
APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

~~'­
~~ ' A Apple IIGS .. ~r Programmer's

..... Workshop C -.
Version 1.0

K2S002

• .QI) Apple IIGS Programmer's
Workshop C Reference

• APPLE COMPtITER, INC.

TItis manual and the software
described in it are copyrighted,
with all rights reserved Under
the copyright laws, this manual
or the software may not be
copied, in whole or part. without
wrillen consent of Apple, except
in the normal use of the software
or to make a backup copy of the
software. The same proprietary
and copyright notices must be
afflXed to any permitted copies
as were afflXed to the original.
This exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with all
backup copies) may be sold,
given, or loaned to another
person. Under the law, copying
includes translating into another
language or format.

Yau may use the software on any
computer owned by you, but
exua copies cannot be made for
this purpQse.

© Apple Computer, Inc.,
1985-88
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

© AT&T, 1985

Apple, the Apple logo,
Apple IIGS, LaserWriter,
Macintosh, and ProDOS are
registered trademarks of Apple
Computer, Inc.

SANE is a trademark of Apple
Computer, Inc.

UNIX is a registered uademark of
AT&T.

DEC, VA..X, and PDP are
trademarks of Digital Equipment
Corporation.

IBM is a registered trademark o f
International Business Machines
Company.

NSI6000 is a trademark of
National Semiconductor
Co rpora ti on .

Z8000 and ZS070 are trademarks
of Zilog Corpo ration.

Simultaneously published in the
United States and Canada.

Preface

Contents

Figures and tables viii

About this manual Ix

A road map to the Apple rIGS technical manuals ix
Introductory manuals xi

The technical introduction xi
The programmer1s introduction xi

Machine reference manuals xi
The hardware reference manual xii
The firmware reference manual xii

The toolbox manuals xii
The Programmer's Workshop manual xii
Programming·tanguage manuals xiii
Operating-system manuals xiii

. All-Apple manuals xiii
How [0 use this manual xiv

What this manual contains xiv
Visual cues xv

New terms xv
Notes and warnings xv

Language notation xv
Other reference materials you'll need xvi

Part I: Programmer's guide

Chapter 1: Overview 1-1

About the Apple IIGS Programmer's Workshop 1-2
The APW Shell 1-2
The APW Editor 1-3
The APW Linker 1-3

About APW C 1-3
Mode of operation 1-4
Standard Apple Numeric Environment 1-4
Object module format 1-4

About the Apple IIGS system software 1-5
What you need 1-5
APW C concepts 1-6

Relocatable load files 1-6
Program segmentation 1-8
Dynamic segmems 1-12

iii

iv Contents

Library files 1-13
Program interactions 1-14

Using the APW C libraries 1-17

Chapter 2: Using the APW C Complier 2-1

Installing APW C 2-2
Backing up your APW C disk 2-2
Installation 2-2

Running APW C on 3.5-inch disks 2-3
Writing and running a sample program 2-4

Writing the sample program 2-4
Compiling and linking the sample program 2-5
Running the sample program 2-5

The APW C Compiler 2-5
The compilation process 2-5
Suspending or canceling the compilation 2-6
C compiler error messages 2.{i

C compiler shell commands 2-6
Editing a source file 2.{i
Compiling and linking a program 2-7
Command notation 2-7
CC 2-9
CHANGE 2-9
CMPL 2-9
CMPLG 2-9
COMPILE 2-10
EDIT 2-13
LINK 2-14
RUN 2-15
Examples of these commands 2-16
Appending files 2-16
Partial compilation or assembly 2-17
The linker 2-17
Making a library 2-17

Files for compiling and linking 2-17
Include-file search rules 2-18
Library files 2-18

Chapter 3: Sample Progroms 3-1

General procedure 3-2
Writing and editing the sample source code 3-3
Creating object code: compiling and assembling 3-5
Creating load files: linking 3.{i
Running your program 3-7
Creating a compact load file 3·7
Building a larger application: BONeS 3-8
Writing desk accessories in APW C 3-8

Writing new desk accessories in APW C 3-8
A sample C desk accessory 3-10

-".

Part II:
Chapter 4:

Language Reference
The APW C Language 4-1
Language defmition 4-1

Variable names 4-1
Data types 4-1
Numeric constants 4-3
Type void 4-3
Type enum 4-4
Register variables 4-5
Structures 4-5
Reserved symbols 4~
Standard Apple Numeric Environment extensions 4-6

Constants 4-7
Expressions 4-7
Comparison involving a NaN 4-8
Parameters and function results 4-8
Numeric input and output 4-8
Numeric environment 4~8

About the SANE routines in CUB 4-8
Programming with IEEE arithmetic 4-9

TIle in-line assembler 4-9
In-line assembly-code declarations and

definitions 4-10
In-line assembler syntax 4-10

Pascal-style functions 4-12
Pascal-style function declarations 4-13
The inline declaration 4-13
Pascal-style function definitions 4-14
Pascal-style strings; \ p 4-14
Parameter and result data types 4-15
Global and external data types 4-16

How parameters are passed 4-16
C-style functions 4-16
Pascal-style functions 4-17
Sample program 4-17

Implementation notes 4-19
Size and byte-alignment of variables 4-19
Byte ordering 4-19
Variable allocation 4-19
Variables of type void 4-19
Array indexing 4-19
Types unsigned char, unsigned s ho r t, and

unsigned l ong 4-21
Bit fields 4-21
Evaluation order 4-21
String substitutions in def i ne statements 4-21
Assignment operators 4-22
Language anachronisms 4-22

Assignment operators 4-22
Initialization 4-22

Compiler limitations 4-22
Performance tips 4-23
The segment command 4-23
The #append directive 4-23
START. ROOT, restartability, and StandAlone 4-23
Code-generation memory model 4-24

Contents v

vi Contents

Ch<lpter 5: The Standard C Ubrary 5-1

About the Standard C Library 5-2
Error nurnben; 5-3
abs-retum integer absolute value 5-5
atof-convert ASCII string to floating-point number 5-6
atoi-convert string to integer 5-7
elose--close a file descriptor 5-8
eonv-translate characters 5-9
ereat-create a new file or rewrite an existing me 5-10
etype--classify characten; 5-11
dup-duplicate an open file descriptor 5-13
eevt-convert a floating-point number to a string 5-14
exit-terminate the current application 5-15
ex~xponential, logarithm, power, square-root functions 5-16
faeeess-named me access and control 5-17
felose--close or flush a stream 5-18
fentl-me control 5-19
ferror-ferror status inquiries 5-20
floor-floor, ceiling, mod, absolute value functions 5-21
f open-open a buffered file stream 5-22
fread-binary input/output 5-24
frexp-manipulate parts of floating-point numbers 5-25
f seek-reposition a file pointer in a stream 5-26
gete-get a character or a word from a stream 5-27
getenv-access exported APW Shell variables 5-28
get s-get a string from a stream 5-29
hypot-Eudidean distance function 5-30
ioetl-control a device 5-31
lseek-move read/write file pointer 5-33
malloe-memory allocator 5-34
memo ry-memory operations 5-36
onexi t-install a function to be executed at program

termination 5-37
open-open for reading or writing 5-38
pr int f-print formatted output 5-39
pute-put character or word on a stream 5-42
puts-write a string to a stream 5-43
qs 0 rt-<juicker sort 5-44
rand-a simple random-number generator 5-45
read-read from file 5-46
seanf-convert formatted input 5-47
setbuf-assign buffering to a stream 5-51
set jmp-nonlocal transfer of controlS-53
sinh-hyperbolic functions 5-54
stdio-standard buffered input/output package 5-55
string-string operations 5-58
strtol-convert a string to a long 5-60
trig-trigonometric functions 5.{)1
ungetc-push a character back intO the input stream 5-62
unlink-delete a named file 5-63
wr i te-write on a file 5.{)4

Chapter 6: Shell Calls 6-1

How to make a shell call 6-2
How a program makes a shell call 6-3
Call descriptions 6-3

GET LINFO and SET LINFO 6-3
GET-LANG 6--6 -
SET-LANG 6-6
ERROR 6-7
SET VAR 6-7
VERSION 6-7
READ INDEXED 6-8
INIT WILDCARD 6-8
NEXT WILDCARD 6-9
GET VAR 6-9
EXECUTE 6-10
DIRECTION 6-11
REDIRECT 6-11
STOP 6-12
WRITE CONSOLE 6-12

Appendix A: Calling Conventions A-I

C calling conventions A-I
Parameters A-I
Function results A-I
Register conventions A-2

Pascal-style calling conventions A-2
Parameters A-2
Function results A-2
Register conventions A-2

Appendix B: Files supplied with APW C B-1

Appendix C: Comparison with Macintosh Programmer'sWorkshop C C-I

Data types C-l
Register variables C-l
Structured variables C-I
Pascal-compatible function declarations C-2
Preprocessor statements C-2
Dangling case in swit c h state ments C-3
In-line assembly-code declarations C-3

Appendix D: Ubrary Index C-I

Appendix E: ASCII Table E-I

Appendix F: APW C Compiler Error Messages F-J

Glossary GL-I
Index IN-J

Co ntents v ii

viii

Figures and tables

Preface About this manual Ix

Figure P-l
Table P-l

Chapter 1 Overview 1-1

Figure I-I

Figure 1-2
Figure 1-3
Figure 1-4

Figure 1-5

Figure 1-6
Figure 1-7

A roadmap to the technical manual x
The Apple nGS technical manuals ix

Crea~g an executable C program on the
Apple JIGS 1-8
Creating object segments in source code 1-9
Assigning load segments in source code 1-10
Relationship between objects segments and load
segments 1-11
Relationship between object files and library
files 1-14
Program interactions 1-15
APW C library interactions 1-1 7

Chapter 2 Using !he APW C Complier 2-1

Table 2-1 Include-file search rules 2-18

Chapter 3 Sample Programs 3-1

Table 3-1 Tool sets loaded and available to new
desk accessories 3-9

Chapter 4 The APW C Language 4-1

Table 4-1
Table 4-2

Chapter 6 Shell calls 6·1

Size and range of data types 4-2
Parameter and result data types 4-15

Table 6-1 Shell calls

Preface

About This Manual

This manual contains the information about AppleS IIGSs Programmer's Workshop C
that you need when writing C programs for the Apple IIGS computer. It assumes that
most readers a1ready know the C programming language, as defined in Kernighan and
Ritchie's The C Programming Language. For this reason, it does not repeat their
definition of the C language, but instead defines the differences between APW C and
OK and R" C. However, this manual can .also be used by those learning C for the first
time. The introductory chapters tell how to write, compile, link, and run a simple C
program. from there, you can follow Kernighan and Ritchie's book or any other
standard textbook on C.

A road map to the Apple IIGS technical manuals
The Apple IIGS personal computer has many advanced features, making it more
complex than earlier models of the Apple II computer. To describe the Apple IIGS
fully, Apple has produced a suite of technical manuals. Depending on the way you
intend to use the Apple IIGS, you may need to refer to a select few of the manuals, or
you may need to refer to most of them.

The technical manuals are listed in Table P-l. Figure P-l is a diagram showing the
relationships between the different manuals.

Table P-l
The Apple IiGS technical manuels

Tille

Technical Introduction to the Apple IIGS
Apple JIGS Hardware Reference
Apple JIGS Firmware Reference
Programmer's Introduction to the Apple llGS
Apple IIGS Toolbox Reference, Volume 1

Apple JIGS Toolbox Reference, Volume 2
Apple llGS Programmer's Workshop Reference
Apple)IGS Programmer's Workshop Assembler Reference
Apple JIGS Programmer's Workshop C Reference
ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference
Human Interface Guidelines, The Apple Desktop Inteiface
Apple Numerics Manual

Subjecl

What the Apple IIGS is
Machine internals-hardware
Macbine internals-firmware
Concepts and a sample program
How the tools work and some toolbox
speCifications
More toolbox specifications
The development environmem
Using the APW Assembler
Using C on the Apple IIGS
ProDOS for Apple II programs
ProDOS and loader for Apple IIGS
Guidelines for the desktop interface
Xumerics for all Apple computers

Ix

TO start nndlng out
about the Apple II GS

To learn how
the Apple IIGS

To start learning to
program the Apple

To use the toolbox

To use the development
envirorvnent

To operate on nles

To program In C

TO program in ___ _
assembly language

Figure P-l
A rood map to the technical manuals

x Preface: About This Manual

-..... , ..

The following sections briefly describe the manuals listed in Table Pref-l and
Figure Pref-I.

Introductory manuals
These books are introductory manuals for developers, computer enthusiasts, and
other Apple lleS owners who need technical information. As introductory manuals,
their purpose is to help the technical reader understand the features of the Apple lIes,
particularly the features that are diJrerent from other Apple computers. Having read
the introductory manuals, the reader will refer to specific reference manuals for details
about a particular aspect of the Apple lIes.

The technical Introduction

The TechntcaJ Introduction to the Apple lIGS is the first book in the suite of technical
manuals about the Apple lIes. It describes all aspects of the Apple lles, including its
features and general design, the program environments, the toolbox, and the
development environment.

Where the Apple HGS Oumer's Guide is an introduction from the point of view of the
user, the Technical Introduction to the Apple HGS describes the Apple lIes from the
point of view of the program. In other words, the manual describes the things the
programmer has to consider while designing a program, such as the operating features
the program uses and the environment in which the program runs.

You should read the Techntcal-Introduction to the Apple HGS no matter what kind of
programming you intend to do, because it will help you understand the powers and
limitations of the machine. If you are going to be doing assembly-language or system
programming, this book is essential. To find out all about anyone aspeCt of the
Apple lies, you should read one of the following specific technical manuals.

The programmer's Introduction

When you start writing programs that use the Apple lIes user interface (with windows,
menus, and the mouse), the Programmer's Introduction to the Apple lIGS provides
the concepts and guidelines you need. It is not a complete course in programming,
but is only a starting point for programmers writing applications for the Apple lies. It
introduces the routines in the Apple lies Toolbox and the program environment they
run under. The manual includes a sample event·driven program that demonstrates
how a program uses the toolbox and the operating system.

Machine reference manuals
There are two reference manuals for the machine itself: the Apple IIGS Hardware
Reference and the Apple lIGS Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

If you are doing system programming or are writing programs that are designed to
recognize whether they are running on the Apple lies or older Apple II computers,
these books are essential.

A road map to the Apple IIGS technical manuals xi

The hardware reterence manual

The Apple IIGS Hardware Reference is required reading for hardware developers,
and is also of interest to anyone else who wants to know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware, which provide a better understanding of the
machine's features.

The firmware reterence manual

The Apple lIGS FIrmware Reference describes the programs and subroutines that are
stored in the machine's read-only memory CRaM), with two significant exceptions:
Applesoft BASIC and the toolbox, which have their own manuals. The Apple IIGS
Firmware Reference includes information about interrupt routines and low-level va
subroutines for the serial POITS, the disk port, and for the Desktop Bus interface, which
controls the keyboard and the mouse. The reference also describes the Monitor, a
low·level programming and debugging aid for assembly-language programs.

The toolbox manuals
Like the Macintosh, the Apple ilGS has a built-in toolbox. The Apple lIGS Toolbox
Reference, Volume I, introduces concepts and terminology; and tells how to use some
of the tools. The Apple IIGS Toolbox Reference, Volume II, contains information
about the rest of the tools, and describes how to write and install your own tool set.

Of course, you don't have to use the toolbox at aU. If you only want to write simple
programs that don't use the mouse, windows, menus, or other palTS of the desktop
user interface, then you can get along without the toolbox. However, if you are
developing an application that uses the desktop interface, or if you want to use the
Super Hi-Res graphics display, you'll find the toolbox indispensable.

The Programmer's Workshop manual
The development environment on the Apple IIGS is the Apple IIGS Programmer's
Workshop (APW). APW is a set of programs that enable developers to create and to
debug application programs on the Apple IIGS. The Apple llGS Programmer's
Workshop Reference includes information about the palTS of the workshop that all
developers will employ, regardless which programming language they use: the shell,
the editor, the linker, the debugger, and the utilities. The manual also tells how to write
other programs, such as CUStom utilities and compilers, to run under the APW Shell.
(For breviry, this text will usually refer to the Apple lIGS Programmers Reference as
the APW Reference.)

The APW Reference describes the way you use the workshop to create an application
and includes a sample program to show how this is done.

xii Preface: About This Manual

Programming-language manuals
Apple currently provides a 65816 assembler and a C compiler. Other compilers can
be used with the worksh0p, provided that they follow the standards defined in the APW
Reference.

There is a separate reference manual for each programming language on the
Apple IIGS. Each manual includes the specifications of the language and of the
Apple IIGS libraries for the language, and describes how to write a program in that
language. The manuals for the languages Apple provides are the Apple nGS
Programmer's Workshop Assembler Reference and the Apple nGS Programmer's
Workshop C Reference.

Operating-system manuals
There are two operating systems that run on the Apple IIGS: ProDOS 16 and ProDOS
8. Each operating system is described in irs own manual: ProDOS 16 Technical
Reference Manual and Apple lIGS ProOOS 8 Reference. ProDOS 16 uses the full
power of the Apple IIGS and is not compatible with earlier Apple II computers. The
ProDOS 16 manual includes information about the System Loader, which works
closely with ProDOS 16. If you are writing programs for the Apple IIGS, whether as an
application programmer or as a system programmer, you ' are almost certain to need
the ProOOS 16 Reference.

ProDOS 8, previously jusc called ProOOs, is compatible with the models of Apple II
that use 8-bit CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8
only if you are developing programs to run on 8-bit Apple II's, as well as on the
Apple IIGS.

All-Apple manuals
In addition (0 the Apple IIGS manuals just mentioned, there are two manuals thac
apply to all Apple computers; Human Interface Guidelines-The Apple Desktop
Interface, and the Apple NumeriCS Manual. If you develop programs for any Apple
computer, you should know about these manuals.

The Human Interface Guidelines describes Apple's ·standards for the desktop
interface to any program thac runs on an Apple computer. If you are writing a
commercial application for the Apple IIGS, you should be fully familiar with the
contenrs of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANETM), a full implementation of the IEEE standard for floating-point
arithmetic. The functions of the Apple IIGS SANE tool sec match those of the
Macintosh SANE packages and of the 6502 Assembly-Language SANETM software. If
your application requires accurate or robust arithmetic, you 'll probably want to use
the SANE routines in the Apple IIGS. The Apple nGS Toolbox Reference tells how to
use the SANE tool set routines in your programs. The Apple Numerics Manual is the
comprehensive reference for the semantics of the SANE routines.

A road map to the Apple IIGS technical manuals xiii

How to use this manual
If you are an experienced C programmer but have never written a program for the
Apple IIGS, Chapters I, 2, and 3 will give you enough information to get standard C
programs running. (If you have written other programs for the Apple IIGS, Chapter 1
will be redundant) The remaining chapters tell you what you need to. write C programs
that use the capabilities of the Apple lIGS.

If you are new to C, Chapter 1 will tell you what you need to go through a C textbook,
such as Kernighan and Ritchie's, which you should read next. After you are familiar
with C, you can \earn about the capabilities of the C compiler and this particular
implementation.

What this manual contains

This manual is divided into two major sections. Part I, "Programmer's Guide,'
introduces you to APW C and its programming environment.

o Chapter I, "Overview,' introduces the environment in which you'll use the C
compiler. The chapter discusses the Apple lIGS Programmer's Workshop, ProDOS
16, and the Apple IIGS tools, and lists the hardware and software you'll need

o Chapter 2, "Using the APW C Compiler: describes the compilation process, lists
the shell commands you'll need working with the compiler, and discusses the
linker, the debugger, and other utilities.

o Chapter 3, "Sample Program: takes you step-by-step through the process of
building a C program that has an assembly-language subroutine.

Part II, "Language Reference: is a detailed description of the structure and
oomponents of the APW C and its libraries.

o Chapter 4, "The APW C Language," describes Apple extensions to C and clarifies
aspects of the language definition as they apply to this implementation.

o Chapter 5, "The Standard C Library: documents functions for standard I/O, string
manipulation, math routines, and other useful features not built into the language.

o Chapter 6. "Shell Calls," lists the C interfaces to the APW Shell.

o Appendix A, "Calling Conventions," tells how to write calls between C and Pascal.

o Appendix B, "Files Supplied with APW C," contains a list of all the files that are
supplied with this produa.

o Appendix C, "Comparison with Macintosh Workshop C," describes the differences
between MPW C and APW C.

o Appendix D, "Library Index: is a combined index of identifiers in the Standard C
Library and the Apple llGS Interface Libraries.

o Appendix E, "ASCII Table: contains decimal, octal, and hexadecimal equivalents
of each character in the Apple extended ASCII character set .

x i v Preface: About This Manual

Visual cues
Certain conventions in this manual provide visual cues alerting you, for example, to
the inlJ'Oduction of a new term and important Or useful information. These are
described in this section. Typographical conventions are described in the next
section, 'Language Notation.'

New terms
When a new term is introduced. it is printed in boldface the first time it is used.
Boldfacing lets you know that the term has not been defined earlier and that there is an
entry for it in the glossary.

Notes and wamings

Special messages to note are marked as follows:

~ Note: Text set otT in this way presents sidelights or interesting points of information.

Important
Text set off in this way presents important Informa~on or Instruc~ons that you '
should read before proceeding.

Warning

A warning set off like tns alerts you to something that could cause loss of data or
damage to software.

Language notation
This manual uses certain conventions in common with other Apple IIGS language
manuals.

o Words and symbols that are part of the C language, as well as anything that you type
on the keyboard or that can appear on the screen, are presented in a monas pace
font :

int ndigit: [lO }

o Metalanguage expressions, which are used in syntax diagrams to indicate items that
are replaced by C, are in italic:

e l se if (condition)

statement

Here condition and statement are expressions that are replaced by actual C
expressions'. The else if and the parentheses are C code.

Language notation x v

In addition, the following conventions are observed:

Convention

[J

Meaning

Square brackets indicate that the enclosed item is
optional.

A hori20ntal ellipsis indicates that the preceding
item or items can be repeated as necessary.

A vertical ellipsis indicates that not all of the
statements in an example or figure are
shown.

Other reference material you'll need
In order to write C programs for the Apple ilGS, you'll need to be familiar with these
additional reference materials:

DApple IIGS Programmer's Worleshop Reference. This book describes the APW
environment in which the C compiler operates, including the shell, editor, linker,
debugger, and other important utilities.

o The C Programming Ulnguage, by Brian W. Kernighan and DelU1is M. Ritchie
(prentice-Hall, 1978). This is a standard reference book for the C language in its
original form. Appendix A of this book is a formal defmition of K and R C.

o C: A Reference Manual, by Samuel P. Harbison and Guy L. Steele (Prentice-Hall,
1985). This is a complete reference book for standard C, as implemented by the
Portable C Compiler, including the Western Electric extensions to K and R C.

DApple lIGS Toolbox Reference, Volumes I and II. These books contain everything
you need to program using the Apple IIGS nOM and associated RAM routines. The
two volumes cover windows, alert boxes, menus, graphics, the SANE tool set, and
much more.

o Apple Numerics Manual. This book describes in detail the floating-point arithmetic
used in Apple computers. See the Toolbox Reference for a detailed description of
the calling sequence for SANE routines.

xvi Preface: About This Manual

Part I

Programmer's Guide

Chapter 1

Overview

1- 1

This chapler introduces the Apple IIGS Programmer's Workshop (APW). The first
section, • About the Apple IIGS Programmer's Workshop," describes the various parts
of APW. The second section, • About Apple IIGS System Software," describes ProDOS
16, the System Loader, and the Memory Manager. The third section, 'What You
Need," describes the !uldware and software you need to run APW C. The fourth
section, • APW C Concepts," describes the relationships between source, object,
load, and library files. The fifth section, 'Program Interactions," describes the
process of building a program. The sixth section, 'Using the APW C Libraries,' shows
the libraries that mediate between- an' application and the Apple JIGS.

About the Apple IIGS Programmer's Workshop
The Apple JIGS Programmer's Workshop is a suite of software designed to assist
developers in writing Apple JIGS applications programs. This development
environment includes a command Interpreter, known as the shell; a text editor; a
linker; and a set of utilities. APW supports C and 65816/ 65C02 assembly-language
programming; other languages are planned. Further support for developers is
provided by a comprehensive set of routines known as the Apple IIGS Toolbox. The
toolbox routines are accessed from APW, but are nO(part of APW. For a
comprehensive description of APW, refer to the Apple IIGS Programmer's Workshop
Reference. For detailed information on the Apple IIGS Toolbox, refer to the
Apple IIGS Toolbox Reference: Volumes I and n.

The APW Shell
The APW Shell provides the interface that allows you to work with the C compiler and
perform tasks such as file, directory, and disk management. The shell also aas as an
extension to ProDOS 16, providing several functions that can be called by programs
running under the shell. The C compiler can use a set of shell calls to perform the
following functions :

o pass parameters and operations flags between the shell and APW programs

o read the CUrrent language number

o set the current language number

o return the address of the command table

o get filenames USing wildcards

APW C provides C interfaces to the shell calls. The calls and their C interfaces are
discussed in Chapter 6, ' Shell Calls. ·

Commands most often used while working with the C compiler are described in
Chapter 2, 'Using the APW C Compiler." The APW Shell is fully described in
Chapters 2 and 3 of the APW Reference.

1-2 Chapter 1: Overview

The APW Editor
The APW Editor is a full-saeen rext editor that operates under keyboard control.

You can send commands to the shell to perfonn tasks such as

o manipulating text

o searching for and replacing text strings

o moving your position in the me

o scrolling the screen

o setting and dearing tab stops

o deftning and using keyboard macros

The APW Editor is fully described in Chapters 2 and 4 of the APW Reference.

The APW linker
The APW Unker takes the object flIes produced by the C compiler and generates load
flIes that the System Loader can load into memory. Although the linker is a single
program, conceptually there are two APW linkers:

1. Normally the linker is called by a shell command, such as LINK or CMPL (compile
or link). These commands provide a limited set of options, setting other options to
default values. This linker is referred to as the standard linker.

2. Alternatively, all functions of the APW Unker can be controlled by compiling a me
of linker commands. The linker command language, called LinkEd, allows you to
do such things as place specific object-file segments in speciftc load-file segments,
search specific libraries, and control linker printout. The aspect of the linker
controlled by UnkEd mes is called the advanced linker.

About APW C
APW C is a complete implementation of the C programming language. APW C
consists of a C compiler, the Standard C Ubrary, the Apple IIGS Interface Libraries,
and the C SANE Ubrary.

The C Programming Language by Kernighan and Ritchie is an authoritative wriuen
definition of C in its original form: this version of C is referred to as K and R C.
However, the language has changed in several ways since the book was written. In
addition, numerous details of the language definition are open to interpretation, with
the result that the de facto standard definition of C differs in several ways from the
language originally defined by Kernighan and Ritchie. This de facto standard is
loosely defined by the most widely used implementation of C, the Portable C Compiler
(PCC) .

About APW C 1-3

This manual, uses the term StandarrJ C for C as defined and implemented by the
Berkeley 4.2 BSD VAX implementation of PCC, including the dOOlmented Western
Electric extensions: type void, enumeration data types, and suuaures as function
parameters and results. C: A Refermce Manual, by Harbison and Steele, describes
Standard C fully. APW C is based on this de facto standard and not on the proposed
ANSI Standard currently under development

Apple has extended Standard C to facilitate writing programs for the Apple IIGS. In
addition to the Western Electric extensions, APW C indudes a fu'nction modifier that
allows calls to and from Pascal programs and the Apple lIGS Interface Libraries.
APW C also supports the Standard Apple Numeric Environment (SANE), described
later in this chapter.

Mode of operation
The APW C Compiler, and APW C itself, operates in the Apple UGS's native mode, In
native mode, the full insuuction set of the 65816 processor is available to the
compiler.

Standard Apple Numeric Environment
The APW C Compiler provides full support for the Standard Apple Numeric
Environment (SANE). APW C and the SANE routines in CUB compose a fully
conforming implementation of extended-precision binary floating-point arithmetic
as spedfied by IEEE Standard 754. This standard specifies data types, arithmetic, and
converSions, as well as tools for handling exceptions such as overflow and division by
zero. SANE supports all requirements of the IEEE standard and goes beyond the
specifications of the standard by including a library of high-quality scientific and
financial functions. Thus, SANE provides a numerics environment sufficient for a wide
range of applications.

Source programs that use only the float and double types, and standard C
operations compile and run without modification.

Object module format
The object module format (OMP) on the Apple IIGS is the general format used in
object files, library files, and load files. On the Apple IIc and !le, there is only one
loadable file format, called the binary file format, which consists of one absolute
memory image along with its destination address. On the Apple lIGS, object module
format allows , while a program is running, dynamic loading and unloading of load
segments containing program code and data. Additionally, each APW language
produces its object code in the object module format, allowing you to link together
subroutines written in different languages.

There are currently two OMPs: Version I, produced by the APW Assembler, APW C
Compiler, and APW Linker; and Version 2, produced when you run an executable
load file through the Compact utililY. To make an applicalion wrillen in C restartable,
you must run Compact on the load file (or files) that contains the application.

1-4 Chapter 1: Overview

About the Apple UGS system software
System tasks are handled by ProOOS 16, the System Loader, and the Memory
Manager. ProDOS 16 is the core, or kernel, of the Apple IIGS's operating system. It
provides file management and input/output (lIO) capability.

Working closely with ProOOS 16, the System Loader is responSible for loading all code
and data into the Apple IIGS memory. The System Loader is capable of static and
dynamic loading and relocating of load segments.

The Memory Manager is responsible for allocating memory. It provides space for
load segments, teUs the System Loader where to place them, and moves segments
within memory when additional space is needed.

ProOOS 16 and the System Loader are documented in the Apple nGS ProDos 16
Reference. The Memory Manager is documented in both the Apple IIGS ProDos 16
Reference and the Apple IIGS Toolbox Reference, Volumes I and II.

What you need
To use the Apple IIGS Programmer's Workshop, you must have the following hardware
and software. The Preface gives a list of Apple IIGS manuals that you will find useful.

o An Apple IIGS computer, or an Apple IIe computer with an installed Apple IIGS
upgrade, with 2S6K bytes of RAM.

o An installed Apple nGS memory-expansion card with 1 megabyte OM-byte) of
RAM. With this card, the Apple nGS has 1280K of RAM.

o The 3.5-inch Apple nGS System Disk.

o The two 3. S-inch APW disks.

o The 3. S-inch APW C disk that contains the files shown in Appendix B.

o Two BOOK disk drives (only one is needed if you have a hard disk, but two are handy
for such operations as copying disks).

o Disks containing any other APW languages you intend to use with this system. You
must install the files on these disks onto the Apple nGS disk as described in the
manuals that came with them.

Important
APW requires 1 M-byte of available memory. That means that if you have 1280K of
RAM in your Apple IiGS, you cannot assign more than 256K to a RAM disk.

For serious developmen~ you must have a hard disk, such as the Apple Hard Disk 20
SC. It is possible to run APW C from two 800K drives, but it requires considerable disk­
swapping. If you use the C compiler with the assembler or the advanced linker, you will
have considerable difficulty without a hard disk or at least three BOOK drives.

Many developers find that an additional Apple II (not Apple nGs) memory-expansion
card is very useful. You can use the card for a large RAM disk on which you can place
library files, compilers and assemblers, the linker, and utility programs. Since these
programs are loaded into memory from disk each time they are used, plaCing them on
a RAM disk can speed up the system's operation during program development.

What you need 1-5

(, Note: If you haven't yet read the Preface, go back and read it now. In addition to
providing a list of the manuals you'll need to develop programs for the Apple IIGS,
it explains the layout of this book, the relationships of the books in the Apple IIGS
Technical Library SUite, and the conventions used to describe commands in this
book.

The APW C disk contains the files shown in Appendix B. Use the index of this manual
to get more information on any of these files. To examine the contents of your APW C
disk, boot the disk, type CAT and press Return. To examine the contents of a
subdirectory, include the pathname of the subdirectory; for example, to obtain a
listing of the mes in the subdirectory /APWC/LIBRARIES, use the following
command:

CAT / AFWC / LIBRARIES

To obtain a listing of all mes in the volume / APWC, use the command

FILES +L +R /APWC

This command prints the contents of all directories in the volume and the mes in each
directory, with information about each me.

APW C concepts
This section descnbes a variety of features and concepts that you must understand in
order to write application programs for the Apple IIGS computer. While some of these
concepts may be familiar to you from your work with other computers, you mUSt still
be familiar with the way in which they are implemented on the Apple IIGS to get the
most out of the Apple IIGS Programmer's Workshop, and [0 use the operating system
and the memory of the Apple nGS effectively.

Relocatable load flies
The Apple IIGS Programmer's Workshop deals with three fundamental types of files:
source files, object files, and load meso Source files are ASCII flies consisting of the
texr of your program, and follow the conventions of a particular programming
language; object mes and load flies are binary files conforming [0 the Apple IIGS
object module format (OMF) defined in Chapter 7 of the APW Reference.

A C source file consists of C Statements, preprocessor directives, function definitions
and declarations, and so forth, together with variable declarations, which may
include initiali:zed data. In the source code, each specific function, variable, data
structure labelled with a name. You can refer [0 the name in another part of the
program: for example, you execute a function by using its name in a statement. A
name or label of code Or data used in this way is referred [0 as a symboUc reference
(that is, a symbol that can be referenced or referred [0) . In high-level programming
languages like C, symbolic references are usually the only means available [0 jump
from one place in a program to another.

C uses a special kind of source file-a header or Include fiIe~ontaining code
shared by many programs: for instance, lists of constants Or interfaces [0 libraries.
The header file is named in an #include statement in your SOurce file, and the C
compiler copies the header file in place of the iinclude statement before doing the
actual compilation.

1-6 Chapter 1: Overview

In assembly language, it is possible to speafy actuallocatinns in the computer's
memory to which you want the program to jump: that is, you can write absolute code.
The APW C Compiler only produces relocatable code segments; code segmenlS
that can be loaded into any location in memory. Note that such a program can be
relocated only when it is loaded: once loaded, it can't be moved. (A program or block
of code that can be moved from one location in memory to another while the
program is running is called position-independent.)

The Apple nes system software and APW are both designed to support relocatable
code.

When a source program is compiled, the compiler converts the source code into
65816 machine-language insuuctions, daca declarations, and symbolic references.
Before the program is actually run, the symbolic references must be resolved; that is,
the routine being referenced must be found, and the reference mUSt be replaced with
code that the loader can use to relocate the code at load time. The program that
resolves the symbolic references is called the APW Unker. (The linker gelS ilS name
from the fact that it can combine, or link together, several object files and library files
to create a single executable load file.)

As shown in Figure 1·1, the conversion of a source file into 65816 machine language
and data that are resident in memory is done in several Steps:

1. The source code is compiled. The APW C Compiler first executes preprocessor
directives, such as inserting include files, before compiling the source code and
writing out one or more object files. Object files, then, consist of machine­
language insuuctions and unresolved symbolic references to other routines.

Your prognrn can consist of several source files, each of which can be in any of the
APW programming languages. Each source me is converted into one or more
object mes by the APW Assembler, the APW C Compiler, or any other APW
compiler .

2. The object files are input to the APW Linker, which combines all of the object mes
into a single load file and resolves symbolic references. The linker verifies that
every routine referenced is included in the load file. If there are any routines that
the linker has not found when it has finished processing all of the object files, then it
searches through any available library files for the missing routines. The linker
removes symbolic references, and replaces them with entries in spedal cables it
creates called relocation dictionaries. The load file consislS of blocks of machine·
language code that can be loaded directly into memory (called memory
Images), and relocation dictionaries that concain the information necessary to
patch addresses into the memory images when the program is loaded into
memory_

3. At program·execution time, the load file is loaded into memory by the System
Loader. The loader calls the Apple lIes Memory Manager to request blocks of
memory for the load me, loads the memory images, and uses the relocation
dictionaries to patch the actual memory addresses into the machine-language code
in memory. The entire load file is not necessarily loaded into memory at one time;
all OMF files are divided into segments, which can be processed independently.
OMF-file segmentation is a fundamencal Apple IIGS concept, which is discussed in
the next section.

The Memory Manager is the Apple IIGS tool set that allocates blocks of memory as
needed and keeps track of which blocks of memory are available.

APW C concepts 1-7

[

Figure 1-1

C source tile 65816 source file

APWUnker

MW
Assembler

System Leeder

r
executable code

in memary

Creating an executable C program on the Apple IIGS

Program segmentation

1

In general, any computer program that consists of more than a few lines of code
contains one or more subroutines; you may also segregate large blocks of data into
separate parts of the program.

In APW C, each subroutine (called a function) is translated into a segment in the
SourCe me: the function name is the segment name. As illustrated in Figure 1-2, when
you compile a program, each source-code segment is translated into one object
segment.

1-8 Chapter 1: Overview

C Source File Object File

1 !,n) l--l} Object seg main

: I r {;
I

I I object seg Dave

ia~e--(--;- - - - --
I object seg Mike
I I

I~;;-;--;----~--I

object seg Jason

object seg last.

1'~ __________________ ~~

Figure 1-2
Crea~ng object segments 11\ source code

The object segment is the smallest linkable unit. For example, it can be selected from
an object file for independent linking with a LinkEd command. Some compilers also
can compile a segment (function) independently, this is called partial compilation .

• :. Note: The APW C Compiler does not perform partial compilation. If you request a
partial compilation, the entire file will be compiled.

In addition to creating one code segment per function compiled, the APW C
Compiler also creates two data segments for each object me created (that is, for
each source file compiled). These segments are used for storing any global variables
declared in the corresponding source me. Global scalar variables are stored in a
segment called -globals, and global array and structure variables are stored in a
segment called -arrays. Although this segmentation scheme means that each file
will have the svmbols -arrays and -globals defined, they are t1agged as private
symbols, which indicates they can oniy be accessed from within the object module
they are contained in. The symbols for the variables themselves contained with the
segments, are public. The com piler needs to generate twO different data segments for
the two different types of variables becauses it uses two different kinds of
addressing-16-bit and 24-bit, respectively-to access them. Chapter 4 discusses the
general implications of the code-generation memory model, as well as the
implications for use with the advanced linker.

