You can also make calls to the APW Shell. The shell intercepts the call: if it is
a ProDOS call, the shell passes it through unchanged; if it is a shell call, the shell
makes ProDOS calls or talks to the hardware directly in order to execute it.

Application
!
| ¢ ¢
Standard 1
C library i APW shell
? fJ_
1
Y l L Y
Apple lIGS toolbox ProDOS
¥ ¥

Apple IGS hardware \

Figure 1-7
APW C library interactions

Using the APW C libraries

1-17

Chapter 2

Using the APW C Compiler

2-1

This chapter describes how to use the APW C Compiler. The first section, “Installing
APW C,” tells you how to instail APW C in both hard-disk and 3.5-inch disk systems.
The second section, “Running APW C on 3.5-Inch Disks,” tells you how to ran APW C
on a 3.5-inch disk. The third section, “Wrting and Running a Sample Program,” leads
you through a sample session, giving you a fast way to become acquainted with
compiling, linking, and executing a program. The third section, “The APW C
Compiler,” discusses the compilation process. The fourth section, “C Compiler Shell
Commands,” describes the shell commands you’ll use when working with the C
compiler. The fifth section, “Files for Compiling and Linking,” tells how to use the
various files used in building a program.

Installing APW C

Before you can follow any of the procedures described in this chapter, you must install
APW C. First back up your disks, then install APW, and then install C, as described in
this section.

Backing up your APW C disk

It is important to make a backup copy of your APW C disk and to run APW from the
copy only. Keep the original disk in a safe place so you can make a new copy if
something happens to the copy you've been using.

You back up the APW C disk in the same way you back up the other APW disks. If you
have not backed them up vet, back up all three now: APW, APW Assembler, and
APW C.

You can make a copy of your APW C disk by using any disk-copy utility you prefer, or
you can use APW commands to do the job, as explained in Chapter 3 of the APW
Reference.

Important:

You must give your copy of the /APWC disk the volume name /APWC, or the
hard-disk instailation procedure will not work correctly. Similarly, your backup of
each of the APW disks must have the same volume name as the original disk.

Installation

This section assumes you have already installed APW (version 1.0 or later), as
described in Chapter 2 of the APW Reference.

To install APW C, launch APW; then type the following command:
INSTALL /ABWC
This command copies the necessary files. This process will take several minures.

You now have APW C installed.

2-2 Chapter 2: Using the APW C Compiler

Installing APW C may replace the files SYSCMND, LOGIN, and SYSTABS in the
APW/SYSTEM subdirectory. If you have customized any of these files, you should
rename them before installing the new APW, and then either edit or replace the new
versions of the files as appropriate.

Running APW C on 3.5-inch disks o

You need at least two 800K disk drives to use APW: one to hold the /APW disk, and one
to hold either the /APWC disk or a disk containing only the files you are working on.

Important

Do not run APW C from the original product disks. Make copies of your APW disks
for everyday use, and put the original disks in a safe place.

The /APW disk contains the Apple IIGS Program Launcher and a fully functional APW
system, including the APW Assembler. This disk lacks only the help files and some of
the APW utility programs. The /APWU disk contains a full set of utility programs plus
the help files for all the APW commands. The /APWC disk contains the C compiler, the
linker, and the libraries you need for C.

Launch APW as before and place the /APWC disk in the second disk drive. To cause
APW 10 look on the /APWC disk for the C compiler and linker, enter the following
command: s

MC

If you want to use the assembler, enter the following command:
uMe

To go back to the C compiler, enter the following command:
MC

The directory that is assumed when you do not specify a prefix in a pathname is called
the current prefix. If the /APW disk is in your first disk drive and all of your program
files are on the disk in the second disk drive, you may wish to set the system to use a
directory on your program-file disk as the current prefix. Use the APW Shell's PREFIX
command to change the curmrent prefix. For example, if your programs are in a
subdirectory called /APWC/MYPROGS/ in the second disk drive, type the following
command and press Return:

PREFIX /APWC/MYPROGS

After you have set the current prefix to that of your program disk, you need not include
the prefix in pathnames when executing commands. For example, if the current prefix
is /APWC/MYPROGS/, you could use the following command to obtain a directory
listing of the subdirectory /APWC /MYPRQGS/CSQURCE/:

CTATALOG CSOURCE

<+ Note: Do not include a slash (/) before the pathname when you omit the current
prefix from a pathname, or APW will look for a volume of that name. For example,
if you typed CATALOG/CSOURCE in the preceding example, you would get the
message “Volume not found.”

Running APW C on 3.5-inch disks

2-3

Prefixes used by APW are discussed in detail under “Using Prefix Numbers” in Chapter
2 of the APW Reference.

Keep the /APW disk in the first disk drive while you are running APW so that the system
can have access to the APW programs on that disk.

Each time you start APW, it looks for a file named LOGIN in the APW system prefix
(/APW/APW/SYSTEM/LOGIN on the /APW disk, for example). The LOGIN file should
have an APW language type of EXEC (see "Listing a Directory” in Chapter 2 of the APW
Reference). You can include any valid APW command in this file. If APW finds a
LOGIN file, it executes the file before doing anything else.

You can use a LOGIN file to set system defaults (such as the printer slot), to set the
current prefix, to read a command table containing command-name aliases, or even
to execute commands or utility programs.

You need not have a LOGIN file in your system; if there is no LOGIN file, APW uses
default senings for system pararneters.

Writing and running a sc:m-]SIe prograr;) i

Here is the way to write, compile, link, and run a trivial sample program.

Writing the sample program

First set the current language to C by typing CC and pressing Return. Now create a new
file named SHE.SELLS by typing EDIT SHE.SELLS and pressing Return.

% Note: If you ever get the error message “ProDOS: File not found”, make sure you've
typed the command correctly. If you had typed ED rather than EDIT, for example,
the APW Shell will give you this message because it knows no command named ED
and can't find any file with that name. (ProDOS is not complaining that it couldn’t
find a file named SHE.SELLS.)

When you are in the APW editor, type a program,; for example, type

main ()
{
printf (*She sells C shells by the C shore.\n");
return Q;
}
Press Apple-Q or Control-Q, and then type S, to save the program; then type E to exit
the editor.

Note that APW does not require the usual C filename extension .c, because APW uses
a unique file type for source files of each language. You can end a filename with .c, but
the APW C Compiler regards the .c as part of the name, rather than as an extension.
In particular, when forming an object filename, the compiler appends an extension to
the .c, rather than replacing it. Using .c on a source filename can be confusing, as
some object filenames have a .c extension.

2-4 Chapter 2: Using the APW C Compiler

Compiling and linking the sample program

To compile your program, use the COMP ILE command; to link it, use the LINK
command.

For example, to compile and link SHE.SELLS, creating an object file
C.SHELLS.ROOT and a load file C.SHELLS, type the following commands and then
press Returmn:

COMPILE SHE.SELLS KEEP=C.SHELLS

LINK 2/START C.SHELLS KEEP=C,SHELLS

Running the sample program

To run your program under the APW shell, type C.SHELLS and press Return. You will
see She sells C shells by the C shore. on the screen.

A more interesting sample program, written in both C and assembly language, is in
Chapter 3.

The APW C Compiler

This section discusses the compilation process, the way that compilation is suspended
or aborted, and error messages.

The compilation process

The APW C Compiler is a one-pass compiler. In one pass, the compiler resolves
preprocessor macros, scans the source files, and generates code into a code buffer; it
then writes the code to an object file. Fach C function is assigned to a separate object
segment: the object-segment name is the function name. The default load-segment
name is MAIN.

You can use the segment command to assign an object segment or group of segments
to a load segment, which can be either static or dynamic.

No listing is printed. If requested, the compiler prints progress information and error
messages to the screer.

Object-code output is in object module format. Each APW language outputs object
code in object module format, allowing you to link together subroutines written in
different languages. Object module format is discussed in detail in Chapter 8, “File
Formats,” of the Apple [IGS Programmer's Workshop Reference.

If there are no more subroutines to compile, the compiler returns control to the shell.
Depending on the command you used to invoke the compiler, the shell either passes

control to the linker or returns with the shell prompt. If called, the linker relocates the
object modules produced by the compiler to resolve global labels, and writes out an

executable binary file.

The APW C Compiler

2-5

Suspending or canceling the compilation

You can suspend the compilation process by pressing any key. Pressing any key
again causes compilation to resume. To cancel the compilation process, press
Apple-Period (G-.).

F= compiler error messages

If the C compiler detects an error in the source code, by default it returns to the editor,
with the cursor on the offending line and with an explanatory error message at the
bottom of the screen. The default behavior can be overridden by using the -E option
to the COMP ILE command.

If the default error behavior is overridden, the compiler prints an error message on
the screen. Each error message includes the source file name, the line number, and
the text of the offending line of code. In other cases, the compiler prints 2 warning
message rather than an error. Error messages can be redirected, as explained in
“Redirecting Input and Output” in Chapter 3 of the APW Reference. If no errors or
warnings are detected, the compiler runs without comment.

C compiler shell commands

This section discusses the commands you'll use most often when working with the C
compiler. With these commands, you can perform the following tasks:

O edit new and existing files

0O compile, link, and execute your program
O make a library file

0 debug your program

Editing a source file

You will need three shell commands when you edit a2 new or existing source file:

cc Change the default language to C
EDIT filename Edit a new or existing file
CHANGE filename CC Change the type of an existing file to C source file

The CC command sets the default language to C. Any new files you create with the
editor will then automatically get the appropriate type for a C source file. The EDIT
command edits an existing file or creates a new file. The CHANGE command changes
the type of a file from one language to another. Doing this is useful if you have
imported an ASCII file from some other implementation of C, such as MPW, and the
file type is not set for APW C; or if you had created a C source file when the default
language was not set to C.

2-6 Chapter 2: Using the APW C Compiler

Compiling and linking a program
You'll need two commands when compiling, linking, and running your program:

COMPILE Compile a program
LINK Link a program

In its simplest form, the COMPILE command compiles the source file, but saves no
object file: it simply verifies the program's correctness. To create an object file, use
the KEEP option or the KEEPNAME shell variable, both described later in this chapter.
The COMPILE command is a synonym of the ASSEMBLE command. These commands
can be used interchangeably to compile or assemble programs. Synonymous
commands have the same options, but one language processor may ignore oprions
that another recognizes. For example, the C compiler ignores the +L | -L and +S 1 -8
options.

Some other commands are useful:

CMPL Compile and link a program
CMPLG Compile, link, and execute a program
RUN Compile, link, and execute a program

CMPL is a synonym of ASML, and CMPLG and RUN are synonyms of ASMLG.

Command notation
The following notation is used to describe commands:

UPPERCASE Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The shell is not case-sensitive; that is,
you can enter commands in any combination of uppercase and
lowercase letters. Segment names are case-sensitive. In case-
sensitive languages like C, segment names must be entered exactly
as they appear in the source code. Segment names in case-
insensitive languages must be entered in uppercase.

italics Ttalics indicate a variable, such as a filename or address.

prefix This parameter indicates any valid directory pathname or partial
pathname. It does not include a filename. If the volume name is
included, prefiz must start with a slash (/); if prefix does nor start
with a slash, then the current prefix is assumed. For example, if you
are copying a file to the subdirectory SUBDIRECTORY on the
volume VOLUME, then the prefix parameter would be
/VOLUME/ SUBDIRECTORY/. If the current prefix were /VOLUME/,
then you could use SUBDIRECTORY for pathname

The device numbers .D1, .D2,Dncan be used for volume
names. If you use a device number, do not precede. it with a slash.
For example, if the volume VOLUME in the example given earlier
were in disk drive .D1, then you could enter the prefix parameter as
.D1/SUBDIRECTORY/.

Sfilename This parameter indicates a filename, not including the prefix. The
unit names .CONSOLE and .PRINTER can be used as filenames.

C compiler shell commands

2-7

pathname This parameter indicates a full pathname, including the prefix and

filename, or a partial pathname, in which the current prefix is
assumed. For example, if a file is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, then the pathname parameter
would be /VOLUME /DIRECTORY/FILE. If the current prefix were
/VOLUME/, then you could use DIRECTORY/FILE for pathname .
A full pathname (including the volume name) must begin with a
slash (/); do not precede pathname with a slash if you are using a
partial pathname. :

The unit names .CONSOLE and .PRINTER can be used as
filenames; the device numbers .D1, .D2,D7ncan be used
for volume names.

A vertical bar indicates a choice, For example, +L | ~L indicates
that the command can be entered as either +L or as -L.

AlB An underlined choice is the default value,

(1]

Parameters enclosed in square brackets are opticnal.

Ellipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

The following pointers will help you use the APW Shell command interpreter:

0
O

You must separate the command from its parameters by one or more blanks.

You can use the Right-Arrow key 10 expand command names as described in
“Entering Commands” in Chapter 2 of the APW Reference, and you can use the Up-
Arrow and Down-Arrow keys to scroll through previously entered commands.

There are no abbreviations for command names (unless you define your own with
ALIAS or by changing the SYSCMND file).

All commands and parameters (except for segment names) can be entered in any
combination of uppercase and lowercase characters.

For case-sensitive source languages like C, segment names must be entered exactly
as they appear in the source code. (For case-insensitive source languages like
assembly language, segment names must be entered in uppercase.)

When a parameter in 2 command line conflicts with a source-code command, the
command-line parameter takes precedence. When neither a source-code
command nor a command-line parameter has been used, the default parameter is
used.

If you fail to enter a required parameter, you are prompted for it.

Any of these commands can be placed in an Exec command file for automatic
execution; Exec files are described in “Exec Files” in Chapter 3 of the 4APW
Reference.

The APW Shell and APW C Compiler recognize the commands listed here. The
options for each command are described after the command.

2-8 Chapter 2: Using the APW C Compiler

CccC

The CC command sets the shell default language to APW C. Any file the APW Editor
creates while this command is in effect will have the proper file type for a C source file.
(This command is described in *Command Descriptions” in Chapter 3 of the APW
Reference.)

CHANGE

CHANGE filename CC Change the type of an existing file to C source file

The CHANGE command changes the file type of an existing file named filename so that
APW will recognize it as a C source file. This command is useful when you have
imported a C source file from another development system, such as MPW, that does
not identify the language of a source file by a unique file type. (This command is
described in “*Command Descriptions” in Chapter 3 of the APW Reference.)

CMPL

CMPL loption ..] filel [file2] [...] [KEEP=o0utfile]
[NAMES= (seg? [seg2] [...])] [CC= (option ...)
llanguage2= (option ..)] [..I] [.]]

The CMPL command compiles (or assembles) and links one or more source files and
links one or more object and library files. The APW Shell checks the language of the
source file and calls the appropriate compiler or assembler. If the maximum error
level returned by each assembler or compiler is less than or equal to the maximum
allowed (0 unless you specify otherwise with the MERR directive or its equivalent in the
source file), the standard linker is called to link the resulting object files and any other
object and library files named on the CMPL command line. The linker is described in
Chapter 5 of the APW Reference.

The CMPL command is an alias for ASML.
The CMPL command is described fully in Chapter 3 of the APW Reference.

For examples and discussion of the use of the CMPL command, see Chapter 3 of this
manual and “Compiling (or Assembling) and Linking a Program” in Chapter 2 of the
APW Reference.

CMPLG

CMPLG loption ...] filel [file2] [..] [KEEP=outfilel
[NAMES= (seg? [seg2! [...1)] llanguagel= (option ...)
[language2= (option ...)] [}

The CMPLG internal command compiles (or assembles) one or more source files,
links one or more object and library files, and runs the resulting load file. The function
of CMPLG is identical to thart of the CMPL command—except that, once the program
has been successfully linked, it is executed automatically. See the description of the
CMPL command for a list of options and a description of the parameters.

The ASMLG and RUN commands are aliases for CMPLG.

C compiler shell commands

COMPILE

COMPILE [option ..] file1 [file2] [...] [KEEP=outfile]
[NAMES= (s egl [seg2] [...)] languageI= (option ...)
language2= (option ...)] [...]]

The COMPILE internal command compiles (or assembles) one or more source files.
You can use the LINK command or a LinkEd file to-link the object files created by the
COMPILE command. The APW Shell checks the language of the source file and calls
the appropriate compiler or assembler.

The ASSEMBLE command is an alias for COMPILE.

The options that apply 1o APW C are described next; other opuons are described in
Chapter 3 of the APW Reference.

% Note: Not all compilers or assemblers make use of all the parameters provided by
this command (or by the ASSEMBLE, ASMLG, COMPILE, CMPL, CMPLG, and RUN
commands, which use the same parameters). The APW C Compiler, for exampie,
does not produce a listing or symbol table, and so ignores the +L [-L and +S| -8
options. If you include a parameter that a compiler or assembler cannot use, it
ignores the parameter: no error is generated.

If you include more than one source file or use #append directives to tie together
source files in more than one language, then all parameters are passed to every
compiler or assembler. Each compiler or assembler uses those parameters that it
recognizes. The reference manual for a compiler or assembler contains a list of the
options that it accepts.

% Note: Command-line parameters (those described here) override source-code
options when there is a conflict.

Important

if you are using a LinkEd file to take advantage of advanced linker capabilities,
do not use the CMPL command. instead, use the COMPILE command to compile
your program. You can process the LinkEd file automatically by appending it to
the end of your program with an #append directive (or the equivalent), or you
can process it independently with the ALINK command.

“» Nore: You can use #append directives (or the equivalent) to tie together source files
written in different computer languages; APW compilers and assemblers check the
language type of each file and return control 1o the shell when a different language
must be called. See *Compiling (or Assembling) and Linking a Program” in
Chapter 2 of the APW Reference for a description of the assembly and compilation
process.

0O option... You can specify as many of the following options as you wish by separating
the options with spaces.

0O +E|-E If you specify +E, when the compiler terminates execution due to a faral
error, it calls the APW Editor. The editor displays the source file with the
offending line on the fifth line on the screen (or as far down on the screen as
possible, if the error is in one of the first four lines of the file). If you specify -E
and a fatal error occurs, the compiler returns you to the shell’s command line or
to the Exec file that executed the command. The default for this option is +&
when the command is executed from the command line, and -E when the
command is executed from an Exec file.

2-10 Chapter 2: Using the APW C Compiler

0 +Ll-L The APW C Compiler ignores this option.
O +S81-8 The APW C Compiler ignores this option.

o +T1-T If you select +T, any error causes the compile to terminate. If you omit
this option or select =T, only fatal errors cause immediate termination of the
compile. Note that if you select both +T and +E, any error causes the shell to call
the APW Editor and display the offending line as the fifth line on the screen.

O +Wl-W If you select +W, the compiler stops and waits for a key press when any
error occurs, to give you the opportunity to read the error message and to decide
whether to continue (that is, to continue the compilation in case of a nonfatal
error or to call the editor in case of a fatal error). Press Apple-Period to halt
execution, or press any character key or the space bar to continue. If you omit
this option or select —W, execution continues without pausing when an error
occurs. :

O filel file2 ... The full pathnames or partial pathnames (including the filenames) of
the source files to be assembled (or compiled). You may include as many source,
object, and library files as you choose, but at least one of the files must be a source
file. Separate the filenames with spaces.

The source files do not all have to have the same APW language type. Note,
however, that if you include a LinkEd file, it must be the last file listed. The reason is
that once the advanced linker has been called by a LinkEd file, the linker is not
called again regardless of how many source or object files follow the LinkEd file.

O KEEP=outfile You can use this parameter to specify the pathname or partial
pathname (including the filename) of the ocutput file. There must not be any spaces
between KEEP and the equal sign (=). i

For a one-segment program, the assembler or compiler names the object file
outfile. ROOT. If the program contains more than one segment, the assembler
places the first segment in ouifile. ROOT and the other segments in owtfile. A. If this
is a partial assembly (or several source files with different programming languages
are being compiled), other filename extensions may be used; see “Partial
Compilation or Assembly” in this chapter.

If the assembly is followed by a successful link, the load file is named ouifile.

Keep the following points in mind regarding the XEEP parameter:

C You can specify a default filename for object files by using the KeepName shell
variable. Shell variables are described in “Variables” in Chapter 3 of the APW
Reference.

3 To use the KEEP parameter with multiple source files, you must use one or more
wildcard characters in the KEEP parameter,

Because ProDOS 16 does not allow filenames longer than 15 characters, you
must be careful not to specify a filename in the KEEP parameter that will result in
an output filename longer than 15 characters. For example, if you specify
KEEP=%.0UT and the source filename is LONGNAME, the compilation will fail
when the shell tries to open the file LONGNAME . QUT .ROOT, which has 17 *
characlers.

0

O If object files with the root filename outfile already exist, they are overwritten
without a warning when this command is executed.

C compiler shell commands 2-11

O NAMES= (segl seg2..) This parameter is ignored by the APW C Compiler, which
always compiles all C source files listed on the command line. APW Assembler uses
this parameter for partial assembly.

O CC=(option ...} This parameter allows you to pass parameters directly to the APW C
Compiler. Between the parentheses, insert one or more of the options listed next.
Note that the APW shell does no error checking on this string before passing it
through to the compiler or the assembler. This parameter is a special case of the
languagel=(option ...) parameter.

% Note: No spaces are permitted immediately before or after the equal sign in this

parameter.

This option’s options are as follows.

a

-Dname=value This option defines nameas if a #define had occurred at the
top of the file. The variable name is given the value value. No spaces are
permitted immediately before or after the equal sign in option parameter.

-Dname This option (a special case of the one just given) defines name as if a
#define name l

had occurred at the top of the file. The variable name is given the value 1. No
spaces are permitted immediately before or after the equal sign in option

. parameter.

-Ipath This option adds path to the include-file path list; for example,
-I/APW/LIBRARIES/CINCLUDE

-P This option causes progress information (include-file names, function
names, and sizes) and summary information (number of errors and wamings,
code size, global data size, compilation time, and compilation memory
requirements) to diagnostic outpult.

-S name This option sets the load segment name for all object segments created
by the CMPL command. The linker will assign all these object segments to the
same load segment This option can be overwridden by a #segment directive in
the source code

-U mame This option undefines the predefined proprocessor symbol name.
This is the same as writing

#undef name
at the beginning of the source file.

The space between the option and its parameters is optional for example,-~SMUMBLE
and -5 MUMBLE are equivalent.

212

Chapter 2: Using the APW C Compiler

O language2= (option ...) ... This parameter, like the CC=(option ...) parameter,
allows you to pass parameters directly to specific APW compilers or assemblers.
For each compiler or assembler for which you want to specify options, type the
name of the language (exactly as shown by the SHOW LANGUAGES command), an
equal sign (=), and the string of options enclosed in parentheses. The contents and
syntax of the options string is specified in the compiler or assembler reference
manual. Note that the APW Shell does no error checking on this string before
passing it through to the compiler or assembler. You can include option strings in
the command line for as many languages as you wish; if a language compiler is not
called, the string for that language is ignored.

< Note: No spaces are permitted immediately before or after the equal sign in this
parameter,

Press Apple-Period to stop the compilation after it has begun. The compiler may
respond by halting execution and calling the editor with the first line of your source file
at the top of the screen, or it may return you to the shell.

The following command compiles the C source file named MYCFILE.SRC and
produces an object file named MYCFILE.RCQT. The C-compiler option that adds a
prefix to the include-file path list is passed to the C compiler. If any other files are
appended, additional object files named MYCFILE.A, MYCFILE.B, and so on, are
produced.

COHPILE MYCFILE.SRC KEEP=$ CC=(-I/APW/LIBRARIES/CINCLUDE)

<+ Note: If you have appended a LinkEd file to the end of your program, the link is
controlled by the commands in the LinkEd file. In this case, the standard linker is
not called.

For more examples and discussion of the use of COMPILE, and its related command
CMPL (alias ASML) command, see Chapter 3 of this manual and “Compiling (or
Assembling) and Linking 2 Program” in Chapter 2 of the APW Reference.

EDIT
EDIT filename

The EDIT command does one of two things. If a file named filename already exists,
the command EDIT filename calls the editor and opens the file filename. The editor
uses the language the file is already in. If a file named filename does not already exist,
the command EDIT filename calls the editor and a new file called filename. The
editor uses the default language (CC, ASM65816, or whatever) established by the last
language command or the last file edited.

C compiler shell commands

LINK
LINK [+LI=L] [+8|=-8] [+W|-W] file? [file2] .. IKEEP=o0ut/ile]

The LINK command calls the APW Linker, which links object files to create a load file.
You can use this command to link object files created by APW assemblers or
compilers, and to cause the linker to search library files. If any unresolved references
remain after all of the spedified object files and library files have been specified, the
library files in prefix 2/ are searched in the order in which they appear in the
directory.

The linker is described in detail in Chapter 5 of the APW Reference.

O +L|-L If you specify +L, the linker generates a listing (called a /ink map) of the
segments in the object file, including the starting address, the length in bytes
(hexadecimal) of each segment, and the segment type. If you specify -L, the link
map is not produced.

O +81-5 If you specify +5, the linker produces an alphabetical listing of all global
references in the object file (called a symbol table). If you specify -8, the symbol
table is not produced.

O +W|-W If you select +W, the linker stops and waits for a key press when a nonfatal
error occurs, to give you the oppormnity to read the error message and to decide
whether to continue the link. Press Apple-Period to halt execution, or press any
character key or the space bar to continue. If you omit this option or select -W,
execution continues without pausing when a nonfatal error occurs. Execution
terminates immediately when a fatal error occurs, regardless of the setting of this
option.

QO file? file2 ... The full pathnames or partial pathnames, without filename extensions,
of all object files to be included, plus the full or partial pathnames of any library
files you want to search. Separate the filenames with spaces. The first file you list,
Sfilel, must have a .ROOT file; for the other object files, eithera .ROOT file ora .a
file must be present. For example, the program TEST might consist of object files
named TEST1 .ROOT, TEST1.A, TEST1.B, TEST2.A, and TEST2.B, all in
directory /APW/MYPROG/. In this case, you would use /APW/MYPROG/TEST1
/APW/MYPROG/TEST2 for objecifile.

You can also specify one or more library files (ProDOS 16 file type $B2) to be
searched. Any library files specified are searched in the order listed. If a library file
is listed before an object file, the library file is searched before that object file is
linked. Only the segments needed to resolve references that haven't already been
resolved are extracted from library files. See the discussion of the MAKELIB
command in Chapter 3 of the APW Reference for more information on library
files.

O KEEP=outfile Use this parameter to specify the pathname or partial pathname of
the executable load file.

You can specify a default load filename by using the LinkName shell variable. Shell
variables are described in “Variables” later in this chapter. If you do not specify
either the KEEP parameter or a LinkName variable, the link is performed but the
load file is not saved.

2-14 Chapter 2: Using the APW C Compiler

Impeortant

If you do not include any parameters after the LINk command, you are prompted
for an input flename, as APW prompts you for any required parameters. Since the
output pathname is not a required parameter, however, you are not prompted
for It. Consequentty, the link Is performed. but the load file Is not saved unless
you have specified g LinkName varable. Note that you can include the KEEP
parameter after the pathname you enter in response fo the File name prompt.

As an example of the use of the LINK command, suppose you want to link TEST1,
consisting of object files TEST1 .ROOT, TEST1.A, and TEST1.B. The following
command creates the load file MYTEST; no link map or symbol table is produced:

LINK 2/START TEST1 KEEP=MYTEST

Suppose you want to link TEST1 consisting of object files TEST.1.RQOT, TEST. 1.4,
and TEST.1.B, search the library file MYLIB, and link TEST.2 consisting of object
files TEST.2.A and TEST. 2.B. The following command creates the load file
MYTEST, printing the link map but suppressing the symbol table. Note that the library
file MYLIB is searched before TEST. 2 is linked:

LINK +L -S 2/START TEST.1 MYLIB TEST.2 KEEP=MYTEST

To automatically link a program after assembling or compiling it, use one of the
following commands instead of the LINK command: ASML, ASMLG, CMPL, CMPLG,
RUN.

If you need to take advantage of the advanced link capabilites provided by the APW |
Linker, create a file of LinkEd commands and process it using the ALINK command
(or by appending it to the last source file when you compile or assemble your
program). The advanced linker is described in derail in Chapter 5 of the APW
Reference.

Imporiant

The LINX command can be used only to process object files and library files; do
nof fry to process a LinkEd file with the LINK command.

*# Note: If you use a COMPILE command followed by a LINK command and if your
main entry point is written in C, you must include the pathname 2 /START as the
first file in the LINK command.

RUN

RUN [option ...]1 filel [file2]1 [...] [KEEP=outfile]
[NAMES=(segl ([seg2] [...1)] [languagei=(option ...)
llanguage2= (option ...) 1 [...]]

The RUN command compiles (or assembles) one or more source files, links one or
more object and library files, and runs the resulting load file. See the description of
the CMPL command for a list of options and a description of the parameters. Your
compiler or assembler manual describes the defauit values of the parameters and the
language-specific options available.

The RUN and ASMLG commands are aliases for CMPLG.

C compiler shell commands

The RUN command compiles (or assembles), links, and runs a source file or group of
files. Its function is identical to that of the CMPLG command. See the description of the
CMPL command for a description of the parameters.

Examples of these commands

The following command compiles a source file named MY#ILE and writes the object
file to disk as the file MYPROG.ROOT:

COMPILE MYFILE KEEP=MYPROG
The following command compiles the source file named MYCFILE.
CCMPILE MYCFILE KEEP=MYPROG CC=(-Ddebug -I/APW/MYINCLUDES)

Because MYCFILE is a C program, two C-compiler options are passed to the C
compiler: the ~-Ddebug option defines a compiler flag that you can use to
conditionally compile debugging code; and the ~I/APW/MYINCLUDES option tells
the compiler where to search for additional include files.

Appending files

When APW sees a #append directive in a file, it checks the language type of the
appended file: if it is not CC, the compiler returns control to the shell, which brings in

- the appropriate compiler or assembler to open the file. If the appended file is in the

wp?

same language, the effect is the same as if the files had been concatenated into one
file. If they are in different languages, APW begins a new assembly or compilation.
This process has curious effects, as you'll see.

Imagine that there are three files, two in C and one in assembly language, each
appended to the preceding file:

cl
c2
asml

When you use the COMPILE command, ¢l and c2 will be compiled together, and then
asml will be assembled. All symbols in c1 will be available while c2 is being
compiled.

Something different happens when you compile the same files appended in a different
order:

cl

asml

c2

When you use the COMPILE command, cl is compiled, then asml is assembled, and
then the C compiler is called afresh to compile c2. Since the compilations were
separate, the compiler knows nothing about symbols in ¢1 when compiling c2.

2-16 Chapter 2: Using the APW C Compiier

Partial compilation or assembly

You can sometimes speed up program development by compiling or assembling only
the part of a program that you have changed most recently. The APW Assembler has
an option NAMES (for the ASSEMBLE, ASML, ASMLG, COMPILE, CMPL, CMPLG, and
RUN commands) that lets you perform partial assemblies, and furure APW compilers
may also support this option. APW C does not support partial compilation. The

APW C Compiler will execute a COMPILE command with the NAMES option, but it will
compile the entire source file, as if you had omited the NAMES option. .

