
'"

APPLE
PROGRAMMER'S
ANO OEVELOPERS
ASSOCIATION

APPLE litiS
Pro,gram,me~ts ,

Workshop
Version 1.0
APDA# K2SAW1

Apple IIGS Programmer's Workshop
Reference

APDA Draft
July 27, 1987

Apple Technical Publications

This document does not include:

• final editorial corrections
• final art work
• an . index

Copyright © 1987 Apple Computer, Inc. All rights reserved.

• APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple's suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in part, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased may be sold, given, or lent to another person. Under the law, copying includes translating into
another language. .

© Apple Computer, Inc., 1987
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-IO 10 .

Apple, the Apple logo, and Macintosh are registered trademarks of Apple Computer, Inc.

Apple IIGS , Apple DeskTop Bus, and SANE are trademarks of Apple Computer, Inc.

Simultaneously published in the United States and Canada.

Apple lIes Programmer's Workshop Table o/Contents

Contents
"-

xi Preface
xi Roadmap to the Apple IIGS Technical Manual Suite
xiii How to Use This Book
xiv What This Manual Contains
xv What to Read When
xvi Visual Cues
xvii Other Materials You' ll Need
xvii Introductory Manuals
xvii The Technical Introduction
xvii The Programmer's Introduction
xvii Machine Reference Manuals
xvii The Hardware Reference Manual
XVll The Firmware Reference Manual
XVll The Toolbox Manuals
xix The Apple llGS Programming Language Manuals
xix The Operating System Manuals
xix All-Apple Manuals

Part I: Getting Started

1 Chapter 1. Ahout the Programmer's Workshop
2 Program Descriptions
2 Shell

~ 3 Editor
3 Assembler
3 CCompiler
3 Linker
4 Utility Programs
5 Apple llGS Debugger
5 ProDOS 16
5 System Loader
6 Memory Manager
6 Apple llGS Concepts
6 Source, Object, and Load Files
7 Symbolic References and Relocatable Code
7 Relocatable Load Files
8 The Three Steps to Program Development
9 Program Segmentation
13 Dynamic Segments
14 Library Files
15 Emulation and Native Modes

17 Chapter 2. How to Use the Shell and Editor
18 What You Need
18 Backing Up Your APW Disk
19 The Emergency Exit: Control-Reset
19 Installing APW on a Hard Disk
20 First-Time Installation
21 Making Your Hard Disk Self-Booting

~- -

APDADraft i 7127187

Table o/Contents Apple lIes Programmer's Workshop

21
21
22
23
24
24
25
25
27
27
28
29
29
30
31
31
33
33
34
36
37
38
39
41
41
42
42
42
47
47
50
50
51
52
53
54
55
56
56
57
58
58
59
60
61
61
62
63
63
64
64
65
67
70

Copying the Apple IIOS System Disk
Copying the System From the APW Disk

Updating APW
Adding Languages to APW
Booting Directly Into APW

Hard Disk
Floppy Disk

Running APW on Floppy Disks
Running APW on a Hard Disk
Shell Commands

Entering Commands
File Not Found and Other Errors
Suspending Execution and Cancelling Commands
Scrolling Through Commands
Entering Multiple Commands
Responding to Parameter Prompts
Pathnames

Using Partial Pathnames
Using Prefix Numbers
Using Device Names
Using Wildcard Characters

Using Help Files
Listing a Directory
The Editor

Calling the Editor
Language Types
Opening and Saving a File

Using the Editor
U sing a Printer

Default Printer Settings
Including Printer-Setup Commands in the LOGIN File

U sing Exec Files
Compiling (or Assembling) and Linking a Program

A Sample Assembly and Link
Specifying Names for Output Files

Specifying the Object Filename on a Shell Command Line
Specifying a Default Object Filename with the KeepName Variable
Specifying the Object Filename in the Source File
Specifying the Load Filename on a Sheil Command Line
Specifying a Default Load Filename With a Sheil Variable
Specifying the Load Filename in a linkEd File
Using the Object-File Root Filename for the Load Filename

Specifying the File Type of Your Load File
Shell Commands for Assembling. Compiling. and Linking

The ASSEMBLE and COMPILE Commands
Diagnostic Output: the L and S Options
Error Handling: the E. T, and W Options
Specifying Source Files
The KEEP Parameter
The NAMES Parameter
Language-Specific Parameters

Linking Your Program: the LINK and ALINK Commands
Compiling and Linking: ASML, ASMLG, CMPL. CMPLG, and RUN

Compacting Your Load File

APDADra/t ii 7127187

.- "

Apple IIGS Programmer's Workshop Table o/Contents

70 Launching Programs
71 Using the Apple llas Debugger
71 Using the Utilities
72 Summing It All Up: Developing and Running a Program
76 Advanced Features

Part II: Reference

79 Chapter 3. Shell
80 Standard Prefixes
82 Redirecting Input and Output
84 Pipelining Programs
85 Partial Assemblies or Compiles
90 Command Types and the Command Table
95 Command Descriptions
96 ALIAS
98 ALINK
100 ASM65816
100 ASML
107 ASMLG
107 ASSEMBLE
108 BREAK
108 CANON
110 CAT
110 CATALOG
111 CC
111 CHANGE

'---_ .. 111 CMPL
112 CMPLG
112 COMMANDS
112 COMMENT
112 COMPACT
113 COMPILE
114 CONTINUE
114 COpy
116 CREATE
116 CRUNCH
117 DEBUG
117 DELETE
118 DISABLE
118 DUMPOBJ
124 ECHO
124 EDIT
124 ELSE
124 ENABLE
125 END
125 EQUAL
126 EXEC
126 EXECUTE
127 EXIT
127 EXPORT
127 FILES

----~ 128 FILETYPE

APDADraft iii 7/27187

Table of Contents Apple I1GS Programmer's Workshop

129 FOR
129 HELP

",- -.

129 mSTORY
129 IF
130 INIT
130 INSTALL
131 LINK
132 LINKED
132 LOOP
133 MACGEN
134 MAKEBIN
134 MAKELm
137 MOVE
137 MU
138 PREFIX
138 PRODOS
139 QIDT
139 RENAME
139 RUN
139 SEARCH
140 SET
141 SHOW
141 TEXT
142 TYPE
142 UMU
143 UNALIAS
143 UNSET -~
143 VERSION
143 Exec Files
144 Passing Parameters Into Exec Files
145 Programming Exec Files
145 Variables
149 Logic Operators
149 Entering ComrnenlS
149 LOGIN Files
150 Exec File Command Descriptions
150 BREAK
151 COMMENT
151 CONTINUE
151 ECHO
152 EXECUTE
155 EXIT
155 EXPORT
156 FOR-END
157 IF-END
158 LOOP-END
158 SET
158 UNSET
159 Example

161 Chapter 4. Editor
161 Modes
162 Insert ~-'"

162 Escape

APDADra/t iv 7127187

Apple lieS Programmer's Workshop Table of Contents

163 Auto Indent
163 Select
164 Automatic Wrap
165 Command Descriptions
165 Beep the Speaker
165 Begin Macro Definitions
166 Beginning of Line
166 Bottom of Screen / Page Down
166 Change
166 Clear
166 Copy
167 Cursor Down
167 Cursor Left
167 Cursor Right
167 Cursor Up
167 Cut
168 Define Macros
168 Delete
168 Delete Character
168 Delete Character Left
168 Delete Line
168 Delete to EOL
169 Delete Word
169 End Macro Definition
169 End of Line
169 Enter Escape Mode
169 Execute Macro
170 Find
170 Help
170 Insert Line :
170 Insert Space
170 Paste
171 Quit
173 Quit Macro Definitions
173 Remove Blanks
173 Repeat Count
173 Return
173 Screen Moves
174 Scroll Down One Line
174 Scroll Down One Page
174 Scroll Up One Line
174 Scroll Up One Page
174 Search Down
175 Search Up
175 Search and Replace Down
177 Search and Replace Up
177 Set and Clear Tabs
177 Start of Line
177 Tab
178 Tab Left
178 Toggle Auto Indent Mode
178 Toggle Escape Mode
178 Toggle Insert Mode

'-- 178 Toggle Select Mode

APDADraft v 7127187

Table of Contents Apple IIGS Programmer's Workshop

179 Toggle Wrap Mode
179 Top of Screen / Page Up
179 Tum On Escape Mode
179 Undo Delete
180 Word Left
180 Word Right
180 Macros
184 Setting Editor Defaults

187 Chapter 5. Linker
188 Operation of the Linker
188 Object Files: Input to the Linker
188 Library Files
189 Partial Assemblies and Filename Conventions
190 Load Files: Output From the Linker
191 Diagnostic Output
192 Error Messages
192 Link Map and Source Listing
192 Symbol Table
193 Summary Table
193 Using the Standard Linker
194 Using the Advanced Linker
195 The Structure of a LinkEd File
195 LinkEd Command Descriptions
196 APPEND
196 COpy
197 FJECf
197 KEEP
197 KEEPTYPE
198 LIBRARY
200 LINK
200 LIST
201 LOADSELECf
202 OBJ
203 OBJEND
203 ORG
203 PRINTER
204 SEGMENT
206 SELECf
207 SOURCE
207 SYMBOL
207 Sample LinkEd Files

Part ill: Inside the Apple fiGS Programmer's Workshop

211 Chapter 6. Adding a Program to APW
211 Types of APW Programs
212 APW Utilities
213 Requirements
214 Conventions
216 Compilers and Assemblers
216 Source File Format
217 Identifying the Language Type ~ ..