APW C concepts '-9

Apple JIGS load flies also are segmented. Each load-file segment can incorporate any
number of object-file segments. You can use a linkEd command ftle to create load
segments and to specify which object segments go in each load segment
Alternatively, APW C lets you specify load-segment names in the source code by using
the "egment command. U you do not use a LinkEd file, the linker places all code
segments with the same load-segment name into the same load segment The data
segments -global" and -arrays are automatically identified as belonging to load
segments of the same name; these must be colleCted into their own load segments so
that the system loader can be assured of loading the -globals segment within a single
bank as required by the code-generation model, and so that the data segments can be
reloaded independently of the code when a program is restarted. Again, the linker
does this automatically unless you use a linkEd file to control your link. Use of source­
file load-segment names are illustrated in Figure 1-3.

C Source File

segment FIRST
main ()
I

I
' i

~a:e--(--;------
I
,

....!-----------
segment FINISH
Mi ke ()
(

segmen t SEC OND
J ason ()
(

....!----------
segment F INISH
las t ()
(

Sl ~~~~~~~~ l~
Figure 1-3
Assigning load segments in source code

Object File

object seg main
load seg FIRST

object seg Dave
load seg FIRST

object seg Mike
load seg FIN ISH

object sag Jason
load sag SECOND

Object seg last.
load seg FINISH

The relationship of object segments to load segments is illustrated in Figure 1-4.

1-'0 Chapter , : Overview

C Source File

object seg main
Object File load seg FIRST

segment FIRST
contains: main

object seg Dave Dave
load seg FIRST

segment SECOND
contains: Jason

object seg Mike
load seg FINISH

segment FI NISH
contains: Mike

object seg Jason last
load seg SECOND

segment "globals

object seg last
contains; -qlobals

load seg FINISH

segment -arrays

object seg -globals contains: -arrays

load seg "'globals

'f
object seg -arrays
load seg - arrays

t 'f
Flgur .. 1-4
Relationship between object segments and load segments

Every OMF file consists of one or more segments, each comprising a segment
header and a segment body_ The segment header is divided into fields described in
'Segment Header" in Chapter 8 of the APW Reference.

A load-segment header contains the name of the segment; an object-segment header
contains the name of the segment and the name of the load segment into which it
goes. The linker uses the name of the object segment in resolving function references;
also, you specify the names of object segments when using the advanced linker to
extract specific segments for linking (see "Using the Advanced Linker" in Chapter 5 of
the APW Reference).

Each segment in a program must have a unique object-segment name: in APW C,
each function is compiled to a separate object segment, whose name is the function
name. Each object segment is also assigned a load-segment name. As illustrated in
Figure 1-4, APW C lets you assign your own load-segment name to an object segment.
Any number of object segments can have the same load-segment name. The standard
linker places all object segments that share the same load-segment name into the same
load segment (as long as they will fit into 64K).

APW C concepts HI

For example, suppose your object file contains the following segments:

O. Object Segment Name: main
Load Segment Name: FIRST

1. Object Segment Name: Dave
Load Segment Name: FIRST

2. Object Segment Name: Mike
Load Segment Name: FINISH

3. Object Segment Name: Jason
Load Segment Name: SECOND

4. Object Segment Name: last
Load Segment Name: FINISH

5. Object Segment Name: -globals
Load Segment Name: -globals

6. Object Segment Name: "'arrays
Load Segment Name: ... arrays

When the standard linker processes this file, object-segment names main, Dave,
Mike, Jason, and last are treated as references that must be resolved. Object
segments main and Dave are placed in the same load segmen~ which is named
FIRST; object segments Mike and last are placed in the same load segmen~ which
is named FINISH; and object segment Jason is placed in a separate load segmen~
which is named SECOND. Additionally, the object segment -global3 is placed in the
load segment -globals, and the object segment -arrays is placed in the load
segment -arrays.

On the Apple IIGS computer, .no single block of code can occupy mOre than 64 K of
contiguous memory. To load a larger program than that, you must split the program
up into two or more load segments. When most of memory is already in use, the
loader may be able to load a program that is divided into several small load segments
even if the same program in one or two load segments wouldn't fit The Apple IIGS
Memory Manager takes care of assigning each segment to a memory block; the System
Loader keeps track of where in memory the segment has been loaded and patches
iruersegmeru calls in each segment as it is loaded.

Dynamic segments
On the Apple IIGS computer, the combination of load segments, the System Loader,
and the Memory Manager makes possible the creation of dynamic segments. The
loader and memory manager can load a dynamic segment automatically during
program execution simply by calling a function contained within the dynamic
segment; if the segmeru is not currently in memory, the loader will load it
automatically. A dynamic segment that is not needed at a given time can be removed,
freeing the memory used to allow room in which to load another dynamic segment or,
indeed, for any other purpose. In additional, the loader and Memory Manager
actually purge a dynamic segment from memory only if the memory is needed for
something else; otherwise, the segment remains in memory and need not be reloaded
the next time it is called, even if the user has ·unloaded" it.

1-12 Chapter 1: Overview

. . -----.

A segmem that is not dynamic is static. A static segmem is loaded at program boot­
time and is not unloaded or moved during execution. The fi~ segment of any
program that is loaded is static; any other segmenrs may be static, but (especially for
large programs) the system will be more memory efficient if all infrequently used
segmenrs are dynamic. These dynamic segmenrs may make development of large
applications for smaller memory configurations practical. To specify that a load
segment is dynamic, you must use a LinkEd command or specify the dynamic
option to the segment command.

Library files
Library files contain routines that are useful to many different programs. On the
Apple IIGS, aU library Hies are in object-module format, regardless of the language of
the source file. An Apple IIGS library Hie (proDOS Hie type $82) can therefore be used
by a program written in any source language. Some languages, such as AYW C, come
with a set of library flies used by that language. When the linker processes one or more
object files and cannot resolve a symbolic reference, it assumes that the reference is to
a segment in a library file. If you use the standard linker, it automatically searches aJ!
library fIles in the APW library preflX (2 n. Of you use a LinkEd command Hie, then
the advanced linker searches only the library files that you specify.) Unless you are
using the advanced linker, you ,do not even need to know 'the names of the library fIles
in order to use them: the standard linker automatically finds the mes and extracrs the
segmenrs it needs.

You can create your own library files from one or more object files by using the
MakeLib APW utility program. Figure 1-5 illustrates the process of creating a library
me. You specify one or more object Hies to be included in the library file. MakeLib
concatenates the fIles and creates a special segment at the beginning of the Hie called
the Ubrary dictionary segment. The library dictionary segmem is the first segment
of a library file, and contains the names and locations of all global symbols in the
me. (A global symbol is a label in one segment that can be referenced in another
segment, as opposed to a 1oca1 symbol, which can be used only within the segment in
which it is defined.) The linker uses the library dictionary segment to find the segmenrs
it needs.

The library dictionary segment allows the linker to search a library file for global
symbols much more rapidly than it can search an object file. Consequently, the linker
will search a library dictionary segment more than once, if necessary, to find
segmenrs referenced by other segmenrs in the library file. Therefore, the sequential
order of the segmenrs in a library file is therefore not imporum. However, if you were
to use several library files, the order in which the files were searched would be
important. If the linker first searched file A and then file B, for example, it could
resolve a reference made in file A to a global symbol in file 8, but could not resolve a
reference made in Hie 8 to a symbol in file A. It is for that reason that MakeLib allows
you to include several object files in a single library file.

APW C concepts \-\3

Libfile

Object I library List of object files -' dictionary

..."
segment

_3 -' Cross reference

Mg4 "02 \
between filenames,
segments. and · _3 symbol names

• Mg4

· •
· \ Ust of symbol names

~ ·
~

· ·
Object2

_n

-' .. g'
..."

.. g2
_3

"ol ..."

""" • • MokeUb · · · ·

~ · · .egn

seo' ...,2
Object3 '"03

"'" , Mg4 - V ·
"",3 · seg. · · ~

~ ·
.~.-----:

/ _.
·

Figure 1-5
Rela~onship between object files and library tiles

Program interactions
This section illustrates the interactions among the various programs in the Apple IIGS
Progranuner's Workshop by presenting a typical sequence of procedures and events.
For this purpose, this manual assumes that you are developing an application written
mostly in C, with some routines written in 65816 assembly language. In this section,
only the sequence of operations is listed; Chapter 3 provides an actual example of
the sequence described here. The process described in this section is illustrated in
Figure 1-6. See the Apple lIGS ProDOS 16 Reference for a complete description of
the program-load process.

1-14 Chapter 1: Overview

.. -.

sn.I: .,
\aIguOgIItoC

(E~~~ J
•

" ~ ~~-~ - ------------ -- ----(~~

Figure 1-6
Program interacffons

ECllot: 1-"1.
"'$M~8 1 6 fQYI1ro.,

t-n---nn- _n __ _ n_ ---/
, , ,

1. Using an APW Shell command, set the current language for Al'W to cc. (Every
APW fIle has an APW language type; if you open a new flie, it is given the current
APW langu age type.)

Z. Call the APW Editor and open a new file.

3. Use the editor to write the C language routines. You can divide the program
among as many flies as you wish. You do not have to return to the shell between
fIles; you can save one file and open another within the editor. In Al'W C, you can
use the segment command to specify which object segments go in which load
segments. Until you use a shell command to change it, or until you open a non-C
file, the current language remains cc.

4. Quit the editor, change the current language to ASM65816, call the editor, and
open a new file . You can divide the 65816 assembly-language routines among as
many HIes and as many segments per file as you wish. The Al'W Assember lets you
specify which object segments go in which load segments. Make the assembly­
language routines reiocatable; that is, use no absolute addresses-use labels and
relative addressing only.

If you have used macros in your assembly-language program, you can run the
MacGen utility [0 genera[e a OJs[om macro file for me program.

APW C concepts 1-15

Until you use a shell command to change it, or open a non-assembly-language
Hie, the ament language remains ASM6 5 816.

5. Quit the editor, call the APW Assembler to assemble the 65816 assembly-language
routines, and call the APW C Compiler to compile the C routines. You can use the
same command for both.

6. Use the APW Linker to link the object fIles into a load file. Normally, you can use
the standard linker to link the program. TIle standard linker places all object
segments with the same load-segment name into a single load segment.

a. If you want to change load-segment assignments, or if you want to respedfy
dynamic load segments, you must use the advanced linker. Write a linkEd file
like a language source fIle: first set the system language to LINKED and then use
the editor to write the file.

7. Run the program by typing the name of the load file and pressing Return. (You can
also automatically execute a program after linking by using the CMPLG command.)
When a program is run on the Apple IIGS, the following events occur:

a . The System Loader loads the Hrst segment into memory (calling the Memory
Manager 10 request the block of memory it needs). This segment is static; that
is, it remains in memory during the execution of the program. The loader uses
the relocation dictionary of the segment to relocate the code to its present
location in memory.

b. The loader loads all other static segments into memory, relocating them as
necessary.

c. The loader passes control of the system to the program, and the program
begins execution.

d. When the program encounters a reference to a subroutine in a dynamic
segment, control is returned to the System Loader through the jump table. If
the segment is already in memory, the loader transfers control to the
segment If no~ the loader uses the jump table to locate the load file,
segment, and offset of the subroutine, loads the segment into memory, and
transfers control to the segment. The System Loader creates and maintains a
table (the Memory Segment Table) to keep track of all the segments in
memory .

. • :. Note: If the program does not run correctly, you can use the Apple IIGS
Debugger (available as a separate product from APDA) to step through or
trace the code, to insert breakpoints, to disassemble the machine code, and
to examine the contents of registers and memory locations. You can modify
the code in memory and rerun the program until the bug'is fIXed

8. Correct the source code and recompile (or reassemble) the program.

9. Relink the program and rerun it.

10. When the program is completely debugged, you can use: the: CRUNCH command to
compress the files created by partial assemblies into two obje:ct files, and then link
the program one last time. Using CRUNCH is optional: if you have performe:d
several partial assemblies, compressing the object files speeds up the link process.

1-16 Chapter 1: Overview

""--

Using the APW C libraries
APW C programs can use the Standard C Library, the Apple IIGS Toolbox, the APW
Shell, and ProOOS to talk to the Apple IIGS hardware. All of the interface code to make
these calls is in the file eLIB which is insraJled in the APW library prefIx (2 n. (Any
header files containing declarations needed to make the calls are installed in the
ClNCLUDE_directory in the library prefIX.) Figure 1-7 shows how these libraries
interact. Your application can make calls to the Standard C Library, the APW Shell,
the Apple IIGS Toolbox, or ProOOS. The Standard C Library contains a number of
high-level routines familiar to C programmers, which deal with file handling, memory
management, and so on. The Standard C Library in rum calls the Toolbox or
ProOOS. You can also make calls to the APW Shell. The shell intercepts the call: if it is
a ProOOS call, the shell passes it through unchanged; if it is a shell call, the shell
makes ProOOS calls or talks to the hardware directly in order to execute it

Applicotion

I + +
1

,
Standard I

! i APW shell

i
C library , ,

! I ,

I

+ + + i

Apple IIGS toolbox ProDOS

I

1 ~
Apple IIGS hardware

Figure 1-7
APW C library intarac!1ons

Using the APW C libraries 1-17

--- ~

Using the APW C Compiler ·

2-1

This chapter describes how to use the APW C Compiler. The first section, "Installing
APW C," tells you how to install APW C in both hard-disk and 3.5-inch disk systems.
The second section, "Running APW C on 3.5-Inch Disks,' tells you how to run APW C
on a 3.5-inch disk. The third seaion, "Writing and Running a Sample Program," leads
you through a sample session, giving you a fast way to become acquainted with
compiling, linking, and executing a program. The third seaion, "The APW C
Compiler,' discusses the compilation process. The fourth section, 'C Compiler Shell
Commands," describes the shell commands you'll use when working with the C
compiler. The ruth section, 'Files for Compiling and Unking,' tells how to use the
various fIles used in building .a program.

Instelling APW C
Before you can follow any of the procedures described in this chapter, you mUSt install
APW C. First back up your disks, then install APW, and then install C, as described in
this section.

Backing up your APW C disk
It is important to make a backup copy of your APW C disk and to run APW from the
copy only. Keep the original disk in a safe place so you can make a new copy if
something happens to the copy you've been using.

You back up the APW C disk in the same way you back up the other APW disks. If you
have not backed them up yet, back up all three now: APW, APW Assembler, and
APW C.

You can make a copy of your APW C disk by using any disk-copy utility you prefer, Or
you can use APW commands to do the job, as explained in Chapter 3 of the APW
Reference.

Important:

You must give your copy of the I APWC disk the volume nome I APWC. or the
hard-disk Instaliatlon procedure wili not work correctly. Similarly. your backup of
each of the APW disks must have the some volume nome as the original disk.

Installation
This section assumes you have already installed APW (version 1.0 or later), as
described in Cha pter 2 of the APW Reference.

To install APW C, launch APW; then type the following conunand:

IN STALL / APWC

This command copies the necessary files. This process will take several minutes.

You .I}OW have APW C installed.

2-2 Chapter 2: Using the APW C Compiler

Installing APW C may replace the fIles SYSCMND, LOGIN, and SYSTABS in the
AFW/ SYSTEM subdirectory. If you have customized any of these fIles, you should
rename them before installing the new APW, and then either edit or replace the new
versions of the fIles as appropriate.

Running APW C on 3.5-lnch disks
You need at least two 800K disk drives to use APW: one to hold the / AFW disk, and one
to hold either the / AFWC disk or a disk containing only the fIles you are working on.

Important
Do not fUn APW C from the Original product disks. Make copies of your APW disks
for everyday use. and put the original disks in a safe place.

The / AFW disk contains the Apple IIGS Program Launcher and a fully functional APW
system, including the APW Assembler. This disk lacks only the help files and some of
the APW utility programs. The / AFw[r disk contains a full set of utility programs plus
the help files for all the APW commands. The / AFWC disk contains the C compiler, the
linker, and the libraries you need for C.

Launch APW as before and place the / AFWC disk in the second disk drive. To cause
APW to look on the / AFWC disk for the C compiler and linker, enter the follOwing
command:

MC

If you want to use the assembler, enter the following command:

OMC

To go back to the C compiler, enter the following command:

Me

The directory that is assumed when you do not specify a pref", in a pathname is called
the current prefix. If the / AFW disk is in your first disk drive and all of your program
fIles are on the disk in the second disk drive, you may wish to set the system to use a
directory on your program·file disk as the current pref",. Use the APW Shell's P REF IX

command to change the current prefix. For example, if your programs are in a
subdirectory called / AFWC/MYPROGS / in the second disk drive, type the following
command and press Return:

PREF!X !APWC / MY PROGS

After you have set the current prefix to that of your program disk, "au need nOt include
the prenx in pathnames when executing commands. For example, if the current prefix
is / APWC / MYPROGS /, you could use the following command to obtain a directory
listing of the subdirectory / APWC/MYPROGS /CSOURCE /:

CATALOG CSOURCE

.:. Note: Do not include a slash (J) before the pathname when you omit the current
prefIX from a pathname, or APW will look for a volume of that name. For example,
if you typed CATALOG/CSOURCE in the preceding example, you would get the
message "Volume not found."

Running APW C on 3.5-inch disks 2-3

PrefIxes used by APW are discussed in detail under 'Using PrefIX Numbers' in Chapter
2 of the APW Reference.

Keep the / APW disk in the fu:st disk drive while you are running APW so that the system
can have access to the APW programs on that disk.

Each time you start APW, it looks for a file named LOGIN in the APW system prefIX
(lAPw/APW/SYSTEM/LOGIN on the /APW disk, for example). The LOGIN file should
have an APW language type of EXE:e (see "listing a Directory' in Chapter 2 of the APW
Reference). You can include any valid APW command in this me. If APW fInds a
LOGIN fIle, it executes the me before doing anything else.

You can use a LOGIN me to set system defaults (such as the printer slol,), to set the
current prefIX, to read a command table containing command-name aliases, or even
to execute commands or utility programs.

You need not have a LOGIN me in your system; if there is no LOGIN me, APW uses
default settings for system parameters.

Writing and running a sample program
Here is the way to write, compile, link, and run a trivial sample program.

Writing the sample program
First set the current language to C by typing cc and pressing Return. Now create a new
me named SHE. SELLS by typing EDIT SHE. SELLS and pressing Return .

.... Note: If you ever get the error message 'ProDOS: File not found", make sure you've
typed the command correctly. If you had typed ED rather than EDIT, for example,
the APW Shell will give you this message because it knows no command named ED
and can't find any me with that name. (ProDOS is not complaining that it couldn't
fInd a file named SHE. SELLS.)

When you are in the APW editor, type a program; for example, type

main ()

)

printf ("She sells C shells by the C shore. \n ");

return 0;

Press Apple-Q or Control-Q, and then type S, to save the program; then type E to exit
the editor.

Note that APW does not require the usual C filename extension . c, because APW uses
a unique file type for source files of each language. You can end a filename with . c, but
the APW C Compiler regards the . c as part of the name, rather than as an extension.
[n particular, when forming an object filename, the compiler appends an extension to
the . c, rather than replacing it. Using . C on a SOurce filename can be confusing, as
some object filenames have a . C extension.

2-4 Chapter 2: Using lt1e APW C Compiler

Compiling and linking the sample program
To compile your program, use the COMPILE command; to link it, use the LINK
command.

For example, to compile and link SHE. SELLS, creating an object file
C. SHELLS. ROOT and a load file C. SHELLS, type the following commands and then
press Return:

COMPILE SHE.SELLS KEEP-C.SHELLS

LINK 2/ START C.SHELLS KEEP-C.SHELLS

Running the sample program
To run your program under the APW shell, type C. SHELLS and press Return. You will
see She sells C shells by the C shore. on the screen.

A more interesting sample program, written in both C and assembly language, is in
Chapter 3.

The APW C Compiler
This section discusses the compilation process, the way that compilation is suspended
or aborted, and error messages.

The compilation process
The APW C Compiler is a one-pass compiler. In one pass, the compiler resolves
preprocessor macros, scans the source files, and generates code into a code buffer; it
then writes the code to an object me. Each C function is assigned to a separate object
segment: the object-segment name is the function name. The default load-segment
name is MAIN.

You can use the segment command to assign an object segment or group of segments
to a load segment, which can be either static or dynarilic.

No listing is printed. If requested, the compiler prints progress information and error
messages to the screen

Object-code output is in object module format. Each APW language outputs object
code in object module format, allowing you to link together subroutines written in
different languages. Object module format is discussed in detail in Chapter 8, "File
Formats," of the Apple IIGS Programmer's Workshop Reference.

If there are no more subroutines to compile, the compiler returns control to the shell.
Depending on the command you used to invoke the compiler, the shell either passes
control to the linker or returns with the shell prompt. If called, the linker relocates the
object modules produced by the compiler to resolve global labels, and writes out an
executable binary file.

The APW C Compiler 2-5

Suspending or canceling the compilation
You can suspend the compilation process by pressing any key. Pressing any key
again causes compilation to resume. To cancel the compilation process, press
Apple-Period (0-.).

C complier error messages
If the C compiler detects an error in the source code, by default it rerurns to the editor,
with the cursor on the offending line and with an explanatory error message at the
bottom of the screen. The default behavior can be overridden by using the -E option
to the COMP ILE command.

If the default error behavior is overridden, the compiler prints an error message on
the screen. Each error message indudes the source file name, the line number, and
the text of the offending line of code. In other cases, the compiler prints a warning
message rather than an error. Error messages can be redirected, as explained in
"Redirecting Input and Output" in Chapter 3 of the APW Reference. If no errors or
warnings are detected, the compiler runs without comment.

C compiler shell commands
This section discusses the commands you'll use most often when working with the C
compiler. With these commands, you can perform the following tasks:

o edit new and existing fIles

o compile, link, and execute your program

o make a library file

o debug your program

Editing a source file
You will need three shell commands when you edit a new or existing source fIle:

CC
ED IT filename
CHANGE filename CC

Change the default language to C
Edit a new or existing file
Change the rype of an existing file to C source file

The CC command sets the default language to C. Any new fIles you create with the
editor will then automatically get the appropriate type for a C source me. The ED IT
command edits an existing file or creates a new file. The CHANGE command changes
the type of a file from one language to another. DOing this is useful if you have
imported an ASCn file from some other implementation of C, such as MPW, and the
file type is not set for APW C; or if you had created a C source fIle when the default
language was not set to C.

2-6 Chapter 2: Using the APW C Compiler

'-

Compiling and linking a program
You'll need twO commands when compiling, linking, and running your program:

COMPILE
LINK

Compile a program
link a program

In its simplest form, the COMPILE command compiles the SOurce me, but saves no
object me: it simply verifies the program's correctness. To create an object file , use
the KEEP option or the KEEPNAME shell variable, both described later in this chapter.
The COMP ILE command is a synonym of the AS SEMBLE command. These commands
can be used interchangeably to compile or assemble programs. Synonymous
commands have the same options, but one language processor may ignore options
that another recognizes. For example, the C compiler ignores the +L l-L and +S l-S
options.

Some other commands are useful:

CMP L
CMPLG
RUN

Compile and link a program
Compile, link, and execute a program
Compile, link, and execute a program

CMPL is a synonym of ASML, and CMPLG and RUN are synonyms of ASMLG.

Command notation
The following notation is used to describe commands:

UPPERCASE

italics

prefiX

filename

Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The shell is not case-sensitive; that is,
you can emer commands in any combination of uppercase and
lowercase letters. Segment names are case-sensitive. In case­
sensitive languages like C, segment names must be entered exacay
as they appear in the source code. Segment names in case·
insensitive languages must be entered in uppercase.

Italics indicate a variable, such as a mename or address.

This parameter indicates any valid directory pathname or partial
pathname. It does not include a mename. If the volume name is
included. prefix must stan with a slash (/); if preFIX does not stan
with a slash, then the current prefIX is assumed For example, if you
are copying a file to the subdirectory SUBDIRECTORY on the
volume VOLUME, then the prefix parameter would be
/ VOLUME / SUBD IRECTORY /. If the current prefix were / VOLUME /,
then you could use SUBDIRECTORY for pathname

The device numbers .Dl, .D2, Dn can be used for volume
names. If you use a device number, do not preoede ,it with a slash,
For example, if the volume VOLUME in the example given earlier
were in disk drive . Dl , then you could enter the prefIX parameter as
. Dl / SUBDlRECTORY /.

This parameter indicates a ftlename, not including the prefix. The
unit names. CONSOLE and . PRINTER can be used as menames,

C compiler shell commands 2·7

pathname

AlB

[1

This parameter indicates a full pathname, including the prefIX and
filename, or a partial pathname, in which the current prefIX is
assumed. For example, if a me is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, then the palhname parameter
would be /VOLUME/OIRECTORY /FILE. If the current prefIX were
/VOLUME/, then you could use DIRECTORY /FILE for palhname .
A full patbname (including the volume name) must begin with a
slash (/); do not precede palhnamewith a slash if you are using a
partial pathname.

The unit names . CONSOLE and . PRINTER can be used as
filenames; the device numbers .01, .02, on can be used
for volume names.

A vertical bar indicates a choice. For example, +L I-L indicates
that the command can be entered as either +L or as -L.

An underlined choice is the default value.

Parameters enclosed in square brackets are optional.

Ellipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

The following pointers will help you use the AI'W Shell command interpreter:

o You must separate the command from its parameters by one or more blanks.

o You can use the Right-Arrow key to expand command names as described in
·En~ring Commands" in Chapter 2 of the APW Reference, and you can use the Up­
Arrow and Down-Arrow keys to scroll through previously entered commands.

o There are no abbreviations for command names (unless you define your own with
ALIAS Or by changing the SYSCMNO file).

o All commands and parameters (except for segment names) can be entered in any
combination of uppercase and lowercase characters.

o For case-sensitive source languages like C, segment names must be entered exactly
as they appear in the source code. (For case-insensitive source languages like
assembly language, segment names must be entered in uppercase.)

o When a parameter in a command line conflicts with a source-code command, the
command-line parameter takes precedence. When neither a source-code
command nor a command-line parameter has been used, the default parameter is
used.

o If you fail to enter a required parameter, you are prompted for it.

o Any of these commands can be placed in an Exec command file for automatic
execution; Exec files are described in "Exec Files" in Chapter 3 of the APW
Reference.

The AI'W Shell and AI'W C Compiler recognize the commands listed here. The
options for each command are described after the command.

2-8 Chapter 2: Using the APW C Complier

CC
The CC command sets the shell default language to APW C. Any me the APW Editor
creates while this command is in effect will have the proper me type for a C source file.
('Ibis command is described in ·Command Descriptions" in Chapter 3 of the APW
Reference.)

CHANGE

CHANGE filename CC Change the type of an existing file to C source file

The CHANGE command changes the me type of an existing file named filename so that
APW will recognize it as a C source me. This command is U5eful when you have
imported a C source file from another development system, such as MPW, that does
not identify the language of a source me by a unique me type. ('Ibis command is
described in ·Command Descriptions· in Chapter 3 of the APW Reference.)

CMPL

CMPL [option ... 1 file] (file21 [... 1 [KEEP=ouifilel
[NAMES= (seg] [seg21 [...]) 1 [CC~ (option ...)
[language2= (option ...) I L II 1. .. 11

The CMP L command compiles (or assembles) and links one or more source files and
links one or more object and library meso The APW Shell checks the language of the
source file and calls the appropriate compiler or assembler. If the maximum error
level returned by each assembler or compiler is less than or equal to the maximum
allowed (0 unless you specify otherwise with the MERR directive or its equivalent in the
source file), the standard linker is called to link the resulting object mes and any other
object and library files named on the CMP L command line. The linker is described in
Chapter 5 of the APW Referrmce.

The CMPL command is an alias for ASML.

The CMPL command is described fully in Chapter 3 of the APW Reference.

For examples and discussion of the use of the CMP L command, see Chapter 3 of this
manual and "Compiling (or Assembling) and Linking a Program" in Chapter 2 of the
APW Reference.

CMPLG
CMPLG [option .. . J file] (file21I.. .J [KEEP=ouifile!

[NAMES = (segJ [seg2J 1...)) J [language1= (option ...)
[language2= (option ...) J I.. .ll

The CMP LG internal command compiles (or assembles) one or mOre source files ,
links one or more object and library files , and runs the resulting load file . The function
of CMPLG is identical [0 that of the CMPL command--except rha[, once rhe program
has been successfully linked, it is executed automatically. See the description of the
CMP L command for a list of options and a description of the parameters.

The ASMLG and RUN commands are aliases for CMP LG.

C complier shell commands 2-9

COMPILE

COMPILE [option ... J filel \{ile21 [...J [KEEP-ouifileJ
[NAMES= (segl [seg2J L..lJ J [/anguagel- (option ...)
[language2- (option ...) J [. •• J]

The COMPILE internal command compiles (or assembles) one or more source files.
You can use the LINK command or a linkEd me toli<1k. the object mes created by the
COMPILE command The APW Shell checks the language of the source file and calls
the appropriate compiler or assembler.

The ASSEMBLE command is an alias for COMPILE.

The options that apply to APW C are described next; other options are described in
Chapter 3 of the APW Reference .

• :. Note: Not all compilers or assemblers make use of all the parameters provided by
this command (or by the ASSEMBLE, ASMLG, COMPILE, CMPL, CMPLG, and RUN
commands, which use the same parameters). The APW C Compiler, for example,
does not produce a listing or symbol table, and so ignores the +L i-L and +S i-S
options. If you include a parameter that a compiler or assembler cannot use, it
ignores the parameter: no error is generated.

If you include more than one source file or use #append directives to tie together
source files in more than one language, then all parameters are passed to every
compiler or assembler. Each compiler or assembler uses those parameters that it
recognizes. The reference manual for a compiler or assembler contains a list of the
options that it accepts .

... Note: Command-line parameters (those described here) override source-code
options when there is a conflict.

Important

If you are using a UnkEd file to take advantage of advanced linker capabilities.
do not use lt1e CMPL command. Instead. use lt1e COMPILE command to compile
your program. You can process the UnkEd file automatlcally by appending It to
lt1e end Of your program with an #append directive (or lt1e equivalent), or you
can process it independen~y with the ALINK command .

• :. Note: You can use tappend directives (or the equivalent) to tie together source files
written in different computer languages, APW compilers and assemblers check the
language type of each file and rerum control to the shell when a different language
must be called. See 'Compiling (or Assembling) and Linking a Program" in
Chapter 2 of the APW Reference for a description of the assembly and compilation
process .

o option ... You can specify as many of the follOwing options as you wish by separating
the options with spaces.

o +E I-E If you specify +E, when the compiler terminates execution due to a fatal
error, it calls the APW Editor. The editor displays the source file with the
offending line on the fifth line on the screen (or as far down on the screen as
possible, if the error is in One of the first four lines of the file). If you specify -E
and a fatal error occurs, the compiler returns you to the shell's command line or
to the Exec file that executed the command. The default for this option is +E
when the command is executed from the command line, and -E when the
command is executed from an Exec file.

2-10 Chapter 2: Using lt1e APW C Compiler

D + L I - L The APW C Compiler ignores this option.

D +5 I -5 The APW C Compiler ignores this option.

D +T I-T If you select +T, any error causes the compile to terminate. If you omit
this option or select -T, only fatal errors cause immediate termination of the
compile. Note that if you select both +T and +E, any error causes the shell to call
the APW Editor and display the offending line as the fifth line on the screen.

o +w I -w If you select +w, the compiler stops and waits for a key press when any
error occurs, to give you the opportUnlty to read the error message and to decide
whether to continue (that is, to continue the compilation in case of a nonfatal
error or to call the editor in case of a fatal error). Press Apple-Period to halt
execution, or press any character key Or the space bar to continue. If you omit
this option or select -w, execution continues without pausing when an error
Occurs.

D filel file2.. . The full pathnames or partial pathnames (including the menames) of
the source files to be assembled (or compiled). You may include as many source,
objec~ and library files as you choose, but at least one of the files must be a source
file . Separate the filenames with spaces.

The source files do not all have to have the same APW language type. Note,
however, that if you include a LinkEd file, it must be the last file listed. The reason is
that once the advanced linker has been called by a linkEd file, the linker is not
called again regardless of how many source or object fues follow the linkEd file .

D KEEP=outfile You can use this parameter to specify the pathname or partial
pathname (including the filename) of the output file. There must not be any spaces
between KEEP and the equal sign (-). .

For a one-segment program, the assembler or compiler names the object file
outfile. ROOT _ If the program contains more than one segment, the assembler
places the first segment in outfile. ROOT and the other segments in oUifile. A. If this
is a partial assembly (or several source files with different programming languages
are being compiled), other filename extensions may be used; see "Partial
Compilation Or Assembly" in this chapter.

If the assembly is followed by a successful link, the load file is named ou/file.

Keep the following points in mind regarding the KEEP parameter:

C You can specify a default filename for object files by using the KeepName shell
variable. Shell variables are described in "Variables" in Chapter 3 of the APW
Reference.

w To use the KEEP parameter with multiple source flies, you must use one or more
wildcard characters in the KE EP parameter.

C Because ProDOS 16 does not allow filenames longer than 15 characters, you
must be careful not to specify a filename in the KEEP parameter that will result in
an output file name longer than 15 characlers. For example, if you specify
KEEP= % . OUT and the source filename is L ONGNAME, the compilation will fail
when the shell tries to open the file LONGNAME . OUT . ROOT, which has 17
characlers.

CJ If object files with the root mename outfile already exist, they are overwritten
witltout a warning when this conunand is exeruted.

C compiler shell commands 2-11

o NAMES- (segl seg2 ...) This parameter is ignored by the APW C Compiler, which
always compiles all C sOUrce fIles listed on the command line. APW Assembler uses
this parameter for partial assembly.

o cc- (option ...) This parameter allows you to pass parameters directly to the APW C
Compiler. Between the parentheses, insert one or more of the options listed next.
Note that the APW shell does no error checking on this string before passing it
through to the compiler or the assembler. This parameter is a special case of the
languagel~(optlon ...) parameter.

0/- Note: No spaces are permitted immediately before or after the equal sign in this
parameter.

This option's options are as follows.

o -Dname-value This option defmes name as if a #define had occurred at the
top of the fIle. The variable name is given the value value. No spaces are
permitted immediately before or after the equal sign in option parameter.

o -Dname This option (a special case of the one just given) defmes name as if a

Idefine name 1

had occurred at the top of the file. The variable name is given the value 1. No
spaces are permined immediately before or after the equal sign in option

. parameter.

o -Ipath This option adds path to the indude-fIIe path list; for example,

-I/APW/LIBRARIES/CINCLUDE

0' -P This option causes progress information (indude-fIIe names, function
names, and sizes) and summary information (number of errors and warnings,
code size, global data size, compilation time, and compilation memory
requirements) to diagnostic output.

o -S name This option sets the load segment name for all object segments created
by the CMPL command, The linker will assign all these object segments to the
same load segment This option can be overwridden by a tsegment directive in
the source code

o -U name This option undefines the predefined proprocessor symbol name,
This is the same as writing

#undef name
at the beginning of the source fIle,

The space between the option and its parameters is optional for example,-SMUMBLE
and - S MUMBLE are equivalent.

2-12 Chapter 2: Using the APW C Compiler

o language2= (option ...) ... This parameter, like the CC= (option ...) parameter,
allows you to pass parameters directly to specific APW compilers or assemblers.
For each compiler or assembler for which you want to specify options, type the
name of the language (exactly as shown by the SHOW LANGUAGES command), an
equal sign (=), and the string of options enclosed in parentheses. The contents and
syntax of the options string is specified in the compiler or assembler reference
manual. Note that the APW Shell does no error checking on this string before
passing it through to the compiler Or assembler. You can include option strings in
the command line for as many languages as you wish; if a language compiler is not
called, the string for that language is ignored .

•) Note: No spaoes are permitted immediately before or after the equal sign in this
parameter.

Press Apple-Period to stop the compilation after it has begun. The compiler may
respond by halting execution and calling the editor with the first line of your source file
at the top of the screen, or it may return you to the shell.

The following command compiles the C source file named MYCFILE. SRC and
produces an object file named MYCFILE. ROOT. The C·compiler option that adds a
prefIX to the include-file path list is passed to the C compiler. If any other files are
appended, additional object files named MYCFILE . A, MYCFILE. E, and so on, are
produced.

COMPILE MYCFILE.SRC KEEP- S CC-I-I/APW/LIBRARIES/ CINCLUDE)

-:. Note: If you have appended a LinkEd file to the end of your program, the link is
controlled by the commands ·in the !:inkEd file. In this case, the standard linker is
not called.

For more examples and discussion of the use of COMP ILE, and its related command
CMPL (alias ASML) command, see Chapter 3 of this manual and 'Compiling (or
Assembling) and Linking a Program" in Chapter 2 of the APW Reference.

EDIT
EDIT filename

The EDIT command does one of two things. If a file named filename already exists,
the command EDIT filename calls the editor and opens the file filename. The editor
uses the language the file is already in. If a file named filename does not already exist,
the command EDIT filename calls the editor and a new file called filename. The
editor uses the default language (CC, ASM65816, or whatever) established by the last
language command or the last file edited.

C compiler shell commands 2-13

LINK

LINK [+LI-LJ [+s l-sJ [+wl-wJfiIe1 [file21I...J[KEEP=OUlfileJ

The LINK command calls the APW Linker, which links object ftIes to create a load me.
You can use this command to link object ftIes created by APW assemblers or
compilers, and to cause the linker to search library meso If any unresolved references
remain after all of the specified object ftIes and library files have been specifted, the
library mes in preflX 2 / are searched in the order in which they appear in the
directory.

The linker is described in detail in Chapter 5 of the APW Reference.

D +L I-L If you specify +L, the linker generates a listing (called a Itnk map) of the
segments in the object me, including the starting address, the length in bytes
(hexadecimal) of each segmen~ and the segment type. If you specify - L, the link
map is not produced.