The linker

The linker takes object files and file segments created by the C compiler and generates
load files. The linker resolves external references and creates relocation dictionaries,
which allow the system loader to relocate code at load time. The linker supports data,
code, dynamic and static segments, and library files,

Normally, the linker is called by the shell command LINK, which provides a limited
number of options. Additionally, you can control all functions of the linker by using a
language-like set of commands called LinkEd. LinkFEd is for advanced programmers
who require maximum flexibility from the system; for most purposes, the ordinary
Link commands are adequate. LinkEd commands are described in Chapter S of the
APW Reference; other APW commands are in Chapter 3 of that book.

When you use CMPL to compile and link a series of files in different languages, the last
file in the append sequence must be a C file. The files under the library prefix
(prefix 2) are searched for unresolved references.

To link manually and search all libraries, use this command:
LINK 2/START objectfilename KEEP=loadfilename

The objectfilename parameters do not have .ROOT extensions. For example, the
command

LINK 2/START FILEl FILE2 FILE KEEP=LCADNAME

links the files FILEL1 .ROOT, FILE2 .ROOT, and FILE3 . ROOT with the file
2/START.ROOT.

The linker searches every library file (of filetype LIB) in the library prefix (2 /).

Making a library

The MAKELIB utility allows you to make a library file. Libraries are useful for storing
often-used code, because the linker can search a library much faster that an ordinary
object file. Chapter 3 of the APW Reference explains how to use MAKELIB.

Files for compiling and linking

To create a program from source files, the compiler usually needs include files and the
linker usually needs libraries. Include files, or header files, must be named in
#include statements in the source files. Library files are either searched implicitly or
can be named in LINK statements or in LinkEd files.

Files for compiling and linking

Include-file search rules

Appendix B, “Files Supplied with APW C,” contains a list of include files to be used
with APW C. If the include-file name is a full pathname, the compiler uses that name.
A full pathname begins with a slash (/) and contains at least one embedded slash. A
partial pathname does not begin with a slash. (For more information about pathname
syntax, refer to the Apple IIGS Programmer’s Workshop Reference and the

Apple IIGS ProDOS 16 Reference.)

If the include-file name is a partial pathname, the compiler searches for include files
using the rules shown in Table 2-1. The first file successfully opened using these rules is
included.

Table 2-1
Include-file search rules

Include-file name Example Search tor partial pathname

In double quotes "CONSTANTS.H" Look in the following directories:

1. The directory of the source file that
contains the include statement,

2. The current prefix (0/) at the time the
compiler was invoked.
3, The directories specified by the -T
option, in the order given.
4. 2/CINCLULE
In angle brackets <CTYPE.H> Look in the directories just described in

item 3, and then the directories describéd
in item 4.

Note that ProDOS filenames are not case-sensitive. By convention, filenames and
pathnames are notated in uppercase.

Library files

Appendix B, “Files Supplied with APW C,” contains a list of library files to be used
with C. (If you use the CMPL or CMPLG command, the files under the library prefix are
searched and you can't specify any others). For more information about linking C
programs, refer to Chapter 5 of the APW Reference.

You can control which library files are te be searched by using a LinkEd script. If you
specify library files, you will usually want to specify the following:

o all Standard C Library files listed in Appendix B
O only the particular Toelbox files you refer te in your program

2-18 Chepter 2: Using the APW C Compiler

0
’§|l||

5

sdmple Progrqms

3-1

This chapter provides a mtorial example that illustrates the creation of an application
in the APW environment. The program includes a main routine in C and a subroutine
in assembly language. You are shown how to use the APW Editor to create source files
in both languages, and how to compile, assemble, link, and run the program.

The purpose of this chapter is to give you a ttorial introduction to compiling and
linking a simple multilanguage program in the APW environment. This example is
placed in the APW C Reference, rather than in the APW Reference, because both APW
and APW C are needed to run the example, and only owners of APW C can be assumed
to have both.

%» Note: The instructions in this chapter assume that you have both the APW
Assembler and the APW C Compiler installed in your system. Assembly language is
included on your APW disks; the C compiler is on the APW C disk. See Chapter 2 for
instructions on installing APW and APW C in your system.

If you have a hard disk, the instructions in this chapter are straightforward. If you have
two 3.5-inch drives, you may have to do some disk swapping and tweaking of prefixes
to follow these instructions.

This chapter also provides instructions for building a sample desk accessory.

—=

General procedure

This section describes the general procedure that this chapter foliows.

% Note: For simplicity, the words compiler and compile are used in this chapter to
include assembler and assemble.

1. Set the system language to the language type of the source code you intend to write,
open a file for editing, and write the source code for the first part of your program.
Save the file to disk.

2. Execute the shell COMPILE (or ASSEMBLE) command.

You now have several files on disk: the source-code file and one or more object-
code files (the root file and files with alphabetic extensions such as .R).

4. Write the next part of the program. This part need not be in the same programming
language as the first part. Give this part a different source filename than the first part
and a different KEEP filename.

5. Execute the shell COMPILE command. Debug the program and recompile as
necessary unil successful,

6. Repeat steps 4 and S for each part of the program, until you are sure that each part
compiles successfully.

~d

. Execute the LINK command, specifying the root filenames of all of the object files
in the program.

8. If you wish, execute the COMPACT command to create a more compact version of
the load file.

3-2 Chapter 3: Sample Programs

If you prefer, you can wrile the entire program, including parts in several languages,
and compile and link them all at once. Use the CMPL command to compile and link
the program. Each source file except the last can end in an #append directive (or the
equivalent), or you can specify multiple source files in the CMPL command. Every
time an APW compiler executes an #append directive, it checks the APW language
type of the file being appended. If the language doesn’t match that of the compiler,
then the compiler returns control to the shell, which calls the appropriate compiler to
continue processing the program. If all compiles are successful, the APW Linker is
called automatically. The linker processes the file, writes out any errors, and (if the
link was successful), writes the load file w disk.

Writing and edi?ng fhe_;ample source code

The sample program shown in this section tzkes input from the keyboard, converts
every letter to uppercase, and prints the result to the screen. It is written with a main
segment in C and a subroutine in assembly language. The C routine handles the input
and output. The assembly-language routine does the conversion from lowercase to
uppercase.

Use the following steps to write the source code for the C routine shown in Figures 3-1
and 3-2. (If you don't feel like typing, look in the directory
/APWC/SAMPLES /UPSTR/.)

1. Boot APW and type the following command to set the system default language (the
current language) to C. To execute an APW command, press the Retumn key.

cc
2. Call the editor to open a file called SAMPLEC with the following command:
EDIT SAMPLEC

3. Type the following program. Use the cursor keys to move around in the file. The
Delete key deletes the character to the left of the cursor. The Tab key moves the
curser for indenting subroutines. Other basic editor commands are given in Table
2-4 of the APW Reference.

/* Convert all characters taken from standard input to uppercase */

/* and write the result to standard ocutput, */
SR o */
/* NOTE: Control-@ terminates the input */

#include <stdio.n>
#define MAXLEN 1024

extern void UPSTR();
char *gets():

main(argec, argv)
int argeg;
char *argv(]:
{
char str[MAXLEN];
while (gets(str) != NULL) ¢
UPSTR(str);
printf("¥8XL", Scrld
H

return 0;

Writing and editing the sample source code

3-3

4. Press Apple-Q to quit the editor. Press S to save the file to disk, and then press E to
exit the editor and return to the shell.

5. Type the following command to set the current language to 63816 assembler.
ASM6E5816

6. Call the editor to open file called SAMPLEA with the following command:
EDIT SAMPLEA

7. Type the following program. Note that the default tab stops are different for
assembly language than for C. You must be careful to start the comments past
column 40, or you will get a syntax error in line 2.

LONGA ON _set Assembler to l6-bit accumulater mode
UPSTR START start of object segment
LDA 4,8 get string address {(lower 2 bytes)
STA SAA store inte direct page
LDA 6,8 get string address (bank byte+extra byte)
STA SAC store inte direc¢t page
LOGP SEP #s520 set processor to 8-bit accumulator mode
LONGA OFF set Assembler to B-bit accumulator mode
LDA [SAA] get next byte in string
BEQ FINISH if 0, end of string
cMp #s6l is character < 'a' ($6l) ?
BCC ITERATE if so, go to next character
CMP #57B is character >"'z' (S7A) 2
BCS ITERATE if so, go to next character
. SEC convert the character te uppercase by
SBC #520 subtracting 520
STA [SAA] store character back in string
ITERATE REP $520 set processcr to 1l6-bit accumulator mode
LONGA ON set Assembler tec lé-bit accumulator mode
CcLC increment string address by 1
LDA SARA
ADC #1
STA SARA
BCC LOOP if carry gets set, you just crossed bank
INC SAC boundaries sc you increment bank
BRA LOOPE get next character
FINISH REP #520 set processor t¢ 26-bit accumulater mede
LONGA ON set Assembler to 1lé=-pit accumulator mode
RTL return te C routine
END end of ocbject segment

8. Press Apple-Q to quit the editor. Press § to save the file to disk, and then press E 10
exit the editor and return to the shell.

3-4 Chapter 3: Sample Programs

Creating object code: compiling and assembling

To compile and assemble your programs, use the following commands:

COMPILE SAMPLEC KEEP=SAMPLEC.C
ASSEMBLE SAMPLEA KEEP=SAMPLEA.O

% Note: If you have two 3.5-inch drives and no hard disk, you will have to compile
using the APWC disk and assemble using the APW Assembler disk. Use this seres of
commands:

COMPILE SAMPLEC KEEP=SAMPLEC.C
uMcC
ASSEMBLE SAMPLEA KEEP=SAMPLEA.O
MC

If an APW compiler finds a fatal error (one that prevents the compilation from
continuing), it writes out an error message to standard output (normally the screen),
and passes control to the APW Editor, which loads the source file that the compiler
was working on, placing the line that caused the error in the middle of the screen.

If your first attempt was not successful, correct the source code and try again. Repeat
this process until the module compiles successfully. Remember to save the source file
each time you make changes: the disk file is updated only when you save it

The following files should be on your disk after using these commands:
SAMPLEC i C source code

SAMPLEA 65816 source code

SAMPLEC.0.ROOT object segment created by the C compiler
SAMPLEA.O.ROOT object segment créated by the assembler

Alternatively, you can compile both files in one operation, if you are using a hard
disk. To do this, you can add a line 1o the file SAMPLEC as follows:

1. Reopen the file in the editor with the following command:
EDIT SAMPLEC

2. Press Apple-9 to jump to the end of the file. Add the following line to the file:
#append "SAMPLEA"™

3. Press Apple-Q to quit the editor, S to save the file, and E to exit the editor.

4. Now when you use the following command, the shell calls the C compiler to
compile the C routine and then calls the APW Assembler to assemble the 65816
routine:

CCMPILE SAMPLEC KEEP=SAMPLE.O

The following files should be on your disk after using this command:

SAMPLEC C source code

SAMPLEA 65816 source code

SAMPLE .Q.ROOT first object segment created by the C compiler
SAMPLE.O.A object segments created by the assembler

Creafing object code: compiling and assembling

3-5

Creating load files: linking

When you execute the LINK command, the APW Linker combines all object segments
that have the same load-segment name into the same load segment, and places the
entire program into a single load file with the XEEP filename you specified. (For a
discussion of object segments and load segments, see “APW C Concepts” in

Chapter 1.)

Important

Be sure to include the KEEP parameter in the LINK command. if you do not
specify a KEEP filename in the LINK command. no load file is saved to disk.

There are two ways to link the object files you have just created. In the first way, if you
did not add the #append directive to the end of the C routine, use the following
command to link the object files into a single executable load file:

LINK 2/START SAMPLEC.O SAMPLEA.O KEEP=SAMPLE

The first file listed links the file START .RCOT in the library prefix. This file must be
linked to the beginning of every program when the rmain segment is in C.

The load file is named SAMPLE.

The following files should be on your disk after using this command:
SAMPLEC C source code

SAMPLEA 65816 source code

SAMPLEC.O.ROCT object segment created by the C compiler
SAMPLEA.CQ.ROQCT object segment created by the assembler
SAMPLE load file

In the second way, if you did add the #append command to the end of the C routne,
use the following command to link the object files into a single executable load file:

LINK 2/START SAMPLEC,0 KEEP=SAMPLE

The following files should be on your disk after using this command:

SAMPLEC C source code

SAMPLEA 65816 source code

SAMPLE.O.ROOT first object segment created by the C compiler
SAMPLE.O.A object segments created by the assembler
SAMPLE load file

3-6 Chapter 3: Sample Programs

Running your program
To run the program you just created, use the following command:
SAMPLE

Each character you type is printed on the screen as you type it. Press Return to have the
program retype the line in all uppercase. Press Control-C to terminate the program.
The following sequence illustrates the use of this routine, The characters in boldface
are the ones you type (remember to press Return at the end of each line you type):

#SAMPLE

Now is the Time for alLlL good PaoPle to Buy an Appla IIgs
NOW IS THE TIME FOR ALL GOOD PECPIE TC BUY AN APPIE IIGS

Granny Smith is always getting her apples into a jam
GRANNY SMITH IS ALWAYS GETTING HER APPIES INTO A JAM

Control-@

#

With this routine, you can use I/O redirection to convert the characters in a file to
uppercase. The following command converts all characters in the file TEXT.IN to
uppercase and writes them out to the file TEXT.QUT:

SAMPLE <TEXT.IN >TEXT.CUT

The file TEXT.QUT contains the output that would have appeared on the screen; that
is, each line of text in the file TEXT. IN is printed, followed by the same line converted
o uppercase.

Creating a compact load file

As a final step in program development, you can run the Compact utility program.
Compact converts a load file to the most compact form provided by the object
module format. If your load file is named SAMPLE, type the following line and press
Return:

COMPACT SAMPLE -0 SAMELE.CMPCT -R

Compacted load files take up less space on disk and load faster than noncompacted
load files. The SAMPLE program you created here, for example, should be about 31
blocks in size (as shown in a catalog listing), while SAMPLE . CMPCT should be about 25
blocks.

The Compact utility writes to the screen an account of the records it has converted. If
you are interested in understanding the format and use of these records, see “Segment
Body” in Chapter 8 of the APW Reference.

However, not all load files are significantly improved by compacting, so you may want
to test both compacted and noncompacted versions of your program before releasing
it.

Important

In order to load a compacted load file, you must have version 1.2 or later of the
Systemn Loader on your boot disk,

Creating a compact load file

3-7

Building a E;g;r:g:pplicaﬁon: BONES

The APW C disk contains a sample application named BCNES, which does all the
things an application needs to do. It is located in the directory
/RPWC/SAMPLES/BONES/. It comprises the following files:

MAKE Build EXEC file

BCNES.CC Implements most of BONES

INIT.CC Inirializes tools

DATA.ASM Data struciures for windows and menus

STACKMIN.ASM Allocates stack for BONES

To build the application, set the prefix 0/ to the directory /APWC/SAMPLES /BONES/
and type

MAKE
To run the application, type
BONES

or launch it from the Program Launcher.

Wing desk accssories in APW C

A desk accessory is a small program that 2 user can run without shutting down an
already-running application. The Apple IIGS supports two different kinds of desk
accessories:

m Classic desk accessories (CDAs) run in a nondesktop environment. The CDA
interrupts the application and gets full control of the computer. An example of a
CDA is the Control Panel. The APW C Compiler does not support classic desk
accessories.

B New desk accessories (NDAs) run in a desktop environment: they operate in a
window and are subject to the same rules that govern event-driven applications.
They are not stand-alone applications, however, because they rely on another
application to start up the Apple OGS tools.

Neither type of desk accessory has much extra programming overhead apart from the
actual task it perfarms. Both types depend heavily for support upon the Desk Manager
tool set.

Writing new desk accessories in APW C

All new desk accessories are loaded from the disk at boot time. When an NDA gets
control from the Desk Manager, the processor is in full native mode. By convention,
the NDA can assume that the tools shown in Table 3-1 have alreadv been loaded and
started up. If the NDA needs any other tool sets, it must load and start them up itself.

3-8 Chapter 3: Sample Programs

Table 3-1
Tool sets loaded and available to new desk accessories

Tool set

QuickDraw II
Event Manager
Window Manager
Conurol Manager
Dialog Manager
Menu Manager
Line Edit

Scrap Manager

The NDA may also assume that the Print Manager is available, although it is not
necessarily loaded and started up.

Important

If one of these tool sets has not been loaded and the NDA needs it. the NDA
should issue an error message.

An NDA has 2 structure fundamentally different from that of a desktop application.
One difference is that it has no event loop—it relies on the application’s event loop
and the Desk Manager to open it, probe into action, and close it. Another difference
is that it consists of only four routines:

0 The Desk Manager calls the inif routine to initialize the NDA when the Desk Manager
starts up, and again when it shuts down.

0O The Desk Manager calls the open routine when the NDA is selected by the user from
the Apple menu. The open routine opens the desk accessory window and returns a
pointer to iL

O The Desk Manager calls the action routine in résponse [0 an event within the NDA
window, or when a specified time pericd has passed, or if a selection has been
made from an NDA menu or the Edit menu, or in other special cases. The action
routine performs whatever tasks the NDA was designed for. An action code passed
in the accumulator teils the NDA why it was called.

C The Desk Manager calls the close routine to close the desk accessory window.
The processor is in full native mode on entry into all four routines.

The basic procedure followed by each of the four NDA routines is as follows:

1. Call saveDB. (Needed only if you reference variables in ~globals.)

2. Save important global variables, such as the application’s current GrafPort.
3. Save the work area pointers of any tools you need to use that are not in Table 3-1.
4. Initialize the tools you need 1o use.

A

. Depending on the action code received, take appropriate action. A desk accessory
must use the stack or request needed space from the Memory Manager.

6. Restore the work area pointers that you modified in step 3.
7. Restore the global values and return to the Desk Manager.
8. Call RestoreDB. (Needed only if you reference variables in ~gleobals.)

Writing desk accssories in APW C

You must start the NDA with an identification section that specifies the pointers to the
four routines, the NDA's period Chow often it runs), and its menu line (text defining its
tile on the Apple menu). For example, the identification section could look like this:

“NDA'’s have the ProDOS file type 0xB8. On disk, they must reside in the
/volumename/SYSTEM/DESK.ACCS/ subdirectory.”

A sample C desk accessory

A sample NDA, written in C, is in the directory /APWC/SAMPLES/DA/. It comprises
the following files:

IDLEHEADER.ASM NDA identification section with pointers to four routines

CIDLE.C Implements init, open, and close (steps 1-4 and 6-8, just
given)

USERIDLE.C Implements action (step 5): change this to create your own
NDA

DB.ASM Implements SaveDB and RestoreDB

MAKE - Build EXEC file

To build the desk accessory, set the prefix 0/ to the directory /APWC/SAMPLES/DA/
and type

MAKE

To run the desk accessory, copy it into the directory
« /volumename/SYSTEM/DESK . ACCS/ on a disk named vo!umename and boot that
disk.

3-10 Chapter 3: Sample Programs

I

v
Q
—_

Language
Reference

Chapter 4

The APW C
Language

4-1

The information provided in this chapter supplements The C Programming Language
by Kernighan and Ritchie. Where the K and R language definition leaves choices to the
implementers, this chapter describes how these aspects of C have been implemented
on the Apple [IGS. Where Apple has modified or extended the K and R language
definition, this chapter documents the changes.

Language definition

This section describes the APW C language, including language extensions such as
type void, type enum, and the SANE data types, and how to call Pascal-style
functions. It also describes APW C’s in-line assembler.

Variable names

The compiler limits the length of each local variable name to 1000 characters. Global
variable names and function names are limited to 250 characters by the object-
module format. Therefore, different function names whose first 250 characters are
identical will be treated as different functions by the compiler, but will be treated as the
same function by the linker.

Data types

Table 4-1 lists the arithmetic and pointer types available in APW C and shows the
number of bits allocated for variables of these types. Types short and long represent
16-bit and 32-bit integers, respectively. The machine type int, a 16-bit integer on the
Apple IIGS, is the type the 65C816 uses most efficiently. Pointers require 32 bits.
Enumeration types require 16 bits. Types short, int, and long use two's-
complement representation. Type char is unsigned. Note that the Apple IIGS has no
signed 8-bit type: char and unsigned char are identical. Naturally, a prudent
programmer will make no assumptions about features not guaranteed to be portable.

Table 4-1

Size and range of data types

Data type Bits Description

char 8 Range 0 to 255

unsigned char 8 Range O to 255

short 16 Range —32,768 to 32,767

unsigned short 16 Range 0 to 65,535

int 16 Range -32,768 to 32,767

unsigned int 16 Range 0 to 65,535

long 32 Range -2,147,483,648 to 2,147,483,647
unsigned long 32 Range 0 to 4,294,967,295

enum 16 Range 0 to 63,535

x 32 Pointer types

float 32 IEEE single-precision floaling point
double 64 IEEE double-precision floating point
comp 64 SANE signed integral values
extended 80 IEEE extended-precision floating point

4-2 Chapter 4: The APW C Language

% Note: Some programs assume that sizeof (int) = sizeof (char *) may not
work properly under APW C because an int is 2 bytes long and a pointer is 4 bytes.

You can find more information about types in Table 4-2, given later in this chapter.

Numeric constants

Integer constants in the range of long are treated as type long. Integer constants in
the range of unsigned long are treated as type long unless you explicitly include
a cast to type unsigned long.

This point is important for those few cases where the long constant has the most
significant bit set, because the compiler may seem confused about whether such
constants have large positive values (which are stored as 32 bits with the most
significant bit set) or negative values.

For instance:

(4000000000 < 0)

is true, but

{({unsigned long}4000000Q00 < Q)
is false, '

Integer constants outside the union of the ranges of the types long and unsigned
long are treated as lype extended. For example, the initialization statement

long i = 6000000000;

is incorrect because 6,000,000,000—being too big for the long type—is interpreted
as an extended value. However, the initialization statement

unsigned leng 1 = 4000000000;

is correct because 4,000,000,000 is within the range of unsigned long values,

Type void

The void keyword tells the compiler that the function being declared does not return a
value. Calls to functions of type void may not be used in expressions, where a value is
required. (See “Pascal-Style Functions” later in this chapter.)

Language definition

4-3

Type enum

Type enum is a type analogous (o the enumeration types of Pascal. Its syntax is similar
to that of the st ruct and union declarations:

enum-specifier:
enum { enum-list }
enum enumeration-tag { enum-list)
enum enumeralion-iag

enumeration-tag:
identifier

enum-list:
enumeration-declaration
enumeration-declaration , enum-kst

enumeration-declaration:

identifier

identifier = constani-expression
Like the structure tag in a struct-specifier parameter, the optional enumeration-tag in
enum-specifier names a particular enumeration type and allows you to define other
objects of that type. For example,

enum celor {chartreuse, burgundy, c¢laret, winedark};

enum c¢olor *cp, col;

makes color the entumeration-tag of a type describing various colors and then:
declares cp as a pointer to an object of that type and col as an object of that type. The
identifiers in enum-list are declared as constants and may appear wherever constants
are required.

If no enumerators with a constant-expression appear, the value of each constants
begins at 0 and increases by 1 as the declaration is read from left to right. Each
enumerator with a constant-expression is given the value indicated. Each enumerator
without a constant-expression is given a value one greater than the enumerator before
it. This means that two or more enumerators with constant-expressions can be
assigned the same constant value, and that an enumerator without a constant-
expression may have the same value assigned by the compiler as another enumerator
with a constant-expression in the same enumeration list. Consider some examples:

enum digit {zero,one,twoc,three, four, five,six, seven,elght,nine] num;

has the values 0, 1, 2, 3, 4,5,6,7, 8,9

4-4 Chapter 4: The APW C Language

enum mixedup (a,b,c,d = 1,e,f } mix;

has the values 0, 1, 2, 1, 2, 3;

enum zapped (g = 1, h,i,J =2,k,1} zap;

has the values 1, 2, 3, 2, 3, 4; and

enum ok {m=45,n,0,p=100,q9,T});

has the values 45, 46, 47, 100, 101, 102.

If you declare values, it is safest to declare all of them.

Each enumeration-tag and enumeration-consiant must be unique. Unlike structure
tags and members, they are drawn from the set of ordinary identifiers. Objects of 2
given enumeration type have a type that is distinct from objects of all other types.

Enumeration types are allocated the amount of space required by the smallest
predefined type that allows representation of all literal values specified by the
enumeration. The predefined types considered are unsigned char (8 bits) and
unsigned short (16 bits).

Register variables

Most versions of C support register variables. The function of register variables is
undefined in the Apple IIGS as 2 result of the small number of registers available on the
65C816 microprocessor. Use of the register declaration neither optimizes nor
pessimizes your code: the C compiler generates equally efficient code whether or not
your source code contains register declarations.

Structures

Structures may be assigned, passed as parameters, and returned as function results,
The left and nght sides of 2 structure assignment must have identical types. Similiarly,
actual and formal parameters must have identical types. Equality comparison for
structures is implemented, provided the structures have the same type. (The equality
test may give unpredictable results if a structure contains a union.)

Because the 65C816 is a byte-oriented machine, data structures can be aligned on byte
boundaries. For this reason, APW C does not pad structures to ensure word
alignment.

Important

In functions that return structures, if an interrupt occurs during the return
sequence and the same function is called reentrantly during the interrupt, the
value returned from the first call may be corrupted. This problem can occur only
in the presence of interrupts. Recursive calls are quite safe.,

Language definition

Reserved symbols

__LINE __ is a reserved preprocessor symbol whose value is the current line
number within the current source file.

__FILE_ _ is a reserved preprocessor symbol whose value is a character string
consisting of the current filename.

__LINE__and __ FILE___ begin and end with two underscore characters.

The symbol AppleIlgs is predefined for use in conditional compilation. It can be
used to distinguish C code written for the APW C Compiler from C code written for,
say, the MPW C Compiler. The symbol has the value 1, as if a statement of this form
had appeared at the beginning of the source code:

#define Applellgs 1

The symbol APW is predefined for use in conditional compilation. It can be used to
distinguish C code written for the APW C Compiler from C code written for some
other compiler. The symbol has the value 1, as if a statement of this form had
appeared at the beginning of the source code:

#define APW 1

The symbol WD65816 is predefined for use in conditional compiiation. It can be
used to distinguish C code written to run on the Western Design Center 655C816 from
C code written to run on some other microprocessor—even for some other variation
of 65816.The symbol has the value 1, as if a statement of this form had appeared at the
beginning of the source code:

$define WD65816 1 ~

An ifdef statement can test the AppleIIgs, APW, and WDE5816 symbols.

Standard Apple Numeric Environment extensions

APW C has built-in support for SANE. In combination with the SANE routines in
CL1B, the language composes a scrupulously conforming extended-precision
implementation of the IEEE Standard for Binary Floating-Point Arithmetic (754).
SANE provides an extra data type for storing large integral values and basic functions
for application development. APW C recognizes the SANE data types, uses SANE for
all C floating-point operations and conversions, and correctly handles NaNs (Not-a-
Number) and infinities in comparisons and in ASCIl-binary conversions.
Furthermore, source programs from other C implementations—if they are written
using only £loat and double lype, and standard C operations—will compile and run
under APW C without modification.

Much of SANE is provided through the run-tme library CLIB and the include file
SANE .H. However, to use extended-precision arithmetic efficiently and effectively,
and to handle TEEE NaNs and infinities, some extensions to standard C are required,
including use of the extended data type.

4-6 Chapter 4: The APW C Language

A change from double to extended as the basic floating-point type is the most
important difference from standard C. Because C was originally developed on the
DEC PDP-11, the PDP-11 architecture is reflected in standard C in the use of £loat
and double as floating-point types, with double being the basic type. Thus, floating-
point expressions are evaluated to double, anonymous variables are double, and
floating-point parameters and function results are passed as double values. However,
the low-level SANE arithmetic (as well as the Intel 8087, Motorola 68881, and Zilog
Z8070 floating-point chips) evaluates arithmetic operations to the range and precision
of an 80-bit extended type. Thus, extended natwrally replaces PDP-11 double as
the basic arthmetic type for computing purposes. The types £1loat (IEEE single),
double, and comp serve as space-saving storage types, just as £1oat does in standard
C. The comp type, which is a 64-bit type for storing integral values, is a SANE
extension. It has two properties that suit it to accounting applications: it is sufficiently
large to represent the U.S. national debt in Argentine pesos, and it has a NaN value to
record overflows and other exceptions.

The IEEE Standard specifies two kinds of special representations for its floating-point
formats: NaNs and infinities. APW C expands the syntax for I/O to accommodate
NaNs and infinities, and includes the treatment of NaNs in relationals as required by
the IEEE Standard.

The SANE extensions to standard C are backward-compatible. programs written with
only the £loat and double floating-point types and standard C operations compile
and run without modification. All intermediate values are computed in the extended
type, an 80-bit floating-point type, and the results are returned to the types specified
in the program. SANE does not affect integer arithmetic.

The Apple Numerics Manual contains detailed doc.;uﬁ"lentation of SANE. The
Apple IIGS Toolbox Reference contains denailed documentation of the Apple IIGS
SANE Toolset, which makes SANE available on the Apple IIGS.

Constants

Numeric constants that include floating-point syntax—a point () or an exponent
field—or that lie outside the union of the ranges of the long and unsigned long
types are of type ext ended. Binary-to-decimal conversion of constants is performed
at compile time (and hence is governed by the default numeric environment: see the
section “Numeric Environment” later in this chaprter).

Expressions

The SANE types—float, double, comp, and extended—can be mixed in
expressions with each other and with integer types in the same manner that £1oat and
double can be mixed in standard C. An expression consisting solely of a SANE-type
variable, constant, or function is of type extended. An expression formed by
subexpressions and an arithmetic operation is of type extended if either of its
subexpressions is. Expressions of type extended are evaluated using extended-
precision SANE arithmetic, with conversions to type extended generated
automnatically as needed. Parentheses in extended-type expressions are honored:
the compiler will not rearrange terms in violation of parentheses. Initialization of
external and static variables, which may include expression evaluation, is performed
at compile time. All other evaluation of extended-type expressions is performed at
run time.

Language definition

4-7

Comparison involving a NaN

The result of a comparison involving a NaN operand is unordered. The usual set of
comparison results—less than (<), greater than (), and equal to (==)—is expanded
to include unordered. For example, the negation of “a is less than b” is not “a is
greater than or equal o b” but “a is greater than or equal to b, or @ and b are
unordered,” The CLIB function relation tests all four altemartives.

Parameters and function resulis

A numeric actual parameter passed by value is an expression and, hence, is of
extended or integer type. All extended-type arguments are passed as extended
values. Similarly, all results of functions declared £float, doukle, comp, or
extended are returned 2s extended values.