217 Entry and Exit

APDADraft vi 7127187

Apple llGS Programmer's Workshop Table o/Contents

219 Command Precedence
220 Output FIles

-~ 221 Partial Compiles
223 Help Files
223 Interpreters

225 Chapter 7. File Formats
225 Text FIle Format
225 Text FIle Specifications
226 HT ($09): Horizontal Tab
226 LF ($OA): Line Feed
226 CR ($OD): Carriage Return
226 FF ($12): Fonn Feed
226 SP ($20): Space
226 High ASCIl ($80-$FF)
227 Other Characters
227 Examples
228 Object Module Format
229 General Fonnat for OMF Files
230 Segment Types and Attributes
232 Segment Header
238 Segment Body
249 Expressions
252 Example
253 Object Files
253 Library Files
255 Load Files
256 Memory Image and Relocation Dictionary

'- 256 Jump Table Segment
257 Unloaded State
257 Loaded State
257 Pathname se~ent
258 Initialization egment
259 Direct·Page/Stack Segments
260 Run-Time Library FIles
260 Shell Load Files

263 Chapter 8. Shell Calls
264 Making a Shell Call
264 The Call Block
265 Shell-Call Macros
265 The Parameter Block
265 Types of Parameters
266 Setting up a Parameter Block in Memory
266 Register Values
267 Call Descriptions
267 DIRECTION ($0 I OF)
269 ERROR ($0105)
270 EXECUTE ($OIOD)
272 GET_LANG ($0103)
273 GET_LINFO ($0101)
278 GET_VAR ($OIOB)
279 lNIT_WILDCARD ($0109)
281 NEXT_WILDCARD ($OIOA)

APDADraft vii 7127187

Table o/Contents Apple lIas Programmer's Workshop

282
284
286
287
293
294
295
296

READ_INDEXED ($0108)
REDIRECT ($0110)
SET_LANG ($0104)
SET_LINFO ($0102)
SET_VAR ($0106)
STOP ($0113)
VERSION ($0107)
WRITE_CONSOLE ($OllA)

Appendixes

297 Appendix A: Contents of the APW Disks
297 /APW Disk
298 /APWU Disk

299 Appendix B: Command Summary
300 Language Types
300 Shell
305 Exec Files
307 Editor
310 Defining Macros
311 Keystroke Summary
312 LinkEd

315 Appendix C: Error Messages
315 Shell Errors
315 File Not Found
316 Volume Not Found
316 Unable to Open File
316 Linker Errors
317 Nonfatal Errors
321 Fatal Errors

327 Glossary

List of Figures

Preface
xiii P-l. Roadmap to the Technical Manuals

Part I: Getting Started

Chapter 1. About the Programmer's Workshop
2 1.1. The Relationship of APW Programs to the Apple IIgsSystem
9 1.2. Creating an Executable Program on the Apple IIgs
10 1.3. Assigning Object Segments in Your Source Code .
11 1.4. Assigning Load Segments in Your Source Code
13 1.5. Relationship Between Object Segments and Load Segments
15 1.6. Relationship Between Object Files and Library Files

APDADraft viii 7127187

------.. ,

Apple IIcs Programmer's Workshop

Chapter 2. How to Use the Shell and Editor
39 2.1. Directory Example .
73 2.2. Program Interactions

Part II: Reference

Chapter 3. Shell
84 3.1. Pipelining Programs
88 3.2. An example of the Use of Partial Compiles .
92 3.3. Sample of a Command Table
120 3.4. Sample DumpOBJ Segment Header
121 3.5. DumpOBJ OMF-Format Segment Body
122 3.6. DumpOBJ Disassembly-Format Segment Body
123 3.7. DumpOBJ Hexadecimal-Format Segment Body
136 3.8. Creation of a Library File
153 3.9. Effect of the EXECUTE Command
154 3.10. Variable Definitions and EXECUTE commands

Chapter 4. Editor
182 4.1. Output of an Editor Macro
183 4.2. Macro Definitions

Chapter S. Linker
191 5.1. Sample Output of a LinkEd Command File

Part III: Inside the Apple IIGS Programmer's Workshop

Chapter 6. Adding a Program to APW

Chapter 7. File Formats
230 7.1. The Structure of an OMF File
233 7.2. The Format of a Version 2.0 Segment Header
234 7.3. The Format of a Version 1.0 Segment Header
254 7.4. The Format of a Library Dictionary Segment

Chapter 8. Shell Calls

Appendixes

Appendix A: Contents of the APW Disks

Appendix B: Command Summary

Appendix C: Error Messages

Glossary

APDADraft ix

Table of COnJents

; 7/27/87

Table o/Contents Apple IIGS Programmer's Workshop

List of Tables

Preface
xii P- L The Apple IIgs Technical Manuals

Part I: Getting Started

Chapter 1. About the Programmer's Workshop

Chapter 2. How to Use the Shell and Editor
28 2.1. Line-Editing Commands
40 2.2. Fields in a Directory .' .
42 2.3. Commonly Used APW Language Types
44 2.4. Basic Editor Commands
60 2.5. Load File Types

Part II: Reference

Chapter 3. Shell
80 3.1. Standard Prefixes
91 3.2. APW Language Types
93 3.3. APW Commands
128 3.4. ProDOS File Types

Chapter 4. Editor "
181 4.1. Conventions for Displaying Keystrokes in Editor Macros
182 4.2. Commands Used for Defmining Editor Macros

Chapter 5. Linker
198 5.1. File Types of ProD OS Load Files

Part III: Inside the Apple IIGS Programmer's Workshop

Chapter 6. Adding a Program to APW

Chapter 7. File Formats
238 7.1. Segment-Body Record Types

Chapter 8. Shell Calls
263 8.1. Summary of Shell Calls

Appendixes

Appendix A: Contents of the APW Disks

Appendix B: Command Summary

Appendix C: Error Messages

Glossary

APDADraft x 7127187

-.

Apple lies Programmer's Workshop Preface

Preface

The Apple® IIGS Programmer's Workshop (APW) is Apple Computer's development
environment for the Apple IIGS"" computer. APW is a set of programs that enable
developers to create application programs on the Apple IIGS. This manual includes
information about the APW Shell, Edittlr, Linker, and utility programs; these are the pans
of the workshop that all developers need, regardless of which programming language they
use. It also provides the information necessary to write an APW utility or a language
compiler or assembler for APW.

In addition to the APW programs described in this book, the Apple IIGS Programmer's
Workshop includes several programming languages, such as 658}6 assembly language and
APW C. Each compiler or assembler is described in a separate manual since each language
can be added to yOUT system independently.

This manual is intended for experienced programmers and developers; that is, it assumes
that you are familiar with either assembly language or a high-level programming language
such as C or Pascal. It assumes that you are familiar with the Apple IIGS computer and the
Apple IIGS operating system. See the following section, "Roadmap to the Apple IIGS
Technical Manual Suite," for a guide ttl other technical reference books on the Apple IlGS
computer.

This Preface is your guide ttl the use of this book and the Apple IIGS technical manual
suite. The contents of the Preface are as follows:

• A roadmap to the Apple IIGS technical manual suite. The roadmap includes a table
that shows the other books in the suite and a figure that shows their interrelationships.

• A guide to the use of this manual, including a brief summary of the contents of each
chapter and a suggested sequence in which to use the book.

• An explanation of the typographical conventions used in this book to delineate
different kinds of information or to direct your attention ttl important facts .

• A guide to the other books in the technical manual suite, including brief descriptions
of the other books in the suite and an indication of the circumstances under which
each book would be helpful to you.

Roadmap to the Apple IIGS Technical Manual Suite
The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple II. To describe it fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple IlGS, you may need
to refer only to a select few of these manuals, or you may need to refer to most of them.

The technical manuals are listed in Table P-l. Figure P-} is a diagram showing the
relationships among the different manuals. To help you decide which ofthese manuals you
will need to develop a particular program for the Apple IIGS, the contents of each of these
manuals is briefly described in the section "Other Materials You'll Need" in this preface.

APDADrafr xi 7127187

Preface

Table pol. The Apple nGS Technical Manuals

Title

Technical Introduction to the Apple llGS

Apple IIGS Hardware Reference

Apple IIGS Firmware Reference

Programmer's Introduction to theApple llGS

Apple JIGS Toolbox Reference: Volume 1

Apple IIGS Toolbox Reference: Volume 2

Apple IIGS Programmer's Workshop
Reference

Apple llGS Programmer's Workshop
Assembler Reference

Apple llGS Programmer's Workshop
C Reference

ProDOSB Technical Reference Manual

Apple llGs ProDOS 16 Reference

Human Interface Guidelines

Apple Numerics Manual

APDADraft xii

Apple llGS Programmer's Workshop

Subject

What the Apple IIGS is

Machine internals-hardware

Machine intemals-finnware

Concepts and a sample program

How the tools work and some ·
toolbox specifications

More ,toolbox specifications

This book: the development
environment

Using the APW assembler

Using C on the Apple IIGS

, Standard Apple n operating system

Apple IIGS operating system and
loader

Guidelines for the desktop interface

Numerics for all Apple computers

7/27/87

Apple lIes Programmer's Workshop

To sfort flnding out
about the Apple III' :;s..-+-----l Technical Introduction

.... -:11""'"..11 to the Apple IIGS

To learn how
the Apple IIGS works--I-------,

Programmer's Introduction to
To start learning
to program the Apple IIIGS+---i

_-t'P" .. the Apple IIGS

To use the Toodbox---I-..,
i-a:::vo~I;..' ~I ."