D +s I-S If you specify +S, the linker produces an alphabetical listing of all global
references in the object file (called a symbol/able). If you specify -S, the symbol
table is not produced.

o +W I-w If you select +W, the linker stops and waits for a key press when a nonfatal
errOr occurs, to give you the opporruniry to read the error message and to decide
whether to continue the link. Press Apple.Period to halt execution, or press any
character key or the space bar to continue. If you omit this option or select -w,
execution continues without pausing when a nonfatal error occurs. Execution
terminates immec;liately when a fatal error occurs, regardless of the setting of this
option.

o file1 file2 ... The full pathnames or partial pathnames, without ftIename extensions,
of all object ftIes to be included, plus the full or partial pathnames of any library
files you want to search. Separate the menames with spaces. The first me you lis~
file1 , must have a . ROOT me; for the other object files, either a . ROOT me or a . A
me must be present. For example, the program TEST might consist of object mes
named TESTl . ROOT, TEST1.A. TESTl. B, TEST2 .A, and TEST2 .B, all in
c;lirectory / APW/ MYFROG/ . In this case, you would use / APW/ MYFROG/ TESTl
/APW/ MYPROG / TEST2 for objeclfile.

You can also specify one or more library mes (proDOS 16 me rype $B2) to be
searched. Any library ftIes specified are searched in the order listed. If a library me
is listed before an object ftIe, the library ftIe is searched before that object me is
linked. Oniy the segments needed to resolve references that haven't already been
resolved are extracted from library files. See the discussion of the MAKELIB
command in Chapter 3 of the APW Reference for more information on library
files .

o KEEP=outflle Use this parameter to specify the pathname or partial pathname of
the executable load ftIe.

You can specify a default load mename by using the LinkName shell variable. Shell
variables are described in ·Variables· later in this chapter. If you do not specify
either the KEEP parameter or a LinkName variable, the link is performed but the
load file is not saved.

2·14 Chapter 2: Using the APW C Compiler

Important

If you do not include any parameters atter the LINK command. you are prompted
for an input filename. as APW prompts you for any required parameters. Since the
output pathname is not a required parameter. however. you are not prompted
for It. Consequently. the link Is performed. but the load file Is not saved unless
you have specified a LinkName variable. Note that you can include the KEEP
parameter atter the pathname you enter in response to the File name prompt.

As an example of the use of the LINK command. suppose you want to link TEST1,
consisting of object files TEST1. ROOT. TEST1 . A, and TEST1. S. The following
command creates the load file MYTEST; no link map or symbol table is produced:

LINK 2 / START TEST1 KEEP- MYTEST

Suppose you want to link TE ST1 consisting of object mes TEST .1 . ROOT, TEST. 1. A,
and TEST.1 . S, search the library file MYLIB, and link TEST. 2 consisting of object
HIes TEST . 2 .A and TEST. 2 . B. The following command creates the load file
MYTEST, printing the link map but suppressing the symbol table. Note that the library
file MYLIB is searched before TEST . 2 is linked:

LINK +L -S 2 / START TEST.1 MYLIB TEST.2 KEEP=MYTEST

To automatically link a program after assembling or compiling it, use one of the
following commands instead of the LINK command: ASML, ASMLG, CMPL, CMPLG,
RUN.

If you need to take advantage of the advanced link capabilites provided by the APW .
linker, create a file of LinkEd commands and process it using the ALINK command
(or by appending it to the last SOurce file when you compile or assemble your
program). THe advanced linker is described in detail in Chapter 5 of the APW
Reference .

Important

The LINK command can be used only to process object fi les and library files; do
net try to process a UnkEd file with the LINK command .

• :. Note: If you use a COMP ILE command followed by a LINK command and if your
main entry point is written in C, you must indude the pathname 2/ START as the
fIrst file in the LINK command.

RUN
RUN [option . . 1 file1 [file2] [... I [KEEP= ouljllel

[NAMES - (seg1 [seg2] [... 1) J [languagel= (oplfon ...)
[language2= (Option .. .)] [... J J

The RUN command com piles (or assembles) one or more SOurce HIes, links one Or
more object and library files, and runs the resulting load file. See the description of
the CMPL command for a list of options and a description of the parameters. Your
compiler or assembler manual describes the de fault values of the parame te rs and the
language·specific options available.

The RUN and ASMLG commands are aliases for CMPLG.

C compiler shell commands 2· 15

The RUN command compiles (or assembles), links, and runs a source file or group of
files. Its function is identical to that of the CMPLG conunand. See the description of the
CMP L command for a description of the parameters.

Examples of these commands
The following command compiles a source file named MYFILE and writes the object
me to disk as the file MYPROG. ROOT:

COMPILE MYFILE KEEpRMYPROG

The following command compiles the source file named MYCFILE.

COMPILE MYCFILE KEEP~MYPROG CC=(-Odebug -I / APW/MYINCLUDES)

Because MYCF ILE is a C program, two C-compiler options are passed to the C
compiler: the -Odebug option defines a compiler flag that you can use to

conditionally compile debugging code; and the -I/APW/MYINCLUDES option tells
the compiler where to search for additional include files.

Appending files
When Al'W sees a hppend directive in a file, it checks the language type of the
appended me: if it is not CC, the compiler returns control to the shell, which brings in

. the appropriate compiler or assembler to open the me. If the appended file is in the
same language, the effect is the same as if the files had been concatenated into one

_ c . me. If they are in different languages, Al'W begins a new assembly or compilation.
This process has curious effects, as you'll see.

Imagine that there are three files, two in C and one in assembly language, each
appended to the preceding file:

c1
c2
asml

When you use the COMPILE command, cl and c2 will be compiled together, and then
a~ml will be assembled. All symbols in c 1 will be available while c2 is being
compiled.

Something different happens when you compile the same files appended in a different
order:

c1
asm l

c2

When you use the COMPILE command, cl is compiled, then asml is assembled, and
then the C compiler is called afresh to compile c2. Since the compilations were
separate, the compiler knows nothing about symbols in cl when compiling c2 .

2·16 Chapter 2: Using the APW C Complier

" ~ .. "

Partial compilation or assembly

You can sometimes speed up program development by compiling or assembling only
the part of a program that you have changed most recently. The APW Assembler has
an option NAMES (for the ASSEMBLE, ASML, ASMLG, COMPILE, CMPL, CMPLG, and
RUN commands) that lets you perform partial assemblies, and furure APW compilers
may also support this option. APW C does not support partial compilation. The
APW C Compiler will execute a COMP ILE command with the NAMES option, but it will
compile the entire source file, as if you had omined the NAMES option. ,

The linker

The linker takes object files and file segments created by the C compiler and generates
load files. The linker resolves external references and creates relocation dictionaries,
which allow the system loader to relocate code at load time. The linker supports data,
code, dynamic and static segments, and library files.

Normally, the linker is called by the shell command LINK, which provides a limited
number of options. Additionally, you can conuol all functions of the linker by using a
language-like set of commands called IlnkEd. linkEd is for advanced programmers
who require maximum flexibility from the system; for mOSt purposes, the ordinary
Link commands are adequate. linkEd commands are described in Chapter 5 of the
APW Reference; other APW commands are in Chapter 3 of that book.

When you use CMPL to compile and link a series of files in different languages, the last
file in the append sequence must be a C file. The files under the library prefIx
(prefiX 2) are searched foi 'unresolved references.

To link manually and search all libraries, use this command:

LINK 2/START objectfilename KEEP ,. /oadjilename

The objectfilename parameters do not have . ROOT extensions. For example, the
command

LINK 2/START rILEl FlLE2 fILE KEEP -LOADNAME

links the files FILEl.ROOT, FILE2 . ROOT, and FILE3 . ROOT with the file
2 / START. ROOT.

The linker searches every library file (of filetype LIB) in the library prefIX (2/).

Making a library

The MAKELIB utility allows you to make a library file. libraries are useful for storing
often-used code, because the linker can search a library much faster that an ordinary
object file. Chapter 3 of the APW Reference explains how to use MAKELIB.

Files for compiling and linking
To create a program from source files, the compiler usually needs include files and the
linker usually needs libraries. Include files, or header files, must be named in
#include statements in the source files. Library files are either searched implicitly or
can be named in LINK statements or in LinkEd files.

Rles for compiling and linking 2- 17

Include-file search rules

Appendix B, "Files Supplied with APW C,· contains a list of include files to be used
with APW C. If the include-fIle name is a full pathname, the compiler uses that name.
A full pathname begins with a slash (j) and contains at least one embedded slash. A
partial pathname does not begin with a slash. (For more information about pathname
syntax, refer to the Apple IlGS Programmer's Womshop Reference and the
Apple IlGS ProDOS 16 Reference.)

If the include-fIle name is a partial pathname, the compiler searches for include files
using the rules shown in Table 2-1. The first fUe successfully opened using these rules is
included.

Table 2-1
InClude-file search rules

Include-tile name Example

In double quo tes "CONSTANTS. H"

In angle brackets <CTYPE . H>

Search tor partial pathname

Look in the following direaories:

1 . The directory of the source file that
contains the include statement.

2. The current preflX (0 I) at the time the
compiler was invoked.

3. The directories specified by the - I

option, in the. order given.

4 . 2/CINCLUDE

Look in the direaories just described in
item 3, and then the directories described
in item 4.

Note mat PeoDOS filenames ace not case-sensitive. By convention, filenames and
pathnames are notated in uppercase.

Library files

Appendix B, "Files Supplied with AJ'W C: contains a list of library files to be used
with C. (If you use the CMPL or CMPLG command, the mes under the library prefix are
searched and you can't specify any others). For more information about linking C
programs, refer to Chapter 5 of the APW Reference.

You can control which library mes are to be searched by using a linkEd script. If you
specify library files, you will usually want to specify the following:

o all Standard C Library mes listed in Appendix B

o only the particular Toolbox mes you refer to in your program

2- , 8 Chapter 2: Using the APW C Compiler

Chapter 3

Sample Programs

3-1

This chapIer provides a wtorial example that illustrates the creation of an application
in the APW environment. The program includes a main routine in C and a subroutine
in assembly language. You are shown how to use the APW Editor to create source files
in both languages, and how to compile, assemble, link, and run the program.

The purpose of this chapter is to give you a tutorial introduction to compiling and
linking a simple multilanguage program in the APW environment. This example is
placed in the APW C Reference, rather than in the APW Reference, because both APW
and APW C are needed to run the example, and only owners of APW C can be assumed
to have both .

• :. Note: The instructions in this chapter assume that you have both the APW
Assembler and the APW C Compiler installed in your system. Assembly language is
included on your APW disks; the C compiler is on the APW C disk. See Chapter 2 for
instructions on installing APW and APW C in your system.

If you have a hard disk, the instructions in this chapIer are straightforward. If you have
two 3.5-inch drives, you may have to do some disk swapping and tweaking of prefixes
to follow these instructions.

This chapter also provides instructions for building a sample desk accessory.

General procedure
This secti;ln describes the general procedure that this chapter follows .

• ;. Note: For simpliCity, the words compiler and compile are used in this chapter to
include assembler and assemble.

1 . Set the system language to the language type of the source code you intend to write,
open a file for editing, and write the source code for the first part of your program.
Save the me to disk.

2 . Execute the shell COMPILE (or ASSEMBLE) command.

You now have several files on disk: the source-code me and one or more object­
code files (the root file and files with alphabetic extensions such as .A).

4. Write the next part of the program. This part need not be in the same programming
language as the first part. Give this part a different source filename than the first part
and a different KEEP mename.

S. Execute the shell COMPILE command. Debug the program and recompile as
necessary until successful.

6. Repeat steps 4 and 5 for each part of the program, until you are sure that each part
compiles successfully.

7. Execute the LINK command, specifying the root filenames of all of the object files
in the program.

S. If you wish, execute (he COMP F-.CT command to create a more compacl version of
the load file.

3·2 Chapter 3: Sample Programs

If you prefer, you can write the entire program, including parts in several languages,
and compile and link them all at once. Use the CMPL command to compile and link
the program. Each source fIle except the last can end in an #append directive (or the
equivalent), or you can spedfy multiple source fIles in the CMPL command. Every
time an APW compiler executes an #append directive, it checks the APW language
type of the fIle being appended. If the language doesn't match that of the compiler,
then the compiler returns control to the shelL which calls the appropriate compiler to
continue processing the program. If all compiles are successful, the APW Linker is
called automatically. The linker processes the fIle, writes out any error.;, and (if the
link was successful), writes the load me to disk.

Writing and editing the sample source code
The sample program shown in this section takes input from the keyboard, converts
every letter to uppercase, and prints the result to the screen. It is written with a main
segment in C and a subroutine in assembly language. The C routine handles the input
and output The assembly-language routine does the conversion from lowercase to
uppercase.

Use the following steps to write the source code for the C routine shown in Figures 3-1
and 3-2. (If you don't feel like typing, look in the directory
/ Al'WC/ SAMPLES / UP STR/.)

1. Boot APW and type the following command to set the system default language (the
currenl language) 10 C. To .execule an APW command, press the Return key.

cc

2. Call the editor to open a me called SAMPLEC with the following command:

EDIT SAMPLEC

3. Type the following program. Use the cursor keys to move around in the fIle. The
Delete key deletes the character to the left of the cursor. The Tab key moves the
cursor for indenting subroutines. Other basic editor commands are given in Table
2-4 of the APW Reference.

/ - Convert all characters taken from standard input to upperca se */
; ", and wr i te the result to standard output .

/ "
I'" NOtE: Cont r o l-@ terminates the input

jinclude <stdio.n>

#def i ne MAX LEN 1 024

extern void UPSTR();
char "'gets();

main (arg c, argv)
int argc;
Char "'argv f } :

c har str [MAX LEN];
..... hil e (gets (str) - NULL) {

U?STR(str) ;
printf (" ts \ ~", str);

ret.urn 0 ;

*/

" /
" /

Writing and ediffng the sample source code 3-3

4. Press Apple-Q [0 quit the editor. Press S to save the file [0 disk, and then press E to
exit the editor and return to the shell.

5. Type !he following command [0 set the current language to 65816 assembler.

ASM65B16

6 . Call the editor to open file called SAMPLEA with the following command:

EDIT SAMPLEA

7. Type the following program. Note that the default tab Stops are different for
assembly language than for C. You must be careful [0 start the comments past
column 40, or you will get a syntaX error in line 2.

LONGA ON
UPSTR START

LDA 4,5
STA $AA

LOA 6, S
STA

LOOP SEP

SAC
*S20
OFF
ISAA]

FINISH
~$61

ITERATE
,S7B
ITERATE

LONGA

LDA
SEQ
CMP
BCC
CMP
BCS
SEC
SBC
STA

ITERATE REP
LONG)!.

H20

I$AAl

H20

ON

set Assembler t o 16-bit accumulator mode
start of object segment
get string address (lower 2 bytes)

store into direct page
get strinq address (bank byce+ext ra byte)

store into direct ?age
set processor to B-bit accumu lator mode
set Assembler to 8-bi t accumu l ator mode
get next byte in string
if 0, end of string

is character < 'a' ($61) ?
if s o , go to next character
1s character > ' z ' (S 7A) ?

if so, go to next character
convert the character to uppercase by

subtract i ng $20
store character back in stri ng

sec processor co 16-bit accumu l ator mode
set Assembler t o l 6-bit accumu lator mode

CLC increment string address by 1
LDA $AA
ADC n
STA $AA

BCC
I NC
BRA

LOOP
$AC
LOOP

FINISH REP '$20

LONGA ON
RTL
END

if carry gets set, y ou just crossed bank

boundaries so y ou increment bank
g et next character
set processor to : 6-bit accumu lato r mode
set Assembler to 16-bit accumulator mode

return to C routine
end of o bject segmen t

8. Press Apple-Q to quit the editor. Press S (0 save the file to disk, and then press E (0

exit the editor and return to the shell.

3-4 Chapter 3: Sample Programs

'- -, ..

Creating object code: compiling and assembling
To compile and assemble your programs, use the following commands:

COMPILE SAMPLEC KEEP=SAMPLEC.O
ASSEMBLE SAMPLEA KEEP-SAMPLEA.O

.> Note: If you have two 3.5-inch drives and no hard disk, you will have to compile
using the APWC disk and assemble using the APW Assembler disk. Use this series of
commands:

COMPILE SAMPLEC KEEP-SAMPLEC, O
UMC

ASSEMBLE SAMPLEA KEEF-SAMPLEA. O
MC

If an APW compiler finds a fatal error (one that prevenrs the compilation from
continuing), it writes out an error message to standard output (normally the screen),
and passes control to the APW Editor, which loads the source file that the compiler
was working on, pladng the line that caused the error in the middle of the screen.

If your rust artempt was not successful, correct the source code and try again. Repeat
this process until the module compiles successfully. Remember to save the source file
each time you make changes: the disk flie is updated only when you save it

The following flies should be on your disk after using these conunands:

SAMPLEC C source code

SAMPLEA

SAMPLEC.O. ROOT

SAMPLEA.O.ROOT

. ,
65816 source code

object segment created by the C compiler

object segment created by the assembler

Alternatively, you can compile both files in one operation, if you are USing a hard
disk. To do this, you can add a line to the file SAMP LEC as follows:

1 . Reopen the file in the edicor with the following command:

EDIT SAMPLEC

2. Press Apple-9 to jump to the end of the file. Add the following line to the file:

ifappend "SAMPLEA"

3. Press Apple-Q to quit the editor, S to save the file, and E to exit the editor.

4. Now when you use the following command, the shell calls the C compiler to
compile the C routine and then calls the APW Assembler to assemble the 65816
routine:

COMPILE SAMP LEC KEEP - SAMPLE.O

The following files should be on your disk after using this command:

SAMP LEC C source code

SAMPLEA

SAMPLE.O.ROOT

SAMPLE.O.A

65816 source code

first object segment created by the C compiler

object segments created by the assembler

Creating object code: compiling and assembling 3-5

Creating load files: linking
When you execute the LINK command, the APW Linker combines all object segments
that have the same load-segment name into the same load segment, and places the
entire program into a single load file with the KEEP mename you specified. (For a
discussion of object segments and load segments, see "APW C Concepts' in
Chapter 1.)

Important
Be sure to include the KEEP parameter in the LINK command. II you do not
specify a KEEP ftlename in the LINK command. no load ftle is saved to disk.

There are two ways to link the object files you have just created. In the ftrst way, if you
did not add the #append directive to the end of the C routine, use the following
command to link the object files into a single executable load file:

LI NK 2/START SAMPLEC.O SAMPLEA.O KEEP -SAMPLE

The ftrst me listed links the me START. ROOT in the library prefix. This me must be
linked to the beginning of every program when the main segment is in C.

The load file is named SAMPLE.

The following files should be on your disk after using this command:

SAMPLEC C source code

SAMPLEA

SAMPLEC.O.ROOT

SAMPLEA.O.ROOT

SAMPLE

65816 SOurce code

object segment created by the C compiler

object segment created by the assembler

load file

In the second way, if you did add the #append command to the end of the C routine,
use the following command to link the object files into a single executable load file:

LINK 2/START SAMPLEC,O KEEP-SAMPLE

The following files should be on your disk after using this command:

SAMPLEC C source code

SAMPLEA

SAMPLE.O.ROOT

SAMPLE.O.A

SAMPLE

65816 source code

first object segment created by the C compiler

object segments created by the assembler

load file

3-6 Chapter 3: Sample Programs

",,",-"

Running your program
To run the program you just created, use the following corrunand:

SAMPLE

Each character you type is printed on the screen as you type it Press Rerum to have the
program retype the line in all uppercase. Press Control-C to terminate the program.
The following sequence illustrates the use of this routine. The characters in boldface
are the ones you type (remember to press Rerum at the end of each line you type):

t SAKPL:&:
Now i. the Time for aLL good PeoPle to Buy an Apple I19s
NOW IS TIlE TIME FOR ALL GOOD PEOPLE TO BUY AN APPLE IIGS
G:cana.y Smith is alway. gettinq he:c apples into & jam
GRl\NNY SMITH IS ALWAYS GETTING HER APPLES INTO A Jl\M

Control-@
t

With this routine, you can use I/O redirection to convert the characters in a file to
uppercase. The following corrunand converts all characters in the file TEXT . IN to
uppercase and writes them out to the file TEXT . OUT:

SAMPLE <TEXT.IN >T£XT .OUT

The file TEXT. OUT contains the output that would have appeared on the screen; that
is, each line of text in the file TEX'J: • IN is printed, followed by the same line converted
to uppercase. . . '

Creating a compact load file
As a final step in program development, you can run the Compact utility program.
Compact converts a load file to the most compact form provided by the object
module format If your load file is named SAMPLE, type the following line and press
Re turn:

COMPACT SAMPLE -0 SAMPLE. CMPCT - R

Compacted load files take up less space on disk and load faster than noncompacted
load files . The SAMPLE program you created here, for example, should be about 31
blocks in size (as shown in a catalog listing), while SAMPLE. CMPCT should be about 2S
blocks.

The Compact utility writes to the screen an account of the records it has converted. If
you are interested in understanding the format and use of these records, see "Segment
Body" in Chapter 8 of the APW Reference.

However, not all load flies are significantly improved by compacting, so you may want
to rest both compacted and noncompacted versions of your program before releasing
i t.

Important

In order to load a c ompacted load file. you must have version 1.2 or later of the
System Loader on your boot disk.

Creating a compact load fi le 3-7

Building a larger application: BON ES
The APW C disk contains a sample application named BONES, which does all the
things an application needs to do. It is located in the directory
I APWCI SAMPLES IBONES I . It comprises the following files:

MlUCE Build EXEC me
BONES. CC Implements most of BONES
INIT . CC Initializes tools
DATA.ASM
STACKMIN.ASM

Data strucrures for windows and menus
Allocates stack for BONES

To build the application, set the preftx 0 I to the directory I APWCI SAMPLES IBONES I
and type

MA.KE

To run the application, type

BONES

or launch it from the Program Launcher.

Writing desk accssories in APW C
A desk accessory is a small program that a user can run without shutting down an
already-running application. The Apple nes supports two different kinds of .desk
accessories:

• Classic desk accessories (CDAs) run in a nondesktop environment. The CDA
interrupts the application and gets full control of the computer. An example of a
CDA is the Control Panel. The APW C Compiler does not support dassic desk
accessories.

• New desk accessories (NDAs) run in a desktop environment: they operate in a
window and are subject to the same rules that govern event-driven applications.
They are not stand-alone applications, however, because they rely on another
application to start up the Apple lIes tools.

Neither type of desk accessory has much extra programming overhead apart from the
acrual task it performs. Both types depend heavily for support upon the Desk Manager
tool set.

Writing new desk accessories in APW C

All new desk accessories are loaded from the disk at boot time. When an NDA gets
control from the Desk Manager, the processor is in full native mode. By convention,
the NDA can assume that the tools shown in Table 3-1 have alreadv been loaded and
started up. If the NDA needs any other tool sets, it must load and start them up itself.

3-8 Chapter 3: Sample Programs

Table 3-1
Tool sets loaded and available to new desk a=essories

Tool set

QuickDraw II
Event Manager
Window Manager
Control Manager
Dialog Manager
Menu Manager
tine Edit
Scrap Manager

The NDA may also aSSume that the Print Manager is available, although it is not
necessarily loaded and started up.

Important
If one of these tool sets has not been loaded and the NDA needs it. the NDA
should Issue an error message.

An NDA has a structure fundamentally different from that of a desktop application.
One difference is that it has no event loop-it relies on the application's event loop
and (he Desk Manager to open it, probe into action, and dose it. Another difference
is that it consists of only four routines:

o The Desk Manager calls the init routine to initialize the NDA when the Desk Manager
starts up, and again when it shuts down.

o The Desk Manager calls the open routine when the NDA is selected by the user from
the Apple menu. The open routine opens the desk accessory window and returns a
pointer to it.

o The Desk Manager calls the action routine in response to an event within the NDA
window, or when a specified time period has passed, or if a selection has been
made from an NDA menu or the Edit menu, or in orner special cases. The action
routine performs whatever tasks the NDA was designed for. An action code passed
in the accumulator tells the NDA why it was called.

o The Desk Manager calls the close routine to close the desk accessory window.

The processor is in full native mode on entry into all four routines.

The basic procedure followed by each of the four NDA routines is as follows:

1 . Call SaveDB. (Needed only if you reference variables in -globals.)

2 . Save important global variables, such as the application's current GrafP ol:t.

3. Save the work area pointerS of any tools you need to use that are not in Table 3-1.

4. Initialize the tools you need to use.

S. Depending on the action code received, take appropriate action. A desk accessory
must use the stack or request needed space from the 7;lemory Manager.

6. Restore the work area pointers that you modified in step 3.

7 . Restore the global values and return to the Desk Manager.

8. Call RestoreDB. (Needed only if you reference variables in -globa l s.)

WriNng desk accssories in APW C 3-9

You must start the NDA with an identification section that specifies the pointers to the
four routines, the NDA's period (how often it runs), and its menu line (text defining its
title on the Apple menu). For example, the identification section could look like this:

"NDA's have the ProDOS file type OxB8. On disk, they must reside in the
/ volumename/ SYSTEM/DESK. ACCS/ subdirectory."

A sample C desk accessory
A sample NDA, written in C, is in the directory / APWC/ SAMPLES /DA/ . It comprises
the follOwing meso

IDLEHEADER.ASM
CIDLE.C

USERIDLE.C

DB.ASM
MAKE

NDA identification section with poincers to four routines
Implements init, open, and close (steps 1-4 and 6-8, just
given)
Implements action (step 5): change this to create your own
NDA
Implements SaveDB and RestoreDB
Build EXEC me

To build the desk accessory, set the prefix 0 / to the directory / APWC/ SAMPLES /DA/
and type

MAKE

To run the desk accessory, copy it into the directory
./volumename/SYSTEM/DESK.ACCS/ on a disk named volumename and boot that

disk.

3-10 Chapter 3: Sample Programs

" --

"-

"' "

Part II

Language
Reference

Chapter 4 ·

The APW C
Language

4-1

The information provided in this chapter supplemenLS The C Programming Language
by Kernighan and Ritcbie. Where the K and R language definition leaves cboices to the
implementers, this cbapter describes how these aspects of C have been implemented
on the Apple IIGS. Where Apple has modified or extended the K and R language
definition, this chapter documenLS the cbanges.

Language definition
This section describes the APW C language, including language extensions sucb as
rype void, type enum, and the SANE data rypes, and how to call Pascal-style
functions. It also describes APW C's in-line assembler.

Variable names
The compiler limiLS the length of eacb local variable name to 1000 characters. Global
variable names and function names are limited to 250 cbaracters by the object­
module format. Therefore, different function names whose first 250 cbaracters are
identical will be treated as dilTerent functions by the compiler, but will be treated as the
same function by the linker.

Data types
Table 4-1 lisLS the arithmetic and pointer types available in APW C and shows the
number of biLS allocated for variables of these types. Types short and long represent
16·bit and 32-bit integers, respectively. The machine type int, a 16-bit integer on the
Apple IIGS, is the type the 65C816 uses most efficiently. Pointers require 32 biLS.
Enumeration types require 16 biLS. Types short, int, and long use two's­
complement representation. Type char is unsigned. Note that the Apple JIGS has no
signed 8-bit type: char and unsigned char are identical. Naturally, a prudent
programmer will make no assumptions about features not guaranteed to be portable.

Table 4-1
Size and range of data types

Data type Bits Description

char 8 Range 0 to 255
unsigned char 8 Range 0 to 255
short 16 Range -32,768 to 32,767
unsigned short 16 Range 0 to 65,535
int 16 Range -32,768 to 32,767
unsigned int 16 Range 0 to 65,535
long 32 Range -2,147,483,648 to 2,147,483,647
unsigned long 32 Range 0 to 4,294,967.295
enum 16 Range 0 to 65.535
• 32 Pointer types
fl oat 32 IEEE single-precision floating point
double 64 IEEE double-precision floating point
comp 64 SAl,\'E signed integral values
ext ended 80 IEEE extended-precision floating point

4-2 Chapter 4: The APW C Language

'-

0) Note: Some programs assume that sizeof (int) = sizeof (char .) may not
work properly under APW C because an int is 2 bytes long and a pointer is 4 bytes.

You can find more information about types in Table 4-2, given later in this chapter.

Numeric constants

Integer constants in the range of long are treated as type long. Integer constants in
the range of uns igned long are treated as type long unless you explicitly include
a cast to type unsigned long.

This point is important for those few cases where the long constant has the most
significant bit set, because the compiler may seem confused about whether such
constants have large positive values (which are stored as 32 bits with the most
significant bit set) or negative values.

For instance:

(400000 0000 < 0)

is true, but

({unsigned l ong) 4 0 0000 0000 < 0)

is false.

Integer constants outside the union of the ranges of the types long and uns igned
long are treated as type extended For example, the initialization statement

l oog i = 60 0000 0000;

is incorrect because 6,OOO,000,OOO-being too big for the long type---is interpreted
as an extended value. However, the initialization statement

un signeci l o ng i - 40 0 0 000 000;

is correct because 4,000,000,000 is within the range of unsigned long values.

Type void

The void keyword tells the compiler that the function being declared does not return a
value. Calls to functions of type void may nO[be used in expressions, where a value is
required. (See "Pascal-Style Functions" later in this Chapter.)

language definition 4-3

Type enum
Type enum is a type analogous to the enumeration types of Pascal. Irs syntaX is similar
[0 that of the struct and union declarations:

enum-specif'um
en urn { mum-list }
en urn enumerarion-tag {mum-list}
anum enumeration-tag

mum-list·
enumeralion-declararion
enumeration,;Jec/ararion . enum-list

enul'ni!Talion-declaration:
identifier
identifier - constant-expression

Like the structure tag in a struet-specifier parameter, the optional enumeration-tag in
enum-specifier names a partirular enumeration type and allows you to define other
objecrs of that type. For example,

enum col o r {chartreuse. burgundy, claret, winedark}:

enum c olor *cp, co l ;

makes c·o ior the enumeration-tag of a type describing various colors and then ·
declares cp as a pointer to an object of that type and col as an object of that type. The
identifiers in enum-list are declared as constanrs and may appear wherever constanrs
are required.

If no enumerators with a constant-expression appear, the value of each constanrs
begins at 0 and increases by 1 as the declaration is read from left to right. Each
enumerator with a constant-expressfon is given the value indicated. Each enumerator
without a constant-expression is given a value one greater than the enumerator befqre
iL This means that two Or more enumerators wim constant-e.xpressions can be
assjgned the same constant value, and that an enumeramr without a constant­
expression may have the same value assigned by the compiler as another enumerator
with a constant-expressfon in rhe same enumeration list Consider some examples:

enum digit { zero ,one, t wo,three , t our,tive,six,seven,eight ,nine) num;

has the values 0, 1, 2, 3, 4, S, 6, 7, 8, 9;

4-4 Chapter 4: TIle APW C Language

.. ~

. '--.. .

enum mixedup (a,b,c,d - l,e,f , mix;

has the values 0, I, 2, I, 2, 3;

enum zapped {g - 1 , h.i.j =2,k,1} zap;

has the values I, 2, 3, 2, 3, 4; and

enum ok {m-45,n,o,p=lOO,q,r};

has the values 45,46, 47, 100, 101, 102.

If you declare values, it is safest to declare all of them.

Each enumeration-tag and enumeration-constam must be unique. Uniike structure
tags and members, they are drawn from the set of ordinary identifiers. Objects of a
given enumeration type have a type that is distinct from objects of all other types.

Enumeration types are allocated the amount of space required by the smallest
predefIned type that allows representation of all literal values specifIed by the
enumeration. The predefined types considered are unsigned char (8 bits) and
unsigned short (16 bits).

Register variables

Most versions of C support register variables. The function of register variables is
undefmed in the Apple IIGS as a result of the small number of registers available on the
6SCSl6 microprocessor. Use of the re.gister declaration neither optirruzes nor
pessimizes your code: the C compiler generates equally efficient code whether or ·not
your source code contains register declarations.

Structures

Structures may be assigned, passed as parameters, and returned as function results.
The left and right sides of a structure assignment must have identical types. Similiarly,
actual and formal parameters must have identical types. Equality comparison for
structures is implemented, provided the structureS have the same type. (The equality
test may give unpredictable results if a structure contains a union.)

Because the 65C816 is a byte-oriented machine, data structures can be aligned on byte
boundaries. For this reason, A:PW C does not pad structures to ensure word
alignment.

Important

In functions that return structures, if an interrupt occurs during the return
sequence and the same tunctlon is called reentrantly during the interrupt. the
value returned from the ftrst call may be corrupted. This problem can occur only
in the presence of interrupts. Recursive calls are quite safe .

Language definition 4-5

Reserved symbols
__ LINE __ is a reserved preprocessor symbol whose value is the current line
number within the current source me.

__ FILE __ is a reserved preprocessor symbol whose value is a character string
consisting of the current ftIename.

__ LINE __ and __ FlLE __ begin and end with two underscore characters.

The symbol AppleIIgs is predefIned for use in conditional compilation. It can be
used to distinguish C code written for the AFW C Compiler from C code written for,
say, the MPW C Compiler. The symbol has the value 1, as if a statement of this form
had appeared at the beginning of the source code:

tdefine AppleIIgs 1

The symbol AE'W is predefmed for use in conditional compilation. It can be used to

distinguish C code written for the AFW C Compiler from C code written for some
other compiler. The symbol has the value 1, as if a statement of this form had
appeared at the beginning of the source code:

i-Clefine APW 1

The symbol WD65816 is predefIned for use in conditional compilation. It can be
used to distinguish C code written to run on the Western Design Center 65SCS16 from
C code written to run on some other microprocessor-even for some other variation
of 65816.The symbol has .the value 1, as if a statement of this form had appeared at the
beginning of the source code:

;,. '

4tdefine WD65816 1 - .

An ifdef statement can test the AppleIIgs, APW, and WD65816 symbols.

Standard Apple Numeric Environment extensions

AFW C has built-in su pport for SANE. In combination with the SANE routines in
CLIB, the language composes a scrupulously conforming extended-precision
implementation of the IEEE Standard for Binary Floating-Point Arithmetic (754).
Sk'IE provides an extra data type for storing large integral values and basic functions
for JlPplication development. AFW C recognizes the SANE data types, uses SANE for
all C floating-point operations and conversiOns, and correctly handles NaNs (Not-a­
Number) and infInities in comparisons and in ASCII-binary conversions.
Furthermore, source programs from other C implementations-if they are written
using only float and double type, and standard C operations-will compile and run
under AFW C without modifIcation.

Much of Sk,'E is provided through the run-time library CLIB and the include file
SANE. H. However, to use extended-precision arithmetic efficiently and effectively,
and to handle IEEE NaNs and infInities, some extensions to standard C are required,
including use of the extended data type.

4-6 Chapter 4: The APW C Language

A change from double to extended as the basic floating-point type is the most
important difference from standard C. Because C was originally developed on the
DEC PDP-ll, the PDP-II architecrure is reflected in standard C in the use of float
and double as floating-point types, with double being the basic type. Thus, floating­
point expressions are evaluated to double, anonymous variables are double, and
floating-point parameters and function results are passed as double values. However,
the low-level SANE arithmetic (as well as the Intel 8087, Motorola 68881, and Zilog
ZS070 floating-point chips) evaluates arithmetic operations to the range and precision
of an SO-bit extended type. Thus, extended narurally replaces PDP-ll double as
the basic arithmetic type for computing purposes. The types float (IEEE single),
double, and comp serve as space-saving storage types, just as float does in standard
C. The comp type, which is a 64-bit type for storing integral values, is a SANE
extension. It has two properties that suit it to accounting applications: it is sufficiently
large to represent the U.S. national debt in Argentine pesos, and it has a NaN value to
record overflows and other exceptions.

The IEEE Standard specifies two kinds of special representations for its floating-point
formats: N aNs and infinities. AFW C expands the syntax for I/O to accommodate
NaNs and infinities, and includes the treatment of NaNs in relationals as required by
the IEEE Standard.

The SANE extensions to standard Care backward-<:ompalible: programs written with
only the float and double floating-point types and standard C operations compile
and run without modification, All intermediate values are computed in the extended
type, an SO-bit floating-point type, and the results are rerurned to the types specified
in the program. SANE does not affect integer arithmetic.

The Apple Numerics Manual contains detailed documentation of SANE. The
Apple IIGS Toolbox Reference contains detailed documentation of the Apple IIGS
SANE Toolset, which makes SANE available on the Apple IIGS.

Consfanfs

Numeric constants that include Ooating-point synlaX-a point (.) or an exponent
field-{)r that lie outside the union of the ranges of the long and uns igned long
types are of type ext ended. Binary-to-decimal conversion of constants is performed
at compile time (and hence is governed by the default numeric environment: see the
section "Numeric Environment- later in this chapter).

Expressions

The SANE typeS-float, double, comp, and extended--,:an be mixed in
expressions with each other and with integer types in the same manner that float and
double can be mixed in standard C. An expression consisting solely of a SAL'IE-type
variable, constant, or function is of type' extended. An expression formed by
subexpressions and an arithmetic operation is of type extended if either of its
subexpressions is. Expressions of type extended are evaluated using extended­
precision SAl'\iE arithmetic, with conversions to type extended generated
automatically as needed. Parentheses in extended-type expressions are honored:
the compiler will not rearrange terms in violation of parentheses. Initialization of
external and static variables, which may include expression evaluation, is performed
at compile time. All other evaluation of extended-type expressions is performed at
run time.

Language definition 4-7

Comparison Involving a NaN

The result of a comparison involving a NaN operand is unordered. The usual set of
comparison results-less than «), greater than (», and equal to (==)-is expanded
to include unordered. For example, the negation of "a is less than b" is not "a is
greater than or equal to b" but "a is greater than or equal to b, or a and bare
unordered." The CLIB function relation tests all four alternatives.

Parameters and function results

A numeric acrual parameter passed by value is an expression and, hence, is of
extended or integer type. Nl extended-type arguments are passed as extended
values. Similarly, all results of functions declared f l oa t, do uble, comp, or
extended are rerumed as extended values.