Numeric input and output

In addition to the usual syntax accepted for numeric input, the Standard C Library
function scanf recognizes the string *INF” as infinity and the string “NAN” as a NaN.
“NAN" may be followed by parentheses, which may contain an integer (a code
indicating the NaN’s origin). “INF” and *NAN" preceded by a sign and are case-
insensitive. The scanf specifiers for SANE types extend standard C as follows:
conversion characters £, e, and g indicate type £loat; 1£, le, and 1g indicate type
double; mf, me, and mg indicale type comp; and ne, nf, and ng indicate type
extended.

The Standard C Library function print £ writes infinities as the string “INF” and NaNs
as the string "NAN(ddd)”, where ddd is the NaN code. “INF” and "NAN(ddd)" may
be preceded by a minus sign.

Numeric environment

The numeric environment comprises the rounding direction, rounding precision,
halt enables, and exception flags. IEEE Standard default settings—rounding to
nearest, rounding to extended precision, and all halts disabled—are in effect for
compile-time arithmetic (including decimal-to-binary conversion). Each program
begins with these defaults and with all exception flags clear. Functions for managing
the environment are included in the library CLIB. The compiler, in optimizing, will
not change any part of the numeric environment, including the exception-flag setting,
which is a side effect of arithmetic operations.

About the SANE routines in CLIB

The SANE routines provide the basic tools for developing a wide range of
applications. They include the following:

0 logarithmic, exponential, and trigonometric functions

()

financial functions

random-number generation

W]

4-8 Chapter 4: The APW C Language

O conversions between binary and decimal formats
O numeric scanning and formatting
O environment control

O other functions required or recommended by the IEEE Standard

Additional information can be found in the SANE Tool Set chapter of the Apple IIGS
Toolbox Reference.

Programming with IEEE arithmelic

APW C’s automatic use of the extended type produces results that are generally
better than those of other C systems. For example, extended precision yields more
accuracy and extended range, avoiding unnecessary underflow and overflow of
intermediate results. You can further exploit the extended type by dedaring all
floating-point temporary varables to be -of type extended. Doing this is both time-
efficient and space-efficient, since it reduces the number of automatic conversions
between types. External data should be stored in cone of the three smaller SANE types
(float, double, or comp), not only for economy but also because the extended
format may vary between SANE implementations. As a general rule, use £loat,
double, or comp data as program input; extended arithmetic for computations;
and float, double, or comp data as program output.

In many instances, [EEE arithmetic allows simpler algorithms than were possible
without IEEE arithmetic. The default overflowing to infinity enlarges the domain of
some formulas. For example, 1+1/x* will be computed correctly even if x* averflows.
Running with halts disabled (the defaul), a pragram will never crash due to a fleating-
point exception because a suilable default value can be returned instead. Hence, by
menitoring exception flags, a program can test for exceptional cases after the fact,
The alternative—screening out bad input—is often infeasible and sometimes
impossible.

The in-line assembler

The APW C in-line assembler obviates the need for a separate assembler. You can
implement general control structure, input/output, and complex data structures in C,
while coding certain low-level routines in assembly language within the same module.
The problem of interfacing C functions to assembly-language functions and vice-versa
is eliminated, because calling sequences can be written in C for functions coded in
assembly language. Programs can first be developed in C to debug algorithms and to
generate a working prototype quickly. The functions that consume the most time
(generally less than 10% of the code) can then be re-coded in assembly language.
Because of the efficiency of the APW C code generator, such a hybrid approach yields
execution speeds comparable with those of pure assembly-language code, while
retaining the ease of modification and maintenance of a pure high-level-language
approach.

Language definition

4-9

Use of assembly language decreases readability, exacerbates debugging headaches,
and drastically reduces portability, so you must use discretion when considering
functions for hand translation. There are some situations where speed is critical, most
notably graphics. Such applications frequently involve system or machine
dependencies anyway, so portability is not an issue. In such cases, the availability of
in-line assembly language is a great benefit

In-line assembly-code declarations and definitions

Your C program can contain assembly code in line. Anywhere that a statement is
legal, you can insert a series of assembly-language statements with this format:

asm{ assembly-language-statemenis}
Anywhere that a functon definition is legal, you can have a definition with this format:
asm (external-name) | assembly-language-statements}

This function can be called in the same way as a C function called external-name,
Here, external-name is the entry point of the segment containing the assembly-
language code.

In-line assembler syntax

The assembler syntax is basically the same as that used in the APW Assembler. There
are far fewer assembler directives: only dcb, dew and dcl are supported. Macros are
not supported either; however, the compilers preprocessor is active within in-line
assembly.

The general syntax for in-line assembly language follows. Here is the syntax for
metasymbols:

Metasymbeol form Meaning

item item is replaced by an actual item.
ftem ... item may be repeated.

[item] item is optional.

choicel | choice2 either choicel or choice2 must appear, but not both.
Here are the syntax rules for statements:

asm-function = asm{ func-name) { asm-line ...}
asm-statement = asm{ asm-line ...}

asm-line == label : | op-code [operand] [comment-stuffl
comment-stuff ::=; comment | /* comment */

In-line assembly code may appear anywhere in your program,; it is not necessary to
place it inside a function. The asm-function format is used in this case. An asm-
Statement may appear anywhere that a C statement is legal within a regular C function.
C variables may be referred to by name. All auto variables and parameters are
accessed with direct-page addressing; global and static varables are accessed with
long absolute addressing.

Opcodes are the same as in the Western Design literature and may be given in
uppercase or lowercase. Because expansion of #define macros is performed within
sections of assembly language, you are free to rename instructions or registers.

4-10 Chapter 4: The APW C Language

Each line of assembly language may consist of one or more instructions, optionally
followed by a semicolon and comment text. Comments may also be given as C
comments, Note that you can use #define stalements to create simple macros using
the multiple-statement-per-line feature. Within macros, C-style comments must be
used instead of the normal semicolon-to-end-of-line assembly-language comments.

An expression giving a displacement value is permitted after an identifier. The
expression is a C-style constant expression that is added to or subtracted from the
identifier. All constant expressions may use C-style constants (such as \012 or 0x40)
and may use the constant operators listed in section 15 of Appendix A of Kernighan
and Ritchie. Note that $1234 is invalid syntax for hexadecimal constants: use 0x1234
instead.

In addition, the unary <, unary >, unary *, and unary | are all recognized by this
assembiler, and have the same meaning as they do in the APW assembler. In operand
expressions, any identifier must be placed first in the expression; in other words, the
instruction

lda a+2

is legal, but the instruction
lda 2+a

is not.

The syntax for reserving a byte, word, or long is

deb expression
dcw expression
dcl expression
respectively.

An identifier that appears after dcl, dow or dcb means to emit the address of the

identifier. If the identifier is auto, the offset into the direct page is emitted; otherwise,
its absolute address is emitted. Direct page offsets are modulo 256, so if you have more
than 256 bytes of auto variables, the compiler may silently generate incorrect offsets.

All labels given default to local-code labels uniess you've previously declared them as
something else. This means that all functions called, for example, must be declared or
defined previously in C. You may only use a /abel as a destination for a branch; you
may not read or store values using a label. This restriction exists to ensure that code
segments are pure code, which is a requirement of the loader for restartable
applications.
/*

An example of a macro to use in assembly language
*/

#define MLILl6 QXE100AS
#define PRODOS (n, a) jsl MLI16 dcwn dcl a

Language definition

.

You have the ability to obtain offsets and values of structure members, as shown in this
example:

typedef struct _don {
int x;
int y;
int z;

} don;

don globaldon;
main()

{
den localdon;

asm

lda $#don.y ; load offset of structure member

lda globalden.y ; lcad global value of structure member
lda localdoen.z : load local value of structure member
lda #| (sizeof(int) + (~123) =* r\Ql23")

}
}

Finally, this assembler has a few differences with respect 10 the APW Assembler, The
jmp opcode always generates short jumps, for long jumps, you must use the jml
opcode. Similarly, jsr always generates short jumps; for long jumps, you must use
Isl.

Here are some examples of correct and incorrect syntax:

Correct Incomect

pei dp pei (dp).

pea #expr pea expr.
mvn #dst, #src mvn src, dst,
mvp #dst, #src mvp sre, dst,

Some synonyms for opcodes (such as swa for xba) are not supported. You can easily
work around this by doing, for example,

#define tda tdec
#define swa xba

The assembler will always generate 16 bits of operand for instructions like
lda #0

This means that the assembler is meant to generate instructions in full native mode.

Pascal-style functions

The function-calling conventions used by APW C and by conventional Pascal
implementations differ in the order of parameters on the stack, the type coercions
applied to parameters, and the location of the return result. Like the Macintosh
Toolbox, the Apple IIGS Toolbox adheres to Pascal-style calling conventions. APW C
has been extended to allow you to use both C-style and Pascal-style calling
conventions. The specifier pascal in a function declaration or definition indicates a
Pascal-style function. This extension is intended to allow for the addition of Pascal
and other languages to APW,

4-12 Chapter 4: The APW C Language

Pascal-style funciion declarations

A function or procedure written using Pascal-style calling conventions can be called
from APW C. Before the function or procedure can be called, it must be declared as
an external function, Here is the general form for a declaration:

lextern] pascal [result-typel func-name () ;

This declaration says that the Pascal procedure named func-name can be called from
your program, returning a result of type result-type.

For example, the DrawText procedure would be defined in Pascal as follows:

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: integer);

The syntax for declaring this procedure so that it can be called from APW C is
extern pascal void DrawText():
To make the code more informative, you can list the parameters in a comment:

extern pascal void DrawText();
/* Ptr textBuf;
short firstByte, byteCount; */

The inline declaration -

An inline declaration is used for declaring Apple IIGS tool routines. Its syntax is

lextern] pascal [resull-typel func-name () inline(m,m);

This declaration says that the tool routine with tool-call number m and Tool-Locator
entry-point 7 can be called by the function name fiunc-name and that func-name
returns a result of type resuli-type. The pascal keyword is necessary because the tools
use Pascal-style conventions. If the tool returns an error, it can be found in
_toolErr, a global integer variable declared inside CLIB. For example, where m and
n are integer constants, the C source code

extern pascal vold foc{) inline(m,n);
main()
{

foc();
}
generates code like this:

s ie ; code te set up the stack frame:

LDX #m
JSL a
BC3S OVER
LpA #C
OVER STA > toolErr i _tcolErr == {0 iff no errcr

¥ i ; code to clean up the stack frame

-

< Note: In APW C, the names of global variables and functions in the object file are
identical to their names in the source file. There are no prepended underscores,
folding to uppercase, or other perversions of the source names.

Language definition

Pascal-style tunction definitions

A C function definition (the actual function), like a function declaration, can also be
preceded by the pascal specifier. The C compiler then produces code that adheres
to Pascal-style calling conventions and the function can be called using these
conventions,

The APW syntax for defining this procedure as a C function is

pascal [result-typel func-name (formai-parameter-list) { statement-list}
For example, the following C function could be called from Pascal:

pascal void MyText (byteCcunt,textAddr,numer,denom)
short byteCount;
Btr textAddr;
Point numer,demcn;

{

}
The corresponding Pascal function declaration would be

PROCEDURE MyText (byteccunt: INTEGER; textAddr: Ptr;
numer, denom: PBeint);

For compatibility with Pascal and assembly language, the compiler converts the
names of Pascal-compatible functions to uppercase before writing them to the object
file. When they are called in C programs, these routines should be capitalized exactly
as they were declared in C. Pascal-compatible functions whose names differ only in
their capitalization will become duplicate declarations when their names are
converted to uppercase by the compiler; therefore, such names should be avoided.

Pascal-style strings: \p

One of the complications of calling Pascal-style functions from C is that the two
languages have different conventions for handling strings. A C-style string is a set of
characters followed by a null byte; a Pascal-style string is a count byte #, followed by a
set of 7 characters. Conveniently, these two forms are the same length, so conversion
from one to the other is not hard. The functions c2pstr and p2cstr perform
runtime conversions between the two types of strings.

If you wish to call a Pascal-style function that expects a Pascal-style string, you can use
the Apple extension to the standard C character escapes: \p. When the compiler
encounters this escape sequence at the beginning of a string, it substitutes for the \p
the character value equivalent to the number of non null characters in the remainder
of the string. Thus a string constant is created that is equivalent to a Pascal-style string.
Since it is also a C-style string, it is also terminated by the null character: this character
is not included in the character count.

You can use it like this:

WriteString("\pHello, world.\n");

4-14 Chapter 4. The APW C Language

Parameter and result data types

C and Pascal support different dama types. When writing a Pascal-style function
declaration in C, a translation of the parameter types and function-result type (from
Pascal to C) is therefore required. Often this translation is obvious, but some cases are
surprising.

Table 4-2 summarizes this translation. Find the Pascal parameter or result type in the
first column. Use the equivalent C type found in the second column when declaring
the function in C. Comments in the table point cut unusual cases that may require
special attention.

Table 4-2

Parameter and result data types

Pascal Data Type C Equivalent Comments

enumeration enum Use identical ordering of the

enumeration literals.
var enumeration enum *
enumeration result enum

char char Pascal passes char parameters as
16-bit values.

var char char * Pascal stores unpacked char
parameters as 16-bit values.

char result char

integer int or short 16-bit signed values

var integer int * or short *

integer resuit int or short

longint long 32-bit signed values

var longint long *

longint result long

real float * Pascal passes real parameters as
extended.

var real float *

real result float

double double * Pascal passes double paramelers as
extended.

var double double *

double result double

comp comp * Pascal passes comp paramelers as
extended.

var comp comp *

comp result comp

extended extended *

var extended extended *

extended result extended

(continued)

Language definiticn

4-15

Table 4-2 (continued)
Parameter and result data types

Pascal Data Type C Equivalent Commants

pointer pointer 32-bit addresses

var pointer pointer *

pointer result pointer

array array Pascal passes array parameters by
address.

var array array

array result - C does not allow array results.

record struct Pascal passes record parameters by
value.

var record struct *

record result struct

set struct Pascal passes set parameters by
value,

var set struct *

set result struct

% Note: The C struct type and the Pascal record type do not exactly correspond,
because C lacks an equivalent to the Pascal variant record type.

Global and external data types)

When a C program and a Pascal program use the same global or external variables,
they must use types of the same size. This requires care, as you can't be sure whether a
given Pascal compiler puts 0..255 into a byte or a word. If possible, use a signed type
for a signed type. If you have to pass values from a signed type into an unsigned type or
vice versa, you must test the sign bit and perform the appropriate conversions.

How parameters are passed

High-level languages on the Apple IIGS use the stack, and the A and X registers to pass
parameters. Assembly-language programs have other means of passing parameters,
such as the direct page, but they must use the stack to communicate with C programs,
because this is how C expects parameters to be passed. Here’s how parameters are
passed.

C-styie functions
Suppose you declare a typical C-style function:
int foo{);

This function takes three values and returns one result. You can call the function like
this:

zco = foola,b,c);

4-16 Chapter 4; The APW C Language

When the call is executed, the values ¢, b, and a are pushed, in that order. Function
foo returns its result in the A register. The calling program then puils a, b, and ¢ off
the stack and stores the contents of the A register into the variable zoo.

If foo had been 4 bytes long, it would have been returned in the A and X registers, with
the high bytes in X and the low bytes in A. Structure and extended resulis are returned
by passing a pointer to them in the A and X registers.

Pascal-style functions

Pascal-style functions use the stack for the return value and also reverse the order of
reading parameters. Consider this function:

pascal int foobar();

This function also takes three values and retrns one result. You can call the funcrion
like this:

x = foobar(a,b,c};

When the call is executed, space for the result £oobar is pushed onto the stack, and
then the values a, b, and ¢ are pushed, in left-to-right order. The routine pulls ¢, b,
and a off the stack, computes foobar, and pushes foobar onto the stack. The calling
program then pulls foobar off and copies it to the variable x.

When you write a function, you can declare it as a C-style or a Pascal-style function,
thus determining the way the parameters are passed. The C style of passing parameters
is more efficient than the Pascal style, but it should be used only with functions that will
be called from C and not from Pascal. Whatever language a function is written in—if
the function is declared as a Pascal-style function—it can be called from either Pascal
or C; if it is declared as a C-style function, it can be called only from C.

Sample program

The following program shows how to use both C-style and Pascal-style parameter-
passing conventions. The C main program calls two assembly-language routines, one
C-style and one Pascal-style. These routines are declared in-line with asm statements.

#¥include <stdio.h>
/t
callsamp

Sample pregram to illustrate two different functicn calling
conventions available from C: "vanilla" C-style parameter

passing (the default); and Pascal-style parameter passing,

used most notably to pass parameters to toolbox routlnes, but
potentially useful for other things (like calling Pascal functions/
procedures if in fact the actual Pascal compiler used follows the
“pascal" parameter-passing conventions.

=/
/= Declare psum as a function of type pascal, so arguments
will be passed Pascal-style, and return values will be pulled

froem stack,
* /]

Language definition

pascal int psum{);

/* Call csum and psum (sum arguments), and print results, */

main ()
{

printf{"c result: %d\n",csum(l,2,3)):
printf ("p result: %d\n",psum(l,3,4));

/* Process parameters using C conventions.

Note that ¢sum and psum are not actually ¢ functions,
but rather assembly code.

The assembly routines operate on the stacked parameters
according to the respective parameter-passing conventions

*/

asm (csum)
{

lda 4,s ; Skip return address, get top parameter.
cmp #1 ; Should be a 1.
bne bad ; Prove that 1 is pushed last.
cle
adc 6,s
adc 8,s ; Return with sum in accumulator.
rtl
bad: :
lda #0 ; This weould only happen if I'm lying,
rtl ; so 1t will never happen.
} -
/* Process parameters using pascal conventicns. w7
asm (psum)
{
lda 8,s ; Get first pushed parameter.
cmp #1 ; Should still be 1.
bne bad ; Prove 1 pushed first.
clc
adc 6,s
adc 4,8
sta 10, s ; Save result on stack, above parameters.
; (Result space was pushed ontec stagk).
lda 2;8 ; Pull high, bank bytes of return address.
sta 8,s ; Put under result.
lda 1,78 ; Pull leow, high ¢f return address.
sta 7.8 ; Put under bank.
pla ; Having shuffled values up,
pla : pull off storage equivalent to
pla i size of three parameters cushed
rel : return with result on stack.
bad:
lda #0 ; This would only happen if I'm lying,
rtl ; so it will never happen.

4-18 Chapter 4: The APW C Language

Implementation notes

A number of details in any language definition are left to the discretion of its individual
implementers. Most programs do not rely on these dertails and, therefore, yield the
same results in all implementations. Knowledge of the major differences between
implementations can, however, help you avoid reliance on implementation-
dependent language semantics. This section explains several areas of the language
definition that are specific to APW C.

Size and byte-alignment of variables

Because the 65C816 is a byte-oriented processor, it levies no speed penalty for using
odd addresses. Therefore, APW C does not align variables on word boundaries. In
particular, enumerated types and structures are not padded to make fields fall on word
boundaries.

When you recompile an MPW C program on the APW C Compiler, for example, all
padding added by the MPW C Compiler disappears. Any padding you added
remains. You can save space and possibly time by removing this padding from data
structures and by deleting code that performs word alignment.

Byte ordering . . '

On the 65C816, the microprocessor used in the Apple IIGS, the least-significant byte
of a short or long integer has the lowest memory address. This byte ordering is also
used on the PDP-11, VAX, 8086, and N5S16000 processors. The 68000, IBM/370, and
Z8000 processors store the least-significant byte at the highest address. Programs that
rely on the order of the bytes within words and long words will not be portable from
machines of one of these classes of machines of the other.

Variable allocation

The APW C Compiler allocates static and global variables in the order in which they
appear in the source. This is also true for the order of fields within structures.

Variables of type void

The APW C Compiler allows you 1o declare void variables, which take up the same
number of bytes as int variables, but you can’t do anything with them.

Array indexing

Array indexing is done using long arithmetic wherever the compiler cannot determine
the actual size of the array (as in extern int array![]:) or can determine that the
size is greater than 64K (0x10000) and, therefore, requires long arithmetic for correct
calculation of offsets.

Implementation notes

If the compiler determines thal the entire array can be accessed using word arithmetic,

it may do so, as shown here:
extern int array[N]; /* N <= 0x8000 =/

char string[] =

"It would be hard to create a string long enough to reguire

long indexing, wouldn't it?"

int netTeoMany(] = (0,1,2,3,4,5,6,7,8,9};
long larray([0x4000];

long larray[0x4000] [OxAl; /* Though the
index will

This is of

array is too large, the second
be done with werd arithmetic.
dubiocus advantage. */

Because word arithmetic is more efficient than long arithmetic, you can use certain
tricks to force word arithmetic when speed is important. These tricks apply whenever
you only need to access no more than 64K (0x10000) bytes within an array.

1. The form

extern int array[O0x400];

is better than the form

extern int arrayl];

(as long as you know how much of the array you need [0 access).

2, To oplimize access to a part of a larger array, place the code in a subroutine and
pass a.pointer to the first element of the part to the subroutine, as shown here,
leong array[0x10000] /*This will normally cause long index arithmetic.*/
main()

{
unsigned int i;
for (i=0; i<4; i++)
fill{array+i*0x4000);
}
fill({smaller)
long *smaller;
{
unsigned i;
for (i=0; i1 < Ox4000; i++)
*smaller++ = QXFFFFFTEF;
}
Calling £i11 four times allows you to fill an array whose actual size in bytes is
0x40000, using long-arithmetic address calculation only four times, once at each
call from main. Note that the arithmetic is further optimized by the use of
unsigned for i.
4-20 Chapter 4: The APW C Language

Types unsigned char, unsigned short, and unsigned long

Types unsigned char, unsigned short, and unsigned long are supported by
the APW C Compiler and by many implementations of PCC, although they are not
required by the basic C language definition. The VAX implementation of PCC and the
APW C Compiler differ in the way they evaluate expressions involving these types. For
example, the negation operator subtracts an unsigned short from 216 under PCC
and from 232 under APW C.

Bit fields

APW C does not support signed bit fields. In the following example, implementations
using unsigned bit fields will set 1 (0 3:

struct {unsigned int field;2;} x;
XK.field = 3;
i = =x.field;

Evaluation order

APW C does not define the evaluation order of certain expressions. Expressions with
side effects, such as function calls and the ++ and -~ operators, may vield different
results on different machines or with different compilers. Specifically, when a variable
is modified as a side effect of an expression’s evaluation and when the variable is also
used at another point in the same expression, the value used may be either the value
before modification or the value after modification.

Programs that rely on the order of evaluation in these simations are in error. The
function call

£(i,i++)

is an example of an expression whose value is undefined.

String substitutions in #define statements
APW C, like MPW C, does not do string substitutions in #define macros , so

#define show(x) printf("x is %d\n", x)
1 =1; show(i);

will produce the output
x is 1

and not the cutput
iis1

That is, the “x is $d\n” string is never modified by expansion of a #define
macro.

Implementation notes

4-21

Assignment operators

The ¢p= form of assignment operators may not have a space or comment between the
op and =, as shown in this example,

i+ /* APW C will choke cn this., */ = 1;

Language anachronisms

Several constructs formerly considered part of the C language are now considered
anachronisms. The compiler considers these constructs to be invalid. The
anachronisms are described as follows.

Assignment operators

The =¢p form of assignment operators is not supported, Alternative interpretations
are accepted without waming. In particular,

x == 5; is interpreted as X = {-5);
x =* 5; is interpreted as X = (%5) 7
X =& p; is interpreted as x = (&p) ;
Initialization

The equal sign that introduces an initializer must be present. The anachronism
int 1 1%

is considered an error.

Compiler limitations

On the Apple 1IGS, the total size of all declared global scalar variables, static scalar
variables, and scalar constants cannot exceed 64K because they are accessed using
shor addressing. Aggregate types (structures, arrays, and string constants) are stored
in a separate large memory segment and accessed with long addressing. Their size is
effectively limited only by available memory.

Automatic variables are limited by the available stack space, which can never
exceed 32K.

Each code segment is limited to 64K.

Due 10 2 limitation of ProDOS, only six levels of #include can be nested.

4-22 Chapter 4: The APW C Language

Performance tips

The following practices improved performance:

O Use unsigned types whenever possible. (Doing this improves performance
markedly.)

O Declare auto aggregate variables after all auto scalars. (Doing this improves
performance markedly.)

o Declare auto pointers before other auto variables.

The segment command
You can use the segment command to create load segments. The command

segment "segname"{, dynamic]

can only appear between functions: it assigns all objects that follow it, up to the next
segment command or the end of file, to the load segment named "segname”. (Note
that the quotation marks are required.)

By default, this command creates a static load segment. The dynamic option creates
a dynamic segment

The segment command can be used to split up a code segment that would be larger
than 64K.

The #append directive

The APW C preprocessor processes the usual directives, as well as one that is peculiar
o APW C:

#¢append T filenamen

When this directive is used, it must appear between functions: the variable filename is
the name of the next file in the compilation sequence. This directive normally appears
at the end of a file, as everything after it will be ignored. It should not appear in an
include file.

START.ROOT, restartability, and StandAlone

START.ROOT is normally the first file linked into vour application; that is, the first
LINK command begins with

(LINK 2/START ...)

START . ROQOT is responsibie for inidalizing SANE and setting up arge and argv
parameters o main (). START .ROOT then calls main (). When your program
terminates—that is, when program control is returned from vour main () procedure
or when exit () is called—START .ROOT closes any files opened via the standard C
library open call and then returns control either to ProDOS 16 or to APW.SYS16,
depending on which one launched the program. Thus, you don't have to make a
ProDOS 16 Quit call explicidly: START.ROOT does it for you.

Implementartion notes

4-23

When your program terminates, the integer variable gFlag determines whether or
not the program will be recognized by ProDOS 16 as restartable. The variable gPath
determines which program is to be launched next. See the Apple IIGS ProDOS 16
Reference about the QUIT call. The variables are declared as

extern int gFlag;
extern char *gPath;

The default setting of these variables is such that the program is not restartable (the
restari-from-memory flag bit of gFlag is off), no new program is launched, and

control will not return to the application (the return flag of gF lag is off).

APW always ignores this information. APW will only recognize your program as being restartable if your
program appears in a line in the SYSCMND file, with an asterisk in the second column. {For more
information, see the SYSCMND section of the APW Reference.) ProDOS will pay attention to this
information.

The variable extern int StandAlone is declared by the Standard C Library.
When an APW C program is started, this variable is set to zero (false) if the program is
not a standalone program (that is, running under APW) or set to nonzero (true) if
running as a standalone program (that is, an application).

Code-generation memory model

The memory model used by the code generation is a mixed model, intended to most
effectively exploit the architecture of the 65816, which has addressing modes that deal
with memory in a linear fashion, and others that treat memory as being divided into -
segments. ' '

Essentially, long, or linear, addressing is used for all pointer values: pointers are 32-
bit values, which contain 24-bit machine addresses. Global scalar variables, however,
are referenced internally by using the more efficient 16-bit addressing modes. For
these operations, the high byte of the 24-bit address is derived from the processor’s
data bank register, which is initialized by the START .ROOT module to point to the bank
in which the load segment that contains the global data has been loaded. This feature
is the reason that total global scalar storage is limited to 64K. On the other hand,
global arrays and structures, are always addressed using long addressing, so it is
possible to have more than 64K of array space. Struct’s and union’s are accessed
using indexed addressing, so they are limited in size to 64K. Array references will use
the faster 16-bit indexed addressing modes if the array is less than 64K in size.

Local variables (auto) are allocated on the 65816 machine stack. The machine stack
pointer is a 16-bit register; the bank address of the stack is always bank 0. Thus, the
maximum stack size is limited to a theoretical 64K: in practice, this size is considerably
smaller due to competing use of bank-0 memory by the system and other potentially
resident programs.

The start code initializes a default stack size of 4K, using this code from CLIB.

StackMin START Direct
KIND 512
ds 51000 = this Ls tne amount of stack
END

4-24 Chapter 4: The APW C Language

You can override this default by modifying this code, assembling it, and linking it in
explicitly, as shown in the sample application BONES.

Storage for local variables is created dynamically on the stack upon function entry. If
less than 256 bytes are required for parameter storage, internal temporary variables,
and local variables, then all local variables will be addressed via direct page
addressing, and pointer dereferencing using local variables will generally use indirect
long addressing. If more than 256 bytes are required, the compiler will have to use
indexed addressing to access variables that extend beyond the first 256 bytes of stack
storage allocated. The first declared variables are the first allocated, so declaring your
frequently used local variables first will guarantee that the most efficient addressing
modes will be used in referencing them.

All function calls are made via long subroutine calls.

If you are writing a Pascal-style C function to be called by the ROM (for example, a
DefProo), and if you want to reference statically allocated scalar varables (which the C
compiler puts in the load segment ~globals), your function should begin with a call
to SaveDB, which saves the value in the data bank register and changes the data bank
register to point to ~glebals. Your function should end with a call to RestoreDB,
which restores the data bank register to the value it held before SaveDB was called.
References to statically allocated array variables (which the C compiler puts in the
load segment ~arrays) use 24-bit addressing and don't use the data bank register. If
you are only using array varables and auto varables, you don't need to call SaveDB
and RestoreDB. These two procedures are provided as part of the source code of the
sample desk accessory.

An easy way to make a variable reside in ~a*rays instead of ~globals is to declare it
as a one-clement array. For example, use

char <{1]; int n[l); double x[1]:
instead of

char ¢; int a; double x;

Implementation notes

4-25

Chapter §

The Standard
C Library

5-1

About the Standard C Library

This chapter describes the Standard C Library provided with APW C. The Standard C
Library is a collection of basic routines that let you read and write files, examine and
manipulate strings, perform data conversion, acquire and release memory, and
perform mathematical operations.

The chapter begins with an introduction to the error-number conventions used in the
Standard C Library, followed by the library functions and macros arranged
alphabetically under the name of the header file that contains them. Each header file
contains a group of related functions or macros. For example, both the fread and
fwrite macros are found under the fread header. All of the function names and
other identifiers used in Standard C Library routines are listed in Appendix D,
“Library Index.” To find out where in this chapter a particular identifier is described,
consult Appendix D.

< Note: Remember that identifiers in C are case-sensitive and should be spelled
exactly as shown in the synopsis. Filenames (as in #include statements) are not
case-sensitive. By convention, they are wrilten in uppercase.

The library routines under each header are documented as follows:

O Synopsis shows the code you need to add to your program when using these library
routines and the files you need to inciude at compile time.

Description discusses the library routines and their input and output.
Diagnostics describes error conditions.

Return value describes the values returned by the routines.

Example contains examples of commands.

Note conlains remarks.

Wamming gives caulions.

Do oo oo o

See also provides the names of other library routines or sections in this chapter
related to the ones described in the current section. It may also provide references
to other Apple manuals, such as the Apple Numerics Manual or the Apple IIGS
Toolbox Reference.

Not all of these will be found under each header.

%+ Note: Specific support for desk accessories has not been a consideration in the
design of this library.