TO operate on tiles --+~~-------1

Preface

vol. 2

~~~L~~16 I 
Reference Manual 

To progrcm in C----ll-if------i 
Apple IIGS ProgltllTlrOOr's 
Workshop C Reference 

To program in 
assembly language 

AFW C Toolbox 
'--'-...... Quick Reference 

Apple IIGS Programmer's Worlahop 
Assembler Reference 

AF'W Assembler Toolbox 
Quick Reference 

Figure P·I. Roadmap to the Technical Manuals 

How to Use This Book 
This section describes the contents of the Apple lIes Programmer's Workshop Reference 
manual. Following a brief chapter-by-chapter description of this book's contents; the 
section "What to Read When" gives guidelines as to which sections you should read for a 
specific purpose. Finally, a section entitled "Visual Cues" describes the cues used in this 

APDADraft xiii 7127187 



Preface Apple lIGS Programmer's Workshop 

book to alert you to important material or to words that have special significance (for 
example, APW commands). 

What This Manual Contains 

This manual is divided into three parts: an introduction to APW containing three chapters; a 
four-chapter reference section describing APW programs and commands; and a three­
chapter reference section to the internal workings of APW for those who want to add a 
program to APW. In <addition, the book contains three appendixes, a glossary, and an 
index. Here is a brief description of each of these components: 

Part I, "Getting Started," gives you the minimum information you need to get started using 
the Apple IlGS Programmer's Workshop. 

Chapter I, "About the Apple HGS Programmer's Workshop," provides a general 
overview <of APW. It defmes concepts that are essential to an understanding 
of the APW environment and gives brief descriptions of the programs that 
comprise APW. 

Chapter 2, "How to Use the Shell and Editor," introduces you to the abilities of APW. 
This chapter briefly describes how you use APW to write, compile or 
assemble, link, and run a program. 

Part Il, "Reference," provides full descriptions of APW commands, the editor, the linker, 
and the utility programs that are supplied with the APW system. 

Chapter 3, "Shell," includes complete descriptions of every APW Shell command, 
along with descriptions of some APW features too advanced to be covered in 
Chapter 2. 

Chapter 4, "Editor," includes complete descriptions of every APW Editor feature and 
command. 

Chapter 5, "Linker," is a complete reference to the APW Linker. This chapter 
includes descriptions of every linker feature and function. 

Part Ill, "Inside the Apple IlGS Programmer's Workshop," contains reference material of 
use to those programmers who wish to add a utility program or language compiler, 
assembler, or interpreter to APW. This part includes descriptions of Apple IIGS file 
formats and calls to internal APW functions. 

Chapter 6, "Adding a Program to APW," describes the requirements that a utility or 
language compiler must satisfy to run under APW. < 

Chapter 7, "File Formats," defines and describes the standard formats for text files 
and object files for the Apple IlGS computer. 

Chapter 8, "Shell CalIs," describes several internal APW functions that utilities and 
< compilers can (or must, in some cases) call when operating under APW, 
including the procedure for calling these functions from assembly language. 

The appendixes summarize matenal for quick reference. 

APDADraft xiv 7/27187 



Apple fIGS Progrll17ll7l£r' s Workshop Preface 

Appendix A, "Contents of the APW Disks," contains a list of all the fIles delivered on 
a set of APW disks. 

Appendix B, "Command Summary" is a complete list, with brief descriptions, of all 
the shell, editor, and linker commands. This appendix also lists all the 
language numbers assigned so far for APW languages. 

Appendix C, "Error Messages," discusses errors you can get while running the APW 
Shell, lists all of the error messages you can get while running the APW 
Linker, and briefly describes the probable cause of each type of linker error. 

The Glossary defmes many of the technical terms used in this book. 

What to Read When 

This manual provides a complete reference to the Apple IIGS Programmer's Workshop. It 
is not necessary for you to read the entire manual before you start using APW; in fact, 
depending on the kind of programming you're doing, there may be chapters or sections of 
chapters that you'll never have to read at all. This section makes some suggestions on how 
to get the most out of this manual based on your experience and needs. 

First, some suggestions for everyone using APW: 

• Whatever your background and experience, start with the "Other Materials You'll 
Need" section of this preface and all of Chapter 1. The Apple IIGS is not quite like 
any other computer, so even if you had helped design the Apple IIe and Macintosh, 
you would still have to become familiar with the peculiarities of the Apple IIGS before 
proceeding. 

• Next, read Chapter 2. The ftrst few sections tell you how to set up APW to run on 
your Apple IIGS and describe the use of the APW Shell command interpreter. The 
last few sections of Chapter 2 give you enough commands and instructions to get 
started using APW. 

• Look through Appendix A to get an idea of what commands and features are available 
in the shell and editor. 

Note: Although some APW commands are the same as Macintosh Programmer's 
Workshop (MPW) commands, many are entirely different. Not all MPW 
commands have APW equivalents. 

You are now ready to begin using APW. Keep in mind that APW has many features, so 
even if you have used a command before, it might have options with which you are not 
familiar. Read the relevant sections of OJapters 4 and 5 to learn about shell and editor 
commands when you need to use them. 

The following suggestions apply only to those with special needs: 

• If you are writing large or complex programs, you will probably want to take 
advantage of some of the linker's advanced features. Look through Chapter 5 to get 
an idea of what the linker can do before writing your program; you can then read 
about the commands and options you need when you need them. For short or simple 
programs, you will never need this material. 

APDADraft xv 7127187 



Preface Apple llGS Programmer's Workshop 

• If you are writing a program to run under APW (a utility program or a compiler, for 
exmple), read Part ill. You might find the section on the object module format 
interesting if you just want to find out more about how the Apple IIGS works. Unless 
you are actually adding programs to APW, however, these three chapters are not 
required reading. 

Visual Cues 

Look for these visual . cues throughout the manual: 

Note: Notes like this contain sidelights or information that you will probably find 
useful. 

Important: "Important boxes" like this contain information that you should read 
before proceding. 

Warning: A warning directs your attention to something that could cause loss of 
data or damage to the software. 

Boldfaced terms are defined in the Glossary. 

A special typeface is used for characters that you type or that can appear on the screen, such 
as commands, assembly-language instructions and directives, fIlenames, or system 
prompts: 

It looks like this. 

Icons are used in tables and command-input lines to indicate the arrow keys and the Apple 
key. If you must press two keys simultaneously, they are shown with a hyphen (-) 
between them For example, the following sequence indicates you must press the Control 
and Y keys simultaneously, followed by the Up Arrow key: 

Control-Y i 

Apple lIe Upgrade: The Apple lias Apple key, indicated with the apple icon 
(0), corresponds to the Open Apple key on the Apple lIe keyboard. The Apple 
lIas Option key corresponds to the Closed Apple key Ctl) on the Apple lIe 
keyboard. The Clear and Enter keys on the Apple IIGS keyboard have no Apple lIe 
equivalents. 

Important: On the Apple lIas keyboard, the Reset key has a triangle on it rather 
than the word reset. 

Italics are used in commands to indicate parameters that must be replaced with a value. For 
example, the word pathname in the following command refers to any valid ProDOS 
pathname: 

DELETE pathname 

lfthe fIle you want to delete is / APW/MYPROGS/DONOTHING, this command would be 
as follows: 

APDADraft xvi 7/27/87 

'-'. 



,-

Apple IIes Programmer's Workshop Preface 

DELETE /APW/MYPROGS/DONOTHING 

Other Materials You'll Need 
The manuals and software you need in order to develop applications that run on the Apple 
IIGS depend on the type of programming you are doing. For starters, you must be familiar 
with use of the Apple IlGS computer, including the control pane\. The Apple IIes Owner's 
Guide that came with your Apple IIGS describes routine operation of the computer. 

The following sections describe the manuals in the Apple IIGS technical manual. suite 
(other than this manual) and make recommendations about which manuals you may need 
based on the type of programming you are doing. 

Introductory Manuals 

These books are introductory manuals for developers, computer enthusiasts, and other 
Apple IlGS owners who need technical information. As introductory manuals, their 
purpose is to help you understand the features of the Apple IIGS, particularly the features 
that are different from other Apple computers. Having read the introductory manuals, you 
should refer to specific reference manuals for details about a particular aspect of the 
Apple IIGs. 

The Technical Introduction 

The Technical Introduction to the Apple IIes is the fIrst book in the suite of technical 
manuals about the Apple IlGS. It describes all aspects of the Apple IIGS, including its 
features and general design, the program environments, the Toolbox, and the development 
environment. 

You should read this book no matter what kind of programming you intend to do, because 
it will help you understand the powers and limitations of the machine. If you are going to 
be doing assembly-language or system programming, this book is essential. 

The Programmer's Introduction 

When you start writing programs that use the Apple IIGS user interface (with windows, 
menus, and the mouse), the Programmer's Introduction to the Apple IIes provides the 
concepts and guidelines you need. It is not a complete course in programming; rather, it is 
a starting point for programmers writing applications that use the Apple Desktop Interface 
(with windows, menus, and the mouse). It introduces the routines in the Apple IlGS 
Toolbox and the program environment they run under. It includes a simple event· driven 
program that demonstrates how a program uses the Toolbox and the operating system. 

If you are already familiar with writing event-driven programs on the Macintosh, you can 
probably skim large portions of this manual. If you have never written an event-driven 
program, or never used the Macintosh tool sets, this manual could save you hours or days 
of struggling to get started. 

APDADraft xvii 7/27/87 



Preface Apple lIGS Programmer's Workshop 

Machine Reference Manuals 

There are two reference manuals for the machine itself: the Apple lIGS Hardware 
Reference and the Apple lIGS Firmware Reference. These books contain detailed 
specifications for people who want to know exactly what's inside the machine. You don't 
need to read these manuals to be able to develop applications for the Apple IIGS, especially 
if you are using a high-level programming language such as C. These books are essential 
reading if you are doing system programming or writing programs that are designed to 
recognize whether they are running on the Apple IIGS or on an older Apple II computer. In 
any case, these books will give you a better understanding of the machine's features. They 
also explain the reasons why some of those features work the way they do. 

The Hardware Reference Manual 

The Apple IIGS Hardware Reference is required reading for hardware developers, and it 
will also be of interest to anyone who wants to know how the machine works. It includes 
the mechanical and electrical specifications of all cOIUlectors, both external and internal, and 
descriptions of the internal hardware. 

The Firmware Reference Manual 

The Apple lIGS Firmware Reference describes the programs and subroutines that are stored 
in the machine's mid-only memory (ROM), with two significant exceptions: Applesoft 
BASIC and the Toolbox, which have their own manuals. The Apple lIGS Firmware 
Reference includes information about interrupt routines and low-level I/O subroutines for 
the serial ports, the disk port, and for the Apple DeskTop Bus"', which controls the" 
keyboard and the mouse. The Apple IIGS Firmware Referenc:e also describes the Monitor, 
a low-level programming and debugging aid for assembly-language programs. 

The Toolbox Manuals 

Like the Macintosh, the Apple IIGS has a set of built-in routines, known as the Apple lIGS 