NumeriC input and output

In addition to the usual syntax accepted for numeric input, the Standard C Library
function scanf recognizes the string "INF" as infinity and the string "NAN" as a NaN.
"NAN" may be followed by parentheses, which may contain an integer (a code
indicating the NaN's origin). "INF" and 'NAN" preceded by a sign and are case­
insensitive. The scanf specifiers for SANE types extend standard C as follows:
conversion characters f, e, and g indicate type float j If, Ie, and 19 indicate type
double; mf, me, and mg indicate type comp; and ne, nf, and ng indicate type
extended

The Standard C Library function pr int f writes infinities as the string "INF" and NaN's
as the string "NAN(ddcl)" , where ddd is the NaN code. 'INF" and "NAl"l(ddcl)" may
be preceded by a minus sign.

Numeric environment

The numeric environment comprises the rounding direction, rounding precision,
halt enables, and exception flags. IEEE Standard default settings-rounding to
nearest, rounding to extended precision, and all halts disabled-are in effect for
compile-time arithmetic (including decimal-to-binary conversion). Each program
begins with these defaults and with all exception flags clear. Functions for managing
the environment are included in the library CLIB. The compiler, in optimizing, will
not change any pan of the numeric environment, including the exception-flag setting,
which is a side effect of arithmetic operations.

About the SANE routines in CliB

The SA.."iE routines provide the basic tools for developing a wide range of
applicatiOns. They include the following:

':J logarithmic, exponential, and trigonometriC functions

o financial functions

Ci random-number generation

4-8 Chapter 4: The APW C Language

"'--

o conversions between binary and decimal formats

o numeric scanning and formatting

o environmem conlrol

o other functions required or recommended by the IEEE Standard

Additional information can be found in the SANE Tool Set chapter of the Apple IIGS
Toolbox Reference.

Programming with IEEE arithmetic

APW C's aUlOmatic use of the extended type produces results !hat are generally
beller than those of other C systems. For example, extended preciSion yields more
accuracy and extended range, avoiding unnecessary underflow and overflow of
intermediate results. You can further explOit the extended type by dedaring all
floating-poim temporary variables to be ·of type extended. Doing !his is both time­
efficient and space-efficient, since it reduces the number of aulOmatic conversions
between types. External data should be stored in one of the three smaller SANE types
(float, double, or comp), not only for economy but also because the extended
format may vary between SANE implementations. As a general rule, use float,
double, or comp data as program input; extended arithmetic for computations;
and float, double, or comp data as program output.

In many instances, IEEE arithmetic allows simpler algorithms !han were possible
without IEEE arithmetic. The default overflowing 10 infinity enlarges the domain of
some formulas. For example, 1 + 11X' will be computed correctly even if X' overflows.
Running with halts disabled (!he default), a program will never crash due to a floating­
point exception because a suitable default value can be returned instead. Hence, by
monilOring exception flags, a program can test for exceptional cases after the fact.
The alternative-screening out bad input-is often infeasible and sometimes
impossible.

The in-line assembler

The APW C in-line assembler obviates the need for a separate assembler. You can
implemem general control structure, input/output, and complex data structures in C,
while coding certain low-level routines in assembly language within the same module.
The problem of interfacing C functions 10 assembly-language functions and vice-versa
is eliminated, because calling sequences can be wriuen in C for functions coded in
assembly language. Programs can first be developed in C 10 debug algorithms and to
generate a working prototype quickly. The functions that consume the most time
(generally less than 10% of the code) can then be re-coded in assembly language.
Because of the efficiency of the APW C code generator, such a hybrid approach yields
execution speeds comparable with those of pure assembly-language code, while
retaining the ease of modification and maimenance of a pure high-level-language
approach.

Language definition 4-9

Use of assembly language decreases readability, exacerbates debugging headaches,
and drastically reduces portability, so you must use cliscretion when considering
functions for hand translation. There are some situations where speed is critical, most
no[ably graphics. Such applications frequently involve system or machine
dependences anyway, so portability is not an issue. In such cases, the availability of
in-line assembly language is a great benefit

In-line assembly-code declarations and definitions

Your C program can contain assembly code in line. Anywhere that a statement is
legal, you can insert a series of assembly-language statements with this formal:

a sm { assembly-language-statements}

Anywhere that a function definition is legal, you can have a definition with this formal:

a sm (external-name) {assembly-language-statements}

This function can be called in the same way as a C function called external-name.
Here, external-name is the entry point of the segment containing the assembly­
language code.

In-line ossembler syntax

The assembler syntaX is basically the same as that used in the APW Assembler. There
are far fewer assembler directives: oniy deb, dew and del are supported. Macros are
not supported either; however, the compiler's preprocessor is active within in-line .
assembly.

The general syntaX for in-line assembly language follows. Here is the syntaX for
me[asymbols:

Metasymbol form

item
item _ ..
[item]
choicel I choice2

Meaning

item is replaced by an actual item.
item may be repealed.
item is optional.
either choice1 Or choice2 must appear, but not both.

Here are the syntax rules for statements:

asm-junclion ::- asm (june-name) { asm-line .. . }
asm-statement ::- asm (asm-llne .. .)
asm-line ::= label : lop-code [operand) [comment-stuffl
comment-slUff : := ; comment I r comment OJ

In-line assembly code may appear anywhere in your program; i[is not necessary [0

place i[inside a function. The asm-junction formal is used in this case. An asm­
statement may appear anywhere that a C statement is legal within a regular C function.
C variables may be referred 10 by name. All auto variables and parameters are
accessed with direct-page addressing; global and static variables are accessed with
long absolute addressing.

Opcodes are the same as in the Western Design literature and may be given in
uppercase or lowercase. Because expansion of #de fine macros is performed within
sections of assembly language, you are free [0 rename instructions or registers.

4-'0 Chapter 4: The APW C Language

Each line of assembly language may consist of one or more instructions, optionally
followed by a semicolon and comment text Comments may also be given as C
comments. Note that you can use #def ine statements to create simple macros using
the multiple-statement-per-line feature. Within macros, C-slyle comments must be
used instead of the normal semicolon-to-end-of-line assembly-language comments.

An expression giving a displacement value is permitted after an identifier. The
expression is a C-style constant expression that is added to or subtracted from the
identifier. All constant expressions may use C-slyle constants (such as \ 012 or Ox40)
and may use the constant operators listed in section 15 of Appendix A of Kernighan
and Ritchie. Note that $1234 is invalid syntax for hexadecimal constants: use Ox1234
instead.

In addition, the unary <, unary >, unary', and unary I are all recognized by this
assembler, and have the same meaning as they do in the APW assembler. In operand
expressio ns, any identifier must be placed first in the expression; in other words, the
instruction

l da a+ 2

is legal, but the instruction

lda 2+a

is not.

The syntax for reserving a byte, word, or long is

deb expreSSion
dew expression
del expression

respectively.

An identifier that appears after del, dew or deb means to emit the address of the
identifier. If the identifier is auto, the offset into the direct page is emitted; otherwise,
its absolute address is emitted. Direct page offsets are modulo 256, so if you have more
than 256 bytes of auto variables, the compiler may silently generate incorrect offsets.

All labels given default to local-code labels unless you've previously declared them as
something else. This means that ail functions called, for example, must be declared or
defmed previously in C. You may only use a label as a destination for a branch; you
may not read or store values using a label. This restriction exists to ensure that code
segments are pure code, which is a requirement of the loader for restartable
applications.

An example o f a macr o to use in ass embly l angu age
" ;

idefi ne MLI1 6 OxE100A8
#defin e PRODOS(n, a) j s l MLI16 dew n del a

Language definition 4-11

You have the ability to obtain offsets and values of structure members, as shown in this
example:

typedet struct don
int x;
int y;
int z;

} don;

don Q"lobaldon;

maine)

don loca l cion;

.sm
ida
ida

tdon.y
globaldon.y

load offset of structure member
load global value of struc ture member

Ida localdon.z load local value ot s tructu re member
I da tl (s izeof(int.) + (.. 123) • '\0123')

Finally, this assembler has a few differences with respect to the APW Assembler. The
jrnp opcode always generates short jumps, for long jumps, you must use the jml
opcode. Similarly, jsr always generates short jumps; for long jumps, you must use
jsl.

Here are some examples of correct and incorrect syntax:

Correct Incorrect

pei dp pei (dp) .
pea iexpr pea expr.
mvn fdst, tsrc mvn src, cist.
mvp if'dst , *src mvp src, cist.

Some synonyms for opcodes (such as swa for xba) are not supported. You can easily
work around this by dOing, for example,

'define tda tdc
"'define swa xba

The assembler will always generate 16 bits of operand for instructions like

ida 10

This means that the assembler is meant to generate instructions in full native mode.

Pascal-style functions

The function-calling conventions used by APW C and by conventional Pascal
implementations differ in me order of parameters on me stack, the type coercions
applied to parameters, and the location of me return result Like the Macintosh
Toolbox, me Apple lies Toolbox adheres to Pascal-style calling conventions. APW C
has been extended to allow you to use both C-style and Pascal-style calling
conventions. The specifier pascal in a function declaration or definition indicates a
Pascal-style function. This extension is intended to allow for the addition of Pascal
and other languages to APW.

4-12 Chapter 4: The APW C Language

Pascal-style function declarations

A function or procedure written using Pascal-style calling conventions can be called
from APW C. Before the function or procedure can be called, it must be declared as
an external function. Here is the general form for a declaration:

[e x t ern J pascal [result-type] Junc-name () ;

This declaration says that the Pascal procedure named June-name can be called from
your program, returning a result of type result-type.

For example, the DrawText procedure would be defined in Pascal as follows:

PROC EDURE DrawText (textBu!: Pt r :
f i rst Byce, byt eCo~nt: i nteger);

The syntax for declaring this procedure so that it can be called from APW C is

extern pascal void OrawText () ;

To make the code more informative, you can JiSt the parameters in a comment:

exte rn pascal v oid DrawText () ;
/ * Ptr textBur;
s hor t firstByt e , byt e Count; * /

The inline declaration

An inline declaration is used for declaring Apple lIGS tool routines. Its syntax is

[ext e rn] pascal [result-typelJUnc-npme () i nline (m. n l ;

This declaration says that the tool routine with tool-call number m and Tool-Locator
entry-point n can be called by the function name June-name and that June-name
returns a result of type result-type. The pascal keyword is necessary because the tools
use Pascal-style conventions. If the tool returns an error, it can be found in
_toolErr, a global integer variable declared inside CLIB. For example, where In and
n are integer constants, the C Source code

ext e r n pas c a l void foo () inline (m,n);
ma i n ()

foo () ;

generates code like this:

~m

OVE~

,0

code t o se~ up the s tack fr ame :

OVER

LDX
.]5L

ecs
LOA
STA > _ t oolErr _t col Er r - = a iff no er rer

: code to c l e an up the s ~ ack fr ame

-;- Note, In APW C, the names of global variables and functions in the object file are
identical to their names in the source file. There are no prepended underscores,
folding to uppercase, or other perversions of the source names.

Language definition 4· 13

Pascal-style function definitions

A C function definition (the aaual function), like a function declaration, can also be
preceded by the pascal specifier. The C compiler then produces code that adheres
to Pascal-style calling conventions and the function can be called using these
conventions.

The APW syntax for defining this procedure as a C function is

pascal [resull-~ June-name IJormal-parameter-listi (staUlmenl-iisl)

For example, the following C function could be called from Pasca~

pascal void MY Text (byteCount,taxtAddr,numer,denom)
short byteCount,'
Ptr textAddr;
Point numer,demoni

The corresponding Pascal function declaration would be

PROCEDURE My Text(bytecount: INTEGER; textAddr: Ptr;
numer,denom: point);

For compatibility with Pascal and assembly language, the compiler converts the
names of Pascal-compatible functions to uppercase before writing them to the object
file. When they are called in C programs, these routines should be capitalized exactly
as they were declared in C. Pascal-compatible functions whose names differ only in
their capitalization will become duplicate declarations when their names are
converted to uppercase by the compiler; therefore, such names should be avoided.

Pascal-style strings: \ p

One of the complications of calling Pascal-style functions from C is that the two
languages have different conventions for handling strings. A C-style string is a set of
characters followed by a null byte; a Pascal-style string is a count byte n, followed by a
set of n characters. Conveniently, these two formS are the same length, so conversion
from one to the other is not hard. The functions c2pstr and p2cstr perform
runtime conversions between the two types of strings.

If you wish to call a Pascal-style function that expects a Pascal-style string, you can use
the Apple extension to the standard C character escapes: \p. When the compiler
encounters this escape sequence at the beginning of a string, it substitutes for the \ p
the character value equivalent to the number of non null characters in the remainder
of the string. Thus a string constant is created that is equivalent to a Pascal-style string.
Since it is also a C-style String, it is also terminated by the null character: this character
is not included in the character count.

You can use it like this:

Wr i teSt!:'ing {"' pHello. wo rld. \ n U
);

4-14 Chapter 4: The APW C Language

Parameter and result data types

C and Pascal support different data types. When writing a Pascal-style function
declaration in C, a translation of the parameter types and function-result type (from
Pascal to C) is therefore required. Often this translation is obvious, but some cases are
surprising.

Table 4-2 summarizes this translation. Find the Pascal parameter or result type in the
ftrst column. Use the equivalent C type found in the second column when declaring
the function in C. Comments in the table point out unusual cases that may require
special attention.

Table 4-2
Parameter and result data types

Pascal Dala Type

enumeration

var enumeration
enwneration result

char

var char

char result

integer
var integer
intege r result
longint
var longint
longint result

real

var real
real result
double

var double
double result
camp

var camp
camp result
extended
var extended
extended result

C Equiyalent

enum

enum *
enum

char

char *

char

Comments

Use identical ordering of the
enumera tion literals.

Pascal passes char parameters as
16-bit values.
Pascal stores unpacked char
parameters as 16-bit values.

int or short 16-bit signed values
int .. or short ..
int or short
long 32-bit signed values
long ..
long

float * Pascal passes real parameters as
extended.

float ..
float
double * Pascal passes double parameters as

extended.
double *
double
camp ..

camp *
camp
extended ..
extended ..
extended

Pascal passes comp parameters as
extended.

(continued)

Language definition 4-15

Tabl .. 4-2 (continued)
Parameter and result data types

Pascal Data Type C Equivalent

pointer pointer
var pointer pointer •
pointer result pointer
array array

var array array
array result

record struct

var record struct •
record result struct

set struct

var set struct •
set result struct

comments

32-bit addresses

Pascal passes array parameters by
address.

C does not allow array results.

Pascal passes record parameters by
value .

Pascal passes set parameters by
value .

<. Note: The C struct type and the Pascal record type do not exactly correspond,
because C lacks an equivalent to the Pascal variant record type.

Globof and extemaJ data types

When a C program and a Pascal program use the same global Or extemal variables,
they must use typeS of the same size. 1his requires care, as you can't be sure whether a
given Pascal compiler puts 0 .. 255 into a byte or a word. If possible, use a signed type
for a signed type. If you have to pass values from a signed type into an unsigned type or
vice versa, you must test the sign bit and perform the appropriate conversions.

How parameters are passed
High-level languages on the Apple IIGS use the stack, and the A and X registers to pass
parameters. Assembly-language programs have other means of passing parameters,
such as the direct page, but they must use the stack to communicate with C programs,
because this is how C expects parameters to be passed. Here's how parameters are
passed.

C-s!yfe functiOns

Suppose you declare a typical C-style function:

i nt. foo () ;

1his function takes three values and returns one result. You can call the function like
this:

zoo - f oo(a , b ,e l;

4-16 Chapter 4: The APW C Language

'-'

When the call is executed, the values c, b , and a are pushed, in that order. Function
foo rerurns its result in the A register. The calling program then pulls a, b, and c off
the stack and stores the contents of the A register into the variable zoo.

If foo had been 4 bytes long, it would have been rerumed in the A and X registers, with
the high bytes in X and the low bytes in A Strucrure and extended results are rerumed
by passing a pointer to them in the A and X registers.

Pascal-style functions

Pascal-style functions use the stack for the rerum value and also reveISe the order of
reading parameters. Consider this function:

pascal int foobar();

This function also takes three values and rerurns one result You can call the function
like this:

x ~ foobar(a,b,c);

When the call is executed, space for the result foobar is pushed onto the stack, and
then the values a, b, and c are pushed, in left-ta-right order. The routine pulls c, b,
and a off the stack, computes foobar, and pushes foobar onto the stack. The calling
program then pulls foobar off and copies it to the variable x.

When you write a function, you can declare it as a C-style or a Pascal-style function,
thus determining the way the parameters are passed. The C style of passing parameters
is more efficient than the Pascal style, .but it should be used only with functions that will
be called from C and not from Pascal. Whatever language a function is written'in-if
the function is declared as a Pascal-style function-it can be called from either Pascal
or C; if it is declared as a C-style function, it can be called only from C.

Sample program

The following program shows how to use both C-style and Pascal-style parameter­
passing conventions. The C main program calls two assembly-language routines, one
C-style and one Pascal-style. These routines are declared in-line with asm statements.

'incl ude <stdio.h>

callsamp

Samp l e program to illustrate two different fun ction cal ling
conventions available from c: "vanill a" C-style parameter
pas s ing (the default); and Pascal-sty l e parameter passing,
used most notably to pass parameters to tool box ro utines. but
poten'tial l y useful for other things (l ike calling Pascal fUnctions!
procedures if in ract the actual Pascal compiler used follows ~he
"pascal " parameter-passing conventions.

I~ Declare psum as a fcnc~ion o f type pascal . so arguments

. /
will be passed Pascal-s~yle. and ret~rn value wil l be ?ul:ed
from stack .

Longuage definition 4-17

pascal int psum();

/* Call csum and psum (sum arguments), and print results. * /

main (J

printf("c resul t: %d \n",csum(1,2,3»:
printf("p result: \d\n~,psum(1,3,4)};

/ * Process parameters using C conventions.

Note that csum and p$um are not actually C functions,
but rather assembly code.

The assembly routines operate on the stacked parameters
according to the respective parameter-pass i ng conventions

asm (csum)

bad:

f*

asm

bad:

4-18

ld.
cmp
bne

clc
adc
adc
rtl

lda
rtl

Process

(psum)

lda
cmp
bne
c l c
adc

adc
sta

lda
sta
lda
sta

pla
pla

pla
rtl

lda
rtl

4, s

n
bad

6, s
8, s

to

parameters

8,s

U
bad

6, s
4, s

la,s

2,s
e, s
1, s
7 ,s

.0

Skip return address, get top parameter.

should be a 1.
Prove that 1 is pushed last.

Return with sum in accumulator.

This would on l y happen if I'm lying,
so it will never happen.

u.sing pascal conventions. * f

Get first pushed parameter.
Should still be 1.
Prove 1 pushed first.

Save result on stack, above parameters.

(Resu lt space was pushed onto staok) .

Pu l l high, bank bytes a t return address.
Put under result.
Pull low, high of return address.
Put under bank.
Having shuffled va l ues up,

pull off storage equivalent to

s ize of three parameters pushed

return with result on stack.

This would on ly happen it I ':n l ying,
so i t wi l l neve~ happen.

Chapter 4: The APW C Language

Implementation notes
A number of details in any language definition are left to the discretion of ilS individual
implementers. Most programs do not rely on these details and, therefore, yield the
same resullS in all implementations. Knowledge of the major differences between
implemenutions can, however, help you avoid reliance on irnplementalion­
dependent language semantics. This section explains several areas of the language
definition that are specific to APW C.

Size and byte-alignment of variables

Because the 65C816 is a byte-oriented processor, it levies no speed penalty for using
odd addresses. Therefore, APW C does not align variables on word boundaries. In
particular, enumerated types and structures are not padded to make fields fall on word
boundaries.

When you recompile an MPW C program on the APW C Compiler, for example, all
padding added by the MPW C Compiler disappears. Any padding you added
remains. You can save space and possibly time by removing this padding from data
strucrures and by deleting code that performs word alignment.

Byte ordering
On the 65C816, the microprocessor used in the Apple IIGS, the least-significant byte
of a shon or long integer has the lowest memory address. This byte ordering is also
used on thePDP-ll, VAX, 8086, and NS16000 processors. The 68000, IBM/370, and
28000 processors store the least-significant byte at the highest address. Programs that
rely on the order of the bytes within words and long words will not be ponable from
machines of one of these classes of machines of the other.

Variable allocation
The APW C Compiler allocates static and global variables in the order in which they
appear in the source. This is also true for the order of fields within structures.

Variables of type void
The APW C Compiler allows you to declare void variables, which take up the same
number of bytes as in t variables, but you can't do anything with them.

Array indexing
Array indexing is done USing long arithmetic wherever the compiler cannot determine
the acrual size of the array (as in extern int array [I ;) or can determine that the
size is greater than 64K (Oxl0000) and, therefore, requires long arithmetic for correct
calculation of offselS.

Implementation notes 4- 19

If the compiler detennines that the entire array can be accessed using word arithmetic,
it may do so, as shown here:

extern int array(N]; / - N <- Ox8000 * 1

char st.ring(] :II: "It wou ld be hard 'to create a string long enough 'to require

long indexing, wouldn't it 7"

int notTooMany(] 3 {O.1,2,3,4.5,6,7,8,9};

long larray[Ox4000)i

long larray[Ox4000] [OxA 1 ; / * Though the array is too large, the second

index wil l be done with word arithmetic.

This is of dubious advantage. */

Because word arithmetic is more efficient than long arithmetic, you can use certain
tricks to force word arithmetic when speed is important These tricks apply whenever
you only need to access no more than 64K (OxlOOOO) bytes within an array.

1 . The form

extern int array(Ox400];

is better than the form

extern int array[];

(as long as you know how much of the array you need to access).

2. To optimize access to a part of a larger array, place the code in a subroutine and
pass a· pointer to the rust element of the part to the subroutine, as shown here,

long array (O xlOO OOj I *This will normally cause long index arithmetic.*/

main II

unsigned int i;

forli-O ; i<4; i++)

fill<array +i*Ox4QOO) :

fil l{ smaller)

l ong "'smaller;

unsigned i;

for (i=O; i < Ox4000; i+ +)

.smaller ++ 5 OxFFFFFFFF;

Calling fi 11 four times allows you to fill an array whose actual size in bytes is
Ox40000, using long-arithmetic address calculation only four times, once at each
call from main. Note that me arithmetic is funher optimized by the use of
uns igned for i.

4-20 Chapter 4: The APW C Language

Types unsigned char, unsigned short, and unsigned long
Types unsigned char, unsigned short, and unsigned long are supported by
the APW C Compiler and by many implementations of PCC, although they are not
required by the basic C language definition. The V AX implementation of PCC and the
APW C Compiler differ in the way they evaluate expressions involving these types. For
example, the negation operator subtracts an un~igned ~hort from 216 under PCC
and from 232 under APW C.

Bit fields
APW C does not support signed bit fields . In the following example, implementations
using unsigned bit fields will sel i to 3: .

struct {unsigned int fie l d:2;} X;

x.fiel d = 3:
i "" x.fie l d;

Evaluation order
Al'W C does not deftne the evaluation order of certain expressions. Expressions with
side effects, such as function calls and the + + and -- operators, may yield different
results on different machines or widl different compilers. Speciftcally, when a variable
is modified as a side effect of an expression's evaluation and when the variable is also
used at another point in the same expression, the value used may be either the value
before modification or the value after modiftcation.

Programs thal rely on the order of evaluation in these situations are in error. The
function call

f (i, i++)

is an example of an expression whose value is undefmed.

String substitutions In #define statements
Al'W C, like MPW C, does nor do string substitutions in *define macros, so

If def i ne show {x) print f ("x is %d \n ", x)

i "'" 1 : s how(i) ;

will produce the output

x i s 1

and not the OUlput

i is 1

That is, the "x is %d\n" string is never modified by expansion of a *define
macrO.

Implementa~on notes 4-21

Assignment operators

The op- form of assignment operators may not have a space or comment between the
op and =, as shown in this example,

i + j. APW c will choke on this. */ = 1;

Language anachronisms

Several constructs formerly considered part of the C language are now considered
anachronisms. The compiler considers these constructs to be invalid. The
anachronisms are described as follows.

Assignment operators

The =op form of assignment operators is not supported. Alternative interpretations
are accepted without warning. In particular,

x >=- 5;
X::l* 5;
x =, p;

InitiaUzation

is interpreted as
is interpreted as
is interpreted as

x =

x -
x =

(-5) ;

(* 5) ;

(&p) ;

The equal sign that introduces an initializer must be present. The anachronism

int i 1:

is considered an error.

Compiler limitations

On the Apple IlGS, the total size of all declared glObal scalar variables, static scalar
variables, and scalar constants cannot exceed 64K because they are accessed using
shon addressing. Aggregate types (structures, arrays, and string constants) are stored
in a separate large memory segment and accessed with long addressing. Their size is
effectively limited only by available memory.

Automatic variables are limited by the available stack space, which can never
exceed 32K.

Each code segment is limited to 64K.

Due to a limitation of ProDOS, only six levels of finclude·can be nested.

4-22 Chapter 4: The APW C Language

- . '

Performance tips
The following practices improved performance:

o Use unsigned types whenever possible. (Doing this improves performance
markedly.)

o Declare aut 0 aggregate variab les after all aut 0 scalars. (Doing this im proves
performance markedly.)

o Declare auto pointers before other auto variables.

The segment command
You can use the segment command to create load segments. The command

segment "segname"L dynamic)

can only appear between functions: it assigns all objects that follow it, up to the next
segment command or the end of me, to the load segment named" segname". (Note
that the quotation marks are required.)

By default, this command creates a static load segment. The dynamic option creates
a dynamic segmenl

The segment command can be used to split up a code segment that would be larger
than 64K.

The #append directive
The APW C preprocessor processes the usual directives, as well as one that is peculiar
to APW c:
~dPpend "filename"

When this directive is used, it must appear between functions: the variable filename is
the name of the next file in the compilation sequence. This directive normally appears
at the end of a me, as everything after it will be ignored. It should not appear in an
include file.

START. ROOT. restartability. and StandAlone
START. ROOT is normally the firs t file linked into your application; that is. the first
LINK command begins with

(LINK 2 / STMT ...)

START. ROOT is responsible for initializing SM'E and setting up argc and argv
parameters to main () . START . ROOT then calls main () . When your program
terminates-tha[is, when program control is returned from your main () procedure
or when exit () is called-START .ROOT closes any files opened via the standard C
library open call and then returns control either to ProDOS 16 or to APw.SYS16,
depending on which one launched the program. Thus, you don't have to make a
ProDOS 16 Quit call explicitly: START. ROOT does it for you.

Implementation notes 4-23

When your program terminates, the integer variable qF lag determines whether or
not the program will be recognized by ProOOS 16 as restartable. The variable qPath
determines which program is to be launched next See the Apple IIGS ProDOS 16
Reference about the QUIT call. The variables are declared as

extern int qFlag;
extern char *qPath;

The default setting of these variables is such that the program is not restartable (the
restart-from-memory flag bit of qF lag is of!), no new program is launched, and
control will not return to the application (the return flag of qFlag is of!).
APW always ignores this information. APW will only recognlze your program as being restartable if your
program appears in a line in the SYSCMND file, with an asterisk in the second column. (For more
information, see the SYSCMND section of the APW Reference.) ProDOS will pay attention to this
information.

The variable extern int StandAlone is declared by the Standard C Library.
When an APW C program is started, this vanable is set to zero (false) if the program is
not a standalone program (that is, running under APW) or set to nonzero (true) if
running as a standalone program (that is, an application).

Code-generation memory model
The memory model used by the code generation is a mixed model, intended to most
effectively exploit the architecture of the 65816, which has addressing modes that deal
with memory in " linear fashion, and others that treat m('mory as being divid<;d into
segments.

Essentially, long, or linear, "ddressing is used for all pointer values: pointers are 32-
bit values, which contain 24-bit machine addresses. Global scalar variables, however,
are referenced internally by using the mOre efficient 16-bit addressing modes. For
these operations, the high byte of the 24-bit address is derived from the processor's
data bank register, which is initialized by the START, ROOT module to point to the bank
in which the load segment that contains the global data has been loaded. This feature
is the reason that total global scalar storage is limited to 64K. On the other hand,
global arrays and structures, are always addressed using long addressing, so it is
possible to have more than 64K of array space. Struct's and union's are accessed
using indexed addressing, so they are limited in size to 64K. Array references will use
the faster 16-bit indexed addressing modes if the array is less than 64K in size.

Local variables (auto) are allocated on the 65816 machine stack. The machine stack
pointer is a 16-bit register; the bank address of the stack is always bank O. Thus, the
maximum stack size is limited to a theoretical 64K: in practice, this size is considerably
smaller due to competing use of bank-O memory by the system and other potentially
resident programs.

The start code initializes a default stack size of 4K, using this code from CUll.

StackMin

KIND
ds

END

START Direct

S12
5 1 000 ~ t his 1s t he amount o f s~ack

4-24 Chapter 4: The APW C Language

-.

You can override this default by modifying this code, assembling it, and linking it in
explicitly, as shown in the sample application BONES.

Storage for local variables is created dynamically on the stack upon function entry. If
less than 256 bytes are required for parameter storage, internal temporary variables,
and local variables, then all local variables will be addressed via direct page
addressing, and pointer dereferendng using local variables will generally use indirect
long addressing. If more than 256 bytes are required, the compiler will have to use
indexed addressing to access variables that extend beyond the first 256 bytes of stack
storage allocated. The first declared variables are the fust allocated, so declaring your
frequently used local variables first will guarantee that the most efficient addressing
modes will be used in referencing them.

All function calls are made via long subroutine calls.

If you are writing a Pascal-style C function to be called by the ROM (for example, a
DefProc), and if you want to reference statically allocated scalar variables (which the C
compiler puts in the load segment -global s), your function should begin with a call
to SaveDB, which saves the value in the data bank register and changes the data bank
register to point to -globals. Your function should end with a call to RestoreDB,
which restores the data bank register to the value it held before Sa veDB was called.
References to statically allocated array variables (which the C compiler puts in the
load segment -arrays) use 24-bit addressing and don't use the data bank register. If
you are only using array variables and autO variables, you don't need to call SaveDB
and RestoreDB. These two procedures are provided as part of the source code of the
sample desk accessory.

An easy way to make a variable reside in -a~rays instead of -globals is to declare it
as a one-element array. For example, use

char c{l l ; lnt n(l J; double x[l];

instead of

char C i int fi ; double X;

Implementation notes 4-25

Chapter 5

The Standard
C Library

5- 1

About the Standard C Library
This chapter describes the Standard C Ubrary provided with APW C. The Standard C
Ubrary is a collection of basic routines that let you read and write files, examine and
manipulate strings, perform data conversion, acquire and release memory, and
perform mathematical operations.

The chapter begins with an introduction to the error-number conventions used in the
Standard C Ubrary, followed by the library functions and macros arranged
alphabetically under the name of the header file that contains them. Each header file
contains a group of related functions or macros. For example, both the fread and
fwrite macros are found under the fread header. All of the function names and
other identifiers used in Standard C Library routines are listed in Appendix D,
"Ubrary Index.' To find out where in this chapter a particular identifier is described,
consult Appendix D .

• :. Note: Remember that identifiers in C are case-sensitive and should be spelled
exactly as shown in the synopsis. Filenames (as in Hnc lude statements) are not
case-sensitive. By convention, they are written in uppercase.

The library routines under each header are documented as follows:

o Synopsis shows the code you need to add to your program when using these library
routines and the files you need to include at compile time.

D Description discusses the library routines and their input and output.

D Diagnostics describes error conditions.

D Return value describes the values returned by the routines.

o Example contains examples of commands.

o Note contains remarks.

o Warning gives cautions.

o See also provides the names of other library routines or sections in this chapter
related to the ones described in the current section. It may also provide references
to other Apple manuals, such as the Apple NumeriCS Manual or the Apple IIGS
Toolbox Reference.

Not all of these will be found under each header .

• :. Note: Specific support for desk accessories has not been a consideration in the
design of this library.

Important

Many of the lunchons in the Standard C Library use parameters ot type int-thls
is necesscry to achieve compahbility with other implementations of the Standard
C Library. On the Apple IIGs. type int is 16 bits rather than 32, so any parameter
of type intis limited to the range a to 65,535. A C program designed to use
parameters of type in t to pass values greater than 65.535 will generate no
compiler error, but it will not work correctly under APW C.

5-2 Chapter 5: The Standard C Library

Synopsis

Description

Error numbers

*include <ERRNO,H>

extern int errno;

Many of the Standard C Library functions have one or more possible error returns.
An otherwise meaningless return value, usually -1, indicates an error condition: see
the descriptions of individual functions for details. The external variable errno also
provides an error number. The variable errno is only valid immediately after a call;
it is not cleared on successful calls, so it should be tested only if the return value
indicates an error.

The error name appears in brackets following the text in a library function
description: for example,

The next attempt to write a nonzero number of bytes will signal an error.

[ENospcl

Not all possible error numbers are listed for each library function because many
errors are possible for most of the calls. Some Ul'I1X operating system error numbers
do not apply to the Apple IIGS and are not documented in this manual. Some calls go
to the Apple IIGS ROM, and as a side effect return a value in _toolErr in addition to
the value in errno. Some calls, such as printf and scanf, may change these global
variables even when they succeed.

Here is a list of the error numbers that can be returned in errno and their names as
defined in the ERRNO . H file.

2 ENOENT No such file or directory
A file whose ftlename is specified does not exist, or one of the directories in a
pathname does not exist

5 EIO I/O error
A physical I/O error has occurred. In some cases, this error may be signaled on
a call following the one to which it actually applies.

6 ENXIO No such device or address
An I/O operation on a particular file refers to a subdevice that does not exist, or
the I/O operation is beyond the limits of the device. This error may also occur
when, for example, no disk is present in a drive.

9 EBADF Bad file number
Either a fIle descriptor does not refer to an open file, or a read (or write) request
has been made to a file that is open only for writing (or reading).

12 ENOMEM Not enough space
The system ran out of memory while the library call was executing.

13 EACCES PermisSion denied
An attempt was made to access a fIle in a way forbidden by the protection
system.

14 EFAULT Bad pathname
A supplied pathname has incorrect syntax.

16 EBUSY Device or resource busy
Two or more online volumes have identical volume names,

Error numbers 5-3

Note

17 EEXIST File exists
An existing file was mentioned in an inappropriate COntex~ for example,
open (file, O_CREATIO_EXCL).

19 ENOOEV No such device
An attempt was made to apply an inappropriate system call to a device: for
example, an attempt was made to read from a write-only device.

20 ENOTOIR Not a directory
An object that is not a directory was specified where a directory is required: for
example, in a pathname prefIx.

22 EINVAL Invalid parameter
An invalid parameter was provided to a library function.

23 ENF HE File table full
The system's table of open rues is full, so temporarily a call to open cannot be
accepted.

24 EMFILE Too many open files
The system cannot allocate memory to record another open file.

26 ETXTBSY Text file busy
An attempt has been made to perform a disallowed operation on an open file.

28 ENOSPC No space left on device
A write operation to an ordinary me cannot be performed because the device
has no free space left.

30 EROFS Read-cniy file system
An attempt to modify a file or directory was made for a device mounted for .
read-only access.

Calls that interface with the Apple IlGS 110 system (such as open, close, read,
write, and ioctl) can set the external variable _toolErr as well as errno on
errors. This is a side effect: it is not safe to assume any relationship between the error
number returned in errno and the number that may be returned in _toolErr. To
detect errors in Standard C library calls, use errno; to detect errors in Toolbox calls
use toolErr.

This secLion documents the values returned in errno. The Toolbox errors returned in
_toolErr are documented in the chapter "The System Error Handler" of the
Apple IIGS Toolbox Reference.

5-4 Error numbers

Synopsis

Description

Note

See also

abs-return integer absolute value

l ot abs (i)

l nt i ;

Function abs returns the absolute value of i.

The absolute value of the negative integer with the largest magnitude is undefmed.

fl oor

abs 5-5

Synopsis

Description

Diagnosfics

See also

5-6 atot

otof-convert ASCII string to floating-point number

kinclude <MATH.H>

extended atof(str)
char *str;

Function atof converts a character suing pointed to by str to an extended­
precision floating-point number. The first unrecognized character ends the
conversion. Function atof recognizes an optional string of white-space charaaers
(spaces or tabs), then an optional sign, then a string of digits optionally containing a
decimal point, and then an optional e or E followed by an optionally signed ineeger.
If the string begins with an unrecognized character, atof rerurns a NaN.

Function atof recognizes" INF" as infinity and "NAN" (optionally followed by
parentheses thae may contain a string of digits) as a NaN, with NaN code given by me
string of digits. Case is ignored in me infinity and NaN strings.

Function atof honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

scanf

"Conversions Between Decimal Formats" in Chapter 1-4 of the Apple Numerics
Manual . ~ ..

Synopsis __

atoi-convert string to integer

Jinclude <STDLIB.R>

int atoi (str)
char '*str;

l ong atol (str)
char '*str;

Description The character string s t r is scanned up to the first non digit character other than an
optional leading minus sign (-). Leading white-space characters (spaces and tabs)
are ignored.

A plus sign (+) is considered a nondigit character.

Retum value Function atoi returns as an integer the decimal value represented by str.
Function atol returns as a long integer the decimal value represented by str.

Note Overflow conditions are ignored.

See also ato f, scanf, strtol

alai 5-7

Synopsis

Description

Diagnostics

See also

5-8 close

close-close a file descriptor

int close(fildes)

int fildes;

Parameter fildes is a me descriptor obtained from an open, creat, dup, or
fcntl call. Function close closes the me descriptor indicated by fildes .

Function close fails if fildes is not a valid open file descriptor. IEBADFI

Upon successful completion, this function returns a value of O. Otherwise, it returns a
value of -1 and sets errno to indicate the error.

creat,dup, fcntl,open

Synopsis

Description

Note

See olso

conv-translate characters

tinclude <CTYPE.H>

int toupper (e l
int c:

int tolower (el

int C;

int _toupper (el
int c;

int _tolower (e l

int C;

int t oas eli (c)
int c:

Functions toupper and tolower have as their domain the set of ASCII characters (0
through 127) and the constant EOF (-I). If parameter c to toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If parameter c to
tolower represents an uppercase letter, the result is the corresponding lowercase
letter. All other parameters in the domain are returned unchanged.