Impertant

Many of the functions in the Standard C library use parameters of type int—this
is necessary to achieve compatibility with other implementations of the Standard
C Library. On the Apple liss, type int is 16 bits rather than 32, so any parameter
of type int is limited to the range 0 fo 65,535, A C program designed to use
parameters of type int to pass values greater than 65.535 will generate no
compiler error, but it will not work correctly under APW C.

5-2 Chapter &: The Standard C Library

Synopsis

Description

Error numbers

#include <ERRNO,H>

extern int errno;

Many of the Standard C Library functions have one or more possible error returns.
An otherwise meaningless return value, usually -1, indicates an error condition: see
the descriptions of individual functions for details. The external variable errno also
provides an error number. The variable errno is only valid immediately afier a call;
it is not cleared on successful calls, so it should be tested only if the return value
indicates an error.

The error name appears in brackets following the text in a library function
description: for example,

The next atternpt to write a nonzero number of bytes will signal an error.
[ENOSEC]

Not all possible error numbers are listed for each library function because many
errors are possible for most of the calls. Some UNIX operating system error numbers
do not apply to the Apple IIGS and are not documented in this manual. Some calls go
to the Apple IIGS ROM, and as a side effect return a value in _toolErr in addition to
the value in errno. Some calls, such as print £ and scanf, may change these global
variables even when they succeed. ’

Here is a list of the error numbers that can be returned in errno and their names as
defined in the ERRNO. H file.

2 ENQENT No such file or directory
A file whose filename is specified does not exist, or one of the directories in a
pathname does not exist.

s EIO YO ervor
A physical I/O error has occurred. In some cases, this error may be signaled on
a call following the one to which it actually applies.

6 ENXIO No such device or address
An I/O operation on a particular file refers to a subdevice that does not exist, or
the I/O operation is beyond the limits of the device. This error may also occur
when, for example, no disk is present in a drive.

9 EBADF Bad file number
Either a file descriptor does not refer to an open file, or a read (or write) request
has been made to a file that is open only for writing (or reading).

12 ENCMEM Nof enough space
The system ran out of memory while the library call was executing.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system,
14 EFAULT Bad pathname
A supplied pathname has incorrect syntax.
16 EBUSY Device or resotirce dusy
Two or more online volumes have identical volume names.

Error numbers 5-3

1

Note

5-4

17

19

20

22

23

24

26

28

30

EEXIST File exists

An existing file was mentioned in an inappropriate context: for example,
open (file, O_CREAT|O_EXCL).

ENODEV No such device

An attempt was made to apply an inappropriate system call to a device: for
example, an attempt was made to read from a write-only device.

ENOTDIR Not a directory

An object that is not a directory was specified where a directory is required: for
example, in a pathname prefix.

EINVAL [nvalid parameter

An invalid parameter was provided to a library function.

ENFILE File table full

The system’s table of open files is full, so temporarily a call to cpen cannot be
accepted.

EMFILE Too many open files
The system cannot allocate memory to record another open file.

ETXTBSY Text file busy
An attempt has been made to perform a disallowed operation on an open file.

ENOSPC No space left on device
A write operation to an ordinary file cannot be performed because the device
has no free space left.

ERQFS Read-only file system
An attempt to modify a file or directory was made for a device mounted for,
read-only access.

Calls that interface with the Apple IIGS I/O system (such as cpen, close, read,
write, and ioctl) can set the external variable _toolErr as well as errnc on
errors. This is a side effect: it is not safe to assume any relationship between the error
number retumed in errno and the number that may be returned in _toolErr. To
detect errors in Standard C Library calls, use errno; to detect errors in Toolbox calls
use _toelErr.

This section documents the values returned in errno. The Toolbox errors returned in
_tooclErr are documented in the chapter “The System Error Handler” of the
Apple IIGS Toolbox Reference.

Error numbers

Synopsis

Description

Note

See also

abs—return integer absolute value

int abs(i)
int i;

Function abs returns the absolute value of i.

The absolute value of the negative integer with the largest magnitude is undefined.

floor

abs

5-5

Synopsis

Description

Diagnostics

See also

S5-6

atof

atof—convert ASCII string to floc:ting-point—number

#include <MATH.H>

extended atof (str)
char *str;

Function atof converts a character string pointed to by str to an extended-
precision floating-point number. The first unrecognized character ends the
conversion. Function atof recognizes an optional string of white-space characters
(spaces or tabs), then an optional sign, then a string of digits optionally containing a
decimal poeint, and then an optional e or E followed by an optionally signed integer.
If the string begins with an unrecognized character, at of reurns a NalN.

Function atof recognizes “INF” as infinity and “NAN” (optionally followed by
parentheses that may contain a string of digits) as a NaN, with NaN code given by the
string of digits. Case is ignored in the infinity and NaN strings.

Function atof honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact——as prescribed by SANE.

scanf

“Conversions Between Decimal Formats” in Chapter [-4 of the Apple Numerics
Manual

Synopsis

Description

Retum value

Note

See also

atoi—convert string to integer

#include <STDLIB.H>

int atei(strzr)
char *str;

long atol{str)
char =*str;

The character string str is scanned up to the first nondigit character other than an
optional leading minus sign (-). Leading white-space characters (spaces and tabs)
are ignored.

A plus sign (+) is considered a nondigit character.

Function atoi returns as an integer the decimal value represented by str.
Functon atel returns as a long integer the decimal value represented by str.

Overflow conditions are ignored.

atof, scanf, strtol

atoi

5-7

Synopsis

Description

Diagnostics

See also

5-8

close

close—close a file descriptor

int close(fildes)
int fildes;

Parameter £ildes is a file descriptor obtained from an open, creat, dup, or
fentl call. Function close closes the file descriptor indicated by £ildes.

Function close fails if £ildes is not a valid open file descriptor. [EBADF]

Upon successful completion, this function returns a value of 0. Otherwise, it returns a
value of =1 and sets exrno to indicate the error.

creat, dup, fcntl, open

e

Synopsis

Description

Note

See also

conv—translate characters

#include <CTYPE.H>

int toupper(c)
int c:

int tolower(c)
int c;

int _toupper{c)
int c;

int _tolower(c)
int c;

int toasciic)
int c:

Functions toupper and tolower have as their domain the set of ASCII characters (0
through 127) and the constant EOF (-1). If parameter ¢ to toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If parameter ¢ to
tolower represents an uppercase letter, the result is the corresponding lowercase
letter. All other parameters in the domain are returned unchanged.

Macros _toupper and _tolower produce the same results as functions toupper
and tolower, but have restricted domains and are faster. Macro _toupper requires
a lowercase letter as its parameter; its result is the corresponding uppercase letter.
Macro _tolower requires an uppercase letter as its parameter; its result is the
corresponding lowercase letter. Parameters outside the domain cause undefined
results.

Macro toascii converts ¢ by clearing all bits that are not part of a standard ASCII
character. It is used to achieve compatibility with other systems.

These routines do not support the Apple IIGS extended character set (with values
greater than 0x7F). For values outside the stated domain, the result is undefined.

ctype, getc

conv 5-9

Synopsis

Description

Return value

Note

See also

5-10

creatf

creat—create a new file or rewrite an existing file

int creat(filename)
char *filename;

Function creat creates a new file or prepares to rewrite an existing file, filename. If
the file exists, its length is set to 0.

Function creat (£ilename) is equivalent o
open (filename, O_WRONLY |O_TRUNC |O_CREAT)

Upon successful completion, 2 nonnegative integer (the file descriptor) is returned
and the file is open for writing. The file pointer is set to the beginning of the file. A _
maximum of about 30 files may be open ar a given time; the actual maximum depends

upen the current sysiem environment.

Upon successful completion, this function retumns a nonnegative integer (the file
descripton). Otherwise, it returns a value of -1 and sets errno to indicate the error.

Other implementations of creat specify a second parameter, mode. This version
ignores any second parameter.

close, open

Synopsis

Description

ctype—classify characters

#include <CTYPE.H>

int isalpha(e)
int e;

int isupperic)
int ¢;

int islower(c)
int c;

int isdigit(e¢)
int €2

int isxdigit{e)

int c;

int isalnaum{c)
int c;

int isspacelc)
int ¢y

int ispunct(c)
int ¢;

int isprint (c)
int <

int isgraph(c)
int e;

int isentrlic)
int ¢; -

int isascii(c)
int c»

These macros classify character-coded integer values by table lookup, returmning
nonzero for true and zero for false. Macro isascii is defined for all integer
values; the other macros are defined only where isascii is true and for the single
non-ASCII value EQF (-1).

Macro
isascii
isalpha
isupper
islower
isdigit
isxdigit
isalnum
isspace

O 000000

ispunct
isprint

[3¢

isgraph c

iscntrl c

Returns true if

is an ASCII character code less than octal 0200.

is a letter [A-Z] or [a—zl.

is an uppercase letter [A-Z].

is a lowercase letter [a—z]

is a digit [0-9].

is a hexadecimal digit [0-9], [A-F], or [a-f].

is alphanumeric (letter or digit).

is a space, tab, return, newline, vertical tab, or form-feed
character.

is a punctuation character (neither control nor alphanumeric).
is a printing character in the range space (octal 040) through tilde
(octal 0176).

is a printing character, similar to isprint except that it is false for
space.

is a delete character (octal 0177) or an ordinary control character
(less than octal 040).

ctype 5-11

Warning If ¢ is not in the domain of the function, the result is undefined.

Note These macros do not support the Apple IIGS extended character set, For values
outside the domain, the result is undefined.

5-12 ctype

Synopsis

Descripiion

Retum value

See also

dup—duplicate an open file descriptor

int dup({fildes)
int fildes;

Function dup returns a new file descriptor with these features:
O It refers to the same open file as the original descriptor.
O It shares the original descriptor’s file pointer.

T It has the same access mode (that is, read, write, or read/write) as the original
descriptor.

Parameter £ildes is a file descriptor obtained from an open, creat, dup, or
fcntl call. The new file descriptor returned by dup is the lowest one available.

The function call dup (fildes) is equivalent to
fentl(fildes, F_DUPFD, 0)

Function dup fails if parameter £ildes is not a valid open file descriptor. [EBADF]

Upon successful completion, this function returns a nonnegative integer (the file
descriptor) is returned. Otherwise, it returns a value of -1 and sets exrrno te indicate
the error.

clcse, fcntl, cpen

Synopsis

Description

Note

See also

5-14

acvt

ecvi—conver a floating-point numgér to a string

#include <MATH.H>

char *ecvt(value, ndigit, decpt, sign)
extended value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
extended value;
int ndigit, *decpt, *sign;

Function ecvt converts value to a nuil-terminated string of ndigit digits and
returns a pointer to this string as the function result The low-order digit is rounded.

The decimal point is not included in the returned string. The position of the decimal
point is indicated by decpt, which indirectly stores the position of the decimal point
relative to the returned string. If the int pointed to by decpt is negative, the decimal
point lies to the left of the returned string. For example, if the string is “12345" and
decpt points to an int of 3, the value of the string is 123.45; if decpt points to -3,
the value of the string is .00012345.

If the sign of the converted value is negative, the int pointed o by sign is nonzero;
if the sign is positive, it is zero.

Function fcvt provides fixed-point output in the style of Fortran F-format output.
Function fcvt differs from ecvt in its interpretation of ndigit:

O In fcvt, ndigit specifies the number of digits to the right of the decimal point.
O In ecvt, ndigit specifies the number of digits in the string.

The string pointed to by the function result is static data whose contents are
overwritten by each call. To preserve the value, copy it before calling the function
again.

printf

“Conversions Between Decimal Formats” in Chapter 14 of the Apple Numerics
Manual

Synopsis

Description

Retum value

Note

See also

exit—terminate the current application

#include <STDLIB.H>

void exit({status)
int status;

void _exit (status)
int status;

Functions exit and _exit close open file descriptors and terminate the application
or tool. Here is the order in which exit performs its duties:

1. It executes all exit procedures, including the exit procedures for the Standard /O
Package if routines from that package were used, in reverse order of their
installation by onexit. All buffered files are flushed and closed.

2. It doses all open files that were opened with open or fopen.

3. If the program is a tool running under the APW Shell, the exit functon returns
status and contrel information to the APW Shell by placing a return value in the
APW variable status and terminating the application.

Function _exit circumvents the exit procedures described in step 1 just given. Use
_exit instead of exit to abort your program when you are uncertain about the
integrity of the data space.

The main program is a function that returns an integer. The return value of main is
interpreted by the APW Shell as the program status. When you call exit or _exit,
the status parameter is returned to the APW Shell as the return value for the '
application’s main function. This value is 0 for normal execution or a nonzerc value
for errors (typically 1..3). A main program that returns to the shell without setting
status to an integer value retuns §.

There is no return from exit or _exit.

Functions exit and _exit do not close files you opened with calls to the I/O routines
documented in the Apple IIGS Toolbox Reference.

onexit, stdio

exit 5-15

Synopsis

Description

Diagnostics

See dlso

exp

exp—exponential, Iogcrithm-_, power, square-root
functions

#include <MATH.H>

extended exp(x)
extended x;
extended log(x)
extended x;
extended lcglO(x)
extended x;
extended pow(X, Y)
extended x, ¥y!
extended sgrt({x}
extended x;

Function exp (x) returns &%, where e is the natural logarithm base.
Function log (x) retums the natural logarithm of x, log x.

Macro 1logl0 (x) returns the base-10 logarithm of x, log,ox.
Macro pow (%, y) returns xY.

Function sqgrt (x) returns the square root of x.

For special cases, these functions return a NaN or signed infinity as appropriate.

These functions honor the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

hypot, sinh

“Exception Flags and Halts” in Chapter 1-8, and “Logarithm Functions” and
“Exponential Functions” in Chapter I-10 of the Apple Numerics Manual.

Synopsis

Description

Retum value

Note

See also

faccess—named-file access and control

#include <FCNTL.H>

int faccess(filename, cmd, arg)
char *filename;
unsigned int cmd;
char *arg:

Function faccess provides access to control and status information for named files.
(Compare with function ioctl, which provides different control and status
information for open files.)

Parameter crmd must be set to one of the constants in the following list to indicate what
operation is to be performed on the file. As noted in the list, some calls to faccess
also require the arg parameter, which is usually as a pointer to a char.

The following commands are available to all programs.

Value of cmd Description

F_DELETE Deletes the named file, or returns an error if the file is open. The
parameter arg is ignored.

F_RENAME Renames the named file. The parameter arg is a pointer to a
string. containing the new name.

F_TYPE Sets the type of the file o the value of the parameter arg.

F_AUX Sets the auxiliary type of the file to the value of the parameter arg.

For example, faccess (thing, F_TYPE, 0x04) sets the type of file thing to
304, for ASCII text file. (A list of file types is in the ProDOS 16 Technical Reference.)

Upon successful completion, faccess returns a nonnegative value, which is usually
0. If the device for the named file cannot perform the requested command, faccess
returns —1 and sets errno to indicate the error.

The cmd value F_OPEN is reserved for operating-system use.

icctl, unlink

faccess 5-17

Synopsis

Description

Retum value

See also

5-18

fclose

fclose—close or flush a stream

#include <STDIC.H>

int fclose(stream)
FILE *stream;

int fflush (stream)
FILE *stream;

Function fclose closes a file that was opened by £open, £reopen, or fdopen.
Function £close causes any buffered data for st ream to be written, and the buffer (if
one was allocated by the system) to be released; £close then calls close to close the
file descriptor associated with stream The value of the parameter st ream cannot be
used unless it is reassigned with fopen, fdopen, or freopen.

Function fclose fails if the file descriptor associated with stream is already closed.
[ENOENT]

Function fclose is performed automatically for all open FILE streams when exit is
called.

Function ££1ush causes any buffered data for st ream to be written; st ream remains
open.

These functions return either 0 if the operation succeeds or EOF (-1) if an error is
detected (such as trying to write to a file that has not been opened for writing).

close, exit, fopen, setbuf’

Synopsis

Description

Return value

Note

See also

fentl—file control

#include <FCNTL.H>»

int fentl(fildes, cmd, arg)
int fildes;
unsigned int cmd;
int arg:

Function fentl is used for duplicating file descriptors. A file remains open until all of
its file descriptors are closed.

Parameter £ildes is an open file descriptor obtained from an open, creat, dup,
or fentl call Parameter cmd takes the value F_DUPFD, which tells fentl to return
the lowest numbered available file descriptor greater than or equal to arg. Normally,
arg is greater than or equal to 3, to avoid obtaining the standard file descriptors 0, 1,
and 2. Function fentl returns a new file descriptor that points to the same open file
as £ildes. The new file descriptor has the same access mode (read, write, or
read/write) and file pointer as £ildes. Any [/O operation changes the file pointer
for all file descriptors that share it

Function £cnt 1 fails if one or more of the following are true:
O Parameter £ildes is not a valid open file descriptor. [EBADF]

O Parameter arg is negative or greater than the highest allowable file descriptor.
[EINVAL] ’

Upon successful completion, this functicon returns a new file descriptor. Otherwise, it
returns a value of -1 and sets errno to indicate the error.

The F_GETFD, F_SETFD, F_GETFL, and F_SETFL commands of fcntl are not
supported on the Apple IIGS.

close, dup, open

fentl 5-19

Synopsis

Description

See also

5-20

ferror

—

ferror—stream status inquiries

#include <STDIO.H>

int fecf {stream)
FILE *stream;

int ferror(stream)
FILE *stream;

veid clearerr (stream)
FILE *stream;

int filenc{stream)
FILE *stream;

Macro feof returns a nonzero number when an end-of-file condition has previously
been detected reading the named input stream; otherwise, it returns zero.

Macro ferror returns a nonzero number when an I/O error has previously occurred
reading from or writing to the named steam; otherwise, it returns zero.

Macro clearerr resets the error and end-of-file indicators to zero on the named
stream.

Macro f£ileno returns the integer file descriptor associated with the named stream.
See open.

a

open, fopen

Synopsis

Description

See also

floor—floor, ceiling, mod, absolute value functions

#include <MATH.H>

extended floor (x)
extended x;
extended ceil (x)
extended x;
extended fmod(x, ¥y)
extended x, y;
extended fabs (x)
extended X;:

Function flocr (x) retumns the largest integer (as an extended-predision number)

not greater than x.

Function ceil (x) returns the smallest integer not less than x.

Whenever possible, fmod (x, v) returns the number f with the same sign as x, such

that x = iy + f for some integer i, and | f1 < |yl. If yis 0, fmod returns a NaN.
Function £abs (x) returns |x!, the absolute value of x.

abs

“Round to Integer Value” in Chapter I-3 and “Rounding Direction” in Chapter-1-8 of

the Apple Numerics Manual

floor

5-21

Synopsis

Description

5-22

fopen

—

fopen—_open a buffered file sir;c:lm

#include <STDIO.H>

FILE *fopen(filename, type}
char *filename, *type;
FILE *freopenifilename, type, stream)
¢har *filename, *type;
FILE *stream;
FILE *fdopen(fildes, type!}
int fildes;
char *type:

Function fopen opens the file named by filename and associates a stream with it.
Function fopen returns a pointer to the FILE structure associated with the stream.

Parameter £ilename points to a character string that contains the name of the file to
be opened. The filename parameter cannot be the pseudo-filename .printer, a
device name (such as .D2), or the double period (. .).

Parameter type points to a character string consisting of one of the string values in
the first column in the following table. The remaining columns explain how type is
used. (For more inlormation, see open.)

Value Open mode used . Description

r O_RDONLY Open for reading only.

w O_WRONLY |O_CREAT |O_TRUNC Truncate or create for writing.

a O_WRONLY |O_CREAT |O_APPEND Append: open for writing at end of
file, or create for writing.

r+ O_RDWR Open for update (reading and writing).

Wt O_RDWR |O_CREAT |O_TRUNC Truncate or create for updating.

a+ C_RDWR |O_CREAT |O_APPEND Append: open or create for updating

at end of file.

When a file is written to a device, normally certain characters are transiated to match
the needs of the device or the expectations of ProDOS for a normal text file (such as
translating \n to CR rather than LF). The following values, with b added to the string,
suppress such translations:

Value Open mode used ' Description

rb O_RDONLY|C_BINARY Open for reading only.

wb O_WRONLY |O_CREAT|Q_TRUNC|O_BINARY Truncate or create for
writing,

ab O_WRONLY |O_CREAT|O_APPEND |O_BINARY Append: open for wriling
at end of file, or create for

writing.
rb+ ©O_RDWR|O_BINARY Open for update (reading
: and writing).
wb+ O_RDWR|O_CREAT|Q_TRUNC|Q_BINARY Truncate or create for
updating.
ab+ O RDWR|C_CREAT|O_APPEND |C_BINARY Append: open or create

for updating at end of file.
*» Note: The b and the + can be reversed.

Return values

Note

See also

Function freopen substitutes the file named by £ilename for the open stream. The
original stream is closed, regardless of whether the open operation ultimately
succeeds. Function freopen returns a pointer to the FILE structure associated with
stream Function freopen is typically used to attach the previously opened streams
associated with stdin, stdout, and stderr to other files. The £ilename
parameter cannot be the pseudo-filename .printer, a device name (such as .D2),
or the double peried (. .).

Function £dopen assaciates a strearn with a file descriptor by formatting a file
structure from the file descriptor. Thus, £dopen can be used to access the file
descriptors returned by open, creat, dup, and £cntl. (These calls return file
descriptors, and not pointers to a FILE structure.) The type of the stream must agree
with the mode of the open file.

When a file is opened for updating, both input and output ¢perations may be
performed on the resulting stream. However, an output operation may not be directly
followed by an input eperation without an intervening £seek or rewind, and an
input operation may not be directly followed by an output operation without an
intervening £seek or rewind, or without an input operation that encounters an end-
of-file condition.

When a file is opened for appending (that is, when type is a or a+), it is impossible
to overwrite information already in the file. The function £seek may be used to
reposition the file pointer to any position in the file, but when output is written to the
file the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output.

If they succeed, the functions fopen, freopen, and £dopen return a valid file
pointer. If they fail, they return NULL.

The maximum number of open FILE streams is NFILE (defined in STDIC.H,
currently 20). The maximum number of open disk files may be less than NFILE, as
determined by the current release of ProDOS. (ProDOS 16, Version 1.0, permits 8
open disk files; later releases may increase this number.)

The parameter type must have one of the values in the first column in the table; do not
use values intended for open, such as ©_RDONLY.

open, fclose, £3eek

ifopen 5-23

Synopsis

Description

Return values

See dlso

5-24

fread

fread—binary input/output

#include <STDIO.H>

int fread({ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int fwrite(ptr, size, nitems, stream)
char *ptr;-
int size, nitems;
FILE *stream;

Function fread copies nitems items of data from the named input stream into an
array beginning at pt r. An item of data is a sequence of size bytes (not necessarily
terminated by a null byte). Function fread stops appending bytes if an end-of-file or
error condition is encountered while reading st ream or if nitems items have been
read. Function fread leaves the file pointer in st ream pointing to the byte following
the last byte read.

Function fwrite writes up to nitems items of dama to the named output stream from
the array pointed to by ptr. An item is a sequence of size bytes. Function £write
stops writing when it has written nitems items of dara or if it encounters an error
condition on stream Function £write does not change the contents of the array
pointed to by pt'r. '

The parameter size is typically
sizeof (*ptr))

where sizeof specifies the length of an item pointed to by ptr. If ptr points to a
darta type other than char, it should be cast into a pointer to char.

The functions fread and fwrite return the number of items read or written. If
nitems is 0 or negative, no characters are read or written, and both fread and
fwrite return 0.

fopen, getc, gets, printf, putc, puts, read, scanf, stdio, write

Synopsis

Descriplion

Diagnostics

See dlso

frexp—manipulate parts of floating-point numbers

#include <MATH.H>

extended frexp(value, eptr)
extended wvalue;
int *eptr:

extended ldexp{value, exp)
extended value;
int exp;

extended modf{value, iptr)
extended value, *iptr;

Every nonzero number can be written uniquely as x+ 2%, where the mantissa (fraction)
xis in the range 0.5 £ | x| < 1.0 and the exponent 7 is an integer. Function frexp
returns the mantissa of an extended value and stores the expeonent indirectly in the
location pointed to by ept r. Note that the mantissa here differs from the significant
described in the Apple Numerics Manual, whose normal values are in the range 1.0 £
lxl <20.

Function ldexp returns the quantity value * 28%P,

Function modf£ returns the signed fractional part of value and stores the integral part
indirectly in the location peinted to by iptr.

»

Function 1ldexp honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

“Binary Scale and Log Functions” in Chapter 1-9 of the Apple Numerics Manual

frexp 5-25

Synopsis

Description

Diagnostics

See also

5-26

fseek

fseek—reposition a file pointer in a stream

#include <STDIOQ.H>

int fseek(stream, offset, whence)
FILE *stream;
long offset;
int whence;
void rewind (stream)
FILE *stream;
long ftell (stream)
FILE *stream;

Function £seek sets the position of the next input or output operation on the stream.
The new position is of fset bytes from the beginning, the current position, or the
end of file when the value of whence is 0, 1, or 2, respectively. If whence is 1 or 2,
of fset may be negative.

The ¢all

rewind(stream)

is equivalent to

fseek (stream, OL, 0)

except that no value is returned.

Functions £seek and rewind undo any effects of ungetc if the new location is not
within the same buffer.

After £seek or rewind, the next operation on a file opened for updating may be
either input or output.

Function £tell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

Function fseek returns a nonzero number for improper seek operations; otherwise it
returns zero. An example of an improper seek operation is an fseek before the
beginning of a file.

lseek, fopen, ungetc

Synopsis

Description

Return values

Note

See also

getc—get a character or a word from a stream

#include <STDIO.H>

int getc{stream)
FILE *stream;

int getchar ()}

int fgetc(stream)
FILE *stream;

int getw{stream)
FILE *stream;

Macro getc returns the next character from the named inpurt stream. It also moves
the file pointer, if defined, ahead one character in stream Macro getc cannot be
used if a function is necessary; for example, you cannot have a function peinter point
1o it. Macro getc returns the integer ECF whenever an end-of-file or error condition
occurs.

Macro getchar returns the next character from the standard input stream, stdin.

Function fget¢ produces the same result as macro getce; function £gete runs more
slowly than macro gete but takes less space per invocation. Also, you can have a
pointer to fgetc but not o gete.

Function getw returns the next int (that is, 2 bytes) from the named input stteam so
that the order of byltes in the stream corresponds to the order of bytes in memeory.
Function getw refurns the constant EOF upen encountering an end-of-file or error
condition. Because ECF is a valid integer value, feof and ferror should be used to
check the success of getw. Function getw increments the associated file pointer, if
defined, to poeint to the next int. Funclion getw assumes no special alignment in the
file.

These calls either return data from the stream or return the integer constant ECOF (~-1)
when an end-of-file or error condition occurs.

Because it is implemented as a macro, getc treats a stream parameter with side
effects incorrectly. In panicular,

getc{*f++)
deoesn’t work as you would expect. Instead use

Egetc{*f++)

ferror, fopen, fread, gets, scanf, stdio

getc 5-27

Synopsis

Description

Retum vgiue

Warning

getenv—cccess_e—xpor’red— APW Shell variables

#include <STDLIB.H>

char *getenv(varname)
char *varname;

The environment is the set of exported variables provided by the APW Shell.
Function getenv provides access to variables in this set. (See “Variables” in Chapter
4 of the Apple IIGS Programmer’s Workshop Reference for the list of standard
exported shell variables.)

Function getenv searches the environment for a shell variable with the name
specified by varname, and returns a pointer to the character string containing its
value. The null pointer is returned if the shell variable is not defined or has not been
exported. The shell-variable name search is case-insensitive.

Upon successful completion, this function returns a pointer to the value of varname.
If the shell variable is not defined or not exported, the function returns a pointer to a
null string.

For standalone applications, which do not run under the APW Shell, getenv always
returns the null pointer.

Funciion getenv returns a pointer to the place in memory where a copy of the APW
Shell variable resides. Do not modify the value of a shell variable in such a2 way as to
increase its length.

5-28 getenv

Synopsis

Description

Return values

Note

See also

gets—get a string from a stream

#include <STDIOQ.H>

char *gets({str)
char *str;
char *fgets(str, maxlen, stream)
char *str;
int maxlen;
FILE *stream;

Function gets reads characters from the standard input stream stdin into the array
pointed to by str until a newline character is read or until the end of file is reached.
The newline character is discarded, and the string is terminated with a null (\ 0}
character.

Function £gets reads characters from stream into the array pointed to by str until
maxlen-1 characiers are read, a newline character is read and transferred to str, or
the end of file is reached. The string is then terminated with a null character.

If the end of file is reached and no characters have been read, no characters are
transferred to st r, and NULL is returned. If a read error occurs, NULL is returned. If
not, str is returned. (A read error will occur, for example, if you attempt to use these
functions on a file that has not been opened for reading.) ' :

The array pointed to by str is assumed to be large enough; overflow is not checked.
The function gets omits the newline character in the string; £gets leaves it in.

ferror, fopen, fread, getc, scanf, stdio

gets 5-29

hypot—Euclidean distance function

Synopsis #include <MATH.R>

extended hypot (x, ¥)
extended X, Vs

Description Function hypot returns
SgTt (X * x + y *)

taking precautions against unwarranted overflows.

Diagnostics Function hypot honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

See also exp
“Exception Flags and Halws” in Chapter 1-8 of the Apple Numerics Manual

5-30 hypot

Synopsis

Description

ioctl—control a device

#include <IOCTL.HE>

int icctl{fildes, cmd, arg}

int fildes;

unsigned int cma;

leng *arg;

Function ioctl communicates with a file's device driver by sending control
information, requesting status information, or both, Parameter cmd indicates which
device-specific operations ioctl must perform. Here are the control values:

Value of cmd
FIOINTERACTIVE

FIOBUFSIZE

FIOREFNUM

FIOGETEQF

FIOSETECF

FICGETMARK

FICSETMARK

Description

Function ioctl returns 0 if the device is interactive; it returns
-1 and sets errno to EINVAL, if not parameter arg is
ignored.

Function ioctl returns the optimal buffer size for this device,
in bytes; the buffer size is retumed in a long variable pointed
to by arg. If the device has no default buffer size, 1octl
returns -1 and sets errno to EINVAL.

Function ioctl returns the ProDOS file reference number
associated with fildes; the reference number is returned in
the short pointed to by arg. If fildes is not openon a
ProDOS device (such as the console device), 1octl returns
-1.

Function ioctl stores the logical end of file in the long
variable pointed 1o by arg. The value of arg is the size of the
file, in bytes.

Function ioctl sets the logical end of file specified in the
long variable pointed to by arg. The value of arg is the new
size of the file, in bytes. This command can be used to reduce
or increase the size of the open file. The current file pointer is
not affected unless the file size is set to a number less than the
file pointer value.

Function ioctl stores the logical file position specified in the
long variable pointed 10 by arg. The value of arg is the
distance, in bytes, from the start of the file to the current
position.