Toolbox, that can be called by applications to perform many commonly needed functions. 
For example, there are Apple IIGS tools that you can use to draw things on the screen and 
tools for controlling desktop windows and menus. The toolbox serves two purposes: it 
makes developing new applications easier, and it supports the desktop user interface. 
Tools can be called from any of the Apple IIGS Programmer's Workshop languages. 

The Apple lIGS Toolbox Reference, Volume 1, introduces concepts and terminology and 
tells how to use some of the tools. It also tells how to write and install your own tool set. 
The Apple IIGS Toolbox Reference, Volume 2, contains information abo\lt the rest of the 
tools. " 

You do not need to use the toolbox to write simple programs that do not use the mouse, 
windows, menus, or other parts of the Apple IIGS desktop user interface. For example, if 
all the programming you intend to do is to write short routines in C to solve mathematical 
problems, then you don't need the toolbox at all. If you want to use the Apple IIGS Super 
Hi-Res graphics display, however, or to develop an application that uses the Apple IIGS 
desktop and mouse, you'll find the Apple IIGS Toolbox to be indispensable. 

APDADrafr xviii 7/27/87 



Apple IlGS Programmer's Workshop Preface 

The Apple IIGS Programming Language Manuals 

The Apple IIGS does not restrict developers to a single programming language. Apple is 
currently providing a 65816 assembler and a C compiler. Other compilers can be used with 
the workshop, provided that they observe the standards defined in Chapter 6 of this book, 
"Adding a Program to APW." You can write different parts of a program in different APW 
languages and link them into a single load file using the Apple IIGS Progammer's 
Workshop. 

There is a separate reference manual for each programming language that can be used on 
the Apple IIGs. Each manual includes the specifications of the language, the Apple IIGS 
libraries for the language, and any special compiler options for that language. The manuals 
for the languages Apple provides are the Apple IlGS Programmer's Workshop Assembler 
Reference and the Apple lIGS Programmer's Workshop C Reference. 

The Operating System Manuals 

There are two operating systems that run on the Apple IIGS: ProDOS® 16 and ProDOS 8. 
Each operating system is described in its own manual: Apple /lGS ProDOS 16 Reference 
and ProD OS 8 Technical Reference Manual. ProDOS 16 uses the full power of the Apple 
IIGS and is not compatible with earlier models of the Apple II. The ProD OS 16 Reference 
manual describes the feamres of ProDOS 16 and also includes information about the 
System Loader, which works closely with ProDOS 16 to load programs into memory. If 
you are writing a program that does any file manipulation or that writes to or reads from 
disk, you must have the ProDOS 16 Reference manual. It is a rare applications 
programmer who will not need this book at some time; for system prograrttmers, it is 
essential. 

ProDOS 8, previously called ProD OS, is the standard operating system for most Apple II 
computers with 8-bit CPUs. ProDOS 8 also runs on the Apple IIGS, but it cannot access 
certain advanced Apple IIGS feamres. You need the ProDOS 8 Technical Reference only if 
you are writing programs that will be able to run on 8-bit Apple II's. 

All-Apple Manuals 

In addition to the Apple IIGS manuals mentioned above, there are two manuals that apply to 
all Apple computers: HwntJn Interface Guidelines: The Apple Deskrop Interface and Apple 
Numerics Manual. The HwntJn Inlerface Guidelines manual describes Apple's standards 
for the desktop interface of any program that runs on Apple computers. If you are writing 
a commercial application for the Apple IIGS, you should be familiar with the contents of 
this manual. The people who buy your program will expect it to work like the other 
programs on their computer; they will be upset if it doesn't. 

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment 
(SANETM), a full implementation of the IEEE Standard for Binary Floating-Point 
Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE tool set match 
those of the Macintosh SANE package and of the 6502 assembly language SANE 
software. If your application requires accurate arithmetic, you'll probably want to use the 
SANE routines in the Apple lIGS. Whereas the Apple IlGS Toolbox Reference, Volume /l, 
tells how to use the SANE routines in your programs, the Apple Numerics Manual is the 
comprehensive reference for the SANE numerics routines. A description of the version of 

APDADraft xix 7127187 . 



Preface Apple lies Programmer's Workshop 

the SANE routines for the 65C8l6 is available through the Apple Programmer's and 
Developer's Association (APDA), administered by the A.P.P.L.E. cooperative in Renton, 
Washington. 

Note: The address of the Apple Programmer' s and Developer's Association is 290 
SW 43rd Street, Renton, W A 98055, and the telephone number is (206) 251-6548. 

APDADraft xx 7127187 

,'--', 



Part I 

Getting Started 





.... ... 

Apple lIes Programmer's Workshop Chapter 1: About APW 

Chapter 1 

About the Programmer's Workshop 
The Apple IIGS Programmer's Workshop (APW) is a development environment for the 
Apple IIGS computer. It includes the following components: 

• shell 

• editor 

• linker 

• utility programs 

• 65816 assembler 

• C compiler 

In order to understand the operation of these programs, you should be familiar with three 
other programs: 

• ProDOS 16 

• Apple lIas System Loader 

• Apple IIGS Memory Manager 

Further support for developers is provided by the Apple IIas Toolbox. The Apple IIGS 
tools consist of a variety of routines in ROM and RAM that your program can call to 
perform such functions as lIO control, console control, graphics generation, and 
mathematical computation. These tools can be used by programs written in the APW 
environment, but they are Mt considered to be part of the Apple IIGS Programmer's 
Workshop. 

The Apple IIas Programmer's Workshop, then, consists of 1) several programs that can 
be used by developers working with any of a variety of programming languages and 
2) several programming languages. This manual describes the APW Shell, Editor, Linker, 
and utility programs; these are the parts of the workshop that all developers need, 
regardless of which programming language they use. The APW programming languages 
are described in separate manuals. 

This chapter begins with a description of each of the programs in APW, plus ProDOS 16, 
the System Loader, and the Memory Manager. The next several sections briefly describe a 
variety of concepts that you must understand in order to program for the Apple lIas 
computer. 

Specific examples of programs written using APW are given in Chapters 2 and 3. See the 
Programmer's Guide to the Apple lIes for a more thorough discussion of Apple lIas 
concepts and for more extensive programming examples. 

APDADraft 1 7127187 



Chapter 1: AboutAPW Apple llGS Programmer's Workshop 

Program Descriptions 
This section describes each of the programs that make up the Apple IIGS Programmer's 
Workshop, plus ProDOS 16, the System Loader, and the Memory Manager. Some of the 
terms used in this section may not be familiar to you; these terms are explained more fully 
in the next section, "Apple IIGS Concepts," and in the glossary at the end of this book. 

Figure 1.1 illustrates the relationships between the Apple IIGS hardware and fIrmware, the 
Apple IIGS operating system, and APW. The operating system, including ProDOS, the 
System Loader, and the Memory Manager,provides the interface between APW and 
Apple IIGS hardware and firmware. The APW Shell allows you to call the other programs 
that constitute the Apple JIGS Programmer's Workshop and serves as the link between the 
APW programs and the Apple IIGS operating system. The APW Shell's command 
interpreter serves as the interface between you and the rest of the Apple IIGS system. 

I USERS _*~ I 
.. . 

. Apple IIGS Hardware & Firmware 

ProDOS 
. 

APWShell , , 
rT-

Command Interpreter 

, t t 
I Editor I I Compliers I I Utilities I , 
I Debugger I I Linker I Internal 

Commands 

! 

Figure 1.1. The Relationship of APW Programs to the Apple JIGS System 

Shell 

The shell program provides the interface that allows you to execute the desired APW 
command or program. It allows you to perform a variety of housekeeping functions, such 
as copying and deleting flies, or listing a directory. The shell supports input and output 
redirection, as well as pipeIining of Programmer's Workshop programs. 

APDADraft 2 7/27/87 



Apple llGS Programmer's Workshop Chapter 1: AboUl APW 

The shell also acts as an interface and extension to ProDOS 16, providing several 
functions, called shell calls, that can be called by programs running under the shell. 
Shell calls can be used by utility programs, compilers, linkers, or assemblers to perform 
such functions as passing parameters and operations flags between the shell and other 
Programmer's Workshop programs. The format for making these calls is exactly like that 
for making a ProDOS 16 call. 

Editor 

This full-screen text editor is designed for use with APW assemblers and compilers. The 
editor lets you enter text or source code and provides a large number of editing features, 
including the ability to copy, move, and delete blocks of text, search for text strings, 
automatically replace text strings with other text, and move quickly from one part of the file 
to another. Use the shell EDIT command to call the APW Editor. 

Assembler 

This full-featured assembler allows you to write 65816 assembly-language programs for 
the Apple nGS computer. The Apple nGS Programmer's Workshop Assembler includes 
macros to facilitate assembly-language programming and allows you to write your own 
macros and library fIles. 

The APW Shell commands for assembling a 65816 assembly-language program are 
described in Chapters 2 and 4 of this manual. The APW Assembler is described in the 
Apple lIGS Programmer's Workshop Assembler Reference manual. 

C Compiler 

The Apple nGS Programmer's Workshop C compiler is a complete implementation of the C 
programming language. It consists of a C compiler, the Standard C Library, the 
Apple nGS Interface Libraries, and the C SANE Library. The object files output by the C 
compiler consist of relocatable code and are fully compatible with those output by the APW 
Assembler . 

. The APW Shell commands for compiling a C program are described in Chapters 2 and 4 of 
this manual. APW C and C compiler options are described in the Apple llGS 
Programmer's Workshop C Reference manual. 

Linker 

The APW Linker takes the files (called object files) that have been created by the APW 
Assembler or any of the APW compilers and generates files that the System Loader can 
load into memory (load files) . The linker resolves external references and creates 
relocation dictionaries, which allow the System Loader to relocate code at load time. 

Although the APW Linker is a single program, conceptually there are two APW linkers: 

1. Normally, the linker is called directly by a shell command (such as the ASML 
command, which assembles and links a program, or the LINK command, which 

APDADrlf!t 3 7127187 



Chapter 1: About APW Apple lies Programmer's Workshop 

links object files). These conunands provide a limited number of linker options on 
the conunand line; most linker options are set to default values. In this manual, this 
aspect of the linker is referred to as the standard linker. 

2. Alternatively, all functions of the APW Linker can be controlled by compiling a file 
of linker commands. The linker command language, called LinkEd, allows you to 
do such things as place specific object-file segments in specific load-file 
segments, create dynamic load segments, set load addresses for nonrelocatable 
code, search libraries, and control the output printed by the linker. (Object-file 
segments, load-file segments, and dynamic and static segments are discussed in the 
section "Apple llGS Concepts" later in this chapter.) You can ap'pend the LinkEd 
commands to the last file of your source code, or you can compile and execute them 
separately by using the ASSEMBLE, COMPILE, or ALINK commands of the Apple 
JIGS shell. In this manual, the aspect of the linker controlled by linkEd files is 
referred to as the advanced linker. 

The advanced linker is provided for programmers who require maximum flexibility from 
the system; for most purposes, the standard linker is completely adequate. When a 
statement in this book applies equally to the standard and advanced aspects of the APW 
Linker, the terms APW Linker or linker are used. 

Since all Apple llGS Programmer's Workshop assemblers and compilers create object code 
that conforms to the same format, called object module format (OMF), the APW Linker 