Macros _ toupper and _ tolower produce the same results as functions toupper
and to lower, but have restricted domains and are faster. Macro _toupper requires
a lowercase letter as its parameter; its result is the corresponding uppercase letter.
Macro _tolower requires an uppercase letter as ics parameter; its result is the
corresponding lowercase letter. Parameters outside the domain cause undefined
results.

Macro toascii converts c by clearing all bits that are not part of a standard ASCII
character. It is used to achieve compatibility with other systems.

These routines do not support the Apple IIGS extended character set (with values
greater than Ox7F). For values outside the stated domain, the result is undefmed.

ctype, getc

cony 5-9

Synopsis

Description

creat-create a new file or rewrite an existing file

int creat(filename)
char *filename:

Function creat crealeS a new file or prepares to rewrite an existing file, filename. If
the me exists, its length is set to O.

Function creat (filename) is equivalent to

open (filename,O_WRONLYIO_TRUNC IO_CREAT)

Upon successful completion, a nonnegative lnteger (the me descriptor) is returned
and the file is open for writing. The me polnter is set to the beginning of the me. A
maximum of about 30 mes may be open at a given time; the actual maximum depends
upon the current system environmenL

Return value Upon successful completion, this function returns a nonnegative integer (the me
descriptor). Otherwise, it returns a value of -1 and sets errno to lndicate the error.

Note Other implementations of creat specify a second parameter, mode. This version
ignores any second parameter.

See also close, open

5-10 creat

. . ,

Synopsis

Description

ctype-classify characters

'include <CTYPE.H>

i nt isa!pha (el
int Ci

int isupper (e)
int c;

in t is!ower(c)

lnt c;
int isdigit(c)

int C;

int isxdigit (e)
int c;

int isalnum (c)
int c;

int. isspace Ie)
illt c:

int ispunct (e)
int C;

int isprint (el
int c;

int isgraph (e)
int c;

int iscntrl (el

int C; .

int isascii(c)

int c;

These macros classify character-coded integer values by table lookup, returning
nonzero for true and zero for false. Macro isaseii is defined for aU integer
values; the other macros are defined only where isaseii is true and for the single
non-ASCII value EOF (-1).

Macro

isascii
isalpha
isupper
islower
isdigit
isxdigit
isalnum
isspace

ispunct
isprint

isgraph

iscntrl

Returns true if

e is an ASCII character code less than octal 0200.
e is a letter [A-ZI or [a-zl.
e is an uppercase letter [A-ZI.
e is a lowercase letter la-zl
e is a digit [0-91.
e is a hexadecimal digit [0-9l, [A-FI, or [a-f].
e is alphanumeric (letter or digit).
e is a space, tab, return, newline, vertical tab, or form-feed

character.
e is a punctuation character (neither control nOr alphanumeric).
e is a printing character in the range space (octal 040) through tilde

(octal 0176).
e is a printing character, similar to isprint except that it is false for

space.
c is a delete character (octal 0177) or an ordinary control character

(less than octal 040).

ctype 5-11

Warning

Note

5-12

If c is not in the domain of the function, the result is undefined.

These macros do not suppon the Apple lIes extended character set. For values
outside the domain, the result is undefIned

ctype

.---..

Synopsis

Description

dup-duplicote on open file descriptor

int dup(fildes)

int fildes;

Function dup returns a new file descriptor with these features:

o It refers to the same open file as the original descriptor.

o It shares the original descriptor's file pointer.

o It has the same access mode (that is, read, write, or read/write) as the original
descri ptor.

Parameter fildes is a file descriptor obtained from an open, creat, dup, or
fcntl call. The new file descriptor returned by dup is the lowest one available.

The function call dup (fildes) is equivalent to

fcntl(fildes, F_DUPFD, 0)

Function dup fails if parameter fildes is not a valid open file deSCriptor. [EBADF]

Return value Upon successful completion, this function returns a nonnegative integer (the file
descriptor) is returned. Otherwise, it returns a value of -1 and sets errno to indicate
the error.

See also close, fcntl, open

dup 5-13

Synopsis

Description

Note

ecvt-convert a floating-point number to a string

iinclude <MATH.H>

char *ecvt(va!ue, ndigit, deept, sign)

extended value:
int ndigit, *decpt, wsiqn:

char *fcvt(valu8, ndigit, decpt, sign)
extended value:
int ndiqit, *decpt, *sign:

Function ecvt converts value to a null-terminated string of ndigit digits and
returns a pointer to this string as the function result The low-order digit is rounded.

The decimal point is not included in the returned string. The position of the decimal
point is indicated by decpt, which indirectly stores the pOSition of the decimal point
relative to the returned string. If the int pointed to by decpt is negative, the decimal
point lies to the left of the returned string. For example, if the string is "12345" and
decpt points to an int of 3, the value of the string is 123.45; if de cpt points to -3,
the value of the string is .00012345.

If the sign of the converted value is negative, the int pointed to by sign is nonzero;
if the sign is positive, it is zero.

Function fcvt provides flXed-point output in the style of Foruan F-format output
Function fcvt differs from ecvt in its interpretation of ndigit:

o In fcvt, ndigit specifies the number of digits to the right of the decimal point.

o In ecvt, ndigit specifies the number of digits in the string.

The string pointed to by the function result is static data whose contents are
overwritten by each call. To preserve the value, copy it before calling the function
again.

See olso printf

5-14 ecvt

"Conversions Between Decimal Formats" in Chapter 1-4 of the Apple Numerics
Manual

Synopsis

Description

exit-terminote the current opplicotion

iinclude <STDLIB.H>

void exit(status)
int stat us;

void _exit (status)
int status;

Functions exit and _ exi t close open file descriptors and terminate the application
or tool. Here is the order in which exit performs its duties:

1 . It executes all exit procedures, including the exit procedures for the Standard I/O
Package if routines from that package were used, in reverse order of their
installation by onexi t. All buffered files are flushed and closed.

2. It closes all open files that were opened with open or fopen.

3. If the program is a tool running under the APW Shell, the exit function returns
status and control information to the APW Shell by placing a return value in the
APW variable status and terminating the application.

Function _ exi t circumvents the exit procedures described in step 1 just given. Use
_ exit instead of exit to abort your program when you are uncertain about the
integrity of the data space.

Return value The main program is a function that returns an integer. The rerurn value of main is
interpreted by the APW Shell as the program status. When you call exit or _ exit,
the status parameter is returned to the APW Shell as the rerurn value for the .
application's main function. This value is 0 for normal execution or a nonzero value
for errors (typically 1..3). A main program that returns to the shell without setting
status to an integer value returns O.

Note

See also

There is no return from exi t or exit.

Functions exit and _ exi t do not close mes you opened with calls to the I/O routines
documented in the Apple llGS Toolbox Reference.

onexit, stdio

exit 5-15

Synopsis

Description

Diagnostics

See also

5-16 exp

exp-exponential, logarithm, power, square-root
functions

jinclude <MATH.H>

extended exp(x)

extended x;
ex'Cended log (xl

extended x;
extended log lO (x)

extended x;
extended pow (x , y)

extended X, y;
extended sqrt (x)

extended x;

Function exp (x) returns ex, where e is the natural logarithm base.

Function log (x) returns the natural logarithm of x, log"".

Macro 10glO (x) returns the base-lO logarithm of x, 10glOx,

Macro pow (x, y) returns xY.

Function ~qrt (x) returns the square root of x.

For special cases, these functions return a NaN or signed infinity as appropriate.

These functions honor the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SAl'IE.

hypot, sinh

"Exception Flags and Halts" in Chapter 1-8, and "Logarithm Functions" and
"Exponential Functions" in Chapter 1-10 of the Apple Numerics Manual.

Synopsis

Description

faccess-named-file access and control

tinclude <FCNTL.B>

int faccess(fllename, cmd, arg)
char -filename;
unsigned int cmd;
char *arq:

Function faccess provides access to control and status information for named files.
(Compare with function ioctl, which provides different control and status
information for open files.)

Parameter cmd must be set to one of the constants in the following list to indicate what
operation is to be performed on the file. As noted in the list, some calls to faccess
also require the arg parameter, which is usually as a pointer to a char.

The follOwing commands are available to all programs.

Value 01 cmd

F DELETE

F RENAME

F TYPE

Description

Deletes the named file, or returns an error if the file is open. The
parameter arg is ignored.

Renames the named file. The parameter arg is a pointer to a
string. containing the new name.

Sets the type of the file [0 the value of the parameter argo

Sets the auxiliary type of the me to the value of the parameter argo

For example, faccess (thing, F_TYPE, Ox04) sets the type of file thing to
$04, for ASCII text file. (A list of file types is in the ProDOS 16 Technical Reference.)

Retum Value Upon successful completion, faccess returns a nonnegative value, which is usually
O. If the device for the named file cannot perform the requested command, faccess
returns -1 and sets errno to indicate the error.

Note The cmd value F _OPEN is reserved for operating-system use.

See 0150 ioctl , unlink

faccess 5-1 7

Synopsis

Description

fclose-close or flush a stream

i i nelude <STDIO. H>

i nt feloselstre am)
FILE *stream;

int fflush (stream)
FILE *stream;

Function fclose doses a me that was opened by fopen, freopen, or fdopen.
Function fclose causes any buffered data for stream to be written, and the buffer (if
one was allocated by the system) to be released; fclose then calls close to dose the
me descriptor associated with stream. The value of the parameter stream cannot be
used unless it is reassigned with fope n, fdope n, or freopen.

Function fclose fails if the me descriptor associated with stream is already dosed.
(ENOENTJ

Function fclose is performed automatically for all open FILE streams when exit is
called.

Function fflush causes any buffered data for stream to be written; stream remains
open.

Return value These functions rerum either 0 if the operation succeeds or EOF (-1) if an error is
detected (such as trying to write to a me that has not been opened for writing).

See also close, exit, fopen, setbuf

5-18 fclose

.--

-'- -

Synopsis

Description

fcntl-file control

.include <FCNTL.H>

i nt fent l(f i l des, cmd, arg)
lnt fi l des;
unsigned int cmd;
lnt arq;

Function fcntl is used for duplicating file descriptors. A file remains open until all of
irs file descriptors are dosed.

Parameter fildes is an open me descriptor obtained from an open, creat, dup,
or fcntl call. Parameter cmd takes the value F_DUPFD, which tells fcntl to return
the lowest numbered available file desCriptor greater than or equal to argo Normally,
arg is greater than or equal to 3, to avoid obtaining the standard file descriptors 0, 1,
and 2. Function fcntl returns a new file descriptor that poinrs to the same open file
as fildes. The new file desCriptor has the same access mode (read, write, or
read/write) and file pointer as fildes. Any I/O operation changes the fIle pointer
for all file descriptors that share it.

Function f cnt 1 fails if one or more of the following are true:

o Parameter fildes is not a valid open file descriptor. (EBADF]

o Parameter arg is negative or grc::ater than the highest allowable file deScriptor.
(EINVAL] . •

Return value Upon successful completion, this function returns a new me descriptor. Otherwise, it
rerurns a value of -1 and sets e rrno [0 indicate the error.

Note The F_GETFD, F_SETFD, F_GETFL, and F_SETFL commands of fcntl are not
supported on the Apple lIGS.

See also close, dup, open

fcntl 5-19

Synopsis

Description

ferror-stream status inquiries

iinelude <STOIO.H>

int feof (stream)
FILE "stream;

int ferror(stream)

FILE ·stream;
void clearerr(streaml

FILE ·stream:
int fileno(stream)

FILE ·stream;

Macro feof returns a nonzero number when an end-<lf-file condition has previously
been detected reading the named input stream; otherwise, it returns zero.

Macro ferror returns a nonzero number when an I/O error has previously occurred
reading from or writing to the named stream; otheJWise, it returns zero.

Macro clearerr resets the error and end-<lf-file indicators to zero on the named
stream.

Macro fileno returns the integer file descriptor associated with the named stream.
See open.

See also open, fopen

5-20 terror

Synopsis

Description

floor-floor, ceiling, mod, absolute value functions

t1nclude <MATH.H>

extended fl oor(x)
eKtended X;

e xtended ce il (xl
extended x;

ext ended tmod (x . YJ
ext ended x. y;

extended fabs (x)

extended X;

Function floor (x) returns !he largest jnteger (as an extended-precision number)
not greater !han x.

Function ceil (x) returns !he smallest integer not less !han x.

Whenever possible, fmod (x, y) returns !he number f wi!h !he same sign as x , such
!hat x ~ I Y + f for some integer i, and 1 f 1 < 1 y I. If Y is 0, fmod returns a NaN.

Function fabs (x) returns I x I, !he absolute value of x.

See olso abs

"Round to Integer Value" in Chapter 1-3 and "Rounding Direction" in Chapter 1-8 of
!he Apple Numerics Manual

ftoor 5-21

Synopsis

Description

5-22 lopen

fopen-open a buffered file stream

iinclude <STDIO.H~

FILE *fopen(filename. type)
char ·filename, ·type:

FILE *freopen(filename, type, stream)

char *rilename. ·type;
FILE • stream;

FILE *fdopen(fl1des, type)
int tildes;
char ·~ype:

Function fopen opens the file named by filename and associates a stream with it.
Function fopen returns a pointer to the FILE structure associated with the stream.

Parameter filename points to a character string that contains the name of the file to
be opened. The filename parameter cannot be the pseudo-filename .printer, a
device name (such as .D2), or the double period (. .).

Parameter type points to a character string consisting of one of the string values in
the first column in the following table. The remaining columns explain how type is
used. (For more information, see open.)

Value

r
w

a

r+
w+
a+

Open mod. used

° RDONLY
O_WRONLYIO_CREATIO_TRUNC
O_WRONLYIO_CREATIO_APPEND

° RDWR
O_RDWRIO_CREATIO TRUNC
O_RDWR I O_CREAT 10_APPEND

Oescrlptlon

Open for reading only.
Truncate or create for writing.
Append: open for writing at end of
file, or create for writing.
Open for update (reading and writing).
Truncate or create for updating.
Append: open or create for updating
at end of file.

When a me is written to a device, normally certain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text me (such as
translating \ n to CR rather than LF). The following values, with b added to the string,
suppress such translations:

Value Open mode used

rb O_RDONLYIO_BINARY
wb ° WRONLYIO CREATIO_TRUNCIO_BINARY

wb+ ° RDWRIO CREATIO_TRUNC IO_BINARY

• :. Note: The b and the + can be reversed.

Description

Open for reading only.
Truncate or create for
writing.
Append: open for writing
at end of file, or create for
writing.
Open for update (reading
and writing).
Truncate or create for
updating.
Append: open or create
for updating at end of file .

Function f reopen substitutes the file named by filename for the open stream. The
original stream is closed, regardless of whether the open operation ultimately
succeeds. Function freopen returns a pointer to the FILE structure assodated with
stream. Function freopen is typically used to attach the previously opened streams
assodated with stdin, stdout, and stderr to other files. The filename
parameter cannot be the pseudo-filename . printer, a device name (such as . D2),
Or the double period (. .).

Function fdopen assodates a stream with a file descriptor by formatting a file
structure from the file descriptor. Thus, fdopen can be used to access the file
descriptors returned by open, creat, dup, and fcntl. CThesecalls return file
descriptors, and not pointers to a FILE structure.) The type of the stream must agree
with the mode of the open file.

When a file is opened for updating, both input and output operations may be
performed on the resulting stream. However, an output operation may not be directly
followed by an input operation without an intervening f seek or rewind, and an
input operation may not be directly followed by an output operation without an
intervening fseek Or rewind, or without an input operation that encounters an end­
of-file condition.

When a file is opened for appending (that is, when type is a or a+), it is impossible
to overwrite information already in the file. The function fseek may be used to
reposition the file pointer to any position in the file, but when output is written to the
file the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the outpuL

Return values If they succeed, the functions fopen, freopen, and fdopen return a valid file
pointer. If they fail, they return NULL.

Note

See also

The maximum number of open FILE streams is NFILE (defined in STDIO. H,
currently 20). The maximum number of open disk files may be less than NFILE, as
determined by the current release of ProDOS. (ProDOS 16, Version 1.0, permits 8
open disk files; later releases may increase this number.)

The parameter type must have one of the values in the first column in the table; do not
use values intended for open, such as O_RDONLY.

open, fclose, fseek

fopen 5-23

Synopsis

Description

fread-binary input/output

'include <STDIO .H>

int fread(ptr, size, nitems, stream)
char ·ptr;
int size, nitems;
FILE ·stream;

int fwrite(per. size. nitems. stream)
char "'ptr: '
int size, nitems;
FILE ·Stream;

Function fread copies niterns items of data from the named input stream into an
array beginning at ptr. An item of data is a sequence of size bytes (not necessarily
terminated by a null byte). Function fread Stops appending bytes if an end-of-file or
error condition is encountered while reading st ream or if ni terns items have been
read Function fread leaves the file pointer in stream pointing to the byte following
the last byte read

Function fwrite writes up to niterns items of data to the named output stream from
the array pointed to by ptr. An item is a sequence of size bytes. Function fwrite
stops writing when it has wrilten ni terns items of data or if it encounters an error
condition on stream. Function fwrite does not change the contents of the array
pointed to by pt'r.

The parameter size is typically

sizeof (*ptr)

where sizeof specifies the length of an item pOinted to by ptr. If ptr points to a
data type other than char, it should be cast into a pointer to char.

Return values The functions fread and fwrite return the number of items read Or written. If
niterns is 0 or negative, no characters are read Or written, and both fread and
fwrite return o.

See also fopen,getc, gets,printf,putc, puts, read, scanf, stdio, write

5-24 fread

Synopsis

Description

Diagnostics

See also

frexp-manipulate parts of floating-point numbers

iinclude <MATH.H>

extended frexp(value, eptr)
extended value:
int *eptr;

extended Idexp(value, exp)
extended value;
int exp;

extended modf(value, iptr)
extended value, *iptr;

Every nonzero number can be written uniquely as x. Zn, where the mantissa (fraction)
x is in the range 0.5';; I xl < 1.0 and the exponent n is an integer. Function frexp
rerurns the mantissa of an extended value and stores the exponent indirectly in the
location pointed to by eptr. Note that the mantissa here differs from the significant
described in the Apple Numerics Manual, whose normal values are in the range 1.0 ,;;
Ixl < Z.O.

Function ldexp returns the quantity value' zexp.

Function modf returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

Function ldexp honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

"Binary Scale and Log Functions" in Chapter 1-9 of the Apple Numerics Manual

frexp 5-25

Synopsis

Description

DiagnostiCs

See also

5-26 fseek

fseek-reposition a file pointer in a stream

~include <STDIO.H)

int fseek(stream. offset. whe nce)
FILE * stream;
long offset:
int whence;

void rewind (stream)
FILE "stream:

long ftell(stream)
FILE ·stream;

Function f seek sets the position of the next input or output operation on the stream.
The new position is offset bytes from the beginning, the current position, or the
end of me when the value of whence is 0, 1, or 2, respectively. If whence is 1 or 2,
offset may be negative.

The call

rewind(stream)

is equivalent to

fseek(stream. OL. 0)

except that no value is returned.

Functions fseek and rewind undo any effects of ungetc if the new location is not
within the same buffer.

After fseek or rewind, the next operation on a file opened for updating may be
either input or output.

Function ftell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

Function fseek returns a nonzero number for improper seek operations; otherwise it
returns zero. An example of an improper seek operation is an f seek before the
beginning of a file. . <

Iseek, fopen,ungetc

Synopsis

Description

getc-get a character or a word from a stream

#include <STDIO.H>

int gete (stream)

FILE *stream;
int get char ()
int fgetc(stream)

FILE "-stream;

int getw(stream)
FILE .., stream;

Macro getc returns the next character from the named input stream It also moves
the file pointer, if defined, ahead one character in stream Macro getc cannot be
used if a function is necessary; for example, you cannot have a function pointer point
to it. Macro getc returns the integer EOF whenever an end-of-file or error condition
occurs.

Macro getchar returns the next character from the standard input stream, stdin.

Function fgetc produces the same result as macro getc; function fgetc runs more
slowly than macro getc but takes less space per invocation. Also, you can have a
pointer to fgetc but not to getc.

Function getw returns the next int (that is, 2 bytes) from the named input stream so
thaI the order of bytes in the stream corresponds to the order of bytes in memory.
Function get w returns the constant EOF upon encountering an end-of-fIle or error
condition. Because EOF is a valid integer value, feof and ferror should be used to
check the success of get w. Function get w increments the associated fIle pointer, if
defined, to point to the next into Function get w assumes no special alignment in the
file.

Return values These calls either return data from the stream or return the integer constant EOF (-1)
when an end-of-file or error condition occurs.

Note Because it is implemented as a macro, getc treats a stream parameter with side
effects incorrectly. In particular,

getc(*f++)

doesn't work as you would expect Instead use

fgetc (*f++)

See also ferror, fopen, fread, gets, scanf, stdio

getc 5-27

Synopsis

Description

getenv-access exported APW Shell variables

'include <STDLIB.H>

char *getenv(varname)
char ·varname;

The environment is the set of exported variables provided by the APW Shell.
Function getenv provides access to variables in this set. (See "Variables" in Chapter
4 of the Apple DGS Programmer's Workshop Reference for the list of standard
exported shell variables.)

Function getenv searches the environment for a shell variable with the name
specified by varnarne, and returns a pointer to the character string containing its
value. The null pointer is returned if the shell variable is not defIned or has not been
exported. The shell-variable name search is case-insensitive.

Retum value Upon successful completion, this function returns a pointer to the value of varnarne.
If the shell variable is not defIned or not exported, the function returns a pointer to a
null string.

For standalone applications, which do not run under the APW ShelL get en v always
returns the null pOinter.

Warning Function getenv returns a pointer to the place in memory where a copy of the APW
Shell variable resides. Do not modify the value of a shell variable in such a way as to
increase its length.

5-28 getenv

Synopsis

Description

gets-get a string from a stream

tinclude <STDIO,H>

char *gets (str)
char *str;

char *tgets (str, maxle~, stream)
char ·str;
int maxlen;
FILE *stream;

Function gets reads charaaers from the standard input stream stdin into the array
pointed to by str until a newline character is read or until the end of me is reached.
The newline character is discarded, and the string is terminated with a null (\ 0)
character.

Function fgets reads characters from stream into the array pointed to by str until
maxlen-l characters are read, a newline character is read and transferred to str, or
the end of file is reached. The string is then terminated with a null character.

Return values If the end of file is reached and no charaaers have been read, no characters are
transferred to str, and NULL is returned. If a read error occurs, NULL is returned. If
not, str is returned. (A read error will occur, for example, if you attempt to use these
functions on a file that has not been opened for reading.) .

Note The array pointed to by str is assumed to be large enough; overflow is not checked.

The function gets omits the newline character in the string; fgets leaves it in.

See also ferror,fopen, frea~getc. scanf, stdio

gets 5-29

Synopsis

Description

Diagnostics

See also

hypot-Euclidean distance function

tinclude <MATH.H>

extended hypot (x, y)
extended x, y;

Function hypot returns

sqrt (x .. x + y * y)

taking precautions against unwarranted overflows.

Function hypot honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

exp

"Exception Flags and Halts" in Chapter 1-8 of the Apple Numerics Manual

s-3o hypot

--.

Synopsis

Description

ioctl-control a device

iinclude <IOCTL.H>

int ioctl{fildes, cmd, arg)
int fi l des;
unsigned i nt cmd;
long ·arg;

Function ioctl communicates with a file's device driver by sending control
information, requesting status information, or both. Parameter cmd indicates which
device-specific operations ioct 1 must perform. Here are the control values:

Value 01 em<!

FIOINTERACTIVE

FIOBUFSIZE

FIOREFNUM

FIOGETEOF

FIOSETEOF

FIOGETMARK

FIOSETMARK

Description

Function ioctl returns 0 if the device is interactive, it returns
-1 and sets errno to EINVAL, if not parameter arg is
ignored.

Function ioctl returns the optimal buffer size for this device,
in bytes; the buffer size is returned in a long variable pointed
to by argo If the device has no default buffer size, ioctl
returns -1 and set.<; errno to EINVAL.

Function ioctl returns the ProDOS file reference number
assodated with fildes; the reference number is returned in
the short pointed to by argo If fildes is not open on a
ProDOS device (such as the console device), ioctl returns
-1.

Function ioctl stores the logical end of file in the long
variable pointed to by argo The value of arg is the size of the
file, in bytes.

Function ioctl sets the logical end of file specified in the
long variable pointed to by argo The value of arg is the new
size of the file , in bytes. This command can be. used to reduce
or increase the size of the open file. The current file pointer is
not affected unless the file size is set to a number less than the
file pointer value.

Function ioctl stores the logical file position specified in the
long variable pointed to by argo The value of arg is the
distance, in bytes, from the start of the file to the current
position.

Function ioctl sets the logical file position specified in the
long variable pointed to by argo The value of arg is the
distance, in byres, from the start of the file to the current
position .

Function ioctl fails if One or both of the following conditions exist:

o File descriptor filde.s is not valid or is nOt open. (EBADF]

o Parameters cmd or arg are not valid for the device handler associated with
fil des. (EINVALI

ioctl 5-31

Diagnostics

Note

Wornlng

See also

5-32 ioct)

If an error has occurred, a value of -1 is returned and ermo is set to indicate the
error.

For cmd values FIOINTERACTlVE and FIOBUFSIZE, a function return of -1 is a
meaningful response, and not an errOr. For FIOINTERACTlVE, errno is set to
EINVAL for devices that are not interactive. For FIOBUFSIZE, errno is set to
E INVAL for devices that have no default buffering.

The cmd values FIOLSEEK and FIODUPFD are reserved for operating-system use.

FIOREFNUM lers you perform ProDOS I/O operations (such as SET_MARK) that are
not available through ioctl. Do not close Or modify the file pointer using the
reference number.

fcntl

Synopsis

Description

Iseek-move read/write file pointer

tinclude <FCNTL.H>

long lseek(fildes, offset, whence)
int fildes;
long offset:
int whence;

A file descriptor, fildes, is returned from a call to creat, dup, fcntl, or open.
Function lseek sets the file pointer associated with fildes as follows:

o If whence is 0, the pointer is set to offset bytes.
(The value of offset may be zero or positive.)

o If whence is 1, the pointer is set to its current location plus offset.
(The value of offset may be negative, zero, or positive.)

o If whence is 2, the pointer is set to the size of the file plus offset.
(The value of offset may be negative, zero, or positive.)

Upon successful completion, this function returns the file pointer value, measured in
bytes from the beginning of the file.

The file pointer remains unchanged and lseek fails if one or more of the foUowing is
true:

o File descriptor fildes is not open. [EBADFI

o Parameter whence is not 0, 1, or 2. [EINVAL)

o The resulting file pointer would point before the beginning of the file. [E INVAL]

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

Retum value Upon successful completion, this function returns a nonnegative long integer
indicating the file pointer value. Otherwise, it returns a value of -1 and sets errno to
indicate the error.

Note In previous versions of the Standard C library, tell (fildes) was a function that
returned the current file pOSition. It is equivalent to the call

Warning

See also

lseek(fildes, OL, 1)

Function Is eek has no effect on a file opened with the 0_ APPEND flag because the
next write operation to the file always repositions the file pointer to the end of file
before writing begins.

fseek, open

Iseek 5-33

Synopsis

Description

malloe-memory allocator

' include <MALLOC . R>

char *malloc{size)
unsiqned int size:

char *lmal l oc(size)
unsigned long s i ze;

void free (ptr)
c har *ptr;

char *real loc(ptr, size)
char *ptr:
unsigned int size;

char *calloc (nelem, elsize)
unsiqned i nt nelem, e151ze;

void cfree(ptr, ne1em, e! s i ze)
char ·per;
un s i qned i nt nelem, e l size;

Functions rnalloc and free provide a simple general-purpose memory-allocation
package. The storage area expands as necessary when rnalloc is called

Function rnalloc allocates the first sufficiently large contiguous free space it finds ,
and returns a pointer to a block of at least size bytes suitably aligned for any use. It
calls New Handle (see the Apple IIGS Toolbox Reference) to get more memory from
the sy:;tem when there is no suitable space already free. Since rnalloc uses a size
parameter of type unsigned int, it can allocate blocks no larger than 64K bytes. If
size is 32K or larger, lrnalloc is caUed.

Function lrnalloc allocates the first sufficiently large contiguous free space it finds ,
and rerurns a pointer to a block of at least size bytes suitably aligned for any use . It
calls New Handle (see the Apple llGS Toolbox Reference) to get more lJlemory from
the sy:;tem when there is no suitable space. already free. Since lrnalloc uses a size
parameter of type long, it can allocate blocks larger than 64K.

Function free takes a parameter that is a pointer to a block previously allocated by
rnalloc or lrnalloc. If its size is greater than 2K, it is returned to the sy:;tem using
DisposeHandle. Blocks smaller than that are cached by rnalloc for further
allocation by rnalloc only. Undefined results occur if the space assigned by rnalloc
is overrun, or if a random value is passed to free .

5-34 malioe

Diagnostics

Function realloc changes the size of the block pointed to by ptr to size bytes,
and rerums a pointer to the (possibly moved) block. '!be contents are uncbanged up
to the lesser of the new and old sizes. If no free block of size bytes is available in the
storage area, realloc asks rnalloc to enlarge the storage area by size bytes and
then moves the data to the new space. If ptr is NULL, realloc is equivalent to
rnalloc.

Function calloc allocates space for an array of nelern elements of size elsize. The
resulting space allocated is filled with zeros.

Function cfree, like free, frees memory allocated by calloc; cfree is included
for compatibility with other systems. Parameters nelerns and elsize are ignored.

Functions rnalloc, lrnalloc, realloc, and calloc rerum NULL if there is no
available memory, or if the storage area has been detectably corrupted by a
program's storing data outside the bounds of a block. When this happens, the block
pointed to by ptr may have been destroyed.

malloc 5-35

Synopsis

Description

memory-memory operations

'include <MEMORY.H>

char *memccpy(dest, source, c, n)
char *dest, "source;
int c, 0;

char *memchr(source, c, n)
char "source;
int c, n;

int memcmp(a, b, n)
char "'a, "b;
int 0:

char *memcpy(dest, source, 0)

char *dest, *source;
int n;

char *memset(dest, c, nJ
char *dest;
char c:
int 0:

These functions operate efficiently On memory areas (arrays of characters bounded
by a count, rather than terminated by a null character). They do not check for the
overflow of any receiving memory area.

Function memccpy copies characters from memory area source into dest,
stopping after the first occurrence of character c has been copied or after n
characters have been copied, whichever comes first. The function returns either a
pointer to the character after the copy of c in dest, or NULL if c was nO! found in the
fust n characters of source.

Function memchr returns either a pointer to the first Occurrence of character c in the
fiest n characters of memory area source, or NULL if c does not occur.

Function memcmp compares its parameters, a and b, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0, depending on
whether a is less than, equal to, or greater than b, respectively.

Function rnemcpy copies n characters from memory area source to dest. It returns
dest.

Function memset sets the first n charaCters in memory area dest to the value of
character c. It returns dest.

Warning Overlapping moves yield unexpected results.

See also string, BlockMove in the Apple IIGS Toolbox Reference

5-36 memory

Synopsis

Description

Diagnostics

Note

Warning

See also

onexit-install a function to be executed
at program termination

int on exit (func) ;
void (*func) () ;

Function onexi t installs the exi t function pointed to by func by adding it to a IisL
The list is initially empty. A list entry is added whenever onexi t is called. Function
exi t calls the functions in the list in the reverse of the order in which they were
added.

Programs that use the butTered I/O portions of the Standard I/O Package (including
the predefined streams stdin, stdout, and stderr) need to flush all open buffers
before the program terminates. To ensure that this is done, the Standard I/O Package
adds its cleanup function to the list the first time that it allocates a butTer. Each
function in the list is called with a single argument of type in t either at program
termination or when exit is called This argument is the program's status value (0 for
normal execution; nonzero for errors). The function can use this value or ignore it.

The number of user-supplied exit functions is limited to six, including the one used by
the Standard I/O PaCkage.

The function returns a nonzero value if the installation fails.

A call to _exit circumvents user exit procedures installed by onexit .

The behavior of a function is undefined if it is installed more than once.

exit, stdio

onexit 5-37

Synopsis

Description

open-open for reading or writing

linclude <FCNTL . H>
i nt open(fl l ename, oflaq)

char *fil ename:
int o f lag ;

Parameter filename is a HIename or pseudo-HIename (such as .STDIN, . STDOUT,
.STDERR, . CONSOLE, or .NULL); it cannot be the pseudo·HIename .printer, a
device name (such as . D2), or the double period C. .).

Function open opens a HIe descriptor for the named HIe and sets the HIe·status flags
according to the value of of lag. The value of of lag is constructed by OR-ing flag
settings; for example,

fi l des = open("MyFile", O_WRONL YI O_CREAT I O_ TRUNC) ;

To construct of lag, first select one of the following access modes:

O_RDONLY

O_WRONLY

O_RDWR

Open for reading only

Open for writing only

Open for reading and writing

Then optionally add one or mOre of these modifiers:

O_APPEND The me pointer is set to the end of me before each write operation.

If the me does not exist, it is created.

If the file exists, its length is truncated to 0; the mode is unchanged.

The following setting is valid only if 0_ CREAT is also spedfied:

Function open fails if the me exists.

When a me is written to a device, normally certain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text fIle (such as
translating \ n to CR rather than LF). The following nag suppresses such translation.

° BINARY The file is read or written verbatim, suppressing the device driver's
conversions.

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
The file pointer used to mark the current position within the file is set to the beginning
of the fIle.

The named file is opened unless one or more of the following is true:

0_ CREAT is not set and the named file does not exist. [ENOENTJ
More than about 30 file descriptors are currently open. The actual limit varies
according to run·time conditions. [ENE'ILEJ
0_ CREAT and 0_ EXCL are set, and the named file exists. [EEXI 5 TJ

Retum value Upon successful completion, this function returns a nonnegative integer (the file
descriptor). Otherwise, it returns a value of -1 and sets errno to indicate Lhe error.

See also close, c reat, lseek, read, write

5·38 open

Synopsis

Description

printf-print formatted output

jinclude <STOIC.H>

int pr intf (format [, arg) ...)
char *format;

tnt tprint f (stream, format [, arg I ...)
FILE ·stream;
char • format;

int sprintf (str, format { , arq 1 ..• 1
c har ·str, *format;

Function printf places formatted output on the standard output stream stdout.
Function fprintf places formatted output on the named output stream stream.
Function sprintf places formatted output, followed by the null character (\0), into
the character array pOinted to by st r (you must ensure that enough room is
available). Each function returns the number of characters transmitted (not including
the \ 0 in the case of sprintf) or a negative value if an OUtput error was encountered.

Each of these functions converts, formalS, and prinlS ilS arg parameters under
control of the format parameter. The format parameter is a character string that
contains two types of objeclS: plain characters, which are simply copied to the output
stream, and conversion speCifications, each of which results in fetching zero or more
arg parameters. The behavior of the function is undefined if there are insufficient
arg parameters for the format. If the format is exhausted while arg parameters
remain, the extra a rg parameters are ignored.

Each conversion specification is introduced by the character %. After %, the following
appear in sequence:

1 . Zero or more flag characters, which modify the meaning of the conversion
specification.

2. An optional decimal digit string specifying a minimum field width. If the converted
value has fewer characters than the field width, the value will be padded to the field
width on the left (default) or right (if the left-adjustment flag has been given): see
the discussion of flag specification that follows.

3 . A precision that gives the minimum number of digilS [0 appear for the d, 0, u, x,
and X conversions; the number of digits to appear after the decimal point for the
e, E, and f conversions; the maximum number of significant digits for the g and G
conversions; or the maximum number of characters to be printed from a string in
the s conversion. The format of the precision is a period (.) followed by a decimal
digit string; a null digit string is treated as zero.

4. An optional 1 specifying that a following d, 0, u, x, or X conversion character
applies [0 an arg parameter of type long.

S. A character that indicates the type of conversion [0 be applied.

A field width Or precision may be indicated by an asterisk (*) instead of a digit SIring.
In this case, an integer arg parameter supplies the field width or precision. The arg
parameter that is actually convened is not fetched until the conversion letter is seen;
therefore, the a rg parameters specifying field width or precision must appear
immediately before the arg parameter (if any) to be converted.

printt 5-39

5-40 printf

These are the flag characters and their meanings:

+

blank

,;

The result of the conversion will be left justified within the field.

The result of a signed conversion always begins with a sign (+ or -).

If the first character of a signed conversion is not a sign, a space will
be prefIXed to the result. This prefIX implies that if the blank and +
flags both appear, the blank flag will be ignored.

The value is to be converted to an alternate form. For c, d, ~, and
u conversions, the flag has no effect For 0 conversion, the flag
increases the precision to force the flrst digit of the result to be O.
For x (X) conversion, a nor12ero result will have Ox (OX) prefixed to
it For e, E, f, g. and G conversions, the result will always contain a
decimal point, even if no digits follow the decimal point.
(Normally, a decimal point appears in the result of these
conversions only if a digit follows it.) For g and G conversions,
trailing zeros in the fractional part will not be removed from the
result (as they normally are).

Here are me conversion characters and their meanings:

d. 0, u, x, X The integer arg parameter is converted to signed decimal (d).
unsigned oaal (0), unsigned decimal (u), or unsigned
hexadecimal notation (x and X). The letters abcde f are used for x
conversion, and the letters ABCDEF are used for X conversion.

f

e, E

The precision specifies the minimum number of digits to appear; if
the value bcing converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of 0 is a null string.

The float, double, comp, or extended arg parameter is
converted to decimal notation in the form "[-lddd. ddd", where
the number of digits after the decimal point is equal to the precision
specification. If the preCision is missing, it is assumed to be 6; if the
precision is explicitly 0, no decimal point appears. Infinities are
printed in the form "(-IINF", and NaNs are printed in the form
"(-INAN (ddd) ", where ddd is a code indicating why the result is
not a number.

The float, double , camp, or extended arg parameter is
converted to decimal notation in the form "[-ld.ddde±dd", where
there is one digit before the decimal point, and the number of digits
after the decimal point is equal to the precision. When the
precision is missing, it is assumed to be 6; if the precision is 0, no
decimal point appears. The E format code produces a number with
E instead of e introducing the exponent. The exponent always
contains at least two digits. Infinities are printed as INF, and N3J'1s
are printed in the form "[-JNAN (ddd) ", where ddd is a code
indicating why the result is not a number.