Function ioctl sets the logical file position specified in the
long variable pointed to by arg. The value of arg is the
distance, in bytes, from the start of the file to the current
position.

Function ioctl fails if one or both of the following conditions exist:

O File descriptor £ildes is not valid or is not open. [ERADF]

O Parameters cmd or arg are not valid for the device handler associated with

fildes. [EINVAL]

ioctl 5-31

Diagnostics

Note

Warning

See also

5-32

loctl

If an error has occurred, a value of ~1 is returned and errno is set to indicate the
error.

For emd values FIOINTERACTIVE and FIOBUFSIZE, a function return of -1 is a
meaningful response, and not an error. For FIOINTERACTIVE, errno is set to
EINVAL for devices that are not interactive. For FIOBUFSIZE, errnc is set to
EINVAL for devices that have no default buffering,

The cmd values FIOLSEEK and FIODUPFD are reserved for operaling-system use.

FIOREFNUM lets you perform ProDOS /O operations (such as SET_MARK) that are
not available through iocctl. Do not close or modify the file pointer using the
reference number.

fentl

Synopsis

Description

Retum value

Note

Warning

See also

Iseek—move read/write file pointer

#include <FCNTL,H>

long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

A file descriptor, fildes, is returned from a call to creat, dup, fentl, or open.
Function 1seek sets the file pointer associated with £ildes as follows:

0 If whence is 0, the pointer is set to offset bytes.
(The value of of fset may be zero or positive.)

O If whence is 1, the pointer is set to its current location plus offset.
(The value of offset may be negative, zero, or positive.)

O If whence is 2, the pointer is set to the size of the file plus of£set.
(The value of off£set may be negative, zero, or positive.)

Upon successful completion, this function returns the file pointer value, measured in
bytes from the beginning of the file.

The file pointer remains unchanged and 1seek fails if one or more of the following is
true:

O File descriptor £ildes is not open. [EBADF]
O Parameter whence is not 0, 1, or 2. [EINVAL]
O The resulting file pointer would point before the beginning of the file. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

Upon successful completion, this function returns a nonnegative long integer
indicating the file pointer value. Otherwise, it returns a value of -1 and sets errno to
indicate the error.

In previous versions of the Standard C Library, tell (fildes) was a function that
returned the current file position. It is equivalent to the call

lseek(fildes, OL, 1)

Function lseek has no eflect on a file opened with the 0_APPEND flag because the
next write operation to the file always repositions the file pointer to the end of file
before writing begins.

fseek, open

lseek 5-33

Synopsis

Description

malloc—memory allocator

#include <MALLOC.H>

char *malloc(size)
unsigned int size;
char *lmalloc(size)
unsigned long size;
void free(ptr)
char *ptr;
char *realloc(ptr, size)
char *ptr;
unsigned int size;
char *calloc(nelem, elsize}
unsigned int nelem, elsize;
void cfree(ptr, nelem, elsize)
char *ptr;
unsigned int nelem, elsize;

Functions malloc and £ree provide a simple general-purpose memory-allocation
package. The storage area expands as necessary when malloc is called.

Function malloc allocates the first sufficiendy large contiguous free space it finds,
and returns a pointer to a block of at least size bytes suitably aligned for any use. It
calls NewHandle (see the Apple IIGS Toolbox Reference) (o get more memory from
the system when there is no suitable space already free. Since malloc uses a size
parameter of type unsigned int, it can allocate blocks no larger than 64K bytes. If
size is 32K or larger, lmalloc is called.

Function 1malloc allocates the first sufficiently large contiguous free space it finds,
and returns a pointer to a block of at least size bytes suitably aligned for any use. It
calls NewHandle (see the Apple IIGS Toolbax Reference) to get more memory from
the system when there is no suitable space already free. Since lmalloc uses a size
parameter of type long, it can allocate blocks larger than 64K,

Function free takes a parameter that is a pointer to a block previously allocated by
malloc or Imalloc. If its size is greater than 2K, it is returned to the system using
DisposeHandle. Blocks smaller than that are cached by malloc for further
allocation by malloc only. Undefined results occur if the space assigned by malloc
is overrun, or if a2 random value is passed to free.

5-34 malloc

Diagnostics

Function realloc changes the size of the block pointed to by ptr to size bytes,
and returns a pointer to the (possibly moved) block. The contents are unchanged up
to the lesser of the new and old sizes. If no free block of size bytes is available in the
storage area, realloc asks malloc to enlarge the storage area by size bytes and
then moves the daia to the new space. If ptr is NULL, realloc is equivalent to
malloc.

Function calloc allocates space for an array of nelem elements of size elsize. The
resulting space allocated is filled with zeros.

Function cfree, like free, frees memory allocated by calloc; cfree is included
for compatibility with other systems. Parameters nelems and elsize are ignored.

Functions malloc, lmalloc, realloc, and calloc return NULL if there is no
available memory, or if the storage area has been detectably corrupted by 2
program'’s storing data outside the bounds of a block. When this happens, the block
pointed to by ptr may have been destroyed.

malloc 5-35

memory—memory operations

Synopsis #include <MEMORY.H>

char *memccpy({dest, source, ¢, n)
char *dest, *scurce;
int e, n:
char *memchr (scurce, ¢, n)
char *source;
int <, n;
int memcmp(a, b, n}
char *a, *b;
int n;
char *memcpy (dest, source, n)
char *dest, *scurce;
int n;
char *memset (dest, ¢, n)
char *dest;
char c;
int n;

Description These functions operate efficiently on memory areas (arrays of characters bounded
by a count, rather than terminated by a null character). They do not check for the
overflow of any receiving memory area.

Function memccpy copies characters from memory area source into dest,
stopping after the first occurrence of character ¢ has been copied or after n
characters have been copied, whichever comes first. The function returns either a
pointer to the character after the copy of ¢ in dest, or NULL if ¢ was not found in the
first n characters of source.

Function memchr returns either a pointer to the first occurrence of character c in the
first n characters of memory area source, or NULL if ¢ does not occur.

Function memcmp compares its parameters, a and b, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0, depending on
whether a is less than, equal to, or greater than b, respectively.

Function memcpy copies n characters from memory area source to dest. It returns
dest.

Function memset sets the first n characters in memory area dest to the value of
character c. It returns dest.

Warning Overlapping moves yield unexpected results.

See also string, BlockMove in the Apple IIGS Toolbox Reference

5-36 memory

Synopsis

Description

Diagnostics

Note

Warning

See also

onexit—install a fun;_;ion tobe exec?ied
at program termination

int cnexit (func);
void (*func) (};

Function onexit installs the exit function pointed to by func by adding it to a list
The list is initially empty. A list entry is added whenever onexit is called. Function
exit calls the functions in the list in the reverse of the order in which they were
added.

Programs that use the buffered I/O portions of the Standard I/O Package (including
the predefined streams stdin, stdout, and stderr) need to flush all open buffers
before the program terminates. To ensure that this is done, the Standard I/O Package
adds its cleanup function to the list the first time that it allocates a buffer. Each
function in the list is called with a single argument of type int either at program
termination or when exit is called. This argument is the program’s status value (0 for
normal execution; nonzero for errors). The function can use this value or ignore it.

The number of user-supplied exit functions is limited to six, including the one used by
the Standard 1/O Package.

The function returns a nonzero value if the installation fails.

A call 1o _exit circumvents user exit procedures installed by onexit.

The behavior of a function is undefined if it is installed more than once.

exit, stdio

anexit 5-37

Synopsis

Description

Return value

See also

5-38

open

open—open for reading or writing

#include <FCNTL.H>

int open(filename, oflag)
char *filename;
int oflag;

Parameter £ilename is a filename or pseudo-filename (such as .STDIN, .STDOUT,
.STDERR, .CONSQLE, or .NULL); it cannot be the pseudo-filename .printer, a
device name (such as .D2), or the double period (. .).

Function open opens a file descriptor for the named file and sets the file-status flags
according to the value of of lag. The value of oflag is constructed by OR-ing flag
settings; for example,

fildes = open("MyFile"™, O _WRONLY|Q_CREAT!Q_TRUNC);

To consiruct oflag, first select one of the following access modes:

O_RDONLY Open for reading only

O _WRONLY Open for writing only

O_RDWR Open for reading and writing

Then optionally add one or more of these modifiers:

O_APPEND The file pointer is set to the end of file before each write operation.
O_CREAT If the file does not exist, it is created.

O_TRUNC If the file exists, its length is truncated to 0; the mode is unchanged.

The following setting is valid only if 0 _CREAT is also specified:
0_EXCL Function open fails if the file exists.

When a file is written to a device, normally certain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text file (such as
translating \n to CR rather than LF). The following flag suppresses such translation.

O_BINARY The file is read or written verbatim, suppressing the device driver's
conversions.

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
The file pointer used to mark the current position within the file is set to the beginning
of the file.

The named file is opened unless one or more of the following is true:

O_CREAT is not set and the named file does not exist. [ENOENT]

More than about 30 file descriptors are currently open. The actual limit varies
according to run-time conditions. (ENFILE]

O_CREAT and O_EXCL are set, and the named file exists. [EEXIST]

Upon successful completion, this function returns a nonnegative integer (the file
descriptor). Otherwise, it returns a value of -1 and sets errno to indicate the error.

close, creat, lseek, read, write

Synopsis

Description

printf—print formatted output

#include <STDIO.H>

int printf{format [, arg | ...)
char *format;

int fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf(str, format [, arg] ...)
char =*str, *format;

Function print £ places formatted output on the standard output stream stdout.
Function £printf places formatted output on the named output stream st ream.
Function sprintf places formatied output, followed by the null character (\0), into
the character array pointed to by st r (you must ensure that enough room is
available). Each function rerurns the number of characters transmitted (not including
the \ 0 in the case of sprintf) or a negative value if an output error was encountered.

Each of these functions converts, formals, and prints its arg parameters under
control of the format parameter. The format parameter is a character string that
contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching zero or more
axrg parameters. The behavior of the function is undefined if there are insufficient
arg parameters for the format. If the format is exhausted while arg parameters
remain, the extra arg parameters are ignored.

Each conversion specification is introcduced by the character %, After %, the following
appear in sequence:

1. Zero or more flag characters, which modify the meaning of the conversion
specification.

2. An optional decimal digit string specifying a minimum field width. If the converted
value has fewer characters than the field width, the value will be padded to the field
width on the left (defaul) or right (if the left-adjustment flag has been given): see
the discussion of flag specification that follows.

3. A precision that gives the minimum number of digits to appear for the &, o, u, %,
and X conversions; the number of digits to appear after the decimal point for the
e, E, and £ conversions; the maximum number of significant digits for the g and G
conversions; or the maximum number of characters to be printed from a string in
the s conversion. The format of the precision is a period (.) followed by a decimal
digit string; a null digit string is treated as zero.

4. An optional 1 specifying that a following 4, o, u, %, or X conversion character
applies to an arg parameter of type long.

5. A character that indicates the type of conversion to be applied.
A field width or precision may be indicated by an asterisk (*) instead of a digit string.

" In this case, an integer arg parameter supplies the field width or precision. The arg

parameter that is actually converted is not fetched until the conversion letter is seen;
therefore, the arg parameters specifying field width or precision must appear
immediately before the arg parameter (if any) to be converted.

printf 5-39

5-40

printf

These are the flag characters and their meanings:

+

blank

The result of the conversion will be left justified within the field.
The result of a signed conversion always begins with a sign (+ or -).

If the first character of a signed conversion is not a sign, a space will
be prefixed to the result. This prefix implies that if the blank and +
flags both appear, the blank flag will be ignored.

The value is to be converted to an alternate form. For ¢, 4, s, and
u conversions, the flag has no effect. For o conversion, the flag
increases the precision to force the first digit of the result to be 0.
For x (X) conversion, a nonzero result will have 0x (0X) prefixed to
it. For e, E, £, g, and G conversions, the result will always contain a
decimal point, even if no digits follow the decimal point.
(Normally, a decimal point appears in the result of these
conversions only if a digit follows it.) For g and G conversions,
trailing zeros in the fractional part will not be removed from the
result (as they normally are).

Here are the conversion characters and their meanings:

douxX

The integer arg parameter is converted to signed decimal (d),
unsigned octal (0), unsigned decimal (u), or unsigned
hexadecimal notation (x and X). The letters abcdef are used for x
conversion, and the letters ABCDEF are used for X conversion.

The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The

result of converting a zero value with a precision of 0 is a null string.

The float, double, comp, or extended arg parameter is
converted to decimal notation in the form “[~]ddd. ddd”, where
the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, it is assumed to be 6; if the
precision is explicitly 0, no decimal point appears. Infinities are
printed in the form *[=]INF”, and NaNs are printed in the form
“[-INAN (ddd) ", where ddd is a code indicating why the result is
not 2 number.

The float, double, comp, or extended arg parameter is
converted to decimal notation in the form “[-]d. dddetdd", where
there is one digit before the decimal point, and the number of digits
after the decimal point is equal to the precision. When the

precision is missing, it is assumed to be 6; if the precision is 0, no
decimal point appears. The E format code produces a number with
E instead of e introducing the exponent. The exponent always
contains at least two digits. Infinities are printed as INF, and NaNs
are printed in the form “[-INAN (ddd) ", where ddd is a code
indicating why the result is not a number.

Examples

Noie

See also

g, G The f£loat, double, comp, or extended arg parameter is
printed in style £ or e (or in style £ or E in the case of a G format
code), with the precision specifying the number of significant
digits. The style used depends on the value converted: style e is
used only if the exponent resulting from the conversion is less than
—4 or greater than the precision. Trailing zeros are removed from
the result. A decimal point appears only if it is followed by a digit.

c The char arg parameter is printed.

s The arg parameter is taken to be a string (character pointer), and
characters from the string are printed until a null character (\0) is
encountered or until the number of characters indicated by the
precision specification is reached. If the precision is missing, it is
taken to be infinite, with the result that all characters up to the first
null character are printed. If the string pointer arg parameter has
the value zero, the result is undefined; a zero arg parameter yields
undefined results.

p The arg parameter is taken to be a Pascal string, which begins with a
character specifying its length and does not end with a null
character (\0).

% The % character is printed; no parameter is converted.

In no case does a nonexistent or small field width cause truncation of a field. If the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf and fprintf are
printed as if putc had been called.

To print a date and time in the form “Sunday, July 3, 10:02", where weekday and
month are pointers to null-terminated strings, use

printf(“%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);
To print pi to five decimal places, use

printf("pi = %.5£", pi());

Calling sprintf causes other Standard [/O functions to be leaded, even though
sprintf doesn’'t perform any I/O operations.

ecvt, putc, scanf, stdio

“Conversions Between Decimal Formats” in Chapter [-401 in the Apple Numerics
Manual,

printf 5-41

Synopsis

Description

Return values

Note

See also

5-42

putc

putc—put character or word on a stream

#include <STDIC.H>

int putc(e, stream)
char ¢;
FILE *stream;

int putchar(c)
char c;

int fputec(ec, stream)
char ¢;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

Macro putc writes the character ¢ to the output stream at the current position of the
file pointer. Macro putchar {¢) is equivalent to

putc{c, stdout)

Function fputc behaves like macro putc. Function fputc runs more slowly than
macro putc but takes less space per invocation.

Funcrion putw writes an int (that is, 2 bytes) to the output stream at the current
position of the file pointer. This function neither assumes nor causes special
alignment in the file.

For information about output files buffering, see stdio.

When putc, putchar, or £putc succeeds, it returns the value it has written. When
one of these fails, it returns the constant EOF (~1). (These functions fail if the file
stream is not open for writing, or if the output file cannor be grown.)

When putw succeeds, it returns 0; when it fails, it returns a nonzero value.

Because putc is implemented as a macro, it reals 2 st ream parameter with side
effects incorrectly. In partcular,

putc({c, *E++)

produces unexpected results. Instead, use

fputc{a, *f£++)

fclose, ferror, fopen, fread, getc, printf, puts, setbuf, stdio

Synopsis

Description

Retumn value

Note

See also

puts—write a string to a stream

#include <STDIO.H>

int puts(str)
char *str;

int fputs{str, stream)
char *str;
FILE *stream;

Function puts writes the null-terminated string pointed to by stz, followed by a
newline character, to the standard output stream stdout.

Function fputs writes the null-terminated string pointed to by str to the named
output stream stream

Neither function writes the terminating null character.

Both routines return either the number of characters written, or return EGF (-1) if a
wrile error occurs.

Function puts appends 2 newline character, while £fputs does not.

ferror, fopen, fread, printf, putc, stdio

puts 5-43

qsquuicIer sort

Synopsis void gsort (base, nelem, elsize, compar)
char *base;
unsigned int nelem, elsize;
int (*compar)} () ;

Descripfion Function gsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Parameter base points 1o the element at the base of the table. Parameter nelem is
the number of elements in the table. Parameter elsize is the size of an element in
the table; it can be specified as sizeof (*base).

Parameter compar is a pointer to a comparison function that you supply. Function
gsort calls your comparison function with pointers to two elements being
compared. Here is a2 sample declaration for your comparison function:

int myCompare (eleml, elem2)
char *eleml, *elemZ;

Your comparison function supplies the result of the comparison to gsort by
returning one of the following integer values:

Resull Meaning

<0 The first parameter is less than the second parameter
0 The first parameter is equal to the second parameter
>0 The first parameter is greater than the second parameter
Note Parameter base, the pointer to the base of the table, should be of the pointer-io-

element type and cast to (char *).

5-44 gsort

Synopsis

Description

See also

rand—a simple random-number generator

int rand()
void srand{seed)
unsigned seed;

Function rand uses a multiplicative congruential random-number generator with a
period of 232 that returns successive pseudorandom numbers in the range from 0 to
2151,

Function srand can be called at any time to reset the random-number generator to a
specific seed. The generator is initially seeded with a value of 1. Identical seeds
produce identical sequences of pseudorandom numbers.

“Random Number Generator” in Chapter I-10 of the Apple Numerics Manual

rand 5-45

Synopsis

Description

Retumn value

See also

5-46

read

read—read from file

int read(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

File descriptor £i1des is obtained from a call to open, creat, dup, or fentl.

Function read transfers up to nbyte bytes from the file associated with £ildes into
the buffer pointed to by buf.

On devices capable of seeking, read starts reading at the current position of the file
pointer associated with £ildes. Upon returning from read, the file pointer is
incremented by the number of bytes actually read.

Nonseeking devices always read from the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read retumns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the number of bytes left in
the file is less than nbyte bytes. A value of 0 is returned when the end of file has been
reached; a vlaue of -1 if a read error occurred.

Function read fails if fildes is not a valid file descriptor associated with a file open
for reading. [EBADF]

File descriptor 0 is opened by the APW Shell as the standard input file.

Upon successful completion, a nonnegative integer (the function read) returns the
number of bytes actually read. Otherwise, it returns -1 and sets errno to indicate the
error.

creat, open

Synopsis

Description

scanf—convert formatted input

#include <STDIO.H>

int scanf(format [, pointer]| ...)
char *format;

int fscanf(stream, format [, pointer | ... }
FILE *stream;
char *format;

int sscanf(str, format [, pointer] ...)
char *str, *format;

Function scanf reads characters from the standard input stream stdin. Function
fscanf reads characters from the named input stream stream Function sscanf
reads characters from the character string st r. Each function converts the input
according to a control string (format), and stores the results according to a set of
pointer parameters that indicate where the converted output should be stored.

Parameter format, the control string, contains specifications that control the
interpretation of input sequences. The format consists of characters 1o be matched in
the input stream, conversion specifications that start with the character %, or both.
The control string may contain the following:

0 white-space characters (spaces and tabs) that cause input to be read up to the next
non-white-space character, except as described here

O a character (any except %) that must match the next character of the input stream;
to match a % character in the input stream, use %%

O conversion specifications beginning with the character % and followed by an
optional assignment-suppression character *; an optional numeric maximum
field width; an optional 1, m, n, or h indicating the size of the receiving parameter;
and a conversion code

An input field is defined relative to its conversion specification. The input field ends
when the first character inappropriate for conversion is encountered or when the
specified field width is exhausted. After conversion, the input pointer points to the
inappropriate character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding parameter, which is a pointer
to a basic C type, such as int or float.

Assignment can be suppressed by preceding a format character with the character *.
In assignment suppression, an input field is skipped: the field is read and converted,
but not assigned. Therefore, pointer should be omitted when assignment of the
corresponding input field is suppressed.

The format character dictates the interpretation of the input field. The following
format characters are legal in a conversion specification, after %:

% A single % is expected in the input at this point. Assignment is not
performed.
d A decimal integer is expected. The corresponding parameter

should be an integer pointer.

u An unsigned decimal integer is expected. The corresponding
parameter should be an unsigned integer pointer.

scanf 5-47

5-48

scanf

An octal integer is expected. The corresponding parameter should
be an integer pointer.

A hexadecimal integer is expected. The corresponding parameter
should be an integer pointer.

The conversion characters d, u, o, and x may be preceded by 1 or
h to indicate that a pointer to long or short, rather than int, is in
the parameter list. The h is ignored in this implementation because
int and short are both 16 bits.

A floating-point number is expected. The next field is converted
accordingly and stored through the corresponding parameter,
which should be a pointer to £loat, double, comp, or
extended, depending on the size specification. The input format
for floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting of E or e followed by an optionally signed
integer. In addition, infinity is represented by the string “INF”,
and NaNs are represented by the string “NAN”, optionally followed
by parentheses that may contain a string of digits (the NaN code).
Case is ignored in the infinity and NaN strings.

The conversion characters e, £, and g may be preceded by 1, m, or
n to indicate that a pointer (o double, comp, or extended, rather
than £loat, is in the parameter list.

A character string is expected. The corresponding parameter
should be a character pointer to an array of characters large enough
to accept the string; a terminating null character (\0) is added
automatically. The input field is terminated by a white-space
character (space or tab), or when the number of characters
specified by the maximum field width has been read.

A character string is expected. The next field is converted 1o 2
Pascal-format string—that is, a character specifying the length of
the string followed by the string itself. The corresponding
parameter should be a character pointer to an array of characters
large enough to accept the string; a terminating null character (\0)
is added automatically. The input field is terminated by a white-
space character (space or tab), or when the number of characters
specified by the maximum field width has been read.

A character is expected; the corresponding parameter should be a
character pointer. The normal skip over white space is suppressed
in this case; use %$1s to read the next non-white-space character. If a
field width is given, the corresponding parameter should refer to a
character array; the indicated number of characters is read.

The left bracket is followed by a set of characters called the scanset
and a terminating right bracket. The input field is the maximal
sequence of input characters consisting entirely of characters in the
scanset. When reading the input field, the normal skip over leading
white space is suppressed. The corresponding pointer parameter
must point to a character array large enough to hold the input field
and the terminating null character (\0), which will be added
automatically.

Examples

When appearing as the first character in the scanset, the circumflex
serves as a complement operator, and redefines the scanset as the
set of all characters not contained in the remainder of the scanset
string.

The right bracket ends the scanset To be included as an element of
the scanset, the right bracket must appear as the first character
(possibly preceded by a circumflex) of the scanset. Otherwise, it
will be interpreted syntactically as the closing bracker

A range of characters may be represented by the construct first-last;
thus, the scanset [0123456789] may be expressed [0-9]. To use
this convention, £irst must be less than or equal to last in the
ASCII collating sequence. Otherwise, the minus (-) will stand for
itself in the scanset The minus will also stand for itself whenever it is
the first or the last character in the scanset. At least one character
must match for the conversion to be considered successful.

Conversion terminates when the end of file or the end of the control string is reached,
or when an input character doesn’t match the control string. In the last case, the
unmatched character is left unread in the input stream.

Here are some ways that the scanf function can be used:

O The call

int iy

Eloat x;

char name([50]:

scanf ("%d%f%s", &i, &x, name):

with input
25 54 ,32E-1 reed

will assign the value 25 to 1 and the value 5.432 to x; name will contain “reed\0".

The call
int i;
extended X;

char name[50];
scanf ("%2d%nf%*d %(C-9%)", &i, &x, name);

with input
56789 0123 56a72
will assign 56 to i and 789.0 to x, skip 0123, and place the string *5610” in name.

The next call to getchar will return “a”.

The call

int iy

scanf ("answerl=%d", &i);
with input

answerl=5]1 answer2=45

will assign the value 51 to 1 because “answerl” is matched explicitly in the input
stream. The input pointer will be left at the space before “answer2”.

scanf 5-49

Retum value

Note

Warning

See also

5-50

scanf

Functions scanf, £scanf, and sscanf return the number of successfully matched
and assigned input items. This number can be zero when an early mismatch between
an input character and the control string occurs. If the input ends before the first
mismatch or conversion, EQOF is returned.

These functions return EQF when input ends, and a short count for missing or illegal
data items. :

Trailing white space is left unread unless it is matched in the control string.
The success of literal matches and suppressed assignments cannot be determined.

The pointer parameters in these functions must be addresses: for example, &i. Be

sure not to pass i rather than its address.
\

atof, getc, printf, stdio, strtol

*Conversions Berween Decimal Formats” in Chapter 14 of the Apple Numerics
Manual

Synopsis

Description

setbuf—assign buffering to a stream

#include <STDIO.H>

void setbuf(stream, buf)
FILE *stream;
char *buf;
int setvbuf(stream, buf, type, size)
FILE *stream;
char *buf:
int type;
int size;

A buffer is normally allocated by the Standard C Library at the time of the first getc
or putc operation on a file. If you prefer to provide your own buffer, you can call
setbuf or setvbuf after a stream has been associated with an open file but before it
is read or written. Functions setbuf and setvbuf let you provide your own buffering
for a file stream. Function setvbuf is a more flexible extension of setbuf,

Function setbuf causes the character array pointed to by buf to be used instead of
an automatically allocated buffer. BUFS1Z, a constant defined in the <StdIC.h>
header file, specifies the size of the buf array as

char buf [BUFSIZ];
If buf is NULL, input and output are unbuffered

Function setvbuf lets you specify two parameters in addition to those required by
setbuf: size and type. Parameter size specifies the size in bytes of the array to be
used; the standard I/O functions work most efficiently when size is a multiple of
BUFSIZ. If the buffer pointer buf is NULL, a buffer of size bytes is allocated from the
system. If buf is not NULL, buf is assigned to the FILE variable’s buffer-pointer
parameter. If size is not zero, size is assigned to the FILE variable’s size
parameter. The value of type determines how st ream is buffered by setvbuf, as
follows:

Value of type Description

_IOFBF Causes input and output to be file buffered.

_IOLBF Causes output to be line buffered The buffer is flushed either when a
newline character is written or when the bufler is full.

_IONBF Causes input and output to be unbuffered. Parameters buf and size
are ignored.

The following function calls are equivalent when buf is not NULL:

setbuf (stream, buf);
setvbuf (stream, buf, _IQFBF, BUFSIZ):

The following function calls are equivalent when buf is NULL:

setpuf (stream, NULL);
setvbuf (stream, NULL, _IONBE, 0):

setbuf 5-51

Diagnostics Function setvbuf returns nonzero if an invalid value is given for type.

Note The buffer must have a life at least as long as that of the open stream. Be sure to close
the stream before the buffer is deallocated. If you allocate buffer space as an
automatic variable in a code block, be sure to close the stream in the same block.

If buf is NULL and the system cannot allocate size bytes, a smaller buffer will be
allocated.

See dqiso fopen, gete, malloc, pute, stdio

5-52 sefbuf

Synopsis

Description

Warning

setimp—nonlocal transfer of control

#include <SETJIMP.H>

int set jmp(env)
jmp_buf env;

void longjmp{env, wval)
jmp_buf env;
int val;

These functions let you escape from an error or interrupt encountered in a low-level
subroutine of your program.

Function set jmp saves its stack environment in env for later use by longjmp. It
returns the value 0.

Function longjmp restores the environment saved by the last call of set jmp with the
corresponding env environment. After a call to longjmp, the program continues as
if the preceding call to set jmp had returned the value val.

Function longjmp cannot cause set jmp to return the value 0. If longjmp is invoked
with a second parameter of 0, set jmp returns 1. Data values will be those in effect at
the time longjmp was called

If longjmp is called without a previous call to set jmp, or if the function that
conuzined the set jmp has already returned, results are unpredictable.

sefjmp S-53

Synopsis

Description

Diagnostics

See also

5-54

sinh

|

sinh—hyperbolic functions

#include <MATH.H>

extended sinh(x}
extended x;

extended cosh(x)
extended x;

extended tanh(x)
extended x;

Functions sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine,
and tangent of their parameter.

Functions sinh, cosh, and tanh honor the floating-point exception flags—invalid
operation, underflow, overflow, divide by zero, and inexact—as prescribed by
SANE.

“Exception Flags and Halts” in Chapter I-8, and Appendix A of the Apple Numerics
Manual

Synopsis

Description

stdio—standard buffered input/output package

#include <STDIQ.H>

FILE *stdin, *stdout, *stderr;

The Standard I/O Package constitutes an efficient user-level I/O buffering scheme.
The inline macros getc and putc handle characters quickly. Macros getchar and
putchar, and the higher-level routines £getc, fgets, £printf, fputc, fputs,
fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use
getc and putec. Calls to these macros and functions can be freely intermixed.

The constants and the following functions are implemented as macros: getc,
getchar, putcg, putchar, feof, ferror, clearerr, and £ileno. Redeclaration
of these names should be avoided.

Any program that uses the Standard I/O Package must include the StdI0.h header
file of macro definitions. The functions, macros, and constants used in the Standard
/O package are declared in the header file and need no further declaration.

A stream is a file with associated buffering and is declared to be a pointer to a FILE
variable. Functions fopen, £reocpen, and fdopen return this pointer. The
information in the FILE variable includes

O the file access—read or write

O the file descriptor as returned by open, creat, dup, or fcntl
O the buffer size and location

O the buffer style (unbuffered, line-buffered, or file-bulfered)

Standard 1/0O butfering

Qutput streams, with the exception of the standard error stream stderrz, are by
default file buffered if the output refers to a file. File stderr is by default line
buffered. When an output stream is unbu/ffered, it is queued for writing on the
destination file or window as soon as written; when it is file bu/ffered, many characters
are saved up and written as a block; when it is fine buffered, each line of output is
queued for writing as soon as the line is completed (that is, as soon as a newline
character is wrilten). Function set vbuf may be used to change the stream’s buffering
strategy.

Normally, there are three open streams with constant pointers declared in the
<STDIO.H> header file and associated with the standard open files:

FILE variable Files Description Butter style

stdin 0 Standard input file Line buffered
stdout 1 Standard output file File buffered
stderr 2 Standard error file Line bulfered

stdio 5-55

5-56

stdio

Butfer initialization

The FILE variable returned by fopen, freopen, or £dopen has an initial buffer size
of 0 and a NULL bulffer pointer. The buffer size is set and the buffer allocated by a call
to setbuf, setvbuf, or the first /O operation on the stream, whichever comes
first. Buffer initialization is performed using the following algorithm:

1. If _IONBF (no buffering) was set by a call to setvbuf, initialization steps 2 and 3,
that follow, are skipped. The buffer size remains 0, and the buffer pointer remains
NULL.