can link together object files written in any combination of the development-environment 
languages. Object module format is defined in Chapter 7, "File Formats." 

Note: There are currently two versions of the OMF in use for load files: Version 
1.0 load files are created by the APW Linker. Version 2.0 load files are created 
from Version 1.0 load files by the Compact utility program Both Version 1.0 and 
Version 2.0 load files can be loaded by the System Loader. See the description of 
the COMPACT command in Chapter 3 for more information on the Compact utility. 

Utility Programs 

The Apple llGS Programmer's Workshop includes several programs, called APW 
Utilities, that perform functions not built in to the shell. Utilities include 

• Canon, which replaces character strings in a file with other strings as specified in a 
dictionary file. 

• Compact, which converts a load file to a more compact form. 

• Crunch, which combines multiple object files created by partial assemblies or 
compiles into a single object file. 

• DumpObj, which lists an object-module-format file to standard output (usually the 
screen). 

• Equal, which compares two files or directories for equality of their contents, dates, 
and file types. 

• Files, which lists the contents of a directory, including subdirectories. Files can also 
search for a file whose name contains a string you specify. 

• lnit, which initializes (formats) a disk. 

• MacGen, which generates a custom macro file for your program. 

APDADraft 4 7127187 



Apple I/GS Programmer's Workshop Chapter 1: About APW 

• MakeBin, which creates a ProDOS 8 binary fIle from a ProDOS 16 load file. 

• MakeLib, which creates a library fIle from object fIles. 

• Search. which searches a text or source fIle for a string that you specify. 

• Version, which displays the version number of the APW Shell that you are using. 

Most utilities, referred to as external commands, are executed like built-in (internal) shell 
commands. A few utility programs might require more complex command sequences. All 
of the utility programs supplied with APWare described in Chapter 3. If you add a utility 
to your system, refer to the documentation that came with it for instructions. 

Apple IIGS Debugger 

To facilitate the debugging of assembly-language programs, Apple provides the Apple IIGS 
Debugger, which works with 65816 machine code. The Apple IIGS Debugger allows you 
to trace or step through a program one instruction at a time or to execute the program at full 
speed; in either case, you can insen breakpoints at which the debugger halts execution so 
that you can inspect the contents of the registers. memory, direct page, and stack. The 
debugger can display a variety of types of information on the screen, including a 
disassembly of the code being traced, the contents of memory, the normal display of the 
program being tested. the contents of the program's direct page. the contents of Apple IIGS 
registers, and the contents of the program's stack. 

The debugger allows you to switch between your test program's screen display and the 
debugger's displays. If you switch to the debugger's display, the debugger remembers 
which display mode the test program was in and changes back to that mode when you 
switch back to the program's display. 

The Apple IIGS Debugger is available from A.P.D.A. as a separate product and is 
described in the Apple I/GS Debugger Reference. 

ProD OS 16 

ProDOS 16 is the central pan of the Apple IIGS operating system. Although other software 
components, such as the System Loader. may be thought of as pans of the overall 
operating system, ProDOS 16 is the key component. It manages the creation and 
modification of files, accesses the disk devices on which the fIles are stored, dispatches 
interrupt signals to interrupt handlers, and controls certain aspects of the Apple IIGS 
operating environment, such a,s pathname prefixes. Your program can call ProDOS 16 to 
open and close fIles, read data from disks, write data to disks, and perform a variety of 
other system functions. Most programs use the ProDOS 16 QUIT call to quit and pass 
control to another program. 

ProDOS 16 is described in the Apple I/GS ProD OS 16 Reference. 

System Loader 

The System Loader is an Apple IIGS tool set that reads the fIles generated by the APW 
Linker, relocates them (if necessary), and loads them into memory. The System Loader 

APDADraft 5 7127187 



Chapter 1 .. About APW Apple llGS Programmer's Workshop 

calls the MemO!)' Manager as necessary to allocate blocks of memO!)' for segments it wants 
to load. 

Each load segment consists of two parts: a set of records that contain all of the code and 
data in the segment that is not location dependent (with spaces reserved for location­
dependent addresses), and a relocation dictionary that provides the information necessary to 
patch addresses into the fIrst part of the segment at load time. When the segment is loaded 
into memory, the fIrst part is loaded very quickly; then the relocation dictionary is 
processed. This structure permits extremely fast loading of relocatable segments. 

The System Loader is described in the Apple llGS ProD OS 16 Reference. 

Memory Manager 

This Apple IIGS program allocates and frees blocks of memory as they are needed. It does 
the bookkeeping to keep track of which blocks of memO!)' are being used and which 
program owns each block of memory. The System Loader calls the MemO!)' Manager to 
reserve or release memory when loading segments; your application should also call the 
Memory Manager whenever it needs a block of memory. Use of the Memory Manager and 
the System Loader makes it possible for your application to be loaded at the same time as 
shell programs, memory-resident utilities, character-fom data fIles, and so on. 

The Memory Manager is described in the Apple llGS Toolbox Reference: Volume 1. 

Apple IIGS Concepts 
This section introduces a variety of features and concepts that you must understand in order 
to write application programs for the Apple IIGS computer. While some of these concepts 
may be familiar to you from work with other computers, you must still be familiar with the 
way in which they are implemented on the Apple IIGS to get the most out of the Apple IIGS 
Programmer's Workshop and to use the operating system and the memO!)' of the 
Apple IIGS effIciently. 

Source, Object, and Load Files 

There are three main steps to developing a program in the APW environment, and each step 
corresponds to one of three fundamental types of fIles: 1) writing the program creates 
source files ; 2) compiling or assembling the program creates object files; and 
3) linking the program creates load files. Source files are ASCII fIles consisting of code 
and data; each source fIle follows the conventions of a particular programming language. 
Object fIles are binary fIles containing machine-language instructions rather than the 
directives and instructions of a higher-level programming language. There can be several 
object fIles for one program, each fIle containing part of the program. Object fIles do not 
contain the information needed by the System Loader to load the program into memory. 
Load fIles, on the other hand, can be loaded by the System Loader. The linker combines 
("!inks") the object fIles into a single load fIle and adds the information needed by the 
loader to load the program into memory. 

APDADraft 6 7/27/87 



Apple lleS Programmer' s Workshop Chopter 1: AboUl APW 

Symbolic References and Relocatable Code 

A source file consists of programming-language instructions, directives, functions, and so 
forth, together with data needed by the program. In the source code, specific instructions, 
subroutines, or blocks of data are often labelled with a name. You can refer to the name in 
another part of the program; for example, when you want to execute a subroutine, you 
generally refer to the subroutine by name. A name or label of code or data used in this way 
is referred to as a symbolic reference (that is, a symbol that can be referenced or 
referred to). In high-level programming languages, symbolic references are often the only 
means available to jump from one place in a program to another; a few languages, such as 
BASIC, may also use source-code line numbers, which are relative to the start of the 
program. These line numbers also serve as symbolic references, since they are not part of 
the programming language, but only serve to label locations in the program. 

In assembly language, in contrast, it is possible to specify actual locations in the 
computer's memory to which you want the program to jump. For such a program to run, 
the correct information-that is, the machine instruction that you want to be executed next 
or the data you want to use-must be present at that location in memory when the jump is 
made. Code whose location in memory is specified when the program is written or linked 
is called absolute, since the loader must load it at that location or not at all. 

Alternatively, it is possible to write a program in which every reference to a location in the 
program is either relative to another location or is made through a symbolic reference. 
Such a program need not be loaded into a specific location in memory to run and is thus 
referred to as relocatable. Note that this term is somewhat misleading: a relocatable 
program can be loaded into any location in memory, but it cannot necessarily be moved 
once it has been loaded. (A program or block of code that can be moved from one location 
in memory to another while the program is running is called movable.) The term 
relocate in this context means the process of inserting (or patching) into the program in 
memory the actual memory addresses to which jumps must be made. Relocation on the 
Apple IIGS is done during program load by the System Loader. 

Relocatable Load Files 

The advantages of using relocatable code for the Apple IIGS are considerable. Relocatable 
code can be placed in memory at whatever location the Memory Manager chooses. Since 
desk accessories, shell programs, RAM-based tools, and SO forth are placed in memory by 
the System Loader and Memory Manager, absolute code is likely to conflict with other code 
already in memory. The Apple IIGS System Loader, object module format, and Memory 
Manager are designed to support relocatable code. Apple IIGS Programmer's Workshop 
compilers generate relocatable code, and the APW Assembler is designed to work with 
relocatable code. Do not write absolute code unless you want to cause untold grief to 
yourself and the people who use your program. 

When relocatable code is assembled or compiled, the assembler or compiler converts the 
source code into 65816 machine-language instructions, data, and symbolic references. 
Before the program is actually run, the symbolic references must be resolved; that is, the 
routine being referenced must be found, and the reference must be replaced with code that 
the loader can use to relocate the code at load rime. The program that resolves the symbolic 
references is called the APW Linker. (The linker gets its name from the fact that it can 
combine, or link together, several object files and library files to create a single executable 
load file.) 

APDADraft 7 7/27/87 



Chapter 1: About APW Apple lIGS Programmer's Workshop 

The Three Steps to Program Development 

As mentioned above, the conversion of a source fIle into data that is resident in memory is 
done in three main steps. Figure 1.2 illustrates these steps. The following is a more 
detailed account of this sequence: 

1. The source code is assembled or compiled. Depending on the programming 
language used in the source file, the APW Assembler, C Compiler, or some other 
assembler or compiler processes the source fIle to create an object fIle. The object 
file contains 65816 machine-language instructions, data, and symbolic references to 
program routines. Object files, then, consist of machine-language instructions plus 
unresolved symbolic references. 

Your program can consist of several source files, and each source file can be in any 
of the APW programming languages. Each source file is converted into one or more 
object fIles by the APW Assembler and compilers. 

2. The object files are input to the APW Linker, which combines all of the object fIles 
into a single load file and resolves symbolic references. The linker verifies that 
every routine referenced is included in the load fIle. if there are any routines that the 
linker has not found when it has finished processing all of the object files, it searches 
through any available library files for the missing routines. The linker removes 
symbolic references and replaces them with entries in special tables it creates called 
relocation dictionaries. The load file consists of blocks of machine-language 