Examples

Note

See also

g, G

c

5

p

%

The float, double, compl or extended arg parameter is
printed in style f or e (or in style forE in the case of a G format
code), with the precision specifying the number of significant
digits. The style used depends on the value converted: style e is
used only if the exponent resulting from the conversion is less than
-4 Or greater than the precision. Trailing zeros are removed from
the result A decimal point appears only if it is followed by a digit.

The char arg parameter is printed.

The arg parameter is taken to be a string (character pointer), and
characters from the string are printed until a null character (\ 0) is
encountered or until the number of characters indicated by the
precision specification is reached. If the precision is missing, it is
taken to be infinite, with the result that all characters up to the frrst
null character are printed. If the string pointer arg parameter has
the value zero, the result is undefined; a zero arg parameter yields
undefined results.

The arg parameter is taken to be a Pascal string, which begins with a
character specifying its length and does not end with a null
character (\ 0).

The % character is printedj no parameter is converted.

In nO case does a nonexistent Or smail field width cause truncation of a field If the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf and fprintf are
printed as if putc had been called.

To print a date and time in the form "Sunday, July 3, 10:02", where weekday and
month are pointers to null· terminated strings, use

printf("%s, %5 %d, %.2d:%.2d", weekday, month, day, hour, min);

To print pi to five deci mal places, use

printf(flpi "'" %.5f", pi());

Calling sprintf causes other Standard I/O functions to be loaded, even though
sprintf doesn't perform any I/O operations.

ecvt,putc, scanf, stdio

"Conversions Between Decimal Formats" in Chapter 1-401 in the Apple Numerics
Manual.

printf 5-41

Synopsis

Description

putc-put character or word on a stream

linclude <STDIO.H>

int putC(C, stream)
char c;
FI LE * stream:

int putchar (c')
char c;

int !pute (c , stream)
char C;
FILE --stream;

int putW(w . stream)
int w;

FILE *st r eam;

Macro pute writes the character e [Q the output stream at the CUrrent position of the
fIle poimer. Macro putehar (e) is equivalem [Q

putC (c. s tdoutl

Function fpute behaves like macro pute. Function fpute runs mOre slowly than
macro pute but takes less space per invocation.

Function putw writes an i nt (that is, 2 bytes) to the output stream at the current
position of the me pointer. This fu nction neither assumes nor causes special
alignment in the file.

For information about output files buffering, see stdio.

Return values When pute, putehar, or fpute succeeds, it relUrns the value it has written. When
one of these fails, it relUrns the constant EOF (-I). (These functions fai l if the file
stream is not open for writing, or if the output file cannot be grown.)

Note

'When putw succeeds, i(returns 0; when it fails , it returns a nonzero value.

Because putc is implemented as a macro, it treal:S a stream parameter with side
effects incorrectly. In particular,

p utc(c . *f++)

produces unexpected results. Instead, use

fputc (C, *f++)

See olso fclos e, fe rror, fopen, fread, getc,printf,put s, setbuf , stdio

5-42 pule

Synopsis

Description

Return value

Note

See also

puts-write a string to a stream

,include <STDIO .H>

int puts (s tr)
ehar ·str;

int !puts{str. stream)
char ·str;
FILE ·stream;

Function puts writes the nuU-tenninated string pointed to by str, followed by a
newline character, to the standard output stream stdout.

Function fputs writes the null-tenninated string pointed to by str to the named
output stream stream.

Neither function writes the terminating null character.

Both routines rerum either the number of characters written, or return EOF (-1) if a
wri[e error occurs.

Function puts appends a newline character, while fputs does nO(.

ferror, fopen, fread,printf,putc , stdio

puts 5-43

Synopsis

Descripllon

Note

5-44 qsort

qsort-quicker sort

void qsort(base, nelem, elsize, compar)

char *base;
unsigned int nelem, elsize;
int (*compar) () ;

Function qsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Parameter base points to the element at the base of the table. Parameter nelem is
the number of elements in the table. Parameter elsize is the size of an element in
the table; it can be specified as sizeof ('base).

Parameter compar is a pointer to a comparison function that you supply. Function
qsort calls your comparison function with pointers to two elements being
compared. Here is a sample declaration for your comparison function:

int myCompare(eleml, elem2)
char *eleml, welem2;

Your comparison function supplies the result of the comparison to qsort by
rerurning one of the following integer values:

Result

<0

o
>0

Meaning

The first parameter is less than the second parameter

The first parameter is equal to the second parameter

The first parameter is greater than the second parameter

Parameter base, the pointer to the base of the table, should be of the pointer-to­
element type and cast to (char ').

Synopsis

Description

See also

rand-a simple random-number generator

int rand()

void srand (seed)
unsigned seed;

Function rand uses a multiplicative congruential random-number generator with a
period of 232 that returns successive pseudorandom numbers in the range from 0 to
215_l.

Function srand can be called at any time to reset the random-number generator to a
specific seed The generator is initially seeded with a value of 1. Identical seeds
produce identical sequences of pseudorandom numbers.

'Random Number Generator" in Chapter 1-10 of the Apple Numerics Manual

rand 5-45

Synopsis

Description

read-read from file

int read(f i ldes, buf. nbyte)
int fildes;
char *buf;
unsigned nbyte:

File descriptor fildes is obtained from a call to open, ereat, dup, or fentl.

Funaion read transfers up to nbyte bytes from the file associated with fildes into
the buffer pointed to by buf.

On devices capable of seeking, read starts reading at the current poSition of the file
pointer associated with fildes . Upon reruming from read, the file pointer is
incremented by the number of byteS actually read

Nonseeking devices always read from the current position. The value of a me pointer
associated with such a file is undefined

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the number of bytes left in
the file is less than nbyte bytes. A value of 0 is rerumed when the end of file has been
reached; a vlaue of -1 if a read error occurred.

Funaion read fails if fildes is not a valid file descriptor associated with a file open
for reading. IEBADFJ

File descriptor 0 is opened by the APW Shell as the standard input file .

Retum vOlue Upon successful completion, a nonnegative integer (the function read) returns the
number of bytes actually read. Otherwise, it returns -J and sets errno to indicate the
error.

See olso ereat, open

5-46 read

Synopsis

Description

scanf-convert formatted input

iinclude <STDIO.H>

int scan! (format I , pointer 1 ..•)
char 'll'format;

int fscanf (stream, format I , pointer 1 •••)
FILE '*stream;
char '*tormat;

itlt: sscanf (str, format [I pointer] .. .)
char ·str, -format;

Function scanf reads characters from the standard input stream stdin. Function
fscanf reads characters from the named input stream stream. Function s3canf
reads characters from the character string str. Each function convertS the input
according to a control string (format), and stores the results according to a set of
pointer parameters that indicate where the converted output should be stored.

Parameter forma t, the control string, contains specifications that control the
interpretation of input sequences. The format consists of characters to be matched in
the input stream, conversion specifications that start with the character %, or both.
The control string may contain the following:

o white-space characters (spaces and tabs) that cause input to be read up to the next
non-white-space character, except as described here

o a character (any except %) that must match the next character of the input stream;
to match a % charaCter in the input stream, use %%

o conversion specifications beginrting with the character % and followed by an
optional assignment-suppression character *j an optional numeric maximum
field width; an optional 1, In, n, or h indicating the size of the receiving parameter;
and a conversion code

An input field is defined relative to its conversion specification. The input field ends
when the first character inappropriate for conversion is encountered or when the
specified field width is exhausted After conversion, the in put pointer points to the
inappropriate character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding parameter, which is a pointer
to a basic C type, such as int or float.

Assignment can be suppressed by preceding a format character with the character *.
In assignment suppression, an input field is skipped: the field is read and converted,
but not assigned. Therefore, pointer should be omitted when assignment of the
corresponding input field is suppressed.

The format character dictates the interpretation of the input field. The following
format characters are legal in a conversion speCification, after %:

% A single % is expected in the input at this point. Assignment is not
performed.

d

u

A decimal integer is expected. The corresponding parameter
should be an integer pointer.

An unsigned decimal integer is expected. The corresponding
parameter should be an unsigned integer pointer.

scant 5-47

o

x

p

c

5-48 scant

An octal integer is expected. The corresponding parameter should
be an integer pointer.

A hexadecimal integer is expected. The corresponding parameter
should be an integer pointer.

The conversion characters d, u, 0, and x may be preceded by 1 or
h to indicate that a pointer to long or short, rather than int, is in
the parameter list. The h is ignored in this implementation because
int and sho rt are both 16 bits.

A floating-point number is expected The next field is convened
accordingly and stored through the corresponding parameter.
which should be a pointer to float, double, comp, or
extended, depending on the size specification. The input format
for floating-point numbers is an optionally signed string of digits,
possibly containing a decimal poin~ followed by an optional
exponent field consisting of E or e followed by an optionally signed
integer. In addition, infutity is represented by the string 'INc',
and NaNs are represented by the string 'NAN', optionally followed
by parentheses that may contain a string of digits (the NaN code).
Case is ignored in the infinity and NaN strings.

The conversion characters e, f, and g may be preceded by 1, m, or
n to indicate that a pointer to double, camp, or extended, rather
than float, is in the parameter list

A character string is expected. The corresponding parameter
should be a character pointer to an array of characters large enough
to accept the string; a terminating null character (\ 0) is added
automatically. The input field is terminated by a white-space
character (space or tab), or when the number of characters
specified by the maximum field width has been read.

A character string is expected. The next field is converted to a
Pascal-format string-that is, a character specilYing the length of
the string followed by the string itself. The corresponding
parameter should be a character pointer to an array of characters
large enough to accept the string; a terminating null character (\ 0)
is added automatically. The input field is terminated by a white­
space character (space or tab), Or when the number of characters
specified by the maximum field width has been read.

A character is expected; the corresponding parameter should be a
character pointer. The normal skip over white space is suppressed
in this case; use %l s to read the next non-white-space character. If a
field width is given, the corresponding parameter should refer to a
character array; the indicated number of characters is read.

The left bracket is followed by a set of characters called the scanset
and a terminating right bracket The input field is the maximal
sequence of input characters consisting entirely of characters in the
scanset. When reading the input field, the normal skip over leading
white space is suppressed. The corresponding pointer parameter
must pOint to a character array large enough to hold the input field
and the terminating null character (\ 0), which will be added
automatically.

Examples

.. .., •..

"

1

When appearing as the first character in the scanset, the circumflex
serves as a complement operator, and redefines the scanset as the
set of all characters not contained in the remainder of the scanset
string.

The right bracket ends the scanset. To be included as an element of
the scanset, the right bracket must appear as the first character
(possibly preceded by a circumflex) of the scanset. Otherwise, it
will be interp(eted syntactically as the closing bracket.

A range of characters may be represented by the construct first-last;
thus, the scanset [0123456789] may be expressed [0-9]. To use
this convention, first must be less than or equal to last in the
ASCII collating sequence. Otherwise, the minus (-) will stand for
itself in the scanset. The minus will also stand for itself whenever it is
the first or the last character in the scanset. At least one character
must match for the conversion to be considered successful.

Conversion terminates when the end of file or the end of the contrOl string is reached,
or when an input character doesn't match the control string. In the last case, the
unmatched character is left unread in the input stream.

Here are some ways that the scanf function can be used:

o The call

int i;
float X;

char name [SOl :
scan! ("'0% t \5", "i~ &x. name):

with input

25 54.32E-l reed

will assign the value 25 to i and the value 5.432 to x; name will contain " reed \ 0 ".

o The call

int i;
extended x;
char name [SO J ;

scanf("\2d\n t *d \(O-9)". &i . &x, name);

with input

5 67 8 9 0 123 56a72

will assign 56 to i and 789.0 to x, skip 0123, and place the string "56 \0" in name .
The next call to getchar will rerum "a".

o The call

lot i;
scanf (.. ans er l=%d .. . &1) ;

with input

answer l-5 1 answer2 -45

will assign the value 51 to i because "answerl" is matched explicitly in the input
stream. The input pointer will be left at the space before "answer2" .

scant 5-49

Retum value Functions scanf, fscanf, and sscanf return the number of successfuUy matched
and assigned input items. This number can be zero when an early mismatch between
an input character and the control string occurs. If the input ends before the first
mismatch or conversion. EOF is returned.

1bese functions return EOF when input ends, and a short count for missing or iUegal
data items.

Note Trailing white space is left unread unless it is matched in the control string.

Warning

The success of literal matches and suppressed assignments cannot be determined.

The pointer parameters in these functions must be addresses: for example, &i. Be
sure not to pass i rather than its address. ,

See also atof, qetc, printf, stdio, strtol

5-50 scent

' Conversions Between Decimal Formats" in Chapter 1-4 of the Apple Numerics
Manual

Synopsis

Description

setbuf-assign buffering to a stream

tinclude <STDIO.H>

void setbuf(stream. buf)
FILE "stream;
char "'but;

int setvbuf(stream, but, type. size)
FILE "'stream;
char "'but;
int t ype;
int size;

A buffer is normally allocated by the Standard C library at the time of the first gete
or pute operation on a file. If you prefer to provide your own buffer, you can call
setbuf or set vbuf after a stream has been associated with an open file but before it
is read or written. Functions setbuf and setvbuf let you provide your own buffering
for a me stream. Function setvbuf is a more flexible extension of setbuf.

Function setbuf causes the character array pointed to by buf to be used instead of
an automatically allocated buffer. BUFSIZ, a constant defined in the <StdIO. h>
header file, specifies the size of the buf array as

char buf[BUFSIZI;

If buf is NULL, input and output are unbuffered

Function setvbuf let5 you specify two parameters in addition to those required by
setbuf: size and type. Parameter size specifies the size in bytes of the array to be
used; the standard va functions work most efficiently when size is a multiple of
BUFSIZ. If the buffer pointer bUf is NULL, a buffer of size bytes is allocated from the
system. If buf is not NULL, buf is assigned to the FILE variable's buffer-pointer
parameter. If size is not zero, size is assigned to the FILE variable's size
parameter. The value of type determines how stream is buffered by setvbuf, as
follows:

Value ot type Description

Causes input and output to be me buffered.

IOLBF Causes output to be line buffered The buffer is flushed either when a
newline character is wriuen or when the buffer is full.

IONBF Causes input and output to be unbuffered. Parameters buf and size
are ignored.

The following function calls are equivalent when buf is not NULL:

setbut ls t rearn, buf);
s e t vbu f (stream, but, I OFBF. BOFS I Z} ;

The follOWing function calls are equivalent when buf is NULL:

se~bu f (s tream, NULL) ;
set. v b uf (s t ream , NOLL , [ONBf . 0) ;

setbut 5-51

Diagnostics

Note

Function setvbuf returns nonzero if an invalid value is given for type.

TIle buffer must have a life at least as long as that of the open stream. Be sure to close
the stream before the buffer is deallocated. If you allocate buffer space as an
automatic variable in a code block, be sure to close the stream in the same block

If buf is NULL and the system cannot allocate size bytes, a smaller buffer will be
allocated.

See also fopen, gete, malloe, pute, stdio

5-52 satbut

Synopsis

Description

Warning

--

setjmp-nonlocal transfer of control

'include <SETJMP. H>

int set j mp (env)
j mp_bu f env;

void lonqjmp {e nv , v al)
jmp_buf env;
int val;

These functions let you escape from an error or interrupt encountered in a low-level
subroutine of your program.

Function set jmp saves its stack environment in env for later use by l ongjrnp. It
returns the value 0.

Function l ongjmp restores the environment saved by the last call of set jrnp with the
corresponding env environment After a call to l ongjrnp, the program continues as
if the preceding call to set jmp had returned the value val.

Function longjmp cannot cause set jrnp to return the value 0. If longjrnp is invoked
with a second parameter of 0, set jrnp returns 1. Data values will be those in effect at
the time longjrnp was called.

If longjrnp is called without a previous call to set jrnp, or if the function that
contained the set jrnp has already returned, results are unpredictable.

setjmp 5-53

Synopsis

Description

Diagnostics

See also

5-54 sinh

sinh-hyperbolic functions

tinclude <MATH.H>

extended sinh (x)

extended XI

extended cosh (xl
extended X;

extended tanh (xl
extended x;

Functions sinh, cosh, and tanh rerum, respectively, the hyberbolic sine, cosine,
and tangent of their parameter.

Functions sinh, cosh, and tanh honor the floating-point exception flags-invalid
operation, underflow, overflow, divide by zero, and inexact-as prescribed by
SANE.

"Exception Flags and HallS" in Chapter 1-8, and Appendix A of the Apple Numerics
Manual

Synopsis

Description

stdio-standard buffered input/output package

jinclude <STD IO.R>

FI LE *stdin, *stdout. *stderr;

The Standard VO Package constitutes an efficient user-level I/O buffering scheme.
The inline macros gete and pute handle characters quickly. Macros getehar and
putehar, and the higher-level routines fgete, fgets, fprintf, fpute, fputs ,
fread, fscanf, fwrite, gets, getw, printf, puts , putw, and scanf all use
gete and pute. Calls to these macros and functions can be freely intermixed.

The constants and the following functions are implemented as macros: gete,
getchar, putc, putchar, feof, ferror, clearerr, and fileno. Redeclaration
of these names should be avoided.

Any program that uses the Standard I/O Package must include the StdIO. h header
file of macro definitions. The functions, macros, and constants used in the Standard
VO package are declared in the header file and need no further declaration.

A stream is a file with associated buffering and is declared to be a pointer to a FILE
variable. Functions fopen, freopen, and fdopen return this pointer. The
information in the FILE variable includes

o the file access-read or write

o the me descriptor as returned by open, ereat, dup, or fentl

o the buffer size and location

o the buffer style (unbuffered, line-buffered, or me-buffered)

Standard I/O buttering

Output streams, with the exception of the standard error stream s tde rr, are by
default me buffered if the output refers to a file . file 3tderr is by default line
buffered. When an output stream is unl7uJJered, it is queued for writing on the
destination file or window as soon as written; when it is file buJJered, many characters
are saved up and written as a block; when it is line buJJered, each line of output is
queued for writing as soon as the line is completed (that is, as soon as a newline
character is written). Function set vbuf may be used to change the stream's buffering
strategy.

Normally, there are three open streams with constant pointers declared in the
<STDIO. H> header file and assodated with the standard open files :

RUvcriable Files Description BuNe, style

stdin 0 Standard input file Line buffered
stdout 1 Standard output file file buffered
stderr 2 Standard error file Line buffered

stdio 5-55

5-56 sldio

Buffer InHiaJization

The FILE variable returned by fopen, freopen, or fdopen has an initial buffer size
of 0 and a NULL buffer pointer. The buffer size is set and the buffer allocated by a call
to setbuf, setvbuf, Or the first I/O operation on the stream. whichever comes
flrsL Buffer initialization is performed using the following algorithm:

1. If _IONBF (no buffering) was set by a cali to setvbuf, initialization steps 2 and 3,
that follow, are skipped The buffer size remains 0, and the buffer pointer remains
NULL.

2 . The access-mode word for IOLBF Oine buffering) is checked This bit is usually
set only in the predefined rues stderr and stdin, but a call to setvbuf can set it
for any me. rEline buffering is se~ the buffer size is set to _ LBUFS IZ (100). If line
buffering is not se~ ioctl is called with an FIOBUFSIZE request, and the buffer
size is set to the returned value or to BUFSIZ (1024) if no value is returned.

3. If the buffer pointer is NULL, a request is made for a buffer whose size was
determined in step 2; the buffer pointer is set to point to the newly allocated buffer.
If the requested size cannot be allocated, attempts are made to allocate ftrst
BUFSIZ and then _LBUFSIZ if one of these is smaller than the requested size. If all
requests fail, the buffer pOinter remains NULL, and the _ IONBF (no buffering) bit is
set.

4. Function ioctl is called with an FIOINTERACTIVE request; if it returns true, the
_ IOSYNC bit is set in the access-mode word. This step is done for all FILE
variables, regardless of their buffering style and size. (The _IOSYNC bit is
described in the following section.)

The setvbuf function lets you specify values for buffer size, buffer pointer, and
access mode word other than the default values of 0, NULL, and 0, respectively. The
setvbuf function must be called before the first I/O operation occurs, so that the
buffer-initialization procedure just described receives the values you spedfy instead
of the default values.

Buffered I/O

On each write request, the bytes are transferred to the buffer, and an internal counter
is set to account for the number of bytes in the buffer. If _ IOLBF is set and a newline
character is encountered while bytes are being transferred to the buffer, the buffer is
flushed (written immediately) and the transfer continues at the beginning of the
buffer. This process continues until the write-request count is satisfied or a write error
occurs .

On each read request, the _IOSYNC bit in the access-mode word is checked. If
_ IOSYNC is on, all current FILE variables that have _ IOSYNC on and that are open
for writing are flushed. In other words, a read operation from an interactive FILE
variable flushes all interactive output mes before reading is performed. This process
ensures that any prompts, screen output, or other visual feedback is displayed before
the read operation is initiated. Then if the internal counter is 0, an entire buffer is
read into memory if possible. (For the console device, less than a buffer's worth is
likely to be read.) The bytes reqUired to satisfy the read request are transferred, the
device is asked for more bytes if necessary, and an internal pointer is advanced if any
bytes remain unread.

Note

Diagnostics

See Also

When the Standard 1/0 Package is used, Standard 1/0 cleanup is performed just
before the application terminates. Any normal return including a call to exit causes
Standard 1/0 cleanup, which consists of a call to fclose for every open FILE
stream.

Do not use a file descriptor (D, I, or 2) where a FILE variable (stdin, stdout, or
stderr) is required.

File StdIO. h indudes definitions other than those just described, but their use is not
recommended.

Invalid stream pointers can cause serious errors, including program termination.
Individual function descriptions describe the possible error conditions.

Most integer functions that deal with streams return the integer constant EOF (-I)
when the end of file is reached or when an error occurs. See the descriptions of the
individual functions for details.

open,close, lseek. rea~ write, fclose, ferror, fop en, fread, fseek,
getc,gets.printf,putc,puts, scanf, setbuf, ungetc

sIdle 5·57

Synopsis

Description

5-58 string

string-string operations

'include <STRING.H>

tinclude <STRINGS . H>

char *st reat(destStr, sreStr)
char *dQstStr~ *srcStr:

c har *strncac(destStr. sreStr, n)
char *destSer, *srcStr:
int n;

int strcmp(strl, str2)
char ·strl, ·str2:

int strncmp(strl. str2, n)
char *strl. ·str2;
i nt n;

char *strcpy(destStr. srcStr)
char *destStr, ·sreStr:

char ·strncpyCdestStr, sreSer, n)
char *destStr, ·sreStr:
int n;

int strlen(str)
char "'str;

char ·strchr(str, c)
char "'str, C;

char *strrchr(str, c}
char ·str. c;

char *strpbrk (srcStr, findChars)
char "'sreStr, *findChars;

int strspn(srcStr, spanChars)
char "'sreSer, *spanChars:

i nt scrcspn(srcStr, skipChars)
char ·sreser, *skipChars;

char *strtok(destStr, tokenStr)
char -destStr , ·tokenStr;

ehar ·c2pstr (ptr)
char ·ptr

char ·p2cstr(ptrl
char ·ptr

The string paramerers (srcStr, destStr, and so fonh) and 5 point to arrays of
characrers rerminated by a null character. Functions strcat, strncat, strcpy,
and strncpy all alter destStr. These functions do not check for overflow of the
array pointed to by destStr.

Function strcat appends a copy of string srcStr to the end of string destStr.
Function strncat appends at most n characters. Each function returns a pointer to

the null-terminated result.

Function strcmp performs a comparison of its parameters according to the ASCII
collating sequence and returns an integer less than, equal to, or greater than 0 when
strl is less than, equal to, or greater than str2, respectively. Function strncmp
makes the same comparison but looks at a maximum of n characters.

Warning

See also

Function strcpy copies string srcStr to string destStr, stopping after the null
character has been copied. Function strncpy copies exactly n characters,
truncating srcStr or adding null characters to destStr if necessary. The result is
not temtinated with a null character if the length of srcStr is n Or more. Each
function returns destStr.

Function strlen returns the number of characters in str, not including the
terminating null character.

Functions strchr and strrchr both return a pointer to the first and last
occurrence, respectively, of character c in string str; they return NULL if c does not
occur in the string. The null character terminating a string is considered to be part of
the string. In previous versions of the Standard C library, strchr was known as
index and strrchr was known as rindex..

Function strpbrk returns a pointer to the first occurrence in string srcStr of any
character from string findChars, or it returns NULL if no character from
findChars exists in srcStr.

Function strspn returns the length of the initial segment of string srcStr that
consists entirely of characters from string spanChars.

Function strcspn returns the length of the initial segment of string srcStr that
consists entirely of characters not from string skipChars.

Function strtok considers the string destStr as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
tokenStr. The first call (with pointer destStr specifted) returns a pointer to the
ftrst character of the first token and writes a null character into destStr immediately
follOwing the returned token. The function keeps track of its position in the string
between calls. Subsequent calls for the same string must be made with NULL as the first
parameter. The separator string tokenStr may be different from call to call. When
no token remains in destStr, NULL is returned.

Function c2pstr converts in place a C-style string to a Pascal-style string. The
function receives a pointer to the string to be converted, and returns a pointer to the
con veered string.

Function p2cstr converts in place a Pascal-style string to a C-style string. The
function receives a pointer to the string to be converted, and returns a pointer to the
converted string.

Overlapping moves yield unexpected results.

Functions strcrnp and strncrnp use signed arithmetic when comparing their
parameters. The sign of the result will be incorrect for characters with values greater
than Ox7F in the Apple lIGS extended character set.

memory

BlockMove, EqualString in the Apple IIGS Toolbox Reference

string 5-59

Synopsis

Description

strtol-convert a string to a long

~include <5TDLIB.H >

long strtol(str. ptr. base)
char *str;
char "''''ptr;
int base:

Function strtol returns a long containing the value represented by the character
string str. The string is scanned up to the flrst character inconsistent with the base
(decimal, hexadecimal, or octal). Leading white-space characters are ignored.

If the value of pt r is not NULL, a pointer to the character terminating the scan is
rerurned in *ptr. If no integer can be formed, *ptr is set to str, and 0 is returned.

If base is 0, the base is determined from the string. If the flrst character after an
optional leading sign is not 0, decimal conversion is performed, and if the a is
followed by x or x, hexadecimal conversion is performed; otherwise, octal
conversion is performed.

The function call atol (str) is equivalent to

s t rtol(str, (char **)NUL L, 1 0)

The function call atoi (str) is equivalent to

(int) strtol (s t r, (char **lNULL, 10)

Note Overflow conditions are ignored.

Apple base conventions ($ for hexadecimal, % for binary) are not supporced.

See also atof, atoi, scanf

5-60 strtol

.... ,

Synopsis

Description

Diagnostics

Note

See also

trig-trigonometric functions
.include <MATH.H>

extended sin (x)
extended x;

extended cos (x)
extended x;

extended tan (x)

extended X;
extended as1n(x)

extended x;
extended acos {xl

extended X;
extended atan (xl

extended x;
extended atan2(y, xl

extended y, x;

Functions sin, cos, and tan return, respectively, the sine, cosine, and tangent of
their argument, which is in radians.

Function as in returns the arcsine of x, in the range -It/2 to It!2.

Function acos returns the arccosine of x, in the range 0 to 1t.

Function atan returns the arctangent of x, in the range -It/2 to It/2.

Function atan2 returns the arctangent of y/x, in the range -It to It, using the signs of
both arguments to determine the quadrant of the return value.

For spedal cases, these functions return a NaN or infirtity, as appropriate.

These functions honor the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

Functions s in, cos, and tan have periods based on the nearest extended-predsion
representation of mathematical It. Hence, these functions diverge from their
mathematical counterparts as their argument gets further from zero.

"Trigonometric Functions" in Chapter 1-10 of the Apple Numerics Manual

trig 5-61

Synopsis

Description

Diagnostics

Note

See also

ungetc-push a character back into the input stream

'include <STDIO ,H>

i nt unqetc(c, stream)
char c:
FILE ·stream;

Function ungete inserts the character e (which typically was returned by the last
get e call) into the buffer assodated with an input stream. The stream must be file­
buffered or line-buffered; it cannot be unbuffered. The inserted character, e, will be
returned by the next gete call on that stream. Function ungete returns e and leaves
the file corresponding to stream unchanged

Only one character of pushback is allowed, provided something has been read from
the stream and the stream is not unbuffered.

If e equals EOF, ungete does nothing to the buffer and returns EOF.

Function ungete will not clear an end-of-file condition.

Function fseek or rewind undoes the effect of ungete if the new location is not
within the same burrer.

For ungete to perform correctly, a read operation (such as get e) must have been
perrormed before the call to the ungete function. Function ungete returns EOF if it
can't insert the character.

Function ungete does not work on unbufrered streams.

fseek,gete,setbuf, stdio

5-62 ungetc

"-""

Synopsis

Description

Diagnostics

See also

unlink-delete a named file

int unlink(flleName)

cil.ar ·fileName;

Function unlink deletes the named file. The function fails if the named file is open.

A call to unl ink is equivalent to

faccess(flleName, F_DELETE)

Upon successful completion, this function returns a value of o. Otherwise, it returns a
value of -1 and sets errno to indicate the error.

faccess

unlink 5-63

Synopsis

Description

write-write on a file

int write(tl1des l but, nbyt e)
lnt fildes ;
char -but;
unsigned nbyte;

File descriptor fildes is obtained from an open, creat, dup, or fcntl call.

Function write artempts to write nbyte bytes from the buffer pointed to by buf to
the me associated with fildes. Internal limitations may cause write to write fewer
bytes than requested; the number of byres actually written is indicated by the return
value. Several cal1s to write may therefore be necessary to write the contents of buf.

On devices capable of seeldng, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.

On nonseeking devices, writing Starts at the current position. The value of a file
pointer associated with such a device is undefined

If the 0_ APPEND file-status flag that is set in open is on, the file pointer is set to the
end of me before each write operation.

The me pointer remains unchanged, and write fails if fildes is not a valid me
descriptor open for writing. IEBADFJ

If you try to write more bytes than there is room for on the device, write writes as
many bytes as possible. For example, if nbyte is 512 and there is room for 20 bytes
more on the device, write writes 20 bytes and returns a value of 20. The next attempt
to write a nonzero number of bytes will rerum an error. IENOSPCJ

File descriptor I is standard output; file descriptor 2 is standard errOr.

Relum value Upon successful completion, this function returns the number of bytes actual1y
written. Olherwise, it returns -1 and sets errno to indicate the error.

See also creat, lseek, open

5-64 write

Chapter 6

Shell Calls

6-1

The Apple IIGS Progammer's Workshop Shell acts as an interface and extension to
ProDOS 16. The shell provides several functions not provided by ProDOS 16; these
functions are called exactly like ProDOS 16 functions. Every time a program running
under the APW Shell issues a ProDOS 16-like call, the shell intercepts the call. If the
call is a shell cali, the shell interprets it and acts on it; if it is a ProDOS 16 call, the shell
passes it on to ProDOS 16. This chapter describes all of the shell's ProDOS 16-like
calls, which are referred to here as shell calls.

The shell calls are summarized in Table 6-1. The calls are described in the same order.

Table 6-\
Shell coils

Name Number Description

GET LINFO (OxOl0l) Passes parameters from the shell to a program
SET_LINFO (Ox0102) Passes parameters from a program to the shell
GET_LANG (Ox0103) Reads the current language number
SET_LANG (Ox0104) Sets the current language number
ERROR (OxOlO5) Prints error message for a Apple IIGS tool call
SET_VAR (OxOl06) Sets the value of a shell variable
VERSION (OxOlO7) Rerums the version number of the APW Shell
READ INDEXED (Ox0108) Reads variable table
IN IT_WILDCARD (OxOl09) Provides a mename that includes a wildcard

character to the shell
NEXT WILDCARD (OxOl0A) Makes the shell find the next filename matching the

wildcard filename
GET VAR (OxOl0B) Reads the value of a shell variable
EXECUTE (OxOlOD) Sends a command or list of commands to the shell

command interpreter
DIRECTION (OxOl0F) Tells whether I/O redirection has occurred
REDIRECT (OxOllO) Sets device and file for I/O redirectiOn
STOP (OxO 11 3) Detects a request for an early termination of the

program
WRITE_CONSOLE (OxOllA) Sends output to the console

How to make a shell call
To make a shell call, you should do the foUowing:

o Include the statements

#'in clude
inc lude

<TYPES. H>
<SHELL.H>

in your source text. Your object me will be automatically linked with the library file
CLIB.

o Set values in the shell data struCtures and call the shell routines from your program,
following the information given next.

6-2 Chapter 6: Shell Colis

How 0 progrom mokes 0 shell coli
A C program makes a shell call by calling a function in the file SHElLC. Most of these
calls are simple C function calls: parameters are passed in the normal way.

Two of these, GET_LINFO and SET_LINFO, are called differently. Values and results
are passed via a parameter block. To get infonnation from the shell, your program
declares and initializes this parameter block, calls GET _ LINFO, and then reads results
from the block. To send information to the shell, your program writes values into the
block, then calls SET _ LINFO to send the information. These calls are explained in
detail in the section "GET_UNFO and SET_UNFO: that follow.

With the exception of EXECUTE, all calls expect Pascal-style strings.

Coli descriptions
This section lists each shell call, describes its use, and describes the contents of its
parameter block. The possible errors returned by a call are listed at the end of each
call description. The calls are listed in order of their call numbers.

GET_LINFO (Ox010l) and SET_LINFO (Ox0102)

vo id GET_LINFO(pbl
GetLlnfoPB "'pb;

void SET_LINFO(pb)
GetLl nfoPB "pb;

The GET_LINFO function is used by an assembler, compiler, linker, or editor to read
the parameters that are passed to it. When you make this call, you declare the
parameter block GetLlnfoPB; when the APW Shell returns control to your program,
you can then read the parameter block to obtain the information you need.

Use the GET_LINFO call to read parameters passed to your assembler, compiler,
linker, or editor.

The SET _ LINFO function is used by an assembler, compiler, linker, or editor to pass
parameters to the APW Shell before returning control to the shell. It can also be used
by a shell program under which you are running APW to pass parameters to the APW
Shell.

Use the SET _LINFO call when your program is finished before returning control to the
shell.

Call descriptions 6-3

Both of these calls use the following parameter block:

GetLIntoPB j'" get/set Line Info parameter block ttl

typedef struct {

char ·stile; 1* address of souree ti l e name
char *dfile; 1* address of output f ile name
char ·parms; 1* address of parameter list *1
char *ist ring; 1* address of l anguage-specific

char merr; 1* maximum error l evel allowed
char merrt; I*"maximum error level found *1
char lops; 1* operations flag *1
char kflag; 1* KEEP flag *1
unsigned long mflags; 1* set of letters selected wi t h

uns igned long pflaqs; 1* set of letters select ed with

*1
"I

input str i ng *1
*1

'-' *1

'+' *1
unsigned long crq; 1* abs start address of non-reloe load file *1

GetLlnfoPB:

To call GET_LINFO, first declare the parameter block GetLlnfoPB. The GET_LINFO
call passes to the shell the pointer, pb, to your parameter block. The shell then writes
its results into your parameter block: you can read them from there.

To call SET_LINFO, first declare the parameter block GetLlnfoPB, then write your
values into that block. The SET_LINFO call passes to the shell the pointer, pb, to your
parameter block. The shell then reads your values from the parameter block.

The sf ile (source file) field is the address of a buffer containing the filename of the
source file; that is, the next me that a compiler or assembler is to process. The
fllename can be any valid ProDOS 16 filename, and can be a partial or full pathname.

The df ile (destination file) field is the address of a buffer containing the filename of
the output file (if any); that is, the file that the compiler or assembler writes to. The
fUename can be any valid ProDOS 16 filename, and can be a partial or full pathname.

The parms field is the address of a buffer containing the list of names from the
NlIMES= parameter list in the APW Shell command that called the assembler or
compiler. The compiler can remove or modify these names as it processes them, so
this list can be different from the one received through the GET_LINFO call ..

The istring field is a placeholder for the address of a buffer containing the string of
commands passed to the compiler. This command string is not reused by the shell, so
it is not necessary to pass it back to the shell with the SET _ LINFO call

The merr field is the maximum error level allowed If the maximum error level found
by the assembler, compiler, or linker is greater than merr, then the shell does not call
the next program in the processing sequence. For example, if you use the ASML
command [0 assemble and link a program, but the assembler finds an error level of 8
when merr equals 2, then the linker is not called when the assembly is complete.

The merrf field is the maximum error level found. [f merrf is greater than merr,
then no further processing is done by the shell. If the high bit of merrf is set, then
me rrf is considered to be negative; a negative value of me rrf indicates a fatal error
(normally, all fatal errors are nagged by setting merrf= to OxFF). In this case,
processing terminates immediately and the shell passes control to the APW Editor.

6·4 Chopter 6: Shell Calls

The lops field comprises the operation flags. This field keeps track of the operations
that have been performed, and remain to be performed, by the system. The format of
this byte is as follows,

Bit,

Volue:

7 6 5 4

0 0 0 0

C a Compile
E = ExeOJte
L = link

3 2 1 0

0 E L C

When a bit is set (1), the indicated operation is to be done. When a compiler finishes
its operation and returns control to the shell, it dears bit 0 unless a fIle with another
language is appended to the source. When a linker returns control [0 the shell, it clears
bit 1. When you exeOJte the APW Linker by compiling a linkEd me, the linker clears
bits 0 and 1.

The kflag field is the keep flag. This flag indicates what should be done with the
output of a compiler, assembler, or linker, as follows,

Kflag Meaning
value

OxOO

Ox01

Do not save output

Save to an object me with the root filename pointed to by dfile. For
example, if the output me name pointed to by dfile is FROG, then the first
segment to be exeOJted should be put in FROG or FROG. ROOT, and the
remaining segments should be put in FROG.A. For linkers, save to a load file
with the name pointed to by dfile (for example, FROG). A compiler or
assembler will never set kflag to Ox01, but a shell program calling APW
might use this value.