2. The access-mode word for _TOLBF (line buffering) is checked. This bit is usually
set only in the predefined files stderr and stdin, but a call to setvbuf can set it
for any file. If line buffering is set, the buffer size is set to _LBUFSIZ (100). If line
buffering is not set, icctl is called with an FIOBUFSIZE request, and the buffer
size is set to the returned value or to BUFSIZ (1024) if no value is returned.

3. If the buffer pointer is NULL, a request is made for a buffer whose size was
determined in step 2; the buffer pointer is set to point to the newly allocated buffer.
If the requested size cannot be allocated, attempts are made to allocate first
BUFSIZ and then _LBUFSIZ if one of these is smaller than the requested size. If all
requests fail, the buffer pointer remains NULL, and the _IONBF (no buffering) bit is
set.

4. Function icctl is called with an FIOINTERACTIVE request; if it returns true, the
__TIOSYNC bit is set in the access-mode word. This step is done for all FILE
variables, regardless of their buffering style and size. (The _IOSYNC bit is
described in the following section.)

The setvbuf function lets you specify values for buffer size, buffer pointer, and
access mode word other than the default values of 0, NULL, and 0, respectively. The
setvbuf function must be called before the first YO operation occurs, so that the
buffer-initialization procedure just described receives the values you specify instead
of the default values.

Buffered I/O

On each write request, the bytes are transferred to the buffer, and an internal counter
is set to account for the number of bytes in the buffer. If _TOLBF is set and a newline
character is encountered while bytes are being transferred to the buffer, the buffer is
flushed (written immediately) and the transfer continues at the beginning of the
buffer. This process continues until the write-request count is satisfied or a write error
occurs.

On each read request, the _TOSYNC bit in the access-mode word {s checked. If
_IOSYNC is on, all current FILE variables that have _TOSYNC on and thar are open
for writing are flushed. In other words, a read operation from an interactive FILE
variable flushes all interactive output files before reading is performed. This process
ensures that any prompts, screen output, or other visual feedback is displayed before
the read operation is initiated. Then if the internal counter is 0, an entire buffer is
read into memory if possible. (For the console device, less than a buffer's worth is
likely to be read.) The bytes required to satisfy the read request are transferred, the
device is asked for more bytes if necessary, and an internal pointer is advanced if any
bytes remain unread.

Note

Diagnostics

See Also

When the Standard 1/O Package is used, Standard 1/O cleanup is performed just
before the application terminates. Any normal retum including a call to exit causes
Standard 1/O cleanup, which consists of a call to fclosge for every open FILE
stream.

Do not use a file descriptor (0, 1, or 2) where a FILE variable (stdin, stdout, or
stderr) is required.

File StdI0.h includes definitions other than those just described, but their use is not
recommended.

Invalid stream pointers can cause serious errors, including program termination.
Individual function descriptions describe the possible error conditions.

Most integer functions that deal with streams return the integer constant EQF (-1)
when the end of file is reached or when an error occurs. See the descriptions of the
individual functions for details.

open, close, lseek, read, write, fclose, ferror, fopen, fread, £seek,
getc, gets, printf, putc, puts, scanf, setbuf, ungete

stdio 5-57

Synopsis

Description

5-58

string

string—string operations

#include <STRING.H>
#include <STRINGS.H>

char *strecat (destStr, srcStr)
char *destStr, *srcStr;

char *strncat (destStr, srcStr, n)
char *destStr, *srcsStr;
int n;

int stremp({strl, str2)
char *strl, *str2;

int strncmp(strl, str2, n)
char *strl, *str2;
int n;

char *strcpy(destStr, srcStr)
char *destStr, *srcsStr;

char *strncpyl({destStr, srcStr, n)
char *destStr, =*srcStr;
int n;

int strlen(str)
char *str;

char *strchr(str, c)
char *str, c;

char *strrchr(str, c)
char *str, c:

char *strpbrk{srcStr, findChars)
char *sreStr, *findChars;

int strspn{srcStr, spanChars)
char *src¢Str, *spanChars;

int screcspn(srcStr, skipChars)
char *srcStr, *skipChars:

char *strtok(destStr, tokenStr)
char *destStr, *tokenStr:

char *c2pstri{ptr)
char *ptr

char *pZcstr{ptr)
char *ptr

The string parameters {(srcStr, destStr, and so forth) and s point to arrays of
characters terminated by a null character, Functions strcat, strncat, strcpy,
and strncpy all alter destStr. These functions do not check for overflow of the
array pointed to by destsStr.

Function strcat appends a copy of swring sreStr to the end of string dest Str.
Function strncat appends at most n characters. Each function returns a pointer to
the null-terminated result.

Function stremp performs a comparison of its parameters according to the ASCIL
collating sequence and returns an integer less than, equal to, or greater than 0 when
strl is less than, equal to, or greater than str2, respectively. Function strncmp
makes the same comparison but looks at a maximum of n characters.

Wdarning

See dlso

Function st repy copies string srcStr to string dest St r, stopping after the null
character has been copied. Function strncpy copies exactly n characters,
truncating srcStr or adding null characters (o destStr if necessary. The result is
not terminated with a null character if the length of sreStr is n or more. Each
function returns dest Str,

Function strlen returns the number of characters in str, not including the
terminating null character.

Functions strchr and strrchr both return a pointer to the first and last
occurrence, respectively, of character ¢ in string str; they return NULL if ¢ does not
occur in the string. The null character terminating a string is considered 1o be part of
the string. In previous versions of the Standard C Library, st rchr was known as
index and strrchr was known as rindex.

Function st rpbrk retums a pointer to the first occurrence in string sreStr of any
character from string £indChars, or it refurns NULL if no character from
findChars exists in srcStr.

Function strspn returns the length of the initial segment of string srcStr that
consists entirely of characiers from string spanChars.

Function strcspn returns the length of the initial segment of string srcStr that
consists entirely of characters not from string skipChars.

Function st rtok considers the string destStr as a sequence of zero or more ext
tokens separated by spans of one or more characters from the separator string
tokenstr. The first call (with pointer destStr specified) returns a pointer to the
first character of the first token and writes a null character into dest Str immediately
following the returned token. The function keeps track of its position in the string
berween calls. Subsequent calls for the same string must be made with NULL as the first
parameter. The separator string tokenStr may be different from call to call. When
no token remains in destStr, NULL is returned.

Function c2pstzr converts in place a C-style siring to a Pascal-style string. The
function receives a pointer to the string 1o be converted, and returns a pointer to the
converted string.

Function p2estr converts in place a Pascal-style string to a C-style string. The
function receives a pointer to the string to be converted, and returns a pointer to the
converted string,

Overlapping moves yield unexpected results.

Functions stremp and st rncmp use signed arithmetic when comparing their
parameters. The sign of the result will be incorrect for characters with values greater
than 0x7F in the Apple 1IGS extended character set.

memory

BlockMove, EqualsString in the Apple IIGS Toolbox Reference

string 5-59

strtol—convert a string to a long

Synopsis #include <STDLIB.H >

long strteol({str, ptr, base)
char *str;
char **ptr;
int base;

Description Function strtol returns a long containing the value represented by the character
string str. The string is scanned up to the first character inconsistent with the base
(decimal, hexadecimal, or octal). Leading white-space characters are ignored.

If the value of ptr is not NULL, a pointer to the character terminating the scan is
returned in *ptr. If no integer can be formed, *ptr is set to str, and 0 is returned.

If base is 0, the base is determined from the string. If the first character after an
optional leading sign is not 0, decimal conversion is performed, and if the 0 is
followed by x or X, hexadecimal conversion is performed; otherwise, octal
conversion is performed,

The function call atol (str) is equivalent to
strcol(str, (char *=)NULL, 10)
The function call atoi (stzr) is equivalent to

(int) strtol{str, (char =**)NULL, 10)

Note Overflow conditions are ignored.
Apple base conventions ($ for hexadecimal, % for binary) are not supported.

See dlso atof, atoi, scanf

5-60 strtol

Synopsis

Descripfion

Diagnostics

Note

See also

i
Uu

trig—trigonometric functions

#include <MATH,.H>

extended sin{x)
extended x;
extended cos(x)
extended x;
extended tan (x)
extended x;
extended asin(x)
extended x;
extended acos(x)
extended x;
extended atan {x)
extended x;
extended atan2({y, x)
extended vy, X;

Functions sin, cos, and tan return, respectively, the sine, cosine, and tangent of
their argument, which is in radians.

Function asin returns the arcsine of x, in the range -n/2 1o n/2.
Function acos returns the arccosine of x, in the range 0 to &
Function atan retumns the arctangent of x, in the range —-n/2 to ®/2,

Function atan2 returns the arctangent of y/x, in the range ~& to =, using the signs of
both arguments to determine the quadrant of the return value.

For special cases, these functions return a NaN or infinity, as appropriate.

These functions honor the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

Functions sin, ¢os, and tan have periods based on the nearest extended-precision
representation of mathematical n. Hence, these functions diverge from their
mathematical counterparts as their argument gets further from zero.

“Trigonometric Functions” in Chapter I-10 of the Apple Numerics Manual

trig 561

Synopsis

Description

Diagnostics

Note

See also

D —

ungetc—push c:-charac’rer _b;ck info the input stream

——

#include <STDIO.H>
int ungetc{c, stream)
char c:
FILE *stream;

Function ungetc inserts the character ¢ (which typically was returned by the last
getc call) into the buffer associated with an input stream. The stream must be file-
buffered or line-buffered; it cannot be unbuffered. The inserted character, ¢, will be
returned by the next gete call on that stream. Function ungetc returns ¢ and leaves
the file corresponding to st ream unchanged.

Only one character of pushback is allowed, provided something has been read from
the stream and the stream is not unbuffered.

If ¢ equals ECF, ungetc does nothing to the buffer and returns ECF.
Function ungetc will not clear an end-of-file condition.

Function fseek or rewind undoes the effect of ungetc if the new location is not
within the same bulfer.

For ungetc o perform correctly, a read operation (such as getc) must have been
performed before the call to the ungetc function. Function ungete¢ returns EQF if it
can't insert the character.

Function ungetc does not work on unbuffered streams.

fseek, getc, setbuf, stdio

5-62 ungetc

Synopsis

Description

Diagnostics

See also

unlink—delete a named—file

int unlink{fileName)
char *fileName;

Function unlink deletes the named file. The function fails if the named file is open.

A all to unlink is equivalent to

faccess{fileName, F_DELETE)

Upon successful completion, this function returns a value of 0. Otherwise, it returns a

value of -1 and sets errno to indicate the error.

faccess

unlink

5-63

Synopsis

Description

Retum value

See also

5-64 write

write—write on a file

int write(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

File descriptor £ildes is obtained from an open, creat, dup, or fcntl call

Function write attempts to write nbyte bytes from the buffer pointed to by buf to
the file associated with fildes. Internal limitations may cause write to write fewer
bytes than requested; the number of bytes actually written is indicated by the return
value. Several calls to write may therefore be necessary to write the contents of buf.

On devices capable of seeking, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.

On nonseeking devices, writing starts at the current position. The value of a file
pointer associated with such a device is undefined.

If the O_APPEND file-status flag that is set in open is on, the file pointer is set to the
end of file before each write operation.

The file pointer remains unchanged, and write fails if fildes is not a valid file
descriptor open for writing. [EBADF]

If you try to write more bytes than there is room for on the device, write writes as
many bytes as possible. For example, if nbyte is 512 and there is room for 20 bytes
more on the device, write writes 20 bytes and returns a value of 20. The next attempt
to write a nonzero number of bytes will return an error. [ENOSPEC]

File descriptor 1 is standard output; [ile descriptor 2 is standard error.

Upon successful completion, this function returns the number of bytes actually
written. Otherwise, it returns —1 and sets errno to indicate the error.

creat, lseek, open

Chapter 6

Shell Calls

&-1

The Apple IIGS Progammer’s Workshop Shell acts as an interface and extension to
ProDOS 16. The shell provides several functions not provided by ProDOS 16; these
functions are called exactly like ProDQS 16 functions. Every time a program running
under the APW Shell issues a ProDOS 16-like call, the shell intercepts the call. If the
call is a shell call, the shell interprets it and acts on it; if it is a ProDOS 16 call, the shell
passes it on to ProDOS 16. This chapter describes all of the shell's ProDOS 16-like
calls, which are referred to here as shell calls.

The shell calls are summarized in Table 6-1. The calls are described in the same order.

Table 6-1

Shell calls

Name Number Description

GET_LINFO (0x0101) Passes parameters from the shell to a program
SET_LINFO (0x0102) Passes parameters from a program to the shell
GET_LANG (0x0103) Reads the current language number
SET_LANG (0x0104) Sets the current language number

ERROR (0x0105) Prints error message for a Apple IIGS tool call
SET_VAR (0x0106) Sets the value of a shell variable

VERSION ©x0107) Retumns the version number of the APW Shell

READ_INDEXED (0x0108) Reads variable table

INIT WILDCARD (0x0109) Provides a filename that includes a wildeard
character to the shell

NEXT_WILDCARD (0x010A) Makes the shell find the next filename matching the
wildcard filename

GET_VAR (0x010B) Reads the value of a shell variable

EXECUTE (0x010D) Sends a command or list of commands to the shell
command interpreter

DIRECTION {0x010F) Tells whether I/O redirection has occurred

REDIRECT 0x0110) Sets device and file for 1/O redirection

STOP (0x0113) Detects a request for an early termination of the
program

WRITE _CONSOLE (0x011A) Sends output to the console

— —

How to make a shell call
To make a shell call, you should do the following:

i
|

U Include the statements

#include <TYPES.H>
#include <SHELL,H>

in your source text. Your object file will be automatically linked with the library file
CLIB.

O Set values in the shell data structures and call the shell routines from vour program,
following the information given next.

6-2 Chapter 6: Shell Calls

How a program makes a shell call

A C program makes a shell call by calling a function in the file SHELL.C. Most of these
calls are simple C function calls: parameters are passed in the normal way.

Two of these, GET_LINFO and SET_LINFO, are called differently. Values and results
are passed via a parameter block. To get information from the shell, your program
declares and initializes this parameter block, calls GET_LINFO, and then reads results
from the block. To send information 1o the shell, your program wiites values into the
block, then calls SET_LINFO to send the information. These calls are expiained in
detail in the section *“GET_LINFO and SET_LINFO,” that follow.

With the exception of EXECUTE, all calls expect Pascal-style strings.

Call descriptions

This section lists each shell call, describes its use, and describes the contents of its
parameter block. The possible errors returned by a call are listed at the end of each
call description. The calls are listed in order of their call numbers.

GET_LINFO (0x0101) and SET_LINFO (0x0102)

void GET_LINFO(pb)
GetLInfoPB *pb;

void SET_LINFO(pb)
GetLInfoPB *pb;

The GET_LINFO function is used by an assembler, compiler, linker, or editor to read
the parameters that are passed to it. When you make this call, you declare the
parameter block GetLInfoPB; when the APW Shell returns control to your program,
you can then read the parameter block to obtain the information you need.

Use the GET_LINFO call to read parameters passed to your assembler, compiler,
linker, or editor.

The SET_LINFO function is used by an assembler, compiler, linker, or editor to pass
parameters to the APW Shell before returning control to the shell. It can also be used
by a shell program under which you are running APW to pass parameters to the APW
Shell.

Use the SET_LINFO call when your program is finished before returning control to the
shell.

Call descriptions

6-3

Both of these calls use the following parameter block:

GetLInfoPB /* get/set Line Info parameter block */
typedef struct ({

char *sfile; /* address of source file name */

char *dfile; /* address of output file name */

char *parms; /* address of parameter list */

char *istring; /* address of language-specific input string */

char merr; /* maximum error level allowed */

char merrf; /* 'maximum error level found */

char lops; /* operations flag */

char kflag; /* KEEP flag */

unsigned long mflags; /* set of letters selected with '-=' */

unsigned long pflags; /* set of letters selected with '+' */

unsigned long org; /* abs start address of ncn-reloc load file */
} GetLInfcoPB;

To call GET_LINFO, first declare the parameter block Get LInfoPB. The GET_LINFO
call passes to the shell the pointer, pb, to your parameter block. The shell then writes
its results into your parameter block: you can read them from there.

To call SET_LINFO, first declare the parameter block GetLInfoPB, then write your
values into that block. The SET_LINFO call passes to the shell the pointer, pb, to your
parameter block. The shell then reads your values from the parameter block.

The sfile (source file) field is the address of a buffer containing the filename of the
source file; that is, the next file that a compiler or assembler is to process. The
filename can be any valid ProDOS 16 filename, and can be a partial or full pathname.

The dfile (destination file) field is the address of a buffer containing the filename of
the output file (if any); that is, the file that the compiler or assembler writes to. The
filename can be any valid ProDQOS 16 filename, and can be a partial or full pathname.

The parms field is the address of a buffer containing the list of names from the
NAMES= parameter list in the APW Shell command that called the assembler or
compiler. The compiler can remove or modify these names as it processes them, so
this list can be different from the one received through the GET_LINFO call.

The istring field is a placeholder for the address of a buffer containing the string of
commands passed to the compiler. This command string is not reused by the shell, so
it is not necessary to pass it back to the shell with the SET_LINFO call

The merr field is the maximum error level allowed. If the maximum error level found
by the assembler, compiler, or linker is greater than merr, then the shell does not call
the next program in the processing sequence. For example, if you use the ASML
command to assemble and link a program, but the assembler finds an error level of 8
when merr equals 2, then the linker is not called when the assembly is complete.

The merrf field is the maximum error level found. [f merrf is greater than merr,
then no further processing is done by the shell. If the high bit of merrf is set, then
merrf is considered to be negative; a negative value of mercf indicates a fatal error
(normally, all fatal errors are flagged by setting merrf= to OXFF). In this case,
processing terminates immediately and the shell passes control 1o the APW Editor.

6-4 Chapter &: Shell Calls

The lops field comprises the operation flags. This field keeps track of the operations
that have been performed, and remain to be performed, by the system. The format of
this byte is as follows:

o

gt [7]6]s[a]a]2]1
vowe: [0]ofololo|E[L]cC

C = Compile
E = Execute
L = Link

When a bit is set (1), the indicated operation is to be done. When a compiler finishes
its operation and returns control to the shell, it clears bit 0 unless a file with another
language is appended to the source. When a linker returns control to the shell, it clears
bit 1. When you execute the APW Linker by compiling a LinkEd file, the linker clears
bits 0 and 1.

The kflag field is the keep flag. This flag indicates what should be done with the
output of a compiler, assembler, or linker, as follows:

Kilag Meaning

value

0x00 Do not save output

0x01 Save o an object file with the root filename pointed to by dfile. For

example, if the output filename pointed to by dfile is PROG, then the first
segment o be executed should be put in PROG or PRCG.RCOT, and the
remaining segments should be put in PRGG . A. For linkers, save to a load file
with the name pointed to by dfile (for example, PROG). A compiler or
assembler will never set kflag to 0x01, but a shell program calling APW
might use this value.

0x02 The .ROOCT file has already been created. In this case, the first file created
by the next compiler or assembler should end in the .2 extension.

0x03 At least one alphabetic suffix has been used. In this case, the compiler or
assembler must search the directory for the highest alphabetic suffix that
has been used, and then use the next one. For example, if PROG.ROQCT,
PRCG. A, and PRCG. B already exist, the compiler should put its cutput in
PROG.C.

When the compiler or assembler passes control back to the shell, it should reset
kflag to indicate which object files it has written; for example, if it found only one
segment and created a .ROOT file but no . & file, then kflag should be 0x02 in the
SET_LINFO call. See “Compilers and Assemblers” in Chapter 6 of the APW Reference
for more information on object-file naming conventions.

The mflags (minus flags) field passes the flags with a minus sign. This field passes
command-line-option flags, such as -L or -C. The first 26 bits of these 4 bytes
represent the letters A-Z, arranged with A as the most significant bit of the most
significant byte; the bytes are ordered least significant byte first. The bit map is as
follows:

11000000 11111111 133111111 11111111

YZ CRSTUVWX TJKLMNOP ABCDEFGH

Call descriptions

For each flag set with a minus sign in the command, the corresponding bit in this field
is set to 1. See the discussions of the ALINK and ASML commands in Chapter 3 of the
APW Reference for descriptions of these option flags.

The pflags (plus flags) field passes the flags with a plus sign. This field passes
command-line-option flags such as +L or +C. The first 26 bits of these 4 bytes
represent the letters A-Z; the bit map for this field is the same as for the mflags field.
See the discussions of the ALINK and ASML commands in Chapter 3 of the APW
Reference for descriptions of these option flags.

The org field specifies the absolute start address of a nonrelocatable load file, if one
has been specified. This field is only useful in assembly language, and is used only by
the linker. C does not use this field.

Possible errors

None

GET_LANG (0x0103)

unsigned int GET_LANG()

This function reads the current language number. The current language number is set
either by the APW Editor when it opens an existing file, or by the user with an APW
Shell command. Language numbers are described in “Command Types and the
Command Table” in Chapter 3 of the APW Reference, and are listed in Appendix B of
the APW Reference.

Possible errors

None

SET_LANG (0x0104)

void SET_LANG(lang)
unsigned int lang;

This function sets the current language number. Language numbers are described in
“Command Types and the Command Table” in Chapter 3 and are listed in Appendix
B of the APW Reference.

The lang parameter is the APW language number to which the current APW language
should be set. If the language specified is not installed (that is, not listed in the
command table), then the “Language not available” error is returned.

Possible errors

0x80 Language not available

-6 Chapter &: Shell Calls

ERROR (0x0105)

void ERRCR (errnum)
int errnum;

When a Apple IIGS tool call returns an error, your program can use this function to
print out the name of the tool and the appropriate error message. This function makes
it unnecessary for your program to store a complete table of error messages for tool
calls. The error number is retumed in _toolErxr.

Possible errors

None

SET_VAR (0x0106)

void SET_VAR(varname, value)
char *varname, *value;

This function sets the value of a variable. If the variable has not been previously
defined, this funiction defines it. Variables are described in “Exec Files” in Chapter 3
of the APW Reference. Use the GET_ VAR call to read the current value of a variable
and the READ INDEXED call to read a variable table.

The varname parameter is a pointer to a buffer in which you place the name of the
variable whose value you wish to change. The name is an ASCII string.

The value parameter is a pointer to a buffer in which you place the value to which the
variable is to be set. The value is an ASCII string.
Possible errors

Errors for Memory Manager calls are described in the Apple IIGS Toolbox
Reference.

VERSION (0x0107)
unsigned long VERSICN();
This function returns the version of the APW Shell that you are using.

The VERSICN parameter is a 4-byte ASCII string specifying the version number of the
APW Shell that you are using. The initial release returns 10 followed by two space
characters (0x3130 0x2020) to indicate version number 1.0.

Possible errors

None

Call descriptions

&-7

READ_INDEXED (0x0108)

void READ INDEXED (varname, value, index)
char *varname, *value;
int index;

You can use this function to read the contents of the variable table for the command
level at which the call is made. To read the entire contents of the variable table, you
must repeat this call, incrementing the index number by 1 each time, uniil the entire
contents have been returned.

The varname parameter is a pointer to a 256-byte buffer in which the shell places the
name of the next variable in the variable table. The variable name consists of a length
byte and a string of ASCII characters. A null string is returned when the index number
exceeds the number of variables in the variable table.

The value parameter is 2 pointer to a 256-byte buffer into which the shell places the
value of the variable. The value consists of a length byte and a string of ASCII
characters. The value consists of a null string (that is, the length byte is 0x00) for an
undefined variable.

The index parameter is an index number that you provide. Start with 0x01 and
increment the number by 1 with each successive READ_INDEXED call until there are no
more values in the variable table.

Possible errors

Errors for Memory Manager calls are described in the 4pple IIGS Toolbox
Reference.

INIT_WILDCARD (0x0109)

veid INIT WILDCARD(file, flags)
char *file;
int flags

This function provides to the APW Shell a filename that can include a wildcard
character. The shell can then search for filenames matching the filename you
specified when it receives a NEXT_WILDCARD command. This function accepts any
filename, whether it includes a wildcard or not, and expands device names (such as
.D1/), prefix numbers, and the double-period (..) before the filename is passed on
to ProDOS 16. Therefore, you should call this function every time you want to search
for a filename. Doing so will ensure that your routine supports all of the conventions
for partial pathnames that the user expects from AP,

The £ile parameter is the address of a buffer containing a pathname or partial
pathname that can include a wildcard character. Examples of such pathnames are as
follows:

A=
/APW/MYPROGS/? .ROOT
.D2/HELLO

Important

The £ile parameter must be stored as a Pascal-style string: a length byte
followed by the characters of the string.

6-8 Chapter 6: Shell Calls

When you execule a NEXT_WILDCARD call, the shell finds the next filename that
matches the filename pointed to by £ile. If the wildcard character you specified was a
question mark (2), then the filename is written to standard output and you are
prompted for confirmation before the file is acted on or the next filename is found.
The use of wildcard characters is described in “Using Wildcard Characters” in Chapter
2 of the APW Reference.

The flags parameter contains the prompting flags. If the most significant bit is set,
prompting is not allowed; that is a question mark (?) is treated as if it were an equal
sign (=). If the next-most significant bit is set and prompting is being used, only the
first choice accepled by the user (that is, the first choice for which the user types Y in
response to the prompt) is acted on. The second flag is for use with commands that
can act on only one file, such as RENAME or EDIT.

Possible errors

Errors for ProDOS 16 and Memory Manager calls are described in the Apple HGS
ProDOS 16 Reference and the Apple IIGS Toolbox Reference. Use the ERROR
function to get the error message.

NEXT_WILDCARD (0x010A)

char *NEXT WILDCARD (nextfile)
char *nextfile;

Once a filename that includes a wildcard has been suppled to the shell with an
INIT_WILDCARD call, the NEXT_WILDCARD call causes the shell to find the next
filename that matches the wildcard filename. For example, if the wildcard filename
specified in INIT_WILDCARD were /APW/UTILITIES/XREF .2, then the first
filename retumed by the shell in response to 2 NEXT_WILDCARD call might be
/APW/UTILITIES/XREF.ASM65816.

The next file parameler returns the address of the buffer to which the shell will
return the next filename that matches a wildcard filename. The wildcard filename is
the last one specified with an INIT_WILDCARD call. If there are no more matching
filenames, or if INIT_WILDCARD has not been called, then the shell returns a null
string (that is, a string with length zero). (See also the description of

INIT WILDCARD.)

Possible Errors None

GET_VAR (0x0108)

void GET_VAR({(varname, value)
char *varname, *value;

This function reads the string associated with a variable (that is, the value of the
variable). The value returned is the one valid for the currently executing Exec file, or
for the interactive command interpreter. Variables and Exec files are described in
“Exec Files” in Chapter 3 of the APW Reference. Use the SET VAR call to set the value
of a variable. B

Call descriptions

6-9

The varname parameter is a pointer [0 a buffer that contains the name of the variable
whose value you wish to read. The variable name consists of a length byte and a string
of up to 255 ASCII characters.

The value parameter is a pointer to a 256-byte buffer into which the shell places the
value of the varable. The value consists of a length byte and a string of ASCI
characters. The value consists of a null string (that is, the length byte is 0x00) for an
undefined variable.

Possible errors

None

EXECUTE (0x010D)

void EXECUTE (flag, comm)
int flag;
char *comm;

This function sends a command or list of commands to the APW Shell.

The flag parameter is used 1o execute an Exec file with an EXECUTE command; if no
new variable table is defined, then variables defined by the list of commands modify
the current variable table. If you set the most significant bit of this flag to 1 (binary),
then a new variable table is not defined when the commands are executed. If this flag is
set to 0x0000, a new variable table is defined for the list of commands being executed;
the current variable table is not modified. Exec files, variables, and the EXECUTE
command are described in "Exec Files” in Chapter 3 of the APW Reference.

The comm parameter is the address of the buffer in which you place the commands. If
you include more than one command, separate the commands with semicolons (;) or
carriage return characters (0x0D), the last command should end with a carriage
return. The command string is a C string: it has no length byte and is terminated with a
nuil character (0x00). Any output is sent to standard output.

If the shell variable {Exit] is not null and any command returns a nonzero error
code, then any remaining commands are ignored. Error codes and shell variables are
described in "Exec Files” in Chapter 3 of the APW Reference.

Possible errors

Any error returned from the last command or program executed by the list of
commands executed.

6-10 Chapter é: Shell Calis

DIRECTION (0x010F)

void DIRECTION (device, direct)
int device, *direct;

A program can use this function to find out whether command-line 1/O redirection
has occurred. This function can be used by a program to determine whether to send
form feeds to standard output, for example.

The device parameter indicates which type of input or output you are inquirng
about, 2s follows:

0x0000 Standard input
0x0001 Standard output
0x0002 Error output

The direct parameter indicates the type of redirection that has occurred, as follows:
0x0000 Console

0x0001 Printer

0x0002 Disk file

Possible errors

0x53 Parameter out of range

REDIRECT (0x0110)

void REDIRECT (device, app, file)
int device, app:
char *file;

This function instructs the shell to redirect input or output to the printer, console, or a
disk file.

The device parameter indicates which type of input or output you wish to redirect, as
follows:

0x0000 Standard input
0x0001 Standard output
0x0002 Error output

The app [lag indicates whether redirected output should be appended to an existing
file with the same filename, or the existing file should be deleted first. If append is 0,
the file is deleted, if it is any other value, the output is appended to the file.

The file parameter is the address of a 65-byte-long buffer containing the filename of
the file to or from which output is to be redirected. The filename can be any valid
ProDOS 16 filename, a partial or full pathname, or the device names .PRINTER or
.CONSQLE. The filename must be a Pascal string: that is, a length byte followed by the
characters of the string,

Possible errors
0x53 Parameter out of range

Errors for ProDOS 16 calls are described in the Apple IIGS ProDOS 16 Reference and
the Apple IIGS Toolbox Reference.

Call descriptions

6-11

STOP (0x0113)
int STOP () ;

This function lets your application detect a request for an early termination of the
program. The STOP flag is set when the keyboard buffer is read after the user presses
Apple-period.

The STOP flag is set (0x0001) by the shell when it finds an Apple-perod in the
keyboard buffer. When a APW utility reads from the keyboard as standard input, the
shell reads the keyboard buffer and passes the keys on to the utility. When standard
input is not from the keyboard, the shell still checks the keyboard buffer for Apple-
period whenever 2 STOP call is executed. The flag is cleared (0x0000) when the STOP
call is executed, when the utility program is terminated, or if no Apple-period is
found.

Possible errors

None

WRITE_CONSOLE (0x011A)

void WRI TE_CONSCLE (cchar)
int ochar;

This function writes a character to the-Pascal console driver. The resulting output is not
redirectable, so you can use this function to echo keyboard input and to send messages
that must appear on the screen.