code that can be loaded directly into memory (called memory images), plus 
relocation dictionaries that contain the information necessary to patch addresses into 
the memory images when the program is loaded into memory. 

3. At program execution time, the load fIle is loaded into memory by the System 
Loader. The loader calls the Apple IIGS Memory Manager to request blocks of 
memory for the load me, loads the memory images, and uses the relocation 
dictionaries to patch the actual memory addresses into the machine-language code in 
memory. Because a load fIle can contain more than one segment, and because each 
segment can be processed independently, only part of the load file may be loaded 
into memory initially. OMF-file segmentation, a fundamental Apple IIGS concept, is 
discussed in the next section. 

The Memory Manager is the Apple IIGS tool set that allocates blocks of memory as 
needed and keeps track of which blocks of memory are available. 

APDADraft 8 7127187 



Apple lIes Programmer's Workshop Chapter 1: About APW 

~J Source File 

/ ~ ~ 
Assembler Assembler Assembler 
or or or 
Complier Complier Complier 

I 

~ , 
Ir 

Object File Object File Object File 

~ ~ 
Unker 

t 
. 

Load File 

~ 
Loader 

'\ 
Executable Code 

in Memory 

Figure 1.2. Creating an Executable Program on the Apple IIGS 

Program Segmentation 

In general, any computer program that consists of more than a few lines of code contains 
one or more subroutines; in addition, you may choose to segregate large blocks of data into 

APDADraft 9 7127187 



Chapter 1: About APW Apple llGS Programmer's Workshop 

separate parts of the program. In APW, subroutines or blocks of data are given names that 
can be recognized by the linker; these named blocks of code are referted to as segments. 
In APW assembly-language programs, for example, you can assign labels to subroutines 
or blocks of data with the START-END and DATA-END directive pairs. The code 
between the START or DATA directive and the next END directive composes a segment. As 
illustrated in Figure 1.3, when you assemble or compile the program, each source-code 
segment becomes one object segment. 

Source File Object File 

Segment name : Main 

object segment Main 

------------------l Segment n ame : Dave 

::~~~~~:~~~~~:~:::J ====~~ 
object segment Dave 

object segment Marek 

Segment name : Jason 

object segment Jason 

Segme nt name : La st 
object segment Las t 

Figure 1.3. Assigning Object Segments in Your Source Code 

The segmentation of source files and object files increases the flexibility and efficiency of 
the program development process. For example, it is not necessary to recompile an entire 
program each time you make a change, since each source-fIle segment can be compiled or 
assembled independently by APW compilers and assemblers in a process referred to as a 
partial compile'or partial assembly. Object segments that are part of one program can 
be easily extracted for use in another program, since each object-fIle segment can be chosen 
independently for linking with a LinkEd command. 

Apple nGS load fIles are also segmented. The segmentation of load fIles allows a program 
to be loaded into memory in pieces rather than in one block, so that large programs can be 
loaded even when one large contiguous block of memory is not available. Under certain 
circumstances, load segments also allow parts of a program to be loaded and unloaded 
while the program is running so that memory can be used more efficiently; see the section 
"Dynamic Segments" later in this chapter for details. 

It is important to understand the difference between object segments and load segments. 
Object segments generally correspond on a one-to-one basis with subroutines in the source 
file. Each load segment, on the other hand. can incorporate any number of object 
segments. Object segments are used by the linker to resol ve references and to extract 
subroutines from library files. Load segments are used by the loader when loading a 
program into memory. 

APDADraft 10 7127/87 



Apple lIGS Programmer's Workshop Chapter 1: About APW 

Object-segment names correspond to subroutine names; they are assigned in the source file. 
Some APW languages, such as 65816 assembly language and APW C, let you specify 
load-segment names in the source code as well; such load-segment names are optional, 
however. Each object segment must have a unique object-segment name, but any number 
of object segments can share the same load-segment name. You can also use LinkEd 
commands to assign names to load segments and to specify which object segments go in 
each load segment. 

Source-file load segment names allow you to segment a load me without using the 
advanced linker. If you do not use a LinkEd me, all object segments with the same 10ad­
segment name are placed by the standard linker into the same load segment. The object­
segment names are discarded by the linker; there is no record in a load segment of the 
object segments that went into it. 

Source-file load-segment names are illustrated in Figure 1.4. The relationship of object 
segments to load segments is illustrated in Figure 1.5. 

Source File 

Segment name: Main 
Loadsegment name : First 

Segment name: Dave 
Lo~egment name : 

Segment name: Marek 
Loadsegment name: First 

Segment name: Jason 
Loadsegment name: Second 

Segment name: Last 
Loadsegment name: 

Object File 

Object segment 
load segment nome: 

object segment 
load segment name 

object segment 
load segment nome 

object segment 
load segment name 

Object segment 
load segment nome 

Figure 1.4. Assigning Load Segments in Your Source Code 

Main 
First 

Dave 

Marek 
First 

Jason 
Second 

Last 

The relationship between object segments and load segments can be made clearer if we first 
take a brief look at the structure of a segment in an OMF file . Each segment consists of a 
segment header and the segment body. The segment header is divided into fields 
containing the following information: 

• The size of the segment. 

• The type of segment (including code, data, static, and dynamic). 

• The version number of the OMF with which this segment is compatible. 

APDADraft 11 7127187 



Chapter i: About APW Apple IIGS Programmer's Workshop 

• The address in memory at which this segment is to be loaded. Nonnally, this field is 
0, indicating that the segment is relocatable. 

• The name of the segmen t. 

• For object segments, the name of the load segment into which the standard linker 
should place this segment. For load segments, this header field is not used. 

• Several other fields that need not concern us here (see the section "Segment Header" 
in Chapter 7 for a full description). 

A load segment has only one name, the name of the segment (the name of the load segment 
field in the segment header is not used in a load segment). For object segments, however, 
these names are distinct; that is, both the object-segment name and the load-segment name 
fields are used. The object-segment name is used by a compiler when perfonning partial 
compiles (described in the section "Partial Assemblies or Compiles" in Chapter 3) and by 
the linker in resolving references and in extracting specific segments for linking (see the 
section "Linking with a LinkEd Command File" in Chapter 5). Load segment names are 
used by the loader when loading, unloading, and relocating segments. 

Each object-segment name in an object file must be unique. In addition to the object­
segment name, each object segment is also assigned a load-segment name; any number of 
object segments can have the same load-segment name. The standard linker places all 
object segments that share the same load-segment name into the same load segment. As 
illustrated in Figure 1.4, some programming languages (such as 65816 assembly language 
and APW C) let you assign your own load-segment name to an object segment; on the 
other hand, some compilers assign a load-segment name to the object segment for you. If 
no load-segment name was assigned in the source file or in a LinkEd file, the load-segment 
name can consist of a string of space characters. 

For example, suppose your object file contains the object segments Peter, Paul, and Mary, 
and each of these object segments is assigned either to the load segment White or the load 
segment Black, as follows: 

O. Object-segment name: Peter 
Load-segment name: White 

1. Object-segment name: Paul 
Load-segment name: Black 

2. Object-segment name: Mary 
Load-segment name: White 

When the standard linker processes this file, the object-segment names Peter, Paul, and 
Mary are treated as references that must be resolved. Object segments Peter and Mary are 
placed in the same load segment, named White, and object segment Paul is placed in a 
separate load segment, named Black. Another example of the relationship between object 
segments, load-segment names, and load segments is illustrated in Figure 1.5. Note that 
the segments that have no load-segment name assigned in the source file are put by the 
standard linker into a load segment with a blank name (that is, the name consists of a string 
of spa~e characters). 

APDADraft 12 7127187 

'--'. 



Apple lies Programmer's Workshop Chapter I: About APW 

Object File Load File 

object segment Main I-----~ Segment First 
load segment name: First 

object segment Dave 
load segment name 

Segment 

object segment Marek 
load segment name First 

object segment Jason 
load segment ncrne Second 

Segment Second 

object segment Last 
load segment name 

Figure 1.5. Relationship Between Object Segments and Load Segments 

On the Apple nGS computer, no single block of code can occupy more than 64K of 
contiguous memory. (In this manual, K is used to mean 1024 bytes.) To load a larger 
program than that, you must split it up into two or more load segments. When much of 
memory is already in use, it may be possible to load a program that is divided into several 
small load segments even if the same program in one or two load segments wouldn't fit. 
The Apple nGS Memory Manager takes care of assigning each segment to a block of 
memory; the System Loader keeps track of where in memory the segment has been loaded 
and patches intersegment calls in each segment as it is loaded. 

Note: Although no single block of code can occupy more than 64K of contiguous 
memory, data can occupy more than 64K. The restriction is due to a limitation of 
the 65C816 microprocessor, which cannot execute code across a memory bank 
boundary. 

Dynamic Segments 

On the Apple nGS computer, the combination of load segments together with the System 
Loader and Memory Manager makes possible the creation of dynamic segments. A 
dynamic segment can be loaded and unloaded automatically by the System Loader and 
Memory Manager during program execution. Dynamic segments can be used to fulfill the 
same function as overlays; that is, a dynamic segment that is not needed at a given time can 
be removed from memory to provide room in which to load another dynamic segment. 

Dynamic segments are much more versatile than overlays, however: whereas overlays must 
always be loaded into the same location of memory, and that block of memory cannot be 
used by more than one program, dynamic segments (which, to be used effectively, should 
also be relocatable) can be loaded at any location in memory when needed. In addition, the 
System Loader and Memory Manager remove from memory a dynamic segment that is not 

APDADraft 13 7127187 



Chapter 1: About APW Apple IIGS Programmer's Workshop 

being used only if the memory is needed for something else; otherwise, the segment 
remains in memory and need not be reloaded the next time it is called. 

Before the segment can be removed from memory, the application program must make the 
segment purgeable by using the System Loader's Unload Segment call or the Unload 
Segment by Number call. The System Loader is described in the Apple IIGS ProD OS 
Reference. 

A segment that is not dynamic is referred to as static. A static segment is loaded at 
program boot time and is not unloaded or moved during execution. The first segment of 
any program that is loaded is static. Any other segments may be static, but (especially for 
large programs) the initial load of the program will be faster and the system will make more 
efficient use of memory if all infrequently used segments are dynamic. You can use a 
LinkEd command to make a segment dynamic; refer to the manual that carne with the APW 
language you are using to see if there is also a way to assign dynamic segments in the 
source code. 

Library Files 

Library fIles contain routines that are useful to many different programs. On the Apple 
lIGS, all library fIles are in object module format, regardless of the language of the source 
fIle. An Apple lIGS library file (ProDOS fJ.]e type $B2) can therefore be used by a program 