Ox02 The . ROOT file has already been created. In this case, the first file created
by the next compiler or assembler should end in the . A extension.

OX03 At least one alphabetic SUffLX has been used. In this case, the compiler or
assembler must search the directory for the highest alphabetic SUffLX that
has been used, and then use the next one. For example, if PROG. ROOT,
PROG. A, and PROG. B already exist, the compiler should put its output in
FROG.C.

When the compiler or assembler passes control back to the shell, it should reset
kf 1 ag to indicate which object files it has written; for example, if it found only one
segment and created a . ROOT file but no . A file, then kflag should be Ox02 in the
SET _ LINFO call. See ·Compilers and Assemblers" in Chapter 6 of the APW Reference
for more information on object-file naming conventions.

The mflags (minus flags) field passes the flags with a minus sign. This field passes
command-line-option flags, such as -L or -c. The first 26 bits of these 4 bytes
represent the letters A-Z, arranged with A as the most significant bit of the most
significant byte; the bytes are ordered least significant byte first. The bit map is as
follows,

110 0 00 0 0 1 11 1 111 1 1 11 11 :11 11111 111

YZ QRSTU VWX IJKLMNOP ABCDEFGH

Call descriptions 6-5

For each flag set with a minus sign in the command, the corresponding bit in this field
is set to 1. See the discussions of the ALINK and ASML commands in Chapter 3 of the
APW Reference for descriptions of these option flags.

1he pflage (plus flags) field passes the flags with a plus sign. This field passes
command-line-option flags such as + L or +C. The first 26 bits of these 4 bytes
represent the letters A-Z; the bit map for this field is the same as for the mflage field.
See the discussions of the ALINK and ASML commands in Chapter 3 of the APW
Reference for descriptions of these option flags.

The org field specifies the absolute start address of a nonrelocatable load file, if one
has been specified. This field is only useful in assembly language, and is used only by
the linker. C does not use this field.

Posslbl e errors

None

GET_LANG (OxOl03)
unsigned int GET_LANC()

This function reads the current language number. The current language number is set
either by the APW Editor when it opens an existing file, or by the user with an APW
Shell command. Language numbers are described in "Command Types and the
Command Table" in Chapter 3 of the APW Reference, and are listed in Appendix B of
the APW Reference.

Possible errors

None

SET_LANG (OxOl04)
void S£T_LANG(lang)

unsigned int lang;

This function sets the current language number. Language numbers are described in
"Command Types and the Command Table" in Chapter 3 and are listed in Appendix
B of the APW Reference.

The lang parameter is the APW language number to which the current APW language
should be set. If the language specified is not installed (that is, not listed in the
command table), then the "Language not available" error is re[Urned.

Possible errors

Ox80 Language not available

6-6 Chapter 6: Shell Colis

ERROR (OxOl05)
void ERRQR(errnum)

int errnum;

When a Apple IIGS tool call rerurns an error, your program can use this function to
print out the name of the tool and the appropriate error message. This function makes
it unnecessary for your program to store a complete table of error messages for tool
calls. The error number is rerumed in _toolErr.

Possible errors

None

void SET_VAR(varname. value)
char ·varname, ·value;

This function sets the value of a variable. If the variable has not been previously
defined, this function defines it. Variables are described in "Exec Files" in Chapter 3
of the APW ReJerrmce. Use the GET _ VAR call to read the current value of a variable
and the READ INDEXED call to read a variable table.

The varname parameter is a pointer to a buffer in which you place the name of the
variable whose value you wish to change. The name is an ASCII string.

The value patameter is a pointer to a buffer in which you place the value to which the
variable is to be set. The value is an ASCII string.

Possible errors

Errors for Memory Manager calls are described in the Apple IIGS Toolbox
ReJerence.

VERSION (OxO 1 07)
unsigned long VERSIQN();

This function rerurrlS the version of the APW Shell that you are using.

The VERS ION parameter is a 4-byte ASCII string specifying the version number of the
APW Shell that you are using. The initial release rerurns 10 followed by two space
characters (Ox3130 Ox2020) to indicate version number 1.0.

Possible errors

None

Call descriptions 6-7

READ_INDEXED (Ox0108)

void READ_INDEXEO {varname, value. index)
char *varname. ·value;
int index;

You can use this function to read the contents of the variable table for the command
level at which the call is made. To read the entire contents of the variable table, you
must repeat this call, incrementing the index number by I each time, until the entire
contents have been returned.

The varname parameter is a pointer to a 256-byte buffer in which the shell places the
name of the next variable in the variable table. The variable name consists of a length
byte and a string of ASCII characters. A null string is returned when the index number
exceeds the number of variables in the variable table.

The value parameter is a pointer to a 256-byte buffer into which the shell places the
value of the variable. The value consists of a length byte and a string of ASCII
characters. The value consists of a null string (that is, the length byte is OxOO) for an
undefined variable.

The index parameter is an index number that you provide. Start with OxOI and
increment the number by I with each successive READ_INDEXED call until there are no
more values in the variable table.

Possible errors

Errors for Memory Manager calis are described in the Apple IIGS Toolbox
Reference.

INIT_WILDCARD (Ox0109)

void I N I T_WI LDCARD (file, flags)
c i". a l' ." file;
in c [lags

This function provides to the APW Shell a filename that can include a wildcard
character. The shell can then search for filenames matching the filename you
specified when it receives a NEXT_WILDCARD command. This function accepts any
filename, whether it includes a wildcard or not, and expands device names (such as
. D 1 f), prefIX numbers, and the double-period (..) before the filename is passed on
to ProDOS 16. Therefore, you should call this function every time you want to search
for a filename. Doing so will ensure that your routine supports all of the conventions
for partial pathnames that the user expects from APW.

The file parameter is the address of a buffer containing a pathname or partial
pathname that can include a wildcard character. Examples of such pathnames are as
follows:

A­
IAPW / M~PROGS/? ROOT

.D2 / HELLO

Important

The f i 1 e parameter must be stored as a Pascal-style string: a length byte
followed by the characters of the string.

6·8 Chapter 6: Shell Calls

·.~"'

When you execule a NEXT_WILDCARD call, the shell fmds the next filename that
matches the filename pointed to by file. If the wildcard character you specified was a
question mark (7), then the filename is written to standard output and you are
prompted for conflCIllation before the file is acted on or the next filename is found
The use of wildcard characters is described in "Using Wildcard Characters" in Chapter
2 of the APW Reference.

The f lags parameter contains the prompting flags. If the most significant bit is set,
prompting is not allowed; that is a question mark (7) is trealed as if it were an equal
sign (-). If the next-most significant bit is set and prompting is being used, only the
first choice accepted by the user (that is, the first choice for which the user types Y in
response to the prompt) is aCled on. The second flag is for use with commands that
can act on only one file, such as RENAME or EDIT.

Possible errors

Errors for ProDOS 16 and Memory Manager calls are described in the Apple nGS
ProDOS 16 Reference and the Apple IIGS Toolbox Reference. Use the ERROR
function to get the error message.

NEXT_WILDCARD (OxOl0A)

char -NEXT_WILDCARD (nextfileJ
char "next.file;

Once a fllename that includes a wildcard has been suppled to the shell with an
INIT_WILDCARD call, the NEXT_WILDCARD call causes the shell to find the next
filename that matches the wildcard filename. For example, if the wildcard filename
specified in INIT_WILDCARD were /APW/UTILITIES / XREF. 7, then the first
filename returned by the shell in response to a NEXT _WILDCARD call might be
/ APW / UTILITIES / XREF.ASM65816.

The next file parameler returns the address of the buffer to which the shell will
return the next filename that matches a wildcard filename. The wildcard filename is
the last one specified with an INIT_WILDCARD call. If there are no more matching
filenames, or if INIT_WILDCARD has not been called, then the shell returns a null
string (that is, a string with length zero). (See also the description of
INIT_WILDCARD.)

Possible Errors None

void GET_VAR(varname, Value)

char wvarname, *value;

This [unction reads the string associaled with a variable (that is, the value of the
variable). The value returned is the one valid for the currently executing Exec file: or
for the interactive command interpreter. Variables and Exec files are described in
"Exec Files' in Chapter 3 of the APW Reference. Use the SET VAA call to set the value
clava~~. -

Call descriptions 6-9

The varname parameter is a pointer to a buffer that contains the name of the variable
whose value you wish to read The variable name consists of a length byte and a string
of up to 255 ASCII characters.

The va~ue parameter is a pointer to a 256-byte butTer into which the shell places the
value of the variable. The value consists of a length byte and a string of ASCII
characters. The value consists of a null string (that is, the length byte is OXOO) for an
undefined variable.

Possible errors

None

EXECU"rE (OxOl0D)

void EXECUTE(flag, comm)
int flag;
char "'camm;

This function sends a command or list of commands to the APW Shell.

The f ~ag parameter is used to execute an Exec file with an EXECUTE command; if no
new variable table is defined, then variables defmed by the list of commands modify
the current variable table. If you set the most significant bit of this flag to I (binary),
then a new variable table is not defined when the commands are executed. If this flag is
set to OxOOOO, a new variable table is defined for the list of commands being executed;
the current variable table is not modified. Exec files, variables, and the EXECUTE
command are described in "Exec Files" in Chapter 3 of the APW Reference.

The comm parameter is the address of the buffer in which you place the commands. If
you include mOre than one command, separate the commands with semicolons (;) or
carriage return characters (OxOD), the last command should end with a carriage
return. The command string is a C string: it has no length byte and is terminated with a
null character (OXOO). Any output is sent to standard output.

If the shell variable {Exit J is not null and any command returns a nonzero error
code, then any remaining commands are ignored Error codes and shell variables are
described in "Exec Files" in Chapter 3 of the APW Reference.

Possible errors

Any error returned from the last command or program executed by the list of
commands executed.

6-10 Chapter 6: Shell Calls

DIRECTION (Ox010F)
VOid DIRECTION(devicQ, direct)

lnt device, '*direct;

A program can use this function to find out whether command-line 1/0 redirection
has occurred. This function can be used by a program to determine whether to send
fonn feeds to standard output, for example.

The device parameter indicates which type of input or output you are inquiring
about, as follows:

OXOOOO
OxOOOl
OXOOO2

Standard input
Standard output
Error output

The direct parameter indicates the type of redirection that has occurred, as follows:

OXOOOO
OxOOOI
OXO002

Console
Printer
Disk file

Possible errors

Ox53 Parameter out of range

REDIRECT (OxOll 0)
void RED I RECT(device, app, file)

int device. app:
char *file:

This function instructs the shell to redirect input or output to the printer, console, or a
disk file.

The device parameter indicates which type of input or output you wish to redirect, as
follows:

OXOOOO
OxOOOI
OXOOO2

Standard input
Standard output
Error output

The app nag indicates whether redirected output should be appended to an existing
file with the same fIlename, or the existing fIle should be deleted first. If append is 0,
the me is deleted, if it is any other value, the output is appended to the file.

The file parameter is the address of a 65-byte-Iong buffer containing the filename of
the file to or from which output is to be redirected. The filename can be any valid
ProDOS 16 filename, a partial or full pathname, or the device names . PRINTER or
. CONSOLE. The filename must be a Pascal string: that is, a length byte followed by the
characters of the string.

Possible errors

Ox53 Parameter out of range

Errors for ProDOS 16 calls are described in the Apple IIGS ProDOS 16 Reference and
the Apple lIGS Toolbox Reference.

Call descriptions 6-1 1

STOP (OxOl13)
int STOP () ;

This function lets your application detect a request for an early termination of the
program. The STOP flag is set when the keyboard buffer is read after the user pre.s=
Apple-period.

The STOP flag is set (OxOOOl) by the shell when it fmds an Apple-period in the
keyboard buffer. When a APW utility reads from the keyboard as standard input, the
shell reads the keyboard buffer and passes the keys on to the utility. When standard
input is not from the keyboard, the shell still checks the keyboard buffer for Apple­
period whenever a STOP call is executed. The flag is cleared (OXOOOO) when the STOP
call is executed, when the utility program is terminated, or if no Apple-period is
found.

Possible errors

None

WRITE_CONSOLE (OxOllA)
void WRITE_CONSOLE (ochar)

int oc:har;

This function writes a character to the· Pascal console driver. The resulting output is not
redirectable, so you can use this function to echo keyboard input and to send messages
that must appear on the screen.

The ocha r parameter is a 2-byte value specifying a character to write on the screen.
The low byte of the value is sent to the Pascal console driver.

Possible errors

None

6-12 Chapter 6: Shell Calls

Appendix A

Calling Conventions

MW C uses two different function-calling conventions: C calling conventions and
Pascal-compatible calling conventions.

C calling conventions
This section describes me normal C calling conventions. It explains how function
parameters are passed, how function results are returned, and how registers are saved
across function calls. This information is useful when writing calls between C and
assembly language.

Parameters
Parameters to C functions are evaluated from right to left and are pushed onto me stack
in me order mey are evaluated: mat is, they are pushed in reverse order. Characters,
integers, and enumeration types are passed as 16-bit values. Long integers (long) are
passed as 32·bit values; pointers and arrays are passed as 32·bit addresses. Types
float, double, camp, and extended are passed as extended SO-bit values.
Structures are also passed by value on me stack: meir size is rounded up to a multiple of
16 bits (2 bytes). If rounding occurs, the unused storage has me highest memory
address. The caller removes the parameters from me stack.

Function results
On me Apple IIGS, a function result is returned in registers: me low 16 bits are in me A
register, and me high 16 bits are in me x register. A SANE-type result (mat is, f loa t,
double, comp, and extended) or a srructure result is rerucned as a pointer to an
initialized static location; me pointer is in the A and X registers.

A-I

Register conventions
Only the srack pointer and the dara bank register are preserved across function calls;
no other registers are preserved. Tool calls have their own conventions for returning
error codes in the A register. (These conventions are explained in "The Inline
Declaration" in Chapter 4.)

Pescel-style ceiling conventions
This section describes the conventions used for calling functions that use Pascal-style
calling conventions: these functions are declared with the keyword pascal and may
have been written in any language. These conventions differ from the usual C calling
conventions defined in Chapter 4.

Parameters
Parameters to Pascal-<:ompatible functions are evaluated left to right: that is, in the
order of the formal parameter list. The function first pushes space for the result (as
shown in Table 3-2), and then pushes the parameters onto the stack in the order in
which they are evaluated. Characters, integers, and enumeration types are passed as
16-bit values. Long inlegers (long) are passed as 32-bit values; pointers and arrays are
passed as 32-bit addresses. SANE types and structures are passed on the stack. The size
of a struCture is rounded up to a multiple of 16 biLS (2 bytes). If rounding occurs, the
unused storage has the highest memory address. The function being called removes
the parameters from the srack.

Function results
On the Apple IIGS, as on the Macintosh, a result of a Pascal-compatible function is
returned on the stack. A SANE type or structure result is returned as a pointer to an
initialized static location; the pointer is in the A and X registers.

Register conventions
Only the stack pointer and the data bank register are preserved across function calls;
no other registers are preserved. Tool calls have their own conventions for returning
error codes in the A register.

A -2 Appendix A : Calling Conventions

Appendix B

Files Supplied with APW C

APW C is intended for use with the Apple Programmer's Workshop. The files listed
here are on the APW C release disk, which contains the C compiler, the Standard C
Library, and the Apple nGS Interface Library. These files may be used direaly from
the release disk or copied to a hard disk.

The files are listed indented under their respective directories, with comments.

APWC

LANGUAGES
CC

LIBRARIES
CLIB
START.ROOT
CINCLUDE

ADB.H
CONTROL . H
CTYPE.H
DESK . H
DIALOG.H
ERRNO.H
EVENT . H
FCNTL.H
FONT.H
INTMATH.H
IOCTL.H
LINEEDIT.H
LIST.H
LOADER.H
LOCATOR.H
MALLOC.H
MATH.H
MEMORY.H
MENU.H
MISCTOOL.H
NOTESEQ.H
NOTESYN.H

APW C files
Compilers and assemblers
APW C compiler
C libraries
Standard C Library
Initialization code
Standard C Library and Apple IIGS Toolbox include
files
Apple Desktop Bus Manager
Control Manager
Character classification routines
Desk Accessory Manager
Dialog Manager
Error numbers
Event Manager
File control
Font Manager
Fixed·Point Math
Device control
Line Editor
List Manager
System Loader
Tool locator
Memory allocation
Math functions
Memory Manager
Menu Manager
Miscellaneous Tools
Note Sequencer
Note Systhesizer

8·1

PRINT.H
PRODOS.H
QDAUX.H
QUICKDRAW.H
SANE.H
SCHEDULER.H
SCRAP . H
SETJMP.H
SHELL.H
SOUND . H
STDFILE.H
STDIO . H
STDLIB .H
STRING.H
STRINGS.H
TEXTTOOL.H
TYPES.H
VALUES.H
VARARGS.H
WINDOW.H

SYSTEM
LOGIN
SYSCMND

INSTALL2
INSTALLHD
SAMPLES

BONES
MAKE
BONES.CC
INIT.CC
DATA.ASM
STACKMIN.ASM
LINK. BONES

DA
IDLEHEADER. ASM

CIDLE.C
USERIDLE.C

DB.ASM
MAKE
LINK.NDA

UPSTR
SA.'1PLEC
SAMPLEA

Print Manager
ProDOS interface
QuickDrawauxiliary
QuickDraw II
SANE interface
Scheduler
Scrap Handler
Nonlocal transfer of control
~W shell interface
Sound Driver
Standard File Dialog Package
Standard 1/0 Package
Miscellaneous Standard C Library declarations
String-conversion routines
String functions
Text Tools
Common defines and types
SANE constants
Macros to handle variable number of arguments
Window Manager
C system mes
Log-in me
Command me
3.5-inch-disk install script
Hard-disk install me
Sample programs
Longer application
Build EXEC fIle
Implements most of BONES
Initializes tools
Data structures for windows and menus
Allocates stack for BONES
Advanced linker instructions
Desk accessory
NDA identification section with pointers to four
routines
Implements init, open, and close routines
Implements action routine: customize to create your
own
Implements SaveDB () and RestoreDB ()
Build EXEC fIle
Advanced linker instructions
Short application
Implements the main event loop
Implements the uppercase function

B-2 Appendix B: Files Supplied with APW C

Appendix C

Comparison with
Macintosh Programmer's
Workshop ·C

Apple IIGS Programmer's Workshop C is as closely related to Macintosh
Programmer's Workshop C as dilTerences between the two machines allow. The
dilTerences between the two languages are explained here.

Data types
The following data types are implemented dilTerently in APW and MPW C:

Data Typ .. 51 ... In bits

APW MPW
int 16 32
unsigned int 16 32
enum 16 8, 16, or 32

The fact that

si ZQof (int) ! == si zeof (char -)

creates many snares for the unwary. As a courresy, NULL is defined in stdio. h to
have the value OL.

Register variables
Register variables are not allocated in MW C due to the small number of registers
available on the 65816.

structured variables
Structures may be assigned, passed as parameters, and returned as function results in
both versions of C. Byte-sized elements in structures are not padded to word or long­
word boundaries. MW C allows equality comparison for structures; MPW C does not.

Col

Pascal-compatible function declarations
A function or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from either MPW C or APW C. For
example, the DrawText procedure is defined in Pascal as

PROCEDURE DrawText (cextBuf; Ptr:
firstByte, cyteCount: INTEGER):

The MPW C syntaX for such a declaration is

pascal void OrawText(textBuf, firstByte, cyteCount)
Ptr textBuf;
short tirstByte, cyteCount;
extern;

The APW C syntaX for this declaration is

extern pascal void OrawText();

To make the APW C form mOre readable, you can list the parameters in a comment:

extern pascal void DrawText():
1* Ptr textBuf;
short firstByte. oyteCount;
extern: ./

In addition, in MPW C, the word extern may be followed by a constan~ which is
interpreted as a l6-bit 68000 instruction that replaces the usual subroutine call (JSR)
instruction in the calling sequence. This process allows direct traps to the Macintosh
ROM, as shown here:

pascal void openPort(port)
GratPtr port;
ex'Cern OxA86F:

On the Apple IlGS, an inline declaration is used for declaring tool routines. Its
syntaX is

(extern] pascal [result-type] June-name () inline (m, n) ;

This declaration says that the tool routine with tool-call number n and Tool-Locator
entry point m can be called by the function name .June-name, and returns a result of
type result-type.

Preprocessor statements
A • alone as the first and only character of a line does not constitute a preprocessor
directive that APW C understands. MPW blissfully ignores these; APW C complains.

APW C does not recognize preprocessor directives of the form

*if def i ned (symbOIJ

C-2 Appendix C: Compartson with Macintosh Programmer's Workshop C

Dangling case in switch statements
If you have a dangling case in a switch statement, as in

switch (i) {case 1: / * N.B. no statement here, just closing brace * / •

the APW C Compilerwill complain about an "error in expression", because K and R
says that some kind of statement must follow the

case constant-e.x:pression:

In-line assembly-code declarations
An APW C program can contain in-line assembly code. Anywhere that a statement is
legal, you can insert a series of assembly-language statements with this format:

a sm { assembly-statements)

Anywhere that a function definition is legal, you can have a definition with this format:

a sm (external-name) (assembly-statemenlS)

This function can be called in the same way as a C function called external-name.
Here external-name is the entry point of the segment containing the assembly­
language code.

In-line assembly-code declarations C-3

Appendix D

Library Index

The Ubrary Index contains an index entry for each of the defines, types, enumeration
literals, global variables, and functions defined in the Standard C Library.

o Column 1 contains an alphabetical list of the index entries.

o Column 2 specifies the Iype of declaration (for example, "function") for the index
entry.

o Column 3 contains the library header under which documentation for the index
entry can be found. If column 3 contains (C) following the library header-for
example, abs(C}-Iook in Chapter S, 'The Standard C Ubrary," which is organized
alphabetically by library header. If column 3 contains Shell, look in Chapter 6,
Shell Calls.

D- l

Identifier

abs
acos
as!n
atan
atan2
ate!
atoi
atol
BUFSIZ
c2pstr
calloc
ceil
cfree
clearerr
close
cos
cosh
creat
DIRECTION
dup

EACCES
EBADF
EBUSY
ecvt
EEXIST
EFAULT
EINVAL
EIO
ENFILE
ENODEV
ENOENT

ENOMEM
ENOSPC

ENOTDIR
ENXIO
EOF
EROFS
ERROR
ESPIPE
ETXTBUSY
EXECUTE
exit
exp
fabs
faccess
fclose
fencl
fcvt
fdopen
feof
ferror
fflush
fgete
fgets
FILE
Eilene
FIOBUFS IZE
F!ODUPFD
FICGETEOF
FIOGETMARK
FIOINTERACTIVE
FIaLSEEK
E"IOREFNUM
FIOSETEOF

Type

function
function
function
function
function
function
function
function
define
function
function
fUnction
function
function
fUnction
function
function
function
function
function
define
define
define
function
define
define
define
define
define
define
define
define
define
define
define
cietine
ciefine
function
define
define
function
function
function
function
function
function
function
function
function
function
function
function
function
function
define
function
define
define
define
define
define
cefine
define
define

Manual
•• ction

abs (e)

trig(C)
triq(c)
trig- (C)
triq(C)
ato! (C)

atoi (C)

atoi(C)
setbuf(C)
strinq(C)
malloc(C)
floor (C)
malloc (C)

ferror (Cl
close (C)
trig-(C)
sinh (C)
creat(C)
Shell
dup(C)

Error(C)
Error(C)
Error eCl
ecvt (C)

Error (C)

Error ec)
Error (C)
Error(C)
Error(C)
Error (Cl
ErrarlC)
Error (C)
Error (C)

Error{C)
Error(C)
stdio eC)
Error(C)
Shell
Error (C)
Error (C)
Shell
exit (Cl
exp(C)
floor(C)
faccess (C)

fc lose(C)
fcnt l (C)
ecvt tC)
fopen(Cl
ferrar(C)
ferror (C)
fclose (C)

getc (Cl
gets(C)
stdio(C)
ferror (C)

ioctl (C)

iectl (C)

iacel{C)
iootl (C)

ioctl (C)

ioctl eCl
ioc~ l (e)
ioctl te)

D-2 Appendix D: Library Index

Identifier

FIOSETMARK
floor
fmod
fopan .
fpr int f
fputc
fputs
fread
free
freopen
frexp
fscanf
fseek
ftell
f rite
F_AUX
F_DELETE
F_DUPFD
F_OPEN
F_RENAME
FJ¥PE
getc
get char
getenv
GetLlnfoPB
gets
get
GET_LANG
GET_LINFO
GET_VAR
hypot
ioctl
isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
is10wer
isprint
ispunct
isspace
isupper
isxdiqit
Idexp
Imalloc
loq
10'1 1 0
10ngjmp
lseek
malloc
memccpy
memchr
memcmp
memcpy
memset
madf
NULL
onex it
ope n
O_APPEND
o BINARY
O_ CR.EAT
O_E:Xe!...

Type

detine
function
function
tUnction
fUnction
fUnction
function
fu nct ion
function
function
function
function
fUnct ion
function
function
define
define
define
define
define
define
function
function
function
type
function
function
function
function
function
function
function
function
f unction
function
function
function
function
funct i on
function
function
function
function
function
function
function
function
function
function
function
functi o n
function
function
function
f unctien
function
f u nction
define
tunction
fU nc,:ion
define
defi ne
de f ine
define

Manual
section

ioctl (C)

floor (C)

floor (C)
fopen(C)
printt(C)
putc (e)
puts (C)

fread (C)

m~1loc(C)

fopen (e)
trexp(C)
scanf (C)

fseek(C)
fseek (C)
tread (C)
faccess (C)

faccess (C)

fcntl (C)

faccess (C)

faccess (C)

faccess(C)
getc(C)
getc(CI
qetenv (C)
Shell
gets (Cl
getc(C)
Shell
Shell
Shell
hypot(C)
ioctl (C)
Ctype (e)
ctype (C)

ctype (Cl
ctype (C)

ctype (e)
ctype (C)

ctype eCI
ctype(C)
ctype(C)
ctype(C)
ctype (C)

ctype (Cl
frexp (C)
malloc(C)
exp(C)
exp (C)
se'tjmp (e l
lsee k (C)

mall oc (Cl
memory(c)
memor y (C)
mercory(C)
memory (e)
memory(C)
f rexp (Cl
stdio (C)
cnexit {C)
open (Cl
open (C)
open(c)
open Ie)
ope., (Cl

Idenlifier

o RDONLY
o RDWR
o TRUNe
O_WRONLY
p2cstr
pow
printf
putc
putchar
puts
put",
qsort
rand
read
READ INDEXED
realloc
REDIRECT
rewind
scanf
setbuf
setjrnp
setvbuf
SET_LANG
SET LINFO
SET_VAR
SIGALLSIGS
sin
sinh
sprintf
sqrt
srand
sscanf
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtok
strtol
tan
tanh
toascii
tolower
toupper
ungetc
unlink
VERSION
write
exit
rOFEF
IOLEF
IONBF
IOSYNC

_tolower
_toupper

Type

define
define
define
define
function
function
function
fUnction
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
define
function
function
function
function
function
function
function
function
function
function
function
function
funct ion
function
function
function
function
fUnction
function
function
function
function
function
function
function
function
function
function
function
function
define
define
define
defin
!unct on
funct on

Manual
section

open (C)
open (C)
open (C)
open (C)
string (e)

exp(C)
printf{C)
putc (Cl
putc(Cl
puts (e)

putc(Cl
qsort (e)

rand (C)

read (el
Shell
malloc (el
Shell
fseek(e)
scanf (e)

setbuf (Cl
setjmp(el
setbuf (Cl
Shell
Shell
Shell
signal (el
trig (el
sinh(C)
printf (el
exp(C)
rand (el
scanf (e)

string (el
string (el
string(el
string(e)
string (e)

string(C)
string (Cl
string(C)
string (el
string{C)
string (Cl
string (C)

string(el
strtol (Cl
trig (el
sinh(C)
conv(C)
conv(C)
cony (Cl
ungetc (el
unlink (e)

Shell
write(e}
exit (Cl
setbuf (Cl
setbuf (el
setbuf (Cl
stdic (el
ccnv(C)
conv(C)

Appendix D: Library Index D-3

' _-

Appendix E

ASCII Table

The ASCII table contains the equivalent ASCII values in decimal, octal, and
hexadecimal for all characters in the Apple extended character set. The table is
divided into columns of 32 characters each.

E-l

a.... Dec Oct Hex a.... Dec Oct Hex a.... Dec Oct Hex a.... Dec Oct Hex
nul a a a sp 32 40 20 @ 64 100 40 96 140 60
soh I I I ! 33 41 21 A 65 101 41 a 97 141 61
SIX 2 2 2 34 42 22 B 66 102 42 b 98 142 62
etx 3 3 3 ,. 35 43 23 C 67 103 43 e 99 143 63

eot 4 4 4 $ 36 44 24 D 68 104 44 d 100 144 64
eng 5 5 5 % 37 45 25 E 69 105 45 e 101 145 65
ack 6 6 6 & 38 46 26 F 70 106 46 f 102 146 66
bel 7 7 7 39 47 27 G 71 107 47 g 103 147 67

bs 8 10 8 (40 50 28 H 72 110 48 h 104 150 68
ht 9 II 9) 41 51 29 I 73 111 49 105 151 69
If 10 12 A 42 52 2A J 74 112 4A j 106 152 6A

vt II 13 B + 43 53 28 K 75 113 48 k 107 153 68

ff 12 14 C 44 54 2C L 76 114 4C 108 154 6c
cr 13 15 D 45 55 2D M 77 115 40 m 109 155 60
50 14 16 E 46 56 2E N 78 116 4E n 110 156 6E
5j 15 17 F / 47 57 2F 0 79 117 4F 0 III 157 6F

die 16 20 10 a 48 60 30 P 80 120 50 P 112 160 70
del 17 21 11 1 49 61 31 Q 81 121 51 q 113 161 71
de2 18 22 12 2 50 62 32 R 82 122 52 r 114 162 72
de3 19 23 13 3 51 63 33 S 83 123 53 s 115 163 73

de4 20 24 14 4 52 64 34 T 84 124 54 116 164 74
nak 21 25 15 5 53 65 35 u 85 125 55 u 117 165 75
syn 22 26 16 6 54 66 36 V 86 126 56 v 118 166 76
etb 23 27 17 7 55 6 7 37 W 87 127 57 w 11 9 167 77

can 24 30 18 8 56 70 38 X 88 130 58 x 120 170 78
em 25 31 19 9 57 71 39 Y 89 131 59 Y 121 171 79
sub 26 32 1A 58 72 3A Z 90 132 5A z 122 172 7A
esc 27 33 18 59 73 38 [9 1 133 5B [123 173 7B

fs 28 34 1C < 60 74 3C \ 92 134 5C I 124 174 7C
gs 29 35 1D 61 75 3D I 93 135 5D) 125 175 7D
rs 30 36 IE > 62 76 3E A 94 136 5E 126 176 7 E

us 31 37 IF ? 63 77 3F - 95 137 5F del 127 177 7F
a.... Dec Oct Hex aD' Dec Oct Hex a.... Dec Oct Hex a.... Dec Oct Hex

E·2 Appendix E: ASCII Table

a..r Dec Oct Hex a..r Dec Oct Hex a..r Dec Oct Hex = Dec Oct Hex
A 128 200 80 " 160 240 AO , 192 300 CO t 224 340 EO I

A 129 201 81 • 161 241 Al 193 301 C1 225 341 E1

f 130 202 82 ¢ 162 242 A2 194 302 C2 226 342 E2
131 203 83 £- 163 243 A3 ..J 195 303 C3 227 343 E3

N 132 204 84 § 164 244 A4 f 196 304 C4 %0 228 344 E4
b 133 205 85 • 165 245 A5 z 197 305 C5 A 229 345 E5
D 134 206 86 'f 166 246 A6 to 198 306 C6 E 230 346 E6
i 135 207 87 B 167 247 A7 199 307 C7 A 231 347 E7

a 136 210 88 <II 168 250 A8 200 310 C8 E 232 350 E8
i 137 211 89 C> 169 251 A9 201 311 C9 E 233 351 E9
~ 138 212 8A '" 170 252 AA 202 312 CA ! 234 352 EA
ii 139 213 8B 171 253 AB A 203 313 CB 235 353 EB

.I 140 214 8C 172 254 AC A 204 314 CC I 236 354 EC
<; 141 215 80 " 173 255 AD 6 205 315 CD I 237 355 ED
e 142 216 8E IE 174 256 AE a; 206 316 CE 6 238 356 EE
e 143 217 8F 0 175 257 AF a:: 207 317 CF 6 239 357 EF

e 144 220 90 176 260 BO 208 320 DO • 240 360 FO
e 145 221 91 ± 177 261 B1 209 321 01 b 241 361 F1

146 222 92 S 178 262 B2 210 322 02 0 242 362 F2
147 223 93 ~ 179 263 63 211 323 03 D 243 363 F3

148 224 94 ¥ 180 264 B4 212 324 D4 U 244 364 F4
"j 149 225 95 11 181 265 B5 213 325 D5 245 365 F5
Ii 150 226 96 a 182 266 B6 + 214 326 D6 246 366 F6
6 151 227 97 L 183 267 B7 0 215 327 07 247 367 F7

6 152 230 98 II 184 270 B8 Y 216 330 08 248 370 F8
.; 153 231 99 1t 185 271 B9 Y 217 331 D9 249 371 F9
6 154 232 9A I 186 272 BA / 218 332 DA 250 372 FA
6 155 233 96 187 273 BB a 219 333 DB 251 373 FB

(j 15 6 234 9C • 188 274 BC 220 334 DC 252 374 FC
0 157 235 9D (1 189 275 BD 221 335 DO

~ 253 375 FD
(j 158 236 9E '" 190 276 BE fi 222 336 DE 254 376 FE
0 159 237 9F 0 191 277 BF fl 223 337 OF . 255 377 FF = Dec Oct Hex = Dec Oct Hex a..r Dec Oct Hex = Dec Oct Hex

Appendix E: ASCII Table E·3

Appendix F

APW C Compiler Error
Messages

The AFW C Compiler can produce the following error messages:

Out of room (too many vars).
megal character.
megal preprocessor command.
Error in include command.
Include level cannot be > 6.
Error opening include file.
Error in define.
Too many defines.
Too few params in macro call.
Too many params in macro call.
Error in macro call.
Error in numerical constant.
Error in constant expression.
Error in struct or union def.
Error in declaration.
Error in parameter list.
Expeaed Ii' missing.
Expected ')' missing.
Expected ')' missing.
Expected 'J' missing.
Error in function definition.
Expected 'C' missing.
megal statement.
Expected 'while' missing.
Expected I:' missing.
Error in goto statement.
Error in expression.
Not a legal storage class.
Redefining a union tag as a struct.
Redefining a struct tag as a union.
Argument must be integer.
lllegal initialization.
Expected '{' missing.
Cannot initialize union.
Undefined Identifier: .
Array or pointer type expected before '[' .

. ~ Left side of assignment not an Ivalue.

F- 1

Array index must be integer type.
Argument for M' must be pointer.
Arg before ,.' must be union or struet lvalue.
rug before '->' must be pointer to struet or union.
Function type expeeted before '('.
Bit field longer than unsigned size.
Bit field for type other than unsigned
Constant expression must be integer.
Case not in switch statement.
Default not in switch statement.
More than one default for switch.
Illegal break.
Illegal continue.
Adding pointer to non-integer.
Subtracting pointer from non-pointer.
Subtracting pointers to things of different type.
Subtracting weird thing from a pointer.
Operand not a left value for operatoT.
Illegal union or struct usage.
Wrong number of initializers.
Address of register variable.
Can't define function here.
Synwc: error in assembly code.
Invalid opcode.
Invalid addressing mode.
Expected comma missing.
Label not defined: .
'else' without matching 'if.
expected string missing.
lIlegal operation size.
Undefined or improperly used field.
Structure or union canrt contain self.
Auto vars or constants only with this address mode.
Error in line command.
No defines allowed in in-line assembly.
Error in ""ndef.
Pointers do not point to same type objeCt.
Bad token.
Unexpected semicolon.
An ostrap must be of type function.
Multiply defined label: .
Too many local variables.
Canrt cast a non~lval into an array.
Declared argument .
String too long.
Syntax errOr in segment command.
Missing endif.
Missing close of cornmenl
Define recursively defined or too complex.
Error writing output file (Disk full?).
& before function or array name: ignored.
Bitfields not allowed in union.
Can't take the address of a bitfield.
Duplicate case in switch.
Can't pass a function as a parameter.
zero or negative subscript.
newline in suing Or char constant
void type nO! allowed in expression.

F-2 Appendix F: APW C Compiler Error Messages

-_. -

Glossary

• (asterisk): A 32-bit pointer data type.

absolute code: Program code that must be loaded
at a specific address in memory and never moved

absolute segment: A segment that can be loaded
only at one specific location in memory.
Compare with relocatable segment.

accumulator: The register in the 65C816
microprocessor of the Apple IIGS used for most
computations.

address: A number that specifIeS the location of a
single byte of memory. Addresses can be given as
decimal Or hexadecimal integers. The Apple IIGS
has addresses ranging from 0 to 16,m,215 (in
decimal) or from 500 00 00 to $FF FF FF (in
hexadecimal). A complete address consists of a 4-
bit bank number ($00 to SFF) followed by a 16-bit
address within that bank ($00 00 to $FF FF).

advanced linker: The APW [jnker running a file
of [jnkEd commands.

Apple key: A modifier key on the Apple IIGS
keyboard, marked with an Apple icon. It performs
the same functions as the OPen Apple key on
standard Apple II machines.

Apple II: A family of computers, including the
original Apple II , the Apple II Plus, the Apple lIe,
the Apple lIe, and the Apple IIGS.

AppleI Igs: A predefined constant identifying
C code written for the ApplellGS-in particular,
for APW C.

Apple IIGS Interlace Libraries: A set of
interlaces that enable you to access toolbox
routines from C.

Apple Des Toolbox: An extensive set o f routine s
that facilitate writing desktop applications and
provide easy program access to many Apple IIGS
hardware and firmware features .