The ochar parameter is a 2-byte value specifying a character to write on the screen.
The low byte of the value is sent to the Pascal console driver.

Possible errors

None

6-12 Chapter 6: Shell Calls

Appendix A

Cadalling Conventions

APW C uses two different function-calling conventions: C calling conventions and
Pascal-compatible calling conventions.

C cdlling conventions

This section describes the normal C calling conventions. It explains how function
parameters are passed, how function results are returned, and how registers are saved
across function calls. This information is useful when writing calls between C and
assembly language.

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack
in the order they are evaluated: that is, they are pushed in reverse order. Characters,
integers, and enumeration types are passed as 16-bit values. Long integers (long) are
passed as 32-bit values; pointers and arrays are passed as 32-bit addresses. Types
float, double, comp, and extended are passed as extended 80-bit values.
Structures are also passed by value on the stack: their size is rounded up to a multiple of
16 bits (2 bytes). If rounding occurs, the unused storage has the highest memory
address. The caller removes the parameters from the stack.

Function resuits

On the Apple IIGS, a function result is returned in registers: the low 16 bits are in the A
register, and the high 16 bits are in the X register. A SANE-type result (that is, £loat,
double, comp, and extended) or a structure result is returned as a pointer to an
initialized static location; the pointer is in the A and X registers.

Register conventions

Only the stack pointer and the data bank register are preserved across function calls;
no other registers are preserved. Tool calls have their own conventions for returning
error codes in the A register. (These conventions are explained in “The Inline
Declaration” in Chapter 4.)

Pascal-style calling conventions

This section describes the conventions used for calling functions that use Pascal-style
calling conventions: these functions are declared with the keyword pascal and may
have been written in any language. These conventions differ from the usual C calling
conventions defined in Chapter 4,

Parameters

Parameters to Pascal-compatible functions are evaluated left to right: that is, in the
order of the formal parameter list. The function first pushes space for the result (as
shown in Table 3-2), and then pushes the parameters onto the stack in the order in
which they are evaluated. Characters, integers, and enumeration types are passed as
16-bit values. Long integers (Long) are passed as 32-bit values; pointers and arrays are
passed as 32-bit addresses. SANE types and structures are passed on the stack. The size
of a structure is rounded up to a multiple of 16 bits (2 bytes). If rounding occurs, the
unused storage has the highest memory address. The funcrion being called removes
the parameters from the stack.

Function results

On the Apple lIGS, as on the Macintosh, a result of a Pascal-compatible function is
returned on the stack. A SANE type or structure result is returned as a pointer to an
initialized static location; the pointer is in the A and X registers.

Register conventions

Only the stack pointer and the data bank register are preserved across function calls;
no other registers are preserved. Tool calls have their own conventions for returning
error codes in the A register.

A-2 Appendix A: Calling Conventions

Appendix B

Files Supplied with APW C

APW C is intended for use with the Apple Programmer's Workshop. The files listed
here are on the APW C release disk, which contains the C compiler, the Standard C
Library, and the Apple IIGS Interface Library. These files may be used directly from
the release disk or copied to a hard disk.

The files are listed indented under their respective directories, with comments.

APWC APW C files
LANGUAGES Compilers and assemblers
cc APW C compiler
LIBRARIES C libraries
CLIB Standard C Library
START.ROOT Initialization code
CINCLUDE Standard C Library and Apple IIGS Toolbox include
files
ADB.H Apple Desktop Bus Manager
CONTROL.H Control Manager
CTYPE.H Character classification routines
DESK.H Desk Accessory Manager
DIALOG.H Dialog Manager
ERRNOQ.H Error numbers
EVENT.H Event Manager
FCNTL.H File control
FONT.H Font Manager
INTMATH.H Fixed-Point Math
IOCTL.H Device control
LINEEDIT.H Line Editor
LIST.H List Manager
LOADER.H System Loader
LOCATOR.H Tool locator
MALLOC.H Memory allocation
MATH.H Math functions
MEMORY .H Memory Manager
MENU.H Menu Manager
MISCTOOL.H Miscellaneous Tools
NOTESEQ.H Note Sequencer

NOTESYN.H Note Systhesizer

B-2

PRINT.H
PRODOS.H
QDAUX.H
QUICKDRAW.H
SANE .H
SCHEDULER.H
SCRAP .H
SETJMP . H
SHELL.H
SOUND .H
STDFILE.H
STDIO.H
STDLIB.H
STRING.H
STRINGS.H
TEXTTOOL.H
TYPES.H
VALUES .H
VARARGS.H
WINDOW.H
SYSTEM
LOGIN
SYSCMND
INSTALL2
INSTALLHD
SAMPLES
BONES
MAKE
BONES.CC
INIT.CC
DATA,ASM
STACKMIN.ASM
LINK.BONES
DA
IDLEHEADER.ASM

CIDLE.C
USERIDLE.C

DB.ASM
MAKE
LINK.NDA
UPSTR
SAMPLEC
SAMPLEA

Print Manager

ProDOS interface

QuickDraw auxiliary

QuickDraw I

SANE interface

Scheduler

Scrap Handler

Nonlocal transfer of control

APW shell interface

Sound Driver

Standard File Dialog Package

Standard 1/O Package

Miscellaneous Standard C Library declarations
String-conversion routines

String functions

Text Tools

Commeon defines and types

SANE constants

Macros to handle variable number of arguments
Window Manager

C system files

Log-in file

Command file

3.5-inch-disk install script

Hard-disk install file

Sample programs

Longer application

Build EXEC file

Implements most of BONES

Initializes tools

Dara structures for windows and menus
Allocates stack for BONES

Advanced linker instructions

Desk accessory

NDA identification section with pointers to four
routines

Implements init, open, and close routines
Implements action routine: customize to create your
own

Implements SaveDB () and RestoreDB ()
Build EXEC file

Advanced linker instructions

Short application

Implements the main event loop
Implements the uppercase function

Appendix B: Files Supplied with APW C

Appendix C

Comparison with
Macintosh Programmer’s
Workshop C

Apple 1IGS Programmer's Workshop C is as closely related to Macintosh
Programmer’s Workshop C as differences between the two machines allow. The
differences between the two languages are explained here.

Data types
The following data types are implemented differently in APW and MPW C:
Data Type Size in bits
APW MPW
int 16 32
unsigned int 16 32
enum 16 8, 16, or 32
The fact that
sizeof{int) != sizecf{char*)

creates many snares for the unwary. As a courtesy, NULL is defined in stdic.h to
have the value OL. '

|

Register variabies

Register variables are not allocated in APW C due to the small number of registers
available on the 65816,

Structured vcﬁgbles

Structures may be assigned, passed as parameters, and returned as function results in
both versions of C. Byte-sized elements in structures are not padded to word or long-
word boundaries. APW C allows equality comparison for structures; MPW C does not.

Pascal-compatible function declarations

A function or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from either MPW C or APW C. For
example, the DrawText procedure is defined in Pascal as

PROCEDURE DrawText (textBuf; Ptr;
firstByte, byteCount: INTEGER);

The MPW C syntax for such a declaration is

pascal vold DrawText (textBuf, firstByte, byteCount)
Ptr textBuf;
short firstByte, byteCount;
extern;

The APW C syntax for this declaration is
extern pascal void DrawText();
To make the APW C form more readable, you can list the parameters in a comment:

extern pascal void DrawText():
/* Ptr textBuf;
short firstByte, byteCount;
extern; */

In addition, in MPW C, the word extern may be followed by a constant, which is
interpreted as a 16-bit 68000 instruction that replaces the usual subroutine call (JSR)
instruction in the calling sequence. This process allows direct traps to the Macintosh
ROM, as shown here:

pascal void OpenPort (port)
GrafPtr port;
extern QxA86F;

On the Apple 1IGS, an inline declaration is used for declaring tool routines. Its
Syntax is

lextern] pascal [result-typel func-name () inline({m, n):

This declaration says that the tool routine with tool-call number 7 and Tool-Locator
entry point m can be called by the function name fiunc-name, and returns a result of
type result-type.

— e ——

Preprocessor statements

A # alone as the first and only character of a line does not constitute a preprocessor
directive that APW C undersiands. MPW blissfully ignores these; APW C complains.

APW C does not recognize preprocessor directives of the form

4if defined(Symbol)

c-2 Appendix C: Comparison with Macintosh Programmer’s Workshop C

Dangling case in switch statements
If you have a dangling case in a switch statement, as in
switch(i) {case 1l: /* N.B. no statement here, Jjust closing brace >/ }

the APW C Compilerwill complain about an “errer in expression”, because K and R
says that some kind of statement must follow the

case constani-expression:

In-line assembly-code declarations

An APW C program can contain in-line assembly code. Anywhere that a statement is
legal, you can insert a series of assembly-language statements with this format:

asm{ assembly-statements)

Anywhere that a funcrion definition is legal, you can have a definition with this format:

asm (external-name) { assembly-statements)

This function can be called in the same way as a C function called external-name.
Here external-name is the entry point of the segment containing the assembly-
language code.

In-line assembly-code declarations

c-3

Appendix D

Library Index

The Library Index contins an index entry for each of the defines, types, enumeration
literals, global variables, and functions defined in the Standard C Library.

0 Column 1 contains an alphabetical list of the index entries.

a0 Column 2 specifies the type of declaration (for example, “function”) for the index
entry.

O Column 3 contains the library header under which documentation for the index
entry can be found. If column 3 contains (C) following the library header—for
example, abs(C>—lock in Chapter 5, *The Standard C Library,” which is organized
alphabetically by library header. If column 3 contains Shell, look in Chapter 6,
Shell Calls.

D-1

Identifier

abs

acoes

asin

atan
atan2
atof

ateol

atol
BUFSIZ
c2pstr
calloc
ceil
cfree
clearerr
close

[sie} -3

cosh
creat
DIRECTION
dup
EACCES
EBADF
EBUSY
ecvt
EEXIST
EFAULT
EINVAL
EIC
ENFILE
ENCDEV
ENOCENT
ENOMEM
ENOSPC
ENCTDIR
ENXIC

EQF

ERQOFS
ERROR
ESPIPE
ETXTBUSY
EXECUTE
exit

exp

fabs
faccess
fclose
fentl
fevt
fdopen
feof
ferror
fflush
fgetc
fgets
FILE
fileno
FIOBUFSIZE
FIODUPFD
FICGETECF
FIOGETMARK
FICINTERACTIVE
FIOLSEEK
FIOREFNUM
FIOSETEOF

Type

function
function
function
function
function
function
function
function
define
function
function
function
function
function
function
function
function
function
function
function
define
define
define
function
define
define
define
define
define
define
define
define
define
define
define
define
define
function
define
define
function
function
function
function
function
function
function
functicn
function
function
functicn
function
function
functien
define

function

define
define
define
define
define
cdefine
define
define

Manual
section

abs (C)
trig(cC)
trig(C)
trig(C)
trig(cC)
atof (C)
atoi (C)
atoi (C)
setbuf (C)
string(C)
mallec (C)
floor (C)
malloc(C)
ferror (C)
close(C)
trig(c)
sinh(C)
creat (C)
Shell
dup(C)
Error (C)
Error (C)
Error(C)
ecvt (C)
Error (C)
Ertor (C)
Errozr(C)
Error (C)
Exrror {C)
Error(C)
Error(C)
Error (C)
Error (C)
Error {C)
Error (C)
stdio(C)
Brror{C)
Shell
Error (C)
Error(C)
Shell
exit (C)
exp(C)
floor (C)
faccess (C)
fclose (C)
fcntl(C)
ecvt (C)
fopen (C)
ferror(C)
ferror(C)
fclose(C)
getc(C)
gets (C}
stdie (C)
ferror(C)
loctl(C)
ioetl (C)
ioctl(C)
iootl{C)
igcecl(C)
ioctl (C)
loect2 (C)
ioctl(C)

D-2 Appendix D: Library Index

Identifier

FIOSETMARK
fleoor
fmod
foren
fprintf
fputc
fputs
fread
free
freopen
frexp
fscanft
fseek
ftell
fwrite
F_AUX
F_DELETE
F_DUPFD
F_OPEN
F_RENAME
F_TYPE
getc
getchar
getenv
GetLInfoPB
gets
getw

GET _LANG
GET_LINFO
GET_VAR
hypot
loctl
isalnum
isalpha
isascii
isentrl
isdigit
isgraph
islecwer
isprint
ispunct
isspace
isupper
isxdigit
ldexp
lmalloc
leg
logl0
longimp
lseek
malloc
memccpy
memchr
memcmp
memcpy
memset
modf
HULL
cnexit
open
C_APPEND
C_BINARY
O_CREAT
0_EXCL

Type

define
function
function
functien
function
functicn
function
function
function
function
function
function
function
function
function
define
define
define
define
define
define
function
function
function
type
function
function
function
function
function
function
function
functicn
function
function
function
function
functioen
function
functien
function
functicn
function
function
function
functicn
function
function
function
function
functiocn
function
function
function
functicn
function
function
define
function
function
define
define
define
define

Manual
section

ioctl(C)
floor(C)
floor(C)
fopen (C)
printf(C)
pute(C)
puts (C)
fread(C)
malloc(C)
fopen (C)
frexp(C)
scanf (C)
fseek (C)
fseek (C)
fread(C)
faccess (C)
faccess(C)
fentl (C)
faccess(C)
faccess (C)
faccess(C)
getc (C)
getc (C)
getenv (C)
Shell
gets (C)
getc(C)
Shell
Shell
Shell
hypot (C)
ioctl{C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
ctype (C)
frexp{C)
malloc (C)
exp(C)
exp (C)
set jmp (C)
lseek (C)
malleoe (C)
memozry (C)
memory (C)
memory (C)
memory (C)
memery (C)
frexp(C)
stdio {C)
cnexit (C)
cpen(C)
oven (T}
cpen (C)
open (L)
cpen (C)

Identifier

O_RDONLY
C_RDWR
O_TRUNC
O_WRONLY
pl2astr
pow
printf
pute
putchar
puts
putw
gsort
rand
read
READ INDEXED
realloc
REDIRECT
rewind
scanf
setbuf
set jmp
setvbuf
SET_LANG
SET_LINFO
SET_VAR
SIGALLSIGS
sin

sinh
sprintf
sgrt
srand
sscanf
strcat
strchr
stremp
strepy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
Strspn
strtcock
strtol
tan

tanh
toascii
tolower
toupper
ungetc
unlink
VERSION
write
_exit
_ICFBF
_ICLBF
_IONBF
_ICSYNC
_tolower
_touprer

Type

define

define

define

define

function
funetion
function
function
function
function
function
function
funetion
function
function
function
function
function
function
function
function
function
funetion
function
function
define

funetion
funetion
function
function
function
function
function
function
function
function
function
function
funection
funetion
function
function
function
funetion
function
function
function
function
function
funection
funetion
function
function
function
function
function
define

define

define

define

function
function

Manual
seclion

open {C)
open (C)
open {C)
open(C)
string{C)
axp(C)
printf {C)
putc (<)
putc (C)
puts (C)
pute (C})
gsort (C)
rand (C)
reag(C)
Sheil
malloc(C)
Shell
fseek (C)
scanf (C)
setbuf (C)
set jmp (C)
setbuf (C)
Shell
Shell
Shell
signal (C)
trig(Q)
sinh (C)
printf(C)
axp{C)
rand (C)
scanf (C)
string(C}
string(C)
string(C)
string(C)
string(C}
string(C}
string(C)
string(C)
string(C)
string (C)
string{C)
string(QC)
string(C)
strrol (C)
trig(C)
sinh (C)
conv (C)
conv (C}
conv (C)
ungetc (C)
unlink (C)
Shell
write(C}
exit (C)
setbuf (C)
setbuf (C)
setbuf (C)
stdic(C)
cenv(C)
conv (C)

Appendix D:; Library Index

D-3

Appendix E

ASCIl Table

The ASCII table contains the equivalent ASCII values in decimal, octal, and

hexadecimal for all characters in the Apple extended character set. The table is
divided into columns of 32 characters each.

E-1

E-2

nul
soh
StX
etx

eot
enq

bel

bs
ht

vi
ff

50
si

dle
dcl
dec2
dc3

dc4
nak
svn
etb

em
sub
esc

Dec Oct Hex
0 0 0 sp
1 1 1 !
2 2 2 "
3 3 3 #
4 4 4 $
5 5 5 %
6 6 6 &
7 7 7 '
8 10 8 (
9 11 9)
10 12 A .
11 13 B +
12 14 G ,
13 15 D -
14 16 E .
15 17 F /
16 20 10 0
17 21 11 1
18 22 12 2
19 23 13 3
20 24 14 4
21 25 15 5
22 26 16 6
23 27 17 7
24 30 18 8
25 31 19 9
26 32 1A
27 33 1B H
28 34 1C <
29 35 1D =
30 36 1E >
31 37 1F ?

Appendix E: ASCIl Table

32
33
34
35

36
37
38

40
41
42
43

44
45

47

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62
63

40
41

43

44
45
46
47

50
51
52
53

54
55
56
57

60

62
63

64
65
66

-

H

70
71

73

74
75
76
77

Oar Dec O Hex

Char Dec Oct Hex

30
31
32
33

34
35

37
38

3A
3B

3C
3D
3E
3F

I >~ N :§1<q"| AMWfO'U OZZr P~ T omEg OW;P@E
~d
~J

Oct Hex
100 40
101 41
102 42
103 43
104 44
105 45
106 46
107 47
110 48
111 49
112 4A
113 4B
114 4cC
115 4D
116 4E
117 4F
120 50
121 51
122 52
123 53
124 5S4
125 55
126 56
127 57
130 58
131 59
132 5A
133 5B
134 5C
135 5D
136 SE
137 SF
Oct Hex

o
8 o= aN=<M F<Eea @wmn0D 008 mo oD W@ Q ncm-a

96
97
98
99

100
101
102
103

104
105
106
107

108
109
110
111

112
113
114
115

116
117
118
119

120
121
122
123

124
125
126
127

Oct Hex
140 60
141 61
142 62
143 63
144 64
145 65
146 66
147 67
150 68
151 69
152 6A
153 6B
154 6C
155 6D
156 6E
157 6F
160 70
161 71
162 72
163 73
164 74
165 75
166 7

167 77
170 78
171 7

172 7A
173 7B
174 7C
175 7D
176 7E
177 7F
Oct Hex

E fotl w3 ol oY o OO O OV e g o U O Dy e R B B ' a]e] 2 meey ;p.;mg

128
129
130
131

132
133
134
135

136
137
138
139

140
141
142
143

144
145
146
147

148
149
150
151

152
153
154
155

156
157
158
159
Dec

Oca Hex
200 80
201 81
202 82
203 83
204 84
205 85
206 86
207 87
210 88
211 89
212 S8A
213 8B
214 8C
215 8D
216 8E
217 8F
220 90
221 91
222 92
223 93
224 94
225 95
226 96
227 97
230 98
231 99
232 9A
233 9B
234 9C
235 9D
236 9E
237 O9F
Oct Hex

V2O @ mA.e [T o—i-g

Ee;ﬂ Do w—ad MouF+ wWIAHSE Qo

Dec Oct Hex

160
161
162
163

164
165
166
167

168
169
170
171

172
173
174
175

176
177
178
179

180
181
182
183

184
185
186
187

188
189
190
191

240
241
242
243

244
245
246
247

250
251
252
253

254
255
256
257

260
261
262
263

264
265
266
267

270
271
272
273

274
275
276
277

AQ
Al
A2
A3

A4
AS
Ab
A7

A8
A9
AA
AB

Dec Oct Hex

Dec Oa Hex

192
193
194
195

196
197
198
199

200
201
202
203

204
205
206
207

208
209
210
211

212
213
214
215

216
217
218
219

220
221
222
223

300
301
302
303

304
305
306
307
310
311

312
313

314

315
316
317

320
321
322
323

324
325
326
327

330
331
332
333

334
335
336
337

Co
c1
c2
C3
C4
Cs
C6
C7

cg
Cc9

CB
CcC
CE
CFE
D1

D3

D3
D7
D8

DA
DB

DC

DE

Dec Ot Hex

Lo [ij(:\Q:.' OO o lTh T b\m'>>§ M 'H‘E

Rw

Dec
224
225
226
227

228
229
230
231

232
233
234
235

236
237
238
239

240
241
242
243

244
245
246
247

248
249
250
251

252
253
254
255

O Hex
340 EO
341 E1
342 E2
343 E3

344 E4
345 ES
346 EG
347 E7

350 ES8
351 E9
352 EA
353 EB

354 EC
355 ED
356 EE
357 EF

360 FO
361 F1
362 F2
363 F3

364 F4
365 FS5S
366 F6
367 F7

370 F8
371 F9
372 FA
373 FB

374 FC
375 FD
376 FE
377 EBF
Oct Hex

Appendix E: ASCIl Table

E-3

Appendix F

APW C Compiler Error
Messages

The APW C Compiler can produce the following error messages:

QOut of room (too many vars).
Illegal character.

Illegal preprocessor command.
Error in include command.
Include level cannot be > 6.
Error opening include file.

Error in define,

Too many defines.

Too few params in macro call.
Too many params in macro call
Error in macro call,

Error in numerical constant.
Error in constant expression.
Error in struct or union def.
Error in declaration.

Error in parameter list.
Expected ;' missing,

Expected '} missing.

Expected "' missing.

Expected 'I' missing.

Error in function definition.
Expected '(" missing.

Illegal statement.

Expected 'while' missing.
Expected "' missing.

Error in goto statement.

Error in expression.

Not a legal storage class.
Redefining a union tag as a struct.
Redefining a struct tag as a union.
Argument must be integer.
Illegal initialization.

Expected {' missing.

Cannot initialize union.
Undefined Identifier: .

Array or pointer type expected before '['.
Left side of assignment not an lvaiue.

Array index must be integer type.
Argument for ™' must be pointer.

Arg before '.' must be union or struct Ivalue.
Arg before '->' must be pointer to struct or union.
Function type expected before '('.

Bit field longer than unsigned size.

Bit field for type other than unsigned.
Constant expression must be integer.
Case not in swilch statement.

Default not in switch statement.

More than one default for switch.

Illegal break.

Illegal continue.

Adding pointer to non-integer.
Subtracting pointer from non-pointer.
Subtracting pointers to things of different type.
Subtracting weird thing from a pointer.
Operand not a left value for operator.
Illegal union or struct usage.

Wrong number of initializers.

Address of register variable.

Can't define function here.

Syntax error in assembly code.

Invalid opcode.

Invalid addressing mode.

Expected comma missing.

Label not defined: .

‘else! without matching 'if’.

expected string missing.

Illegal operation size.

Undefined or improperly used field.
Structure or union can't contain self.

Auto vars or constants only with this address mode.
Error in line command.

No defines allowed in in-line assembly.
Error in #undef.

Pointers do not point to same type object.
Bad token.

Unexpected semicolon.

An ostrap must be of type function.
Multiply defined label: .

Too many local vanables.

Can't cast a non-lval into an array.
Declared argument .

String too long.

Syntax error in segment command.
Missing endif.

Missing close of comment.

Define recursively defined or too complex.
Error writing output file (Disk full?).

& before function or array name: ignored.
Bitfields not allowed in union.

Can't take the address of a bitfield.
Duplicate case in switch.

Can't pass a function as a parameter.

Zero or negative subscript.

newline in string or char constant.

void type not allowed in expression.

F-2 Appendix F: APW C Compiler Error Messages

Glossary

* (asterisk): A 32-bit pointer data type.

absolute code: Program code that must be loaded
at a specific address in memory and never moved.

absolute segment: A segment that can be loaded
only at one specific location in memory.
Compare with relocatable segment,

accumulator: The register in the 65C816
microprocessor of the Apple IIGS used for most
computations.

address: A number that specifies the location of a
single byte of memory. Addresses can be given as
decimal or hexadecimal integers. The Apple IIGS
has addresses ranging from 0 to 16,777,215 (in
decimal) or from $00 00 00 to $FF FF FF (in
hexadecimal). A complete address consists of a 4-
bit bank number (300 to $FF) followed by a 16-bit
address within that bank (500 00 to $FF FF).

advanced linker: The APW Linker running a file
of LinkEd commands.

Apple key: A modifier key on the Apple IIGS
keyboard, marked with an Apple icon. It performs
the same functions as the Open Apple key on
standard Apple II machines.

Apple II: A family of computers, including the
criginal Apple II, the Apple II Plus, the Apple Ile,
the Apple Iic, and the Apple IIGS.

AppleIIgs: A predefined constant identifying
C code written for the ApplellGS—in particular,
for APW C.

Apple IIGS Interface Libraries: A set of
interfaces that enable you to access toolbox
routines from C,

Apple IIGS Toolbox: An extensive set of routines
that facilitate writing desktop applications and
provide easy program access to many Apple IIGS
hardware and firmware features.

APW: A predefined constant identifying C code
written for the APW C Compiler as opposed to
another C compiler.

APW Linker: The linker supplied with APW,

APW Shell: The programming environment of the
Apple 1IGS Programmer’s Workshop. It lets you
edit programs, manipulate files, and execute
programs.

application: A program (such as the APW Shell
itself) that talks to ProDOS and the Toolbox
directly, and can be exited via the Quit call.

assembler: A program that produces object files
from source files written in assembly language.

automatic variable: A dynamic local variable
that comes into existence when a function is called
and that disappears when it is exited.

bank: A 64K (65,536-byte) portion of the

Apple 1IGS internal memory. An individual bank is
spedified by the value of one of the 65C816
microprocessor's bank registers.

buffer: An area of memory allocated for reading
from or writing to a file.

catalog: See directory.

carriage return character (\r): A control code
(ASCII 13) generated by the Return key; in APW C,
equal to newline (\n).

char: An 8-bit character data type whose range is
0 to 255; the same as unsigned charin
APW C.

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters—such as letters,
numbers, and punctuation—can be displayed on
the monitor screen and printed on a printer. Most
characters are represented in the computer as
1-byte values.

GL-1

code segment: An object segment that consists
mainly of code. Code segments are provided for
programs that differientiate between code and
data segments.

command: In the Standard C Library, a
parameter that tells a function which of several
actions to perform; in the APW Shell, a word that
tells APW which utility to execute.

command interpreter: A program that
interprets and executes commands; specifically,
the APW shell.

comp: A 64-bit SANE data type with signed
integral values and one NaN.

compiler: A program that produces object files
from source files written in a high-level language
such as C.

conditional compilation: Use of preprocessor
commands (#if, #ifdef, #ifndef, #else,
#endif) to vary the output depending on
compile-time conditions.

C SANE Library: A set of routines that provide
extended-precision mathematical funcrions.

current language: The APW language type that is
assigned to a file opened by the APW Editor. If an
existing file is opened, the current language
changes to maich that of the file.

current prefix: The prefix that is used by the
APW Shell if a partial pathname is used.

data segment: An object segment that consists
primarily of data. Data segments are provided for
programs that differentiate between code and data
segments.

debugger: A shell utility that lets you step through
a program and examine memory as you go.

denormalized number: A nonzero number that
is too small for normalized representation.

desk accessory: A program that is accessed from
the Apple menu and shares its run-time
environment with an application, a utility, or
another desk accessory.

desktop user interface: The visual interface
between the computer and the user—the menu bar
and the gray (or solid-colored) area on the

screen. In many applications the user can have a
number of documents on the desktop at the same
time.

GL-2 Glossary

diagnostic output; A file used to report errors
and diagnostic information; generally merged
with standard output, but can be redirected; in
APW C, synonymous with standard error.

directory: A file that contains a list of the names
and locations of other files stored on a disk.
Directories are either volume directories or
subdirectories. A directory is sometimes called a
catalog.

direct page: A page (256 bytes) of bank $00 of
Apple [IGS memory, any part of which can be
addressed with a short (1 byte) address because its
high address byte is always $00 and its middle
address byte is the value of the 65C816 processor’s
direct register. Coresident programs or routines
can have their own direct pages at different
locations. The direct page corresponds to the 6502
processor’s zero page. The term direct page is
often used informally to refer to the lower portion
of the direct-page/stack space.

direct-page/stack space: A portion of bank $00
of Apple 1IGS memory reserved for a program’s
direct page and stack. Initially, the 65C816
processor’s direct register contains the base
address of the space, and its stack register
contains the highest address. In use, the stack
grows downward from the top of the direct-
page/stack space, and the lower part of the space
contains direct-page data.

direct register: A hardware register in the 65C816
processor that specifies the start of the direct page.

dispose: To deallocate a memory block
permanently, The Memory Manager disposes of a
memory block by removing its master pointer.
Any handle to that pointer will then be invalid.
Compare with purge.

double: A 64-bit floating-point data type with
IEEE double precision.

dynamic segment: A segment that can be
loaded and unloaded during execution as needed.
Compare with static segment.

editor: A shell utility for editing source files.

enum: An enumerated data type of 8, 16, or 32
bits depending on the range of the enumerated
literals.

environment: In SANE, consists of rounding
direction, rounding precision, exception flags,
and halt settings; in APW, consists of exported
vadables and other features of the Integrated
Environment.

eveat: A notification to an application of some
occurrence (such as an interrupt generated by a
keypress or mouse dlick) to which the application
may want to respond.

event-driven program: A kind of program that
responds to user inputs in real time by repeatedly
testing for events. An event-driven program does
nothing until it detects an event.

exception: A condition in the SANE environment
that can cause a program halt

Exec file: A file containing APW commands that
are executed as if typed on the keyboard.

exit function: A function that is registered with
onexit for execution when the program
terminates.

extended: An 80-bit floating-point data type
with IEEE extended precision; used in C for all
intermediate results.

external reference: A reference to a symbol that
is defined in another segment. External references
must be to global symbols.

fatal error: An error serious enough that the
computer must halt execution.

field: A string of ASCII characters or a value that
has a specific meaning to some program. Fields
may be of fixed length, or may be separated from
other fields by field delimiters. For example, each
parameter in a segment header constitutes a field.

file-buffered: A buffer style in which characters
sent to an output I/O function are queued and
written as a block.

file descriptor: A file reference number returned
by a creat or open call.

filename: The string of characters that identifies a
particular file within a disk directory. ProDOS 16
filenames can be up to 15 characters long, and can
specify directory files, subdirectory files, text files,
source files, object files, load files, or any other
ProODS 16 file type. Compare with pathname.

file pointer: A pointer to the next byte 10 be read
or wrilten in a stream.,

file type: An attribute in 2 ProDOS 16 file’s
directory entry that characterizes the contents of
the file and indicates how the file may be used. On
disk, filetypes are stored as numbers; in a
directory listing, they are often displayed as three-
character mnemonic codes.

FILE variable: A variable containing information
about a stream, including the file descriptor and
buffer size, location, and style.