written in any source language. Some languages, such as APW C, come with a set of 
library files used by that language. 

When the linker processes one or more object fJ.]es and cannot resolve a symbolic 
reference, it assumes that it is a reference to a segment in a library file. If you use the 
standard linker, it searches any library files you name on the command line and then 
automatically searches all of the library files in the APW library prefix 
(jAPW/LIBRARIES/ on your original APW disk, for example). Jfyou use a LinkEd 
command file, the advanced linker searches only the library fIles that you specify. Unless 
you are using the advanced linker, you do not even need to know the names of the library 
fJ.]es in order to use them; the standard linker automatically finds the fJ.]es and extracts the 
segments it needs. 

You can create your own library fIles from one or more object fIles by using the MakeLib 
APW utility program. Figure l.6 illustrates the process by which a library fIle is created. 
You specify one or more object files to be included in the library fIle. MakeLib 
concatenates the files and creates a special segment at the beginning of the fJ.]e called the 
library dictionary segment. The library dictionary segment is the first segment of a 
library file; it contains the names and locations of all the global symbols in the fIle. (A 
global symbol is a label in one segment that can be referenced in another segment, as 
opposed to a local symbol, which can be used only within the segment in which it is 
defmed.) The linker uses the library dictionary segment to find the segments it needs. 

The library dictionary segment makes it possible for the linker to search a library fIle for 
global symbols much more rapidly than it can search an object file. Consequently, the 
linker will search a library dictionary segment multiple times if necessary to find segments 
referenced by other segments in the library fIle. The sequential order of the segments in a 
library file is therefore not important. If you were to use several library files, on the other 
hand, the order in which the files were searched would be important: if the linker first 
searched file A and then file B, for example, it could resolve a reference made in file A to a 

APDADraft 14 7127187 

'.'-", 



Apple lIGS Programmer's Workshop Chapter 1: About APW 

global symbol in file B, but could not resolve a reference made in file B to a symbol in file 
A. It is for that reason that MakeLib allows you to include several object files in a single 
library file. 

T 

T : sew' T 
ObJect3 

T 

L1bfJle 

library 
Dictionary 
Segment 

• • 1 _~=->.I.-r 
Figure 1.6, Relationship Between Object Files and Library Files 

Emulation and Native Modes 

Ust of object flies 

Cross reference 
between filenames. 
segments. and 
symbol names 

list of symbol n<"m""," 

The 65C816 processor of the Apple IIas computer can run in emulation mode or native 
mode. In emulation mode, it behaves exactly like a 6502 processor and can run code 
written for the 6502 without modification. The Apple IIas computer fully supports 
emulation mode by including ROM code and a memory structure that allows you to run 
programs written for 8-bit Apple computers, such as the Apple IIe and Apple IIc. When 
running in emulation mode, however, your program can use only the first 128K of Apple 
IIos memory and cannot take advantage of the System Loader or Memory Manager. 
Native and emulation modes are discussed in the Technicallntroducrion to the Apple lIGS 
and described in detail in the Apple lIGS Hardware Reference manual. 

APDADraft 15 7127187 



Chapter 1: About APW Apple llGS Programmer's Workshop 

Note: The ProDOS 8 loadable fIle fonnat (called the binary file format), consisting 
of one absolute memory image along with its destination address, cannot be loaded 
by the Apple IIGS System Loader. You must use ProDOS 8 to load such a file. 

See the description of the MakeBin utility in Chapter 3 for a way to create a ProDOS 8 
binary load file with APW. Except for the section on MakeBin, this book assumes that you 
are writing programs to be run under ProD OS 16 in native mode on the the Apple fiGS 
computer. 

APDADraft 16 7/27/87 



Apple IIeS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Chapter 2 

How to Use the Shell and Editor 

The Apple IIGS Programmer' s Workshop Shell provides your interface with APW. The 
shell provides a command interpreter to perfonn such functions as copying, moving, and 
deleting files, and running programs. You can assemble, compile, link, and run your 
programs with shell commands. In the Apple IIGS Programmer's Workshop, a single set 
of commands operates identically for all assemblers and compilers; you do not need to learn 
a new set of commands or operating sequence for each language you add to the system. 
APW also provides a fun-featured text editor that you can use to write source code. Files 
written with the APW Editor are recognized by APW as language source files; the APW 
Shell can automatically select the correct compiler, assembler, or linker to process each 
source file. 

This chapter introduces you to the use of the shell and editor. The following topics are 
covered in this chapter: 

• the hanIware and software needed to run APW 

• how to install APW on a hanI disk 

• how to make your hanI disk self-booting 

• how to run APW on floppy disks 

• how to run APW on a hard disk 

• how to enter and execute APW Shell commands, including how to use wildcanI 
characters, partial pathnames, and device names 

• how to list the disk directory and read the directory listing 

• how to set up and use a printer with APW 

• how to launch Apple IIGS programs using APW 

The following topics are too complex to be covered in this chapter in detail, but they are 
introduced here. For more infonnation on each topic, see the chapters referred to in 
parentheses: 

• how to use the editor (Chapter 4) 

• how to use shell-command files, called Exec files (Chapter 3) 

• how to compile (or assemble) and link a program (Chapter 3 and the manual that came 
with your compiler or assembler) 

• how to use the Apple IIGS Debugger (Apple IIeS Debugger Reference) 

• how to use APW utility programs (Chapter 3) 

Only the most commonly used shell commands and features are described in this chapter; 
all APW Shell commands are described in detail in Chapter 3. 

APDA Draft 17 7127187 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

Important: Some commands, such as the COpy command, are used in examples 
and instructions given in this chapter. These examples do not show all of the ways 
in which the commands can be used. If you have trouble using any command, see 
the complete description of that command in Chapter 3. 

What You Need 
In order to use the Apple IIGS Programmer's Workshop, you must have the following 
hardware and software. A list of Apple IIGS manuals that you will fmd useful is given in 
the Preface. 

• An Apple IIGS computer, of an Apple IIe computer with an installed Apple IIGS 
upgrade, with 256K of RAM. . 

• An installed Apple IIbs memory-expansion board with one megabyte (l024K) of 
RAM, for a total of 1280K of RAM. 

• Two 3.5 inch disks containing the files shown in Appendix A. 

• Two 800K disk drives or one 800K disk drive and one hard disk. 

• Disks containing any other APW languages you intend to use with this system. The 
fIles on these disks must be installed on the Apple IIGS disk as described in the 
manuals that came with the APW language disks. 

Important: APW requires one megabyte of available memory. That means that if 
you have 1280K of RAM in your Apple IIGS, you cannot assign more than 256K 
to a RAM disk. 

A hard disk is highly recommended, especially if you intend to do multilanguage 
development or to develop large programs: 

In addition, many developers fmd that an Apple II memory-expansion board is very useful 
in the Apple IIGs. You can use the board for a large RAM disk on which you can place 
library files, compilers and assemblers, the linker, and utility programs. Since many of 
these programs are loaded into memory from disk each time they are used, placing them on 
a RAM disk can speed up operation of the system during program development. 

Note: See the Preface of this book for a list of the manuals you'lI need to develop 
programs for the Apple IIGS, .an explanation of the layout of this book, a 
description of the interrelationships of the books in the Apple IIGS technical 
reference suite, and a description of the typOgraphical conventions used to describe 
commands in this book. 

The fIles on the APW disks are listed in Appendix A. 

Backing Up Your APW Disks 
It is important to make a copy of your APW disks and to run APW from the copies only. 
Keep the original disks in a safe place so you can make new copies if something happens to 
the ones you have been using. 

APDADraft 18 7/27/87 



Apple llGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Important: You must make copies of your APW disks even if you intend to copy 
APW onto a han! disk, in case something goes wrong during the installation 
procedure. 

You can use any disk-copy utility you prefer to back up your APW disks. Remember that, 
if the new disk is not already formatted, you must format it before you copy APW onto it. 
The App'le nos System Disk that came with your computer includes formatting and disk-
copy uolities. . 

Warning: Formatting a disk erases all information on the disk you are formatting. 
Most disk duplication programs also destroy any information on the new disk (the 
disk being copied to). To be safe, be sure your APW disks are write-protected 
before you begin to copy them. 

If you already have an older version of APW, you can launch your old APW and use the 
INIT and COPY -D commands to duplicate your new APW disks. 

To run APW from the disk copies you just made, see the section "Running APW on 
Hoppy Disks" in this chapter. To install A~W on a han! disk, see the following section, 
"Installing APW on a Hard Disk." 

Important: You must give your copy of the / APW disk the volume name / APW, 
or the han!-<lisk installation procedure will not work correctly. 

The Emergency Exit: Control-Reset 
On occasion when you are testing a new program that runs under the APW Shell, the 
computer "hangs" (that is, you can neither quit the program nor get it to respond to any 
commands), or the program enters an infinitely repeating loop. In either case, you may be 
able to quit the program and return to the shell by pressing Control-Reset. 

Warning: Never press Control-Reset during a disk-write operation, as this can 
cause loss of data on the disk. 

Use Control-Reset as a last resort only. Never use it instead of Apple-Period (which you 
can use to cancel most APW commands), as it does not cause the routine to terminate 
normally. If your program has written over portions of memory needed by APW, then 
APW may not be able to function normally after quitting the program and you might have 
to reboot the computer. If any files are open when you press Control-Reset, they may not 
be properly closed and the shell will not be able to resume operation. 

If you do press Control-Reset, even if APW appears to be functioning normally, it is best 
to quit APW and restart it as soon as it is practical to do so. 

Installing APW on a Hard Disk 
If you want to install APW on a hard disk for the first time, follow the procedure in the 
next section, "First-Tune Installation." If you want to update an already-installed APW, 
see the section "Updating APW,"later in this chapter. 

APDADrq[t 19 7127187 



Chapter 2: Using the Shell and Editor Apple fl GS Programmer's Workshop 

Important: Before you do anything else, you must make copies of your APW 
disks. If you have not already done so, use \he procedure in the earlier section, 
"Backing Up Your APW Disks," to make copies of the disks. 

First-Time Installation 

Before you can install APW on your hard disk, you must have a properly formatted hard 
disk. If you have not already done so, follow the instructions that came with your hard 
disk to format it. 

Use the following procedure to install APW on your hard disk. 

Note: If want to make your hard disk boot directly into APW rather than into a 
program launcher, you must use a slightly different procedure. See the section 
"Booting Directly Into APW," later in this chapter, for a way to make your hard 
disk boot directly into APW . 

1. Turn on the computer and hard disk and use the Control Panel to set the startup slot 
to your floppy disk drive. See the section on the Control Panel in the Apple flGS 
Owner's Guide for instructions on setting the startup slot. 

2. Insert the copy you made of the / APW disk in the startup disk drive and press Apple­
Control-Reset to reboot the computer. The Apple IIGS Program Launcher should 
load from the disk. 