APW: A predefined constant identifying C code
written for the APW C Compiler as opposed to
another C compiler.

APW Linker: The linker supplied with APW.

APW Shell: The programming environment of the
Apple IIGS Programmer's Workshop. It lets you
edit programs, manipulate files, and execute
programs.

application: A program (such as the APW Shell
itsell) that talks to ProOOS and the Toolbox
directly, and can be exited via the Quit call.

assembler: A program that produces object mes
from source files written in assembly language.

automatic variable: A dynamic local variable
that comes into existence when a function is called
and that disappears when it is exited.

bank: A 64K (65,536-byte) portion of the
Apple IIGS internal memory. An individual bank is
specified by the value of one of the 65C816
microprocessor's bank registers.

buffer: An area of memory allocated for reading
from or writing to a file .

catalog: See directory.

carriage return character (\ r): A control code
(ASCII 13) generated by the Return key; in AJ'W C,
equal to newline (\n).

char: An 8-bit character data type whose range is
o to 255; the same as unsigned char in
APWC.

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters-such as letters,
numbers, and punctuation-<:an be displayed on
the monitor screen and printed on a printer. !\lost
characters are represemcd in me computer as
I-byte values.

GL-l

code segment: An object segment that consists
mainly of code. Code segments are provided for
programs that differientiate between code and
data segments.

command: In the Standard C Library, a
parameter that tells a function which of several
actions to perform; in the APW Shell, a word that
reUs APW which utility to execute.

command interpreter: A program that
interprets and executes commands; specifically,
the APW shell.

eomp: A 64-bit SANE data type with signed
integral values and one NaN.

compiler: A program that produces object files
from SOurce mes written in a high-level language
such as C.

conditional compilation: Use of preprocessor
commands (Hf, #ifdef, Hfndef, #else,
iendif) to vary the output depending on
compile-time conditions.

C SANE Ubrary. A set of routines that provide
extended-precision mathematical functions.

current language: The APW language type that is
assigned to a me opened by the APW Editor. If an
existing me is opened, the current language
changes to match that of the me.

current prellx: The prefix that is used by the
APW Shell if a partial pathname is used.

data segment: An object segment that consists
primarily of data. Data segments are provided for
programs that differentiate between code and data
segments.

debugger: A shell utility that lets you step through
a program and examine memory as you go.

denonnallzed number: A nonzero number that
is too small for normalized representation.

desk accessory: A program that is accessed from
the Apple menu and shares its run-time
environment with an application, a utility, or
another desk accessory.

desktop user interface: The visual interface
between the computer and the user-the menu bar
and the gray (or solid-colored) area on the
screen. In many applications the user can have a
number of documents on the desktop at the same
time.

GL-2 Glossary

diagnostic output: A me used to report errors
and diagnostic information; generally merged
with standard output, but can be redirecred; in
APW C, synonymous with standard error.

directory: A me that contains a list of the names
and locations of other mes stored on a disk.
Directories are either volume directories or
subdirectories. A directory is sometimes called a
catalog.

direct page: A page (256 bytes) of bank SOO of
Apple IIGS memory, any part of which can be
addressed with a short (1 byte) address because its
high address byte is always sao and its middie
address byte is the value of the 6SC816 processor's
direct register. Coresident programs or routines
can have their own direct pages at different
locations. The direct page corresponds to the 6502
processor's zero page. The term direct page is
often used informally to refer to the lower portion
of the direct-page/stack space.

direct·page/stack space: A portion of bank SOO
of Apple lIGS memory reserved for a program's
direct page and stack. Initially, the 6SC816
processor's direct register contains the base
address of the space, and its stack register
contains the highest address. In use, the stack
grows downward from the top of the direct·
page/stack space, and the lower part of the space
contains direct-page data.

direct register: A hardware register in the 65C816
processor that specifies the start of the direct page.

dispose: To deallocate a memory block
permanently. The Memory Manager disposes of a
memory block by removing its master pointer.
Any handie to that pointer will then be invalid.
Compare with purge.

double: A 64-bit floating-point data type with
IEEE double precision.

dynamic segment: A segment that can be
loaded and unloaded during execution as needed.
Compare with static segment.

editor: A shell utility for editing source fUes.

anum: An enumerated data type of 8, 16, or 32
bits depending on the range of the enumerated
literals.

environment: In SANE, consists of rounding
direction, rounding precision, exception flags,
and halt settings; in APW, consists of exported
variables and other features of the Integrated
Environment.

event: A notification to an application of some
occurrence (such as an interrupt generated by a
keypress or mouse click) to which the application
may want to respond.

event-driven program: A kind of program that
responds to user inputs in real time by repeatedly
testing for evenlS_ An event-driven program does
nothing until it detects an event.

exception: A condition in the SAt'IE environment
mat can cause a program hall

Exec file: A file containing APW commands that
are executed as if typed on the keyboard.

exit function: A function that is registered with
onexi t for execution when the program
terminates.

.. ",tended: An SO-bit floating-point data type
with IEEE extended precision; used in C for all
intermediate results.

external reference: A reference to a symbol that
is defined in another segment. External references
must be to global symbols.

fatal error: An error serious enough that the
computer must halt execution.

field: A string of ASCn characters or a value that
has a specific meaning to some program. Fields
may be of fixed length, or may be separated from
other fields by field delimiters. For example, each
parameter in a segment header constitutes a field.

file-buffered: A buffer style in which characters
sent to an output I/O function are queued and
written as a block.

file descriptor: A file reference number returned
by a creat or open call.

filename: The string of characters that identifies a
particular file within a disk directory. ProDOS 16
filenames can be up to 15 characters long, and can
specify directory files, subdirectory files , text files,
source files, object files, load files, or any other
ProODS 16 file type. Compare with pathna.me.

file pointer: A pointer to the next byte to be read
Or written in a stream.

file type: An attribute in a ProDOS 16 file's
directory entry that characterizes the contents of
the file and indicates how the file may be used. On
disk, filetypeS are stored as numbers; in a
directory listing, they are often displayed as three­
character mnemonic codes.

FILE variable: A variable containing information
about a stream, including the me descriptor and
buffer size, location, and style.

float: A 32-bit floating-point data type with
IEEE single precision.

flush: Write out the contents of a buffer.

format character: A character mat defines the
interpretation of the input field in the scanf call.

full pathname: The complete name by which a
file is specified. A full pathname always begins
with a slash (j) because a volume directory name
always begins with a slash. See patbname.

function: In C, any subroutine, whether or nO[it
returns a value. Equivalent to the Pascal word
procedure; the Pascal word junction means a
subroutine that returns a value.

global label: A symbolic identifier in an object
segmen~ which the linker enters into the
relocation dictionaly and the loader replaces with
an absolute address.

global symbol: A label in a code segment that is
either the name of the segment Or an entry point to
it Global symbois may be referenced by other
segments. Compare with local symbol

handle: See memory handle.

header file: A me whose contents will be included
in the source file at compile time-it contains
function declarations, macros, types, and
#define directives used by the compiler. (Also
called an include file)

he .. "adecimal: The base-16 system of numbers,
using the ten digits 0 through 9 and the sL" leaers A
through F. Hexadecimal numbers can be
converted easily and directly to binary form,
because each hexadecimal digit corresponds to a
sequence of 4 I;>its. In C manuals hexadecimal
numbers are usually preceded by a 0 x.

hJgh-level language: A programming language
that is relatively easy for people to understand. A
single statement in a high-level language typica lly
corresponds to several instructions of machine
language. Compare low-level Ianguage_

Glossary GL-3

Image: A representation of the contents of
memory. A code image consists of machine­
language insuuctions or data that may be loaded
unchanged into memory.

Include file: A me whose contents will be included
with the source file at compile time-it contains
function declarations, macros, types, and
tdefine directives used by the compiler.

1nIlnity: A SANE representation of mathe-
matical 00.

into A 16-bit integer data type whose range is
-32,768 to 32,767.

Interface: The compile-time and run-time
linkage between your C program and toolbox
routines.

Jump Table: A table contructed in memory by
the System Loader from all Jump Table segments
encountered during a load. The Jump Table
contains all references to dynamic segments that
may be called during execution of the program.

K: 1024 bytes

language.command: A command that changes
the APW current language.

library dictionary segment: The first segment
of a library file; it contains a list of all the symbols
in the file together with their locations in the file.
The linker uses the library dictionary segment to
fll1d the segments it needs.

library file: A file produced by MAKEUll
program from object files, generally ones
containing functions useful to a number of
programs. It can be searched by the linker for
necessary functions, but more quickly than an
object file.

line-buffered: A buffer style in which each line
of output is queued for writing as soon as a newline
character is wriuen.

IlnkEd: A command language that can be used 10

control the APW Linker.

linker: A program that combines files generated
by compilers and assemblers, resolves all
symbolic references, and generates a file lhat can
be loaded into memory and executed.

load file: A file that can be loaded inlO memory,
one load segment at a time, by the System loader.

GL-4 Glossary

load segment: A part of a load file
corresponding (in C) 10 one or more functions.
Object segments are assigned to load segments
at compile time by means of the overlay
command or at link-time by linkEd commands.

local symbol: A label defined only within an
individual segment. Other segments cannot access
the label. Compare with global sy~ol

long: A 32-bit integer data type whose range is
-2,147,483,648 to 2,147,483,647.

loop: A section of a program that is executed
repeatedly until a limit or condition is met, such as
an index variable's reaching a specified ending
value.

low-level language: A programming language,
such as assembly language, that is relatively close
to the form the computer's processor can execute
directiy. One statement in a low-level language
corresponds to a single machine-language
instruction. Compare high-level language.

main: The name of the function that is the entry
point for every C program.

main segment: The first segment in the initial
load file of a program. It is loaded first and never
removed from memory until the program
terminates.

Makel.1'b utility: A program that creates library
files from object files.

Mark: The current position in an open file. It is the
point in the file at which the next read or write
a pcration will occur.

memory block: See block.

memory handle: The identifying number of a
particular block of memory. A memory handle is a
pointer 10 a master pointer 10 the memory block.

memory image: A portion of a disk file or
segment that can be read direcdy into memory.

Memory Manager: A program in the Apple IlGS
Toolbox that manages memory use. The Memory
Manager keeps track of how much memory is
available, and allocates memory blocks to hold
program segments or data.

memory-resident: Cadj) (1) Stored permanently
in memory as firmware (ROM). (2) Held
continually in memory even while not in use. For
example, ProDOS is a memory-resident program.

Memory Segment Table: A linked list in
memory, created by the loader, that allows the
loader to keep track of the segments that have been
loaded into memory.

movable: A memory block attribute, indicating
that the Memory Manager is free to move the
block; opposite of fixed Only position·
Independent program segments may be in
movable memory blocks. A block is made
movable or fIXed through Memory Manager calls.

NaN: Not a Number; a SANE representation
produced when an operation cannot yield a
meaningful result.

native mode: The 16-bit operating state of the
65C816 processor.

newline character (\n): A control code that
advances print pOSition or cursor to the left
margin of next output line; in APW C, same as
carriage return (\r).

normallzed number: A floating-point number
that can be represented with a leading significand
bit of 1.

number class: In SANE, a floating-point number
can be characterized as either zero, normalized,
denormalized, infinity, or NaN.

numeric environment: In SANE, the rounding
direction, rounding preCiSion, halt enables, and
exception flags.

object segment: A part of an object file
corresponding (in C) to a single function.

object file: The output from an assembler or
compiler and the input to the linker. In APW, an
object file contains both machine-language
instructions and instructions for the linker.
Compare with load file.

object module format (OMF): The general
format used in object files, library files, and load
files .

object segment: A segment in an object file.

OMF: Object module formaL

OMF file: Any file in object module format.

page: (1) A portion of Apple IlGS memory that is
256 bytes long and that begins at an address that is
an even multiple of 256. A memory block whose
starting address is an even multiple of 256 is said to
be page aligned (2) An area of main memory
containing text or graphical information being
displayed on the screen.

parameter: A value passed to or from a
command, function, or other routine.

Pascal·style function: A function using Pascal­
style calling conventions that can be declared in C
using the pascal specifier.

partial assembly: A procedure whereby only
specific segments of a program are assembled. If
you have performed one full assembly followed by
one or more partial assemblies on a program, the
linker extracts only the latest version of each
object segment to be included in the load file.

partial compile: A procedure whereby only
specific segments of a program are compiled. If
you have performed one full assembly followed by
one or more partial compiles on a program, the
linker extracts only the \atest version of each
object segment to be included in the load file.

partial pathname: A patbname that includes
the filename of the desired file but excludes the
volume directory name (and possibly one or more
of the subdirectories in the path). It is the part of a
pathname foUowing a prefix-a prefIX and a
partial pathname together constitute a full
patbname. A partial pathname does not begin
with a slash because it has no volume directory
name.

patch: To replace one or more bytes in memory
or in a me with other values. The address to which
the program must jump 10 execute a subroutine is
paJched into memory at load-time when a file is
relocated.

pathname: The full name of a file, including its
volume name and directory names.

pointer: A memory address at which a particular
item of information is located. For example, the
6SC816 Stack register contains a pointer to the next
available location on the stack.

position.independent: Code that is written
specifically so that its execution is unaffected by its
pOSition in memory. It can be moved without
needing to be relocated.

Glossary GL-S

position-independent segment: A load
segment that is movable when loaded in memory.

prefix: A portion of a patbname starting with a
volume name and ending with a subdirectory
name. It is the palt of a full patbname that
precedes a partlaI patbname-a prefIX and a
partial pathname together constitute a full
pathname. A prefIX always starts with a slash (J)
because a volume directory name always starts with
a slash.

preprocessor: Palt of the C compiler that
provides file inclusion, macro substitution, and
conditional compilation.

preprocessor symbol: One of a set of constants
defined to be 1, equivalent to writing "tctefine
symbol 1" at the beginning of the source file.

ProDOS: A family of disk operating systems
developed for the Apple II family of computers.
ProDOS stands for ProfessiOnal Disk Operating
System, and includes both ProDOS 8 and ProDOS
16.

ProDOS 8: A disk operating system developed
for standard Apple II computers. It runs on 6S02-
series microprocessors. It alSo runs on the
Apple IIGS when the 6SC816 processor is in 6502
emulation mode.

ProDOS 16: A disk operating system
developed for 6SC816 native mode operation on
the Apple IlGS. It is functionally similar to
ProDOS 8 but more powerful.

purge: To deallocate a memory block
temporarily. The Memory Manager purges a block
by setting its master pointer to O. All handles to the
pointer are still valid, so the block can be
reconstructed quickly. Compare with dispose.

purgeabIe, A memory block attribute, indicating
that the Memory Manager may purge the block if it
needs additional memory space. Purgeable blocks
have different purge levels, or priorities for
purging; these levels are set by Memory Manager
calls.

RAM Disk: A portion of memory (RA.J\!) that
appears to the operating system to be a disk
volume. Files in a RAM disk can be accessed much
faster than the same files on a floppy disk or hard
disk.

GL-6 Glossary

register variable: An automatic variable
that is allocated to a register; not used by APW C
Compiler because the 65C816 has only a few
registers.

relocate: To modify a file or segment at load time
so that it will execute correctly at the location in
memory at which it is loaded. Relocation consists
of patching the proper values into address
operands. The loader relocates load segments
when it loads them into memory. See also
relocatable code_

relocatable code: Program code that indudes no
absolute addresses, and so can be relocated at
load time.

relocatable segment: A segment that can be
loaded at any location in memory. A relocatable
segment can be static, dynamic, or position
independent. A load segment contains a
relocation dictionary that is used to recalculate
the values of location-dependent addresses and
operands when the segment is loaded into
memory. Compare with absolute segment.

relocation dictionary: A portion of a load
segment that contains relocation information
necessary to modify the memory image
immediately preceding it. When the memory
image part of the segment is loaded into memory,
the relocation dictionary is processed by the
loader to calculate the values of location­
dependent addresses and operands. Relocation
dictionaries also contain the information
necessary to transfer control to external
references.

reference: The name of a segment or entry point
to a segment; same as symbolic referr.mce; to rerer
to a symbolic reference or to use one in an
expression or as an address.

resolve: To fmd the segment and offset in a
segment at which a symbolic reference is defined.
When the linker resolves a reference it creates an
entry in a relocation dictionary that allows the
loader to relocate the reference at load time.

roOt fllename: The filename of an object file
minus any filename extensions added by the
assembler or compiler. For example, a program
that consists of the object files MYPROG. ROOT,
MYPROG. A, and MYPROG. B has the root filename
MYPROG.

,

run-time library file: A load file containing
program segments-each of which can be used in
any number of programs--that the system loader
loads dynamically when they are needed.

scanset: A set of characters allowed in a file
scanned by the "canf call.

segment: A component of an OMF file,
consisting of a header and a body. In object files,
each segment incorporates one or more
subroutines. In load files, each segment
incorporates one or more object segments.

segment body: That part of a segment that
follows the segment header, and that contains
the program code, data, and relocation
information for the segment

segment header: The first part of a program
segment, containing such information as the
segment name and the length of the segment.

segment kind: See segment type.

segment number: A number corresponding to
the relative position of the segment in a file,
starting with 1.

segment type: A classification of a segment
based on its purpose, contents, and internal
structure, as defined in the object module format.
The segment type is spedfied by the KIND field in
the segment header.

shell: A program that provides an operating
environment for other programs, and that is not
removed from memory when the those programs
are running. For example, the APW Shell provides
a command processor interface between the user
and the other components of APW, and remains
in memory when APW utility programs are
running.

shell calI: A request from a program to the APW
Shell to perform a spedfic function.

shell application: A type of program, such as a
compiler or shell command, that runs under the
APW Shell; called a tool in MPW.

shell load file: A load file designed to be run
under a shell program; shell load files are ProDOS
16 file type SB5.

short: A 16-bil integer data type whose range is

-32,768 to 32,767.

signal: A software interrupt that causes a program
to be temporarily diverted from its normal
execution sequence.

65C816: The microprocessor used in the
Apple llGS.

source file: An ASCII file consisting of
instructions written in a particular language, such
as C or assembly language. An assembler or
compiler converts source files into object files.

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top of
the stack), causing them to be removed in last-in,
fust-out (LIFO) order. The term the stack usually
refers to the top portion of the direct-page/stack
space; the top of this stack is pointed to by the
6SC816's Stack register.

Standard C: A de facto standard based on the
most widely used implementation, the Berkleley
VAX Portable C Compiler.

Standard C Library: A collection of routines for
I/O, string manipulation, data conversion,
memory management, and Integrated
Environment support.

standard error: A file used to report errors and
diagnostic information; generally merged with
standard output, but can be redirected; in
APW C, synonymous with diagnostic output.

standard input: The standard input stream;
generally the keyboard, but can be redirected so
that input is taken from a me or device.

standard linker: The APW Linker called directly
by a shell command like LINK.

standard output: The standard output stream;
generally the screen but can be redirected so that
input is sent to a file Or device.

static segment: A segment that is loaded at
program boot-time, and is not unloaded or
moved during execution. Compare with dynamic
segment.

stream: A file with associated buffering.

String: An item of information consisting of a
sequence of text characters (a character string), or
a sequence of bits or bytes .

struct: A record data type.

subdirectory: A directory within a directory; a
file Cother than the volume directory) that
contains the names and locations of other files.
Every ProDOS 16 directory file is either a volume
directory or a subdirectory.

Glossary GL-7

symbol: A character or string of characters that
represents an address or numeric value; a
symbolic reference or a variable.

symbolic reference: A name or label that is used
to refer to a location in a program, such as the
name of a subroutine. When a program is linked,
all symbolic references are resolved; when the
program is loaded, actual memory addresses are
patched into the program to replace the symbolic
references.

symbol table: A table of symbolic references
created by the linker when it links a program. The
linker uses the symbol table to keep track of which
symbols have been resolved. At the conclusion of
a link, you can have the linker print out the symbol
table.

System Loader: The program that relocates load
segments and loads them into Apple [[GS
memory. The System Loader works closely with
ProDOS 16 and the Memory Manager.

system program: (1) A software component of a
computer system that supports application
programs by managing system resources such as
memory and VO devices. Also called system
software. (2) Under ProDOS g, a stand-alone and
potentially self-booting application. A ProDOS g
system program is of file type $FF; if it is self­
booting, its filename has the extension. SYSTEM.

token: The smallest unit of information processed
by a compiler or assembler. In C, for example, a
function name and a left bracket (0 are tokens.

tool: An Apple [[GS Toolbox routine.

toolbox: A collection of built-in routines on the
Apple llGS that programs can call to perform
many commonly needed functions. Functions
within the toolbox are grou ped into tool sets.

tool set: A related group of (usually firmware)
routines, available to applications and system
software, that perform necessary functions or
provide programming convenience. The Memory
Manager, the System Loader, and Quickdr.w II are
tool sets.

utility: In general, an application program that
performs a relatively simple function or set of
functions, such as copying or deleting files . An
APW utility is a program that runs under the APW
Shell, and that performs a function not handled by
the shell itself. MAKELIB is an example of a APW
utility.

GL-8 Glossary

unbu1fered: A buffer style that does not use a
buffer for VO; reading and writing is done one
character at a time.

unload: To remove a load segment from memory.
To unload a segment, the System Loader does not
actually 'unload" anything; it calls the Memory
Manager to either purge or dispose of the
memory block in which the code segment resides.
The loader then modifies the Memory Segment
Table to reflect the fact that the segment is no
longer in memory.

Wlordered: The result of a comparison with a
NaN; even identical NaNs compare unordered.

unsign"d. char: An 8-bit character data type
whose range is 0 to 255; the same as char in
APWC.

unsigned. int: A 16-bit integer data type
whose range is 0 to 65,535.

un"igned. long: A 32-bit integer data type
whose range is 0 to 4,294,967,295.

unSigned. short: A 16-bit integer data type
whose range is 0 to 65,535.

void: A data type used to declare a function that
does not return a value.

volume: An item that stores data; the source or
destination of information. A volume has a name
and a volume directory with the same name.
Volumes typically reside in devices; a device such
as a floppy-disk drive may contain one of any
number of volumes (disks).

volume directory: The main directory file of a
volume. It contains the names and locations of
other files on the volume, any of which may
themselves be directory files (called
subdirectories). The name of the volume
directory is the name of the volume. The
pathname of every file on the volume starts with
the volume directory name.

wildcard character: A character that maybe used
as shorthand to represent a sequence of characters
in a pathn.me. In APW, the equal sign (=) and the
question mark (?) can be used as wildcard
characters.

word: A group of bits that is treated as • unit For
the Apple IIGS, a word is 16 bits (2 bytes) long.

WD65816: A predefined symbol identifying C
code written to run on the Western Design Center
65SC816 as opposed to another microprocessor.

zero page: The fIrst page (256 bytes) of memory
in a standard Apple II computer (Or in the
Apple IIGS computer when running a standard
Apple II program). Because the high-order byte of
any address in this pan of memory is zero, only a
single byte is needed to specify a zero-page
address. Compare direct page.

Glossary GL·9

A
abs 5-5
absolute code 1-7
acos 5-61
advanced linker 1-3
ALINK 6-6
app 6-11
append 6-11
ltappend 4-23
appending files 2-16
AppleIIGs 4-6
Apple lIas, technical

manuals ix-xiii
Apple lIas Debugger 1-16
Apple lIas Programmer's

Workshop. See APW
Apple lIas Toolbox xi, 1-2, 1-17,

4-12
APW 4-6
APW Assembler 1-15, 1-16, 2-12,

2-17, 3-5, 4-9-12
APW C 1-3-4

assignment operators 4-22
bit fields 4-21
calling conventions A-I-2
dynamic segments 1-12-13
evaluauon order 4-21
files supplied B-I-2
imple mentations· 4-19-25
inStall ing 2-2-3
libraries 1-17
library files 1-13
MPW C compared C-I-3
numeric constants 4-3
parameters 4-16-18
Pascai-compatible function

declarations C-2
Pascal-style functions 4-12-16
program interactions 1-14- 16
program segmentation 1-8-12
register variables 4-5
relocatable load files 1-6-7
reserved symbols 4-6
running on 3-5-inch disks 2-3-4

Index

SANE extensions 4-6-9
string substitutions 4-21
structures 4-5
variable names 4-2-3
Writing desk accessories 3-8-10

APW C Compiler 1-16, 2-1-18,
4-19

compilation process 2-5
error me~8es 2-6, F-1-2
Iimilations 4-22
shell commands 2-6-17
suspending/aborting

compilation 2-6
var~ble aUocation 4·19

APW C disk, backing up 2-2
APW Editor 1-3, 1-15, 2-9, 2-10,

3-2, 3-5, 6-4, 6-6
APW Linker 1-3, 1-7, 1-16, 2-14,

3-3, 3-6, 6-5
APW Shell xii, 1-2, 1-15, 1-17,

5-15, 5-28 , 5-46
calls 6-1-12
command interpreter 2-.8

arg 5-17, 5-19, 5-31, 5-39, 5-40,
5-41

arqc 4-23
argv 4-23
array indexing 4-19-20
-a rrays 1-9-10, 1-12, 4-25
ASCll table E-I-3
asin 5-61
ASM65816 1-15-16
ASML 2-7, 6-4, 6-6
ASMLG 2-7
ASSEMBLE 2-10
assembly code, in-line 4-9-12
aSSignment operators 4-22
asterisk (.) 5-39, 5-47
acan 5-61
atan2 5-61
a tof 5-6
acoi 5-7
at.ai 5-60
at.a i 5-60
au" 0 4-10, 4-23

B
base 5-44, 5-60
blank 5-40
bu f 5-46, 5-64
butTer initialization 5-56
BUFSlZ 5-51, 5-56

c
CC 1-15 , 2-6, 2-9
C compiler xiii. See also APW C

Compiler
ceil Ix) 5-21
cf~ee 5-35
CHANGE 2-6, 2-9
circumflex (,) 5-49
classic desk accessories 3-8
clearerr 5-20, 5-55
CLlB 4-6, 4-8, 4-13, 6-2
close 5-8, 5-18
c:nd 5-17, 5-19
CMPL 2-7, 2-9, 3-3
CMPLG 1-16, 2-7, 2-9, 2-15
code 2-17
code-generation memory model

4-24-25
code segments. re10catable 1-6-7
comm 6-10
command interpreter 1-2

APW Shell 2-8
comp 4-7, 4-8, 4-9, 5-40, 5-41,

A-I
COMPACT 3-2, 3-7
CO::lp ar 5-44
COMPIL;: 2-5, 2-7, 2-10-13, 2-16,

3-2
Control Panel 3-8
co nv 5-9
cos 5-61
cosh 5-54
creat 5-10, 5-55, 5-64
CRO NCH 1-16
c2ps'Cr 5-59
ctype 5-11-12
current language 1- 15 . 3-3
current prefIx 2-3

IN-l

D
da", 2-17
data segments 1-9
data types

APW C 4-2-3
global and extended 4-16
MPWC C-I
parameter and result 4-15-16

decpt 5-14
Desk Manager 3-S, 3-9
Desktop Bus xii
desktop user interface xii
dest 5-36
des t Str 5-58, 5-59
device 6-11
dtile 6-4, 6-5
d irect 6-11
DI RECTI ON 6-2, 6-11
dou b le 4-7, 4-8, 4-9, 5-40, 5-41,

A-I
double period (..) 5-3S, 6-8
Dr awText 4-13
dup 5-13, 5-55, 5.Q4
dynam ic 1-13, 4-23
dynamic segments 1-12-13, 2-17

E
EACCES 5-3
EBADF 5-3
EBUSY 5-3
ecvt 5-14
EDIT 2~, 2-13 , 6-9
editor 1·2
EEXIST 5-4
Et'A.ULT 5-3
EI NVAL 5-4, 5-31, 5-32
ErO 5-3
elsize 5-35, 5-44
EMFILE 5-4
ENFILE 5-4
ENODEV 5-4
ENOENT 5-3
ENOMEM 5-3
ENOSPC 5-4
ENOTDIR 5-4
enum 4-4-5
enumeration types 4-4-5
env 5-5 3
environment 5-28
ENXIO 5-3
equal sign (-) 6·9
:;:ROFS 5-4
e<rno 5-3, 5-4. 5-31 , 5-32, 5-38,

5-46, 5-63, 5-64
ERROR 6-2, 6-7
error messages, APW C

Compiler 2-6, F-1-2
::TXTBSY 5-4
event-driven program xi

IN-2 Index

EXECUTE 6-2, 6-3, 6-10
exit 5-15, 5-37, 5-57
e xi t () 4-23
exp 5-16
exp (x) 5-16
extended 4-7, 4-8, 4-9. 5-40,

5-41, A-I

F
f abs (xl 5-21
facce!ls 5-17
tclose 5-57
tcntl 5-19, 5-55, 5.Q4
fcrt 5-14
tdopen 5-18, 5-23, 5-55, 5-56
teof 5-20, 5-27, 5-55
terror 5-20, 5-Z7, 5-55
tfluslt 5-IS
fgetc 5-27, 5-55
fqet s 5-29, 5-55
fildes 5-S, 5-13, 5-19,5-31,

5-33, 5-46, 5.Q4
file 6-8, 6-9, 6-11
FI LE 5-56, 5-57
__ FILE __ 4~

fil ename 5-22-23, 5-23, 5-38
fileno 5-20, 5-55
t.indChars 5-59
FIOBUFSIZ E 5-31, 5-32, 5-56
FIODUPFD 5-32
F IOGETeOF 5-31
F IOGETMARK 5-31
FIOINTERACTIVE 5-31, 5-32, 5-56
FIOLSEEK 5-32
FI OREFNUM 5-31, 5-32
FIOSETEOF 5-31
FIOSETMARK 5-31
flag 6-10
flags 6-9
float 4-7, 4-8, 4-9, 5-40, 5-41,

A-I
floor 5-21
f mod 5-21
to pen 5-22-23, 5-55, 5-56
format 5-39, 5-47
format characters 5-47-49
fpr int f 5-39, 5-41, 5-55
fp ut c 5-42, 5-55
fput s 5-43, 5-55
f read 5-2, 5-24, 5-46, 5-55
tree 5-34
f reopen 5-18, 5-23, 5·55, 5-56
frexp 5-25
Escanf 5-47, 5-50, 5-55
tseek 5-23, 5-26
full 5-26
fun c 5-37
function 1-8
fwrite 5-2, 5-24, 5-55

G
getc 5-27, 5-55, 5~2
getcltar 5-27, 5-55
qetenv 5-28
GET_ LANG 6-2, 6-6
GET_LINFO 6-2, 6-3--{i
GetLlnfoPB 6-3, 6-4
get s 5-29, 5-55
GET _ VAR 6-2, 6-7,6-9-10
get" 5-27, 5-55
global labels 2-5
-globals 1-9-10, 1-12, 4-25
global symbols 1-13

H
header file 1-6
Itypot 5-30

I, J
include file 1-6
include-file search rules 2-18
index 5-59,. 6-8
INIT_WILDCARD 6-2, 6-8-9
inline 4-13
I/O buffering 5-55-57
ioct l 5-31-32
isaln um 5·11
isalpha 5·11
is asc ii 5·11
iscnt r l 5-11
isdigit 5·11
i sgraph 5-11
i s lower 5-11
ispri nt 5-11
ispunct 5- 11
isspace 5-11
i st r i ng 6-4
is upper 5-11
isxdigi t 5-11

K
kfl aq 6-5

L
labels 4-11
lang 6-6
l dexp 5-25
left bracket (I) 5-48
library dictionary segment 1- 13
library fil es 1-4, 1-13, 2-17, 2-18

object files and 1-14
Library Index D-I-3
__ Ll~ E __ 4-6

LINK 2-5, 2-7, 2-10, 2-14- 15, 3-2,
3-6

Linked 1-9, 1-10, 2-10, 2-17, 6-5
LI NKED 1-16
linker 1-2, 1-3, 2-17

Li nkName 2-14
lmalloc 5-34
load files 1-4, 1-6

compact 3-7
creating 3-<i
reloatable 1-6-7

load segments 1-4
assigning 1-10
object segments and I-II

local symbol 1-13
log 5-16
loglO 5-16
LOGIN 2-4
long 5-<iO
longjmp 5-53
lops 6-5
lseek 5-33

M
MacGen 1-15
MAIN 2-5
main 4-23
MakeLib 1-13, 2-17
malloc 5-34-35
memccpy 5-36
memchr 5-36
memcmp 5-36
memory images 1-7
Memory Manager 1-5, 1-71 1-12,

1-16, 6-9
memory segment table 1-16
melllset 5-36
Iller r 6-4
merrf 6-4
metasymbols 4-10
mfl ags 6-5, 6-6
minus sign (-) 5-7
modf 5-25
,\1onitor xii
MJ'WC

N

APW C compared C-1-3
Pascal<ompatible function

declarations C-2

NaNs 4-6, 4-7, 4-8, 5-6, 5-16,
5-21, 5-48, 5-61

native mode 1-4
nbyte 5-64
ndigit 5-14
nelem 5-35, 5-44
new desk accessories 3·8-10
NewHandle 5-34
next f ile 6-9
NEXT _WILDCARD 6-2,6-8,6-9
:'li t ems 5-24
null character (10) 5-29, 5-39,

5-48, 5-59
numeric constants, ~.<\PW C 4-3
numeric environment 4-8

o
object code, compiling and

assembling 3-5
object flies 1-3, 1-4, l-<i

library flies and 1-\4
linking 3-<i

object module format 1-4
object segments 1-8-9

creating 1-9
load segments and 1-1\

ochar 6-12
offset 5-26, 5-33
of l ag 5-38
onexit 5-37
opcodes 4-10
open 5-38, 5-55, 5-<i4
org 6-6

p
parms 6-4
partial compilation 1-9
pas cal 4-12, 4-13, A-2
Pascal

APW C and 4-12-18
enumeration types 4-4

percent character Co) 5-39, 5-41,
5-47

period (.) 5-39
pflags 6-<i
plus sign (+) 5-7
pointer 5-47, 5-50
pow 5-16
printf 4-8,5-39-41,5-55
Print Manager 3-9
ProDOS 1-17
ProOGS 8 xiii
ProDOS 16 xiii, 1-2, 2-1\, 4-24,

6-4, 6-8, 6-9, 6-1\
programs

compiling and linking 2-7
event-driven xi
running 3-7

p2cstr 5·59
pute 5-41, 5-42, 5-55
p u tcnar 5-42, 5-55
puts 5-43, 5-55
pUtw 5-42, 5-55

Q
qFlag 4-24
qsort 5-44
question mark (?) 6-9
QUIT 4-24

R
rand 5-45
READ INDEXED 6-2, 6-7, 6-8
real loc 5-35
REDIREC T 6-2, 6-1\
regi ster 4-5
register variables. APW C 4-5
relocatable code segments 1-7
relocatable load files 1-6-7
relocation dictionaries 1-7
RENAME 6-9
reserved symbols 4-<i
rew ind 5-23, 5-26
right bracket (J) 5-49
rindex 5·59
RUN 2-7, 2-15-16

S
SANE xiii, 1-4

APW C and 4-6-9
scanf 5-47-50, 5-55
scanset 5-48-49
segment 1-13. 4-23
segment body I-II
segment header 1-11
segments 1-7. See also speCific

type
semicolon (;) 4-11, 6-10
setbuf 5-51-52, 5-56
set jmp 5-53
SET_LANG 6-2, 6-6
SET_LINFO 6-2, 6-3-6
SET_MARK 5-32
SET_VAR 6-2,6-7,6-9
setvbuf 5-51, 5-52, 5-55, 5-56
s file 6-4
shell 1-2
SHELL-C 6-3
shell calls 6-1-12
shell commands 2-6-17
si n 5-61
si nh 5-54
65816 compiler xiii
c65C816, byte ordering 4-19
si ze 5-51 , 5-52
s izeo f 5·24
sizeof 5-44
sk i pChars 5-59
sou rce 5-36
source code, writing and editing

3-3-4
source files 1-6

editing 2-<i
spanC hars 5-59
spri n tf 5-39,5-41
sqr t I xl 5-16
srancl 5-45
sreStr 5-58, 5-59
sscanf 5-47, 5-50
St andAlone 4-24

Index IN-3

Standard Apple Numeric
Environment. See SANE

Standard C Ubrary 1-17, 5-1~ ,
5-51, 5-59

error numbers 5-~
Standard I/O Package 5-15, 5-37,

5-55, 5-57
standard linker 1-3
START-ROOT 4-23
static 4-10
statk segments 1-13, 2-17
stderr 5-55, 5-56
s t din 5-27, 5-29, 5-47
sodio 5-55-57
StdIO-h 5-51 , 5-55, 5-57
s o dout 5-39, 5-55
STOP 6-2, 6-12
str 5-7
strc:at 5-58
s t rchr 5-59
sacmp 5-58, 5-59
strcpy 5-58, 5-59
strcspn 5-59
s tream 5-18, 5-23, 5-24, 5-39,

5-42, 5-43, 5-47, 5-62
strlen 5-59
scr nc at: 5-58
strncmp 5-58, 5-59
s t r n cpy 5-58, 5-59
strpbrk 5·59
strrchr 5-59
strspn 5-59
s t rto k 5-59
st rtal 5-60
switch C-3
symbolic reference 1-6
System Loader 1-3, 1-5 , 1-7, 1-12,

1-16

IN-4 Index

T
tan 5-61
tanh 5-54
tdl 5-33
toascii 5-9
tokenStr 5-59
tolower 5-9
_too l Err 4-13, 5-4, 6-7
Tool-Locator. C-2
toupper 5-9
trig 5-61
type 5-51

U
ungetc 5-62
unlin k 5-63
unsigned 4-23
uns i gned char 4-21
un signed l ong 4-21
unsigned short 4-21

V
val 5-53
value 5-14,6-7, 6-8
variable names, APW C 4-2-3
vamame 5-28, 6-7, 6-8, 6-10
VERSION 6-2, 6-7
v o i d 4-3, 4-19

w, X, Y, Z
we 65816 4-6
whence 5-33
white-space charaCters 5-47, 5-48
wildcard charaCters 6-8. 6-9
write 5-64
WRITE CONSOLE 6-2, 6-12