£loat: A 32-bit floating-point data type with
1EEE single precision.

flush: Write out the contents of a buffer.

format character: A character that defines the
interpretation of the input field in the scanf call.

full pathname: The complete name by which a
file is specified. A full pathname always begins
with a slash (/) because a volume directory name
always begins with a slash. See pathname.

function: In C, any subroutine, whether or not it
returns 4 value. Equivalent to the Pascal word
procedure; the Pascal word function means a
subroutine that returns a value.

global label: A symbolic ideatifier in an object
segment, which the linker enters into the
relocation dictionaly and the loader replaces with
an absolute address.

global symbol: A label in a code segment that is
either the name of the segment or an entry point to
it. Global symbols may be referenced by other
segments. Compare with local symbol

handle: See memory handle.

header file: A file whose contents will be included
in the source file at compile time—it ¢contains
function declarations, macros, types, and
#define directives used by the compiler. (Also
called an include file)

hexadecimal: The base-16 system of numbers,
using the ten digits 0 through 9 and the six letters A
through F. Hexadecimal numbers can be
converted easily and directly to binary form,
because each hexadecimal digit corresponds to a
sequence of 4 bits. In C manuals hexadecimal
numbers are usually preceded by a 0x.

high-level language: A programming language
that is relatively easy for people 10 understand. A
single statement in a high-level language typically
corresponds to several instructions of machine
language. Compare low-level language.

Glossary GL-3

image: A representation of the contents of
memory. A code image consists of machine-
language instructions or data that may be loaded
unchanged into memory.

include file: A file whose contents will be included
with the source file at compile time—it contains
function declarations, macros, types, and
#define directives used by the compiler.

infinity: A SANE representation of mathe-
matical ee.

int: A 16-bit integer data type whose range is
32,768 to 32,767.

interface: The compile-time and run-time
linkage between your C program and toolbox
routines.

Jump Table: A table contructed in memory by
the System Loader from all Jump Table segments
encountered during a load. The Jump Table
contains all references to dynamic segments that
may be called during execution of the program.

K: 1024 bytes

language.command: A command that changes
the APW current language.

library dictionary segment: The first segment
of a library file; it contains a list of all the symbols
in the file together with their locations in the file.
The linker uses the library dictionary segment to
find the segments it needs.

library file: A file produced by MAKELIB
program {rom object files, generally ones
containing functions useful o a number of
programs. It can be searched by the linker for
necessary functions, but more quickly than an
object file.

line-buffered: A buffer style in which each line
of output is queued for writing as soon as a newline
character is written.

LinkEd: A command language that can be used to
control the APW Linker.

linker: A program that combines files generated
by compilers and assemblers, resolves all
symbolic references, and generates a file that can
be loaded into memeoery and executed.

load file: A file that can be loaded into memory,
one load segment at a time, by the System Loader.

GL-4 Glossary

load segment: A part of a load file
corresponding (in C) to one or more functions.
Object segments are assigned 1o load segments
at compile time by means of the overlay
command or at link-time by LinkEd commands.

local symbol: A label defined only within an
individual segment. Other segments cannot access
the label. Compare with global symbol

long: A 32-bit integer data type whose range is
-2,147,483,648 1o 2,147,483,647.

loop: A section of a program that is executed
repeatedly until a limit or condition is mer, such as
an index variable’s reaching a specified ending
value,

low-level language: A programming language,
such as assembly language, thar is relatively close
to the form the computer's processor can execute
directly. One statement in a low-level language
corresponds o a single machine-language
instruction. Compare high-level language.

main: The name of the function that is the entry
point for every C program.

main segment: The first segment in the initial
load file of a program. It is loaded first and never
removed from memory until the program
terminates.

MakeLib utility: A program that creates library
files from objecr files.

Mark: The current position in an open file, It is the
point in the file at which the next read or write
operation will occur.

memory block: See block.

memory handle: The identifying number of a
particular block of memory. A memory handle is a
pointer to a master pointer to the memory block.

memory image: A portion of a disk file or
segment that can be read directly into memory.

Memory Manager: A program in the Apple IIGS
Toolbox that manages memory use. The Memory
Manager keeps track of how much memory is
available, and allocates memory blocks to hold
program segments or data.

memory-resident: (adj) (1) Stored permanently
in memory as firmware (ROM). (2) Held
continually in memory even while not in use. For
example, ProDOS is a memory-resident program.

Memory Segment Table: A linked list in
memory, created by the loader, that allows the
loader to keep track of the segments that have been
loaded into memory.

movable: A memory block atribute, indicating
that the Memory Manager is free to move the
block; opposite of fixed. Only position-
independent program segments may be in
movable memory blocks. A block is made
movable or fixed through Memory Manager calls.

NaN: Not a Number; a SANE representation
produced when an operation cannot yield a
meaningful result.

native mode: The 16-bit operating state of the
65C816 processor.

newline character (\n): A control code that
advances print position or cursor to the left
margin of next output line; in APW C, same as
carriage return (\x).

normalized number: A floating-point number
that can be represented with a leading significand
bit of 1.

number class: [n SANE, a floating-point number
can be characterized as either zero, normalized,
denormalized, infinity, or NaN.

numeric environment: In SANE, the rounding
direction, rounding precision, halt enables, and
exception flags.

object segment: A part of an object file
corresponding (in C) to a single function.

object file: The output from an assembler or
compiler and the input 1o the linker. In APW, an
object file contains both machine-language
instructions and instructions for the linker.
Compare with load file.

object module format (OMF): The general
format used in object fiies, library files, and load
files.

object segment: A segment in an object file.
OMEF: Object module format.)
OMF file: Any file in object module format.

page: (1) A portion of Apple IIGS memory that is
256 bytes long and that begins at an address that is
an even multiple of 256. A memory block whose
starting address is an even multiple of 256 is said to
be page aligned. (2) An area of main memory
containing text or graphical information being
displayed on the screen.

parameter: A value passed to or from a
command, function, or other routine.

Pascal-style function: A function using Pascal-
style calling conventions that can be declared in C
using the pascal specifier.

partial assembly: A procedure whereby only
specific segments of a program are assembled. If
you have performed one full assembly followed by
one or more partial assemblies on a program, the
linker extracts only the latest version of each
object segment to be included in the load file.

partial compile: A procedure whereby only
specific segments of a program are compiled. If
you have performed one full assembly followed by
one or more partial compiles on a program, the
linker extracts only the latest version of each
object segment to be included in the load file.

partial pathname: A pathname that indudes
the filename of the desired file but excludes the
volume directory name (and possibly one or more
of the subdirectories in the path). It is the part of a
pathname following a prefix—a prefix and a
partial pathname together constitute a full
pathname, A partial pathname does not begin
with a slash because it has no volume directory
name.

patch: To replace one or more bytes in memory
or in a file with other values. The address to which
the program must jump to execute a subroutine is
patched into memory at load-time when a file is
relocated.

pathname: The full name of a file, including its
volume name and directory names.

pointer: A memory address at which a particular
item of information is located. For example, the
65C816 Stack register conltains a pointer to the next
available location on the stack.

position-independent: Code that is written
specifically so that its execution is unaffected bv its
position in memory. It can be moved without
needing 1o be relocated.

Glossary GL-5

position-independent segment: A load
segment that is movable when loaded in memory.

prefix: A portion of a pathname starting with a
volume name and ending with a subdirectory
name, It is the part of a full pathname that
precedes a partial pathname—a prefix and a
partial pathname together constitute a full
pathname. A prefix always starts with a slash (/)
because a volume directory name always starts with
a slash.

preprocessor: Part of the C compiler that
provides file inclusion, macro substitution, and
conditional compilation.

preprocessor symbol: One of a set of constants
defined to be 1, equivalent to writing “#define
symbol 1° at the beginning of the source file.

ProDOS: A family of disk operating systems
developed for the Apple II family of computers.
ProDOS stands for Professional Disk Operating
System, and includes both ProDOS 8 and ProDOS
16.

ProDOS 8: A disk operating system developed
for standard Apple II computers. It runs on 6502-
series microprocessors. It also runs on the

Apple IGS when the 65C816 processor is in 6502
emulation mode.

ProDOS 16: A disk operating system
developed for 65C816 native mode operation on
the Apple IIGS. It is functionally similar to
ProDOS 8 but more powerful.

purge: To deallocate a memory block
temporarily. The Memory Manager purges a block
by setting its master pointer to 0. All handles to the
pointer are still valid, so the block can be
reconstructed quickly. Compare with dispose.

purgeable: A memory block attribute, indicating
that the Memory Manager may purge the block if it
needs additional memory space. Purgeable blocks
have different purge levels, or priorities for
purging; these levels are set by Memory Manager
calls.

RAM Disk: A portion of memory (RAM) that
appears to the operating system to be a disk
volume, Files in a RAM disk can be accessed much
faster than the same files on a floppy disk or hard
disk.

GL-6 Glossary

register variable: An automatic variable —
that is allocated to a register; not used by APW C

Compiler because the 65C816 has only a few

registers.

relocate: To modify a file or segment at load time
so that it will execute correctly at the location in
memory at which it is loaded. Relocation consists
of patching the proper values into address
operands. The loader relocates load segments
when it loads them into memory. See also
relocatable code.

relocatable code: Program code that includes no
absolute addresses, and so c¢an be relocated at
load time.

relocatable segment: A segment that can be
loaded at any location in memory. A relocatable
segment can be static, dynamic, or position
independent. A load segment contains a
relocation dictionary that is used to recalculate
the values of location-dependent addresses and
operands when the segment is loaded into
memory. Compare with absolute segment.

relocation dictionary: A portion of a load
segment that contains relocation information
necessary to maodify the memory image
immediately preceding it. When the memory
image part of the segment is loaded into memory,
the relocation dictionary is processed by the
loader to calculate the values of location-
dependent addresses and operands. Relocation
dictionaries also contain the information
necessary to transfer control to external
references.

reference: The name of a segment or entry point
to 4 segment; same as symbolic reference; to reler
to a symbolic reference or to use one in an
expression or as an address.

resolve: To find the segment and offset in a
segment at which a symbolic reference is defined.
When the linker resolves a reference it creates an
entry in a relocation dictionary that allows the
loader to relocate the reference at load time.

root filename: The filename of an object file
minus any filename exiensions added by the
assembler or compiler. For example, a program
that consists of the object files MYPROG . ROOT,
MYPROG. A, and MYPROG. B has the root filename
MYPROG.

run-time library file: A load file containing
program segments—each of which can be used in
any number of programs--that the system loader
loads dynamically when they are needed.

scanset: A set of characters allowed in a file
scanned by the scanf call.

segment: A component of an OMF file,
consisting of a header and a body. In object files,
each segment incorporates one or more
subroutines. In load files, each segment
incorporates one or more object segments.

segment body: That part of a segment that
follows the segment header, and that contains
the program code, data, and relocation
information for the segment.

segment header: The first part of a program
segment, containing such information as the
segment name and the length of the segment.

segment kind: See segment type.

segment number: A number corresponding to
the relative position of the segment in a file,
starting with 1.

segment type: A classification of a segment
based on its purpose, contents, and internal
structure, as defined in the object module format.
The segment type is specified by the KIND field in
the segment header.

shell: A program that provides an operating
environment for other programs, and that is not
removed from memory when the those programs
are running. For example, the APW Shell provides
a command processor interface between the user
and the other components of APW, and remains
in memory when APW utility programs are
running.

shell call: A request from a program (o the APW
Shell to perform a specific function.

shell application: A type of program, such as a
compiler or shell command, that runs under the
APW Shell; called a tool in MPW.

shell load file: A load file designed to be run
under a shell program,; shell load files are ProDOS
16 file type $BS.

short: A 16-bit integer data type whose range is
-32,768 1o 32,767.

signal: A soltware interrupt that causes a program
to be temporarly diverted from its normal
execution sequence.

65C816: The microprocessor used in the
Apple 11Gs.

source file: An ASCII file consisting of
instructions written in a particular language, such
as C or assembly language. An assembler or
compiler converts source files into object files.

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top of
the stack), causing them to be removed in last-in,
first-out (LIFO) order. The term the stack usually
refers to the top portion of the direct-page/stack
space; the top of this stack is pointed to by the
65C816's Stack register.

Standard C: A de facto standard based on the
most widely used implementation, the Berkleley
VAX Portable C Compiler.

Standard C Library: A collection of routines for
1/O, string manipulation, data conversion,
memory management, and Integrated
Environment support.

standard error: A file used to report errors and
diagnostic information; generally merged with
standard output, but can be redirected; in
APW C, synonymous with diagnostic output.

standard input: The standard input stream;
generally the keyboard, but can be redirected so
that input is taken from a file or device.

standard linker: The APW Linker called directly
by a shell command like LINK.

standard output: The standard output stream,
generally the screen but can be redirected so that
input is sent to a file or device.

static segment: A segment that is loaded at
program boot-time, and is not unloaded or
moved during execution. Compare with dynamic
segment.

stream: A file with associated buffering.

string: An item of information consisting of a
sequence of text characters (a character string), or
a sequence of bits or bytes.

struct: A record data type.

subdirectory: A directory within a directory; a
file (other than the volume directory) thart
contains the names and locations of other files.
Every ProDOS 16 directory file is either a volume
directory or 2 subdirectory.

Glossary GL-7

symbol: A character or string of characters that
represents an address or numeric value; 2
symbolic reference or a variable.

symbolic reference: A name or label that is used
to refer to a location in a program, such as the
name of a subroutine. When a program is linked,
all symbolic references are resolved; when the
program is loaded, actual memory addresses are
patched into the program to replace the symbolic
references.

symbol table: A table of symbolic references
created by the linker when it links a program. The
linker uses the symbol table to keep track of which
symbols have been resolved. At the conclusion of
a link, you can have the linker print out the symbol
table.

System Loader: The program that relocates load
segments and loads them into Apple IIGS

memory. The System Loader works closely with
ProDOS 16 and the Memory Manager.

system program: (1) A software component of a
computer system that supports application
programs by managing system resources such as
memory and I/O devices. Also called system
software. (2) Under ProDOS 8, a stand-alone and
potentially self-booting application. A ProDOS 8
system program is of file type $FF; if it is self-
booting, its filename has the extension .SYSTEM.

token: The smallest unit of information processed
by a compiler or assembler. In C, for example, a
function name and a left bracket ([) are tokens.

tool: An Apple IIGS Toolbox routine.

toolbox: A collection of built-in routines on the
Apple 1IGS that programs can call to perform
many commonly needed functions. Functions
within the toolbox are grouped into tool sets.

tool set: A related group of (usually firmware)
routines, available to applications and system
software, that perform necessary functions or
provide programming convenience. The Memory
Manager, the System Loader, and Quickdraw I are
tool sets.

utility: In general, an application program that
performs a relatively simple function or set of
functions, such as copying or deleting files. An
APW utility is a program that runs under the APW
Shell, and that performs a function not handled by
the shell itself. MAKELIB is an example of 2 APW
utility.

GL-8 Glossary

unbuffered: A buffer style that does not use a
buffer for I/O; reading and writing is done one
character at a time.

unload: To remove a load segment from memory.
To unload a segment, the System Loader does not
actually “unload” anything; it calls the Memory
Manager to either purge or dispose of the
memory block in which the code segment resides.
The loader then modifies the Memory Segment
Table to reflect the fact that the segment is no
longer in memory.

unordered: The result of a2 comparison with a
NaN; even identical NaNs compare unordered.

unsigned char: An 8-bit character data type

. whose range is 0 t0 253; the same as chaz in

APW C,

unsigned int: A 16-bit integer data type
whose range is 0 to 65,535.

unsigned long: A 32-bit integer data type
whose range is 0 to 4,294,967,295.

unsigned short: A 16-bit integer data type
whose range is 0 to 65,535.

void: A data type used to declare a function that
does not return a value.

volume: An item that stores data; the source or
destination of information. A volume has a name
and a volume directory with the same name.
Volumes typically reside in devices; a device such
as a floppy-disk drive may contain one of any
number of volumes (disks).

volume directory: The main directory file of a
volume. It contains the names and locations of
other files on the volume, any of which may
themselves be directory files (called
subdirectories). The name of the volume
directory is the name of the volume. The
pathname of every file on the volume starts with
the volume directory name.

wildcard character; A character that may be used
as shorthand to represent a sequence of characters
in a pathname. In APW, the equal sign (=) and the
question mark (?) can be used as wildcard
characters.

word: A group of bits that is treated as a unit. For
the Apple IIGS, a word is 16 bits (2 bytes) long.

WD65816: A predefined symbol identifying C
code written to run on the Western Design Center
65SC816 as opposed to another microprocessor.

zerQ page: The first page (256 bytes) of memory
in a standard Apple II computer (or in the

Apple IIGS computer when running a standard
Apple 1T program). Because the high-order byte of
any address in this part of memory is zero, only a
single byte is needed to specify a zero-page
address. Compare direct page.

Glossary

GL-9

A
abs 5-5
absolute code 1-7
acos 5-61
advanced linker 1-3
ALINK 6-6
app 6-11
append 6-11
fappend 4-23
appending files 2-16
Applellacs 4-6
Apple IIGs, technical
manuals ix—xiii
Apple 1iGs Debugger 1-16
Apple 1IGs Programmer’s
Workshop. See APW
Apple llgs Toolbox xi, 1-2, 1-17,
4-12
APW 4-6
APW Assembler 1-15, 1-16, 2-12,
2-17, 3-5, 4-9-12
APW C 1-3-4
assignment operators 4-22
bit fields 4-21
calling conventions A-1-2
dynamic segments 1-12-13
evaluation order 4-21
files supplied B-1-2
implementations 4-19-25
installing 2-2-3
libraries 1-17
library files 1-13
MPW C compared C-1-3
numeric constants 4-3
parameters 4-16-18
Pascal-compatible function
declarations C-2
Pascal-style functions 4-12-16
program interactions 1-14-16
program segmentation 1-8-12
register variables 4-5
relocatable load files 1-6-7
reserved symbols 4-6
running on 3-5-inch disks 2-3-4

index

SANE extensions 4-6-9
string substitutions 4-21
structures 4-5
variable names 4-2-3
writing desk accessories 3-8-10
APW C Compiler 1-16, 2-1-18,
4-19
compilation process 2-5
error messages 2-6, F-1-2
limitations 4-22
shell commands 2-6-17
suspending/aborting
compilation 2-6
variable allocation 4-19
APW C disk, backing up 2-2
APW Editor 1-3, 1-15, 2-9, 2-10,
3-2, 3-5, 64, 6-6
APW Linker 1-3, 1-7, 1-16, 2-14,
3-3, 3-6, 65
APW Shell xii, 1-2, 1-15, 1-17,
5-15, 5-28, 5-46
calls 6-1-12
command interpreter 2-8
arg 5-17, 5-19, 5-31, 5-39, 5-40,
5-41
arge 4-23
argv 4-23
array indexing 4-19-20
~arrays 1-9-10, 1-12, 4-25
ASCIl table E-1-3
asin 5-61
ASM63816 1-15-16
ASML 2-7, 64, 6-6
ASMLG 2-7
ASSEMBLE 2-10
assembly code, in-line 4-9-12
assignment operators 4-22
asterisk (=) 5-39, 547
atan 5-61
atan2 5-61
atef 5-6
atei 5-7
atoi 5-60
atol 5-60
auto 4-10, 4-23

B
base 5-44, 5-60
blank 5$-40

buf 5-46, 5-64
buffer initialization 5-56
BUFSIZ $5-51, 5-56

[

cc 1-15, 2-6, 2-9

C compiler xiii. See also APW C
Compiler

ceil (x} 5-21

cfree 5-35

CHANGE 2-6, 2-9

circumflex (°) 5-49

classic desk accessories 3-8

clearerr 5-20, 5-55

CLIB 4-6, 4-8, 4-13, 6-2

cleose 5-8, 5-18

emd 5-17, 5-19

cMeL 2-7, 2-9, 3-3

cMPLG 1-16, 2-7, 2-9, 2-15

code 2-17

code-generation memory model
4-24-25

code segments, relocatable 1-6-7

comm 6-10

command interpreter 1-2

APW Shell 2-8

comp 4-7, 4-8, 4-9, 5-40, 5-41,
A-1

COMPACT 3-2, 3-7

compar 5-44

COMPILZ 2-5, 2-7, 2-10-13, 2-16,
3-2

Control Panel 3-8

conv 5-9

ces S5-61

cosh 5-54

creat 5-10, 5-55, 5-64

CRUNCH 1-16

¢2pstr 5-59

ctype 5-11-12

current language 1-15, 3-3

current prefix 2-3

IN-1

D
data 2-17
data segments 1-9
data types
APW C 4-2-3
global and extended 4-16
MPW C C-1
parameter and result 4-15-16
decpt 5-14
Desk Manager 3-8, 3-9
Desktop Bus xii
desktop user interface xii
dest 5-36
deststr 5-58, 5-59
device 6-11
dfile 64, 6-5
direct 6-11
DIRECTION 6-2, 6-11
double 4-7, 4-8, 4-9, 5-40, 5-41,
A-1
double period (..) 5-38, 68
DrawText 4-13
dup 5-13, 5-55, 5-64
dynamic 1-13, 4-23
dynamic segments 1-12-13, 2-17

E

EACCES 5-3

EBADF 5-3

EBUSY 5-3

ecvt S-14

EDIT 2-6, 2-13, 69

editor 1-2

EEXIST S4

EFAULT 5-3

EINVAL S-4, 5-31, 5-32

EIO 5-3

elsize 5-35, 5-44

EMFILE 54

ENFILE 54

ENCDEV 54

ENCENT 5-3

ENOMEM 5-3

ENOSPC 54

ENOTIDIR 54

enum 4-4-5

enumeration types 4-4-5

env 5-53

environment 5-28

INXIC 5-3

equal sign (=) 6-9

ZROF3S 5-4

errno 5-3, 5-4, 5-31, 5-32, 5-38,
5-46, 5-63, 5-64

ERROR 6-2, 6-7

error messages, APW C
Compiler 2-6, F-1-2

STXTBSY 54

event-driven program Xi

IN-2 Index

EXECUTE 6-2, 6-3, 6-10

exit 5-15, 5-37, 5-57

exit () 4-23

exp 5-16

exp (x) 5-16

extended 4-7, 4-8, 4-9, 540,
541, A-1

F

fabs (x) 5-21

faccess 5-17

fclose 5-57

fcntl 5-19, 5-55, 5-64

fevt 5-14

fdopen 5-18, 5-23, 5-55, 5-56

feof 5-20, 5-27, 5-55

ferror 5-20, 5-27, 5-55

fflush 5-18

fgete 5-27, 5-55

fgets 5-29, 5-55

fildes 5-8, 5-13, 5-19, 5-31,
5-33, 5-46, 5-64

file 68, 6-9, 6-11

FILE 5-56, 5-57

~_FILE__ 4-6

filename 5-22-23, 5-23, 5-38

filenc 5-20, 5-55

findChars §-59

FIOBUFSIZE 5-31, 5-32, 5-56

FIODUPFD 5-32

FIOGETEOQOF 5-31

FIOGETMARK 5-31

FIOINTERACTIVE 5-31, 5-32, 5-56

FIOLSEEK 5-32

FIOREFNUM 5-31, 5-32

FICSETECF 5-31

FIOSETMARK 95-31

flag 6-10

flags 6-9

float 4-7, 4-8, 4-9, 5-40, 5-41,
A-1

floor S-21

fmod 5-21

fopen 5-22-23, 5-55, 5-56

format 5-39, 547

format characters 5-47-49

fprintf 5-39, 541, 5-55

fputc 5-42, 5-55

fputs 5-43, 5-55

fread 5-2, 5-24, 5-46, 5-55

free 5-34

freopen 5-18, 5-23, 5-55, 5-56

frexp 5-25

fscanf 5-47, 5-50, 5-55

fseek 5-23, 5-26

frell 5-26

fune S$-37

function 1-8

fwrite 5-2, 5-24, 5-55

G

getc 5-27, 5-55, 5-62
getchar 5-27, 5-55
getenv 5-28

GET_LANG 6-2, 6-6
GET_LINFO 6-2, 6-3-6
GetLInfoPB 6-3, 64
gets 5-29, 5-55
GET_VAR 6-2, 6-7, 6-9-10
getw 5-27, 5-55

global labels 2-5
~globals 1-9-10, 1-12, 4-25
global symbols 1-13

H
header file 16
hypot 5-30

1, J

include file 1-6
include-file search rules 2-18
index 5-59, 6-8
INIT_WILDCARD 6-2, 6-8-9
inline 4-13

/O buffering 5-55-57
ioctl 5-31-32
isalnum 5-11
isalpha 5-11
isascii 5-11
iscntrl 5-11
isdigit $-11
isgraph 5-11
islower 5-11
isprint 5-11
ispunct 5-11
isspace 5-11
istring 64
isupper 5-11
isxdigit 5-11

K
kflag 6-S

L

labels 4-11

lang 6-6

ldexp 5-25

left bracket ([) 5-48

library dictionary segment 1-13

library files 1-4, 1-13, 2-17, 2-18
object files and 1-14

Library Index D-1-3

__LINE__ 4-6

LINK 2-5, 2-7, 2-10, 2-14-15, 32-2,

3-6
LinkEd 1-9, 1-10, 2-10, 2-17, 6-5
LINKED 1-16

" linker 1-2, 1-3, 2-17

LinkName 2-14

lmalloc 5-34

load files 14, 1-6
compact 3-7
creating 3-6
relocatable 1-6-7

load segments 1-4
assigning 1-10
object segments and 1-11

local symbol 1-13

log 5-16

logl0 5-16

LOGIN 2-4

long 5-60

longimp 5-53

lops 6-5

lseek 5-33

M

MacGen 1-15

MAIN 2-5

main 4-23

MakeLib 1-13, 2-17

malloc 5-34-35

memccpy 5-36

memchr $-36

memcmp $-36

memory images 1-7

Memory Manager 1-5, 1-7, 1-12,
1-16, 69

memory segment table 1-16

memset 5-36

merr 64

merrf 6-4

metasymbols 4-10

mflags 6-5, 6-6

minus sign (-) 5-7

modf 5-25

Monitor Xii

MPW C

APW C compared C-1-3
Pascal-compatible function
declarations C-2

N

NaNs 4-6, 4-7, 4-8, 3-6, 5-16,
5-21, 5-48, 5-61

native mode 1-4

nbyte 5-64

ndigit 5-14

nelem 5-35, 5-44

new desk accessories 3-8-10

NewHandle $5-34

nextflle 6-9

NEXT WILDCARD 6-2, 6-8, 6-9

nicems 5-24

null character (\Q) 5-29, 5-39,
5-48, 5-59

numeric constants, APW C 4-3

numeric environment 4-8

o
object code, compiling and
assembling 3-5

object files 1-3, 14, 1-6
library files and 1-14
linking 3-6

object module format 1-4

object segments 1-8-9
creating 1-9
load segments and 1-11

ochar 6-12

offset 5-26, 5-33

oflag 5-38

onexit 5-37

opcodes 4-10

open 5-38, 5-55, 5-64

org 66

P
parms 64
partial compilation 19
pascal 4-12, 4-13, A-2
Pascal
APW C and 4-12-18
enumeration types 4-4
percent character (%) 5-39, 541,
5-47
period (.) 5-39
pflags 6-5
plus sign (+) 5-7
pointer 5-47, 5-50
pow 5-16
printf 4-8, 5-39-41, 5-55
Print Manager 3-9
ProDOQS 1-17
ProDOS 8 xiii
ProDOS 16 xiii, 1-2, 2-11, 4-24,
6-4, 6-8, 6-9, 6-11
programs
compiling and linking 2-7
event-driven xi
running 3-7
p2cstr 5-59
putc 5-41, 542, 5-55
putchar 5-42, 5-55
zuts 5-43, 5-55
putw 5-42, 5-55

Q

gflag 4-24

gsort S5-44
question mark (2) 6-9
QUIT 4-24

R

rand 5-45

READ_INDEXED 6-2, 67, 68
realloc 5-35

REDIRECT 6-2, 6-11
register 4-5

register variables, APW C 4-5
relocatable code segments 1-7
relocatable load files 1-6-7
relocation dictionaries 1-7
RENAME 69

reserved symbols 4-6
rewind 5-23, 5-26

right bracket (1) 5-49
rindex 5-59

RUN 2-7, 2-15-16

S
SANE xiii, 14

APW C and 4-6-9
scanf 5-47-50, 5-55
scanset 5-48—49
segment 1-13, 4-23
segment body 1-11
segment header 1-11
segments 1-7. See also specific

type
semicolon (;) 4-11, 6-10
setbuf 5-51-52, 5-56
set jmp 5-53
SET_LANG 6-2, 66
SET_LINFO 6-2, 6-3-6
SET_MARK 5-32
SET_VAR 6-2, 6-7, 6-9
setvbuf 5-51, 5-52, 5-55, 5-56
sfile 6-4
shell 1-2
SHELL-C 6-3
shell calls 6-1-12
shell commands 2-6-17
sin 5-61
sinh 5-54
65816 compiler xiii
C65C816, byte ordering 4-19
size 5-51, 5-52
sizeof 5-24
sizeof S5-44
skipChars 5-59
source 5-36
source code, writing and editing
3-3-4

source files 16

editing 26
spanChars 5-59
sprintf 5-39, 5-41
sgrt{x) 5-16
srand 5-45
srcStr 5-58, 5-59
sscanf 5-47, 5-50
StandAlone 4-24

Index IN-3

Standard Apple Numeric
Environment. See SANE

Standard C Library 1-17, 5-1-64,
5-51, 5-59

error numbers 5-3—4

Standard I/O Package $5-15, 5-37,
5-55, 5-57

standard linker 1-3

START-ROCT 4-23

static 4-10

static segments 1-13, 2-17

stderr 5-55, 5-56

stdin 5-27, 5-29, 547

stdio 5-55-57

stdIo-h 5-51, 5-55, 5-57

stdout 5-39, 5-55

sToP 6-2, 6-12

str 5-7

strcat 95-58

strchr 5-59

stremp 5-58, 5-59

strepy 5-58, 5-59

strespn 5-59

stream 5-18, 5-23, 5-24, 5-39,
5-42, 5-43, 547, 5-62

strlen 5-59

strncar 5-58

strnemp 5-58, 5-59

strncpy 5-58, 5-59

strpbrk 5-59

strrchr 5-59

strspn 5-59

strtok $-59

strtol 5-60

switech C-3

symbolic reference 1-6

System Loader 1-3, 1-5, 1-7, 1-12,

1-16

IN-4 Index

T

tan 5-61

tanh 5-54
tell 5-33
toascii 5-9
tokensStr 5-59
telower S5-9
_toolErr 4-13, 54, 67
Tool-Locator. C-2
toupper 5-9
trig 5-61
type 5-51

u

ungete S5-62

unlink 5-63
unsigned 4-23
unsigned char 4-21
unsigned long 4-21
unsigned short 4-21

v

val 5-53

value 5-14, 6-7, 6-8
variable names, APW C 4-2-3
varname $5-28, 6-7, 6-8, 6-10
VERSION 6-2, 6-7

void 4-3, 4-19

W, XY 2

WD63816 4-6

whence 5-33

white-space characters 547, 5-48
wildcard characters 6-8, 6-9
write 5-64

WRITE_CONSCLE 6-2, 6-12