3 . Press Return twice to launch APW. Wait until the APW command-line prompt-a 
number sign (#)-appears at the left edge of the screen. 

4 . Enter the following command-(substitute the volume name of your hard disk 
wherever you see hardisk). Remember to press Return after each command that you 
type. 

INSTALL / APW /hardisk/APw 

This command creates a subdirectory on your hard disk named APW / and copies the 
APW ftIes from your / APW disk into the APW / subdirectory on the hard disk. This 
will take several minutes. 

5. Remove the / APW disk from your disk drive and insert the /APWU disk. 

6. Enter the following command: 

INSTALL /APWU /hardisk/APW 

This command copies the ftIes from your / APWU disk into the APW / subdirectory on 
the hard disk. This will take several minutes. 

You now have APW installed on your hard disk. If your hard disk is already self- booting, 
and if you have ProDOS 16 and the System Loader Version 1.2 or later, you can remove 
the /APWU disk from the disk drive, reset the Control Panel to boot from the hard disk, and 
begin using APW immediately. If you have never installed an Apple IIGS system on your 
hard disk, or if the version of ProD OS 16 or the System Loader are earlier than version 
1.2, then follow the instructions in the next section to make your hard disk self-booting. 

APDADraft 20 7/27/87 



Apple lles Programmer's Workshop Chapter 2: Using the Shell and Editor 

Important: You must have ProDOS 16 and the System Loader Version 1.2 or 
later to run APW. To fUld out what version of ProDOS 16 and the System Loader 
you have on your hard disk, boot the disk:. The version numbers are displayed on 
the screen while the load process is taking place. 

Making Your Hard Disk Self-Booting 

The easiest way to set up your hard disk: to be self-booting is to copy the Apple IIGS 
System Disk onto the hard disk, as described in the next section, "Copying the Apple IIGS 
System Disk." You must have Version 2.0 or later of this disk:. If you do not have a 
recent version of the system disk:, you can copy the system from your / APW disk: instead. 
To do so, use the procedure in the section "Copying the System From the APW Disk." To 
make your hard disk: boot directly into APW, follow the procedure in the section "Booting 
Directly Into APW." 

Copying the Apple IIGS System Disk 

To make your hard disk self-booting by copying the Apple IIGS System Disk: onto your 
hard disk:, use the following procedure: 

1. Tum on the computer and hard disk and use the Control Panel to set the startup slot 
to your floppy disk: drive. See the section on the Control Panel in the Apple lles 
Owner's Guide for instructions on setting the stanup slot 

2. Insert the copy you made of the /APW disk: in the stanup disk: drive and press Apple­
Control-Reset to reboot the computer. The Apple nGS Program Launcher should 
load from the disk:. 

3. Press Return twice to launch APW. Wait until the APW command-line prompt-a 
number sign (#)-appears at the left edge of the screen. 

4 . Remove the /APW disk from the disk drive and insert the Apple nGS system disk in 
the drive. 

5 . Execute the following command to copy the fIles on the system disk onto your hard 
disk (substitute the volume name of your hard disk wherever you see hardisk): 

COpy -C / SYSTEM.DISK/= /harduk 

6. Use the Control Panel desk: accessory to set the startup slot so that the computer will 
boot from your hard disk. 

7. Remove the system disk: from the disk: drive and press Apple-Control-Reset to cause 
the machine to reboot from the hard disk:. When you boot from the hard disk, you 
will get a program launcher. Select and open the APW folder, and then select and 
open the file APW. SYS16 to launch APW. 

Copying the System From the APW Disk 

To make your hard disk self-booting by copying the system fJIes from the / APW disk onto 
your hard disk, use the following procedure: 

APDADraft 21 7/27/87 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

1. Tum on the computer and hard disk and use the Control Panel to set the stanup·slot 
to your floppy disk drive. See the seciion on the Control Panel in the Apple IIGS 
Owner's Guide for instructions on setting the stanup slot. 

2. Insen the copy you made of the / APW disk in the stanup disk drive and press Apple­
Control-Reset to reboot the computer. The Apple IIGS Program Launcher should 
load from the disk. 

3. Press Return twice to launch APW. Wait until the APW command-line prompt-a 
number sign (#)-appears at the left edge of the screen. 

4. Execute the fullowing commands to copy the system files on the / APW disk onto 
your hard disk (subs.titute the volume name of your hard disk wherever you see 
hardisk): 

COpy -C / APW/ PRODOS /hardisk 
COpy -C / APW/SYSTEM /hard~k 

None of the APW files are copied from the / APW disk to your hard disk in response 
to these commands, but all of the system files that you need to make your hard disk 
self-booting, including the Apple IIGS Program Launcher program, are copied. 

5 . Use the Control Panel desk accessory to set the stanup slot so that the computer will 
boot from your hard disk. 

6. Remove the / APW disk from the disk drive and press Apple-Control-Reset to cause 
the machine to reboot from the hard disk. When you boot from the hard disk, you 
will get the Apple IIGS Program Launcher. Select and open the APW folder, and 
then select and open the file APW. SYS16 to launch APW. 

Updating APW 

If you have previously installed a version of APW on your hard disk, you can use the 
procedure described earlier in this chapter in the section "First-Time Installation," to replace 
it with the latest version of APW. Before you do so, however, consider the following 
points: 

• The installation routine assumes that you have a directory on your hard disk named 
/ hardisk/ APW. If not, it creates one and copies APW into that subdirectory. If APW 
on your hard disk is in a subdirectory named something other than / hard~k/APW, 
substitute that name in the installation procedure. 

• The installation procedure replaces the files SYSCMND, LOGIN, and SYSTABS in the 
APW/SYSTEM subdirectory. If you have customized any of these files, you should 
rename them before installing the new APW, and then either edit or replace the new 
versions of the files as appropriate. 

• You must have ProDOS 16 and System Loader Version 1.2 or later to TUn APW. To 
find out what version of ProDOS 16 and the System Loader you have on your hard 
disk, boot the disk. The version numbers are displayed on the screen while the load 
process is taking place. To replace the system files on your hard disk with more 
recent versions, follow either of the two procedures described earlier in the section 
"Making Your Hard Disk Self-Booting." 

APDADraft 22 7/27/87 



Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Adding Languages to APW 
When you obtain a new language compiler for your APW system. follow the procedure 
described in the manual that came with thaUanguage to install it Before you do so. 
however, considet the following points: 

• There are several files that may be replaced by the installation procedure. However, 
the versions of these files on your disk might contain infonnation that you do not 
want to lose. For example. the S YSCMND file might contain APW commands that are 
not included in the S YSCMND file of the new language. Before installing the new 
language, rename the following files so that they won't be overwritten during 
installation: 

APW/SYSTEM/SYSCMND 
APW/SYSTEM/SYSTABS 
APW/SYSTEM/LOGIN 

All of these files can be edited with the APW Editor. The structure and use of the 
SYSCMND file is discussed in the section "Command Types and the Command Table" 
in Chaptet 3. The SYSTABS file is described in the section "Setting Editor Defaults" 
in Chapter 4. The LOG IN file is discussed in the section "LOGIN Files" in Chapter 
3. 

• If the disks that come with the language do not include a complete APW system and 
you want to run APW from floppy disks. you will have to prepare an APW system 
disk for that language. The easiest way to prepare such a disk is to copy the /APW 
disk, and then delete the file LANGUAGES/ ASM65816 and the subdirectory 
LIBRARIES/AINCLUDE using the following commands: 

DELETE 5/ASM65816 
DELETE -C 2/AINCLUDE/= 
DELETE 2/AINCLUDE 

Place the new compiler in the subdirectory APW/LANGUAGES/ in place of 
ASM65816. Place any library files that came with the compiler in the subdirectory 
APW/LIBRARIES. 

• You must have ProDOS 16 and System Loader Version 1.2 or latet to run APW. To 
find out what version of ProDOS 16 and the System Loader you have on your disk. 
start up the computer using that disk. The version numbers are displayed on the 
screen while the load process is taking place. If the installation procedure replaces 
your system flles with older versions, you have to reinstall more recent versions. 

To replace the system files on your hard disk with more recent vetsions, follow either 
of the two procedures described in the section "Making Your Hard Disk Self­
Booting," earlier in this chapter. To replace the system files on a floppy disk with the 
ones on your /APW disk, use the following commands (substitute the volume name 
of your new disk wherever you see disk): 

COpy -C /APW/PRODOS /disk 
COpy -C /APW/SYSTEM /disk 

APDADraft 23 7/27/87 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's WorksJwp 

Booting Directly Into APW 

For your disk to boot directly into APW, the file APW. SYS16 must be the first system 
program in the root directory of your disk and there must be no file named START in the 
SYSTEM/ subdirectory. In this case there should be only one SYSTEM/ subdirectory on 
the disk, immediately under the volume directory. Both hard disks and floppy disks can be 
configured to boot directly into APW. You can launch any other program you wish from 
APW by typing in its pathname and pressing Return. 

Important: For the procedures in this section to work, APW. SYS16 must be the 
first system program (that is, program that ends in the extension. SYS16 or 
. S YSTEM) in the root directory of your disk. If there is another such file before 
APW. SYS 16, you must remove it or the disk will boot into that program instead. 

Hard Disk 

To make your hard disk boot directly into APW, use the following procedure: 

I. Turn on the computer and hard disk and use the Control Panel to set the startup slot 
to your floppy disk drive. See the section on the Control Panel in the Apple IIGS 
Owner's Guide. for instructions on setting the startup slot. 

2. Insert the copy you made of the / APW disk in the startup disk drive and press Apple­
Control-Reset to reboot the computer. The Apple IlGS Program Launcher should 
load from the disk. 

3 . Press Return twice to launch APW. Wait until the APW command-line prompt-a 
number sign (#)-appears at the left edge of the screen. 

4. Enter the following command (substitute the volume name of your hard disk 
wherever you see hardisk). Remember to press Return after each command that you 
type. 

INSTALL /APW / hardisk 

This command copies the APW files from your /APW disk into the volume 
directory on the hard disk. This will take several minutes. 

5 . Remove the / APW disk from your disk drive and insert the / APWU disk. 

6. Enter the following command. 

INSTALL / APWU / hardisk 

This command copies the files from your / APWU disk into the volume directory 
on the hard disk. This will take several minutes. 

7. If you have not already done so, make the hard disk self-booting by using either 
procedure described in the earlier section "Making Your Hard Disk Self-Booting." 

8. Use the following command to remove the START file: 

DELETE / hardisk/ sYSTEM/START 

9 . Use the Control Panel to set the startup slot to your hard disk drive. 

Your hard disk should now boot directly into APW. 

APDADraft 24 7127187 



Apple lIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Floppy Disk 

To configure a floppy disk to boot directly into APW, use the following procedure: 

I. Make a backup copy of your / APW disk as described in the earlier section "Backing 
Up Your APW Disks." 

2. Format a second floppy disk and name it / APW . BOOT. 

3. Insert the copy you made of the / APW disk in the startup disk drive and turn on the 
computer. The Apple IIGS Program Launcher should load from the disk. If it does 
not, make sure your Apple IIGS is set to boot from the disk drive you used (see the 
section on the Control Panel in the Apple lIGS Owner's Guide ). 

4. Press Return twice to launch APW. Wait until the APW command-line prompt-a 
number sign (#}-appears at the left edge of the screen. 

S. Place the / APW . BOOT disk in the second disk drive and enter the following 
commands. Remember to press Return after each command that you type. 

COpy -C /APW/PRODOS. /APW.BOOT 
COpy -C /APW/SYSTEM /APW.BOOT 
COPY -C /APw/APw/~ /APW. BOOT 
DELETE /APW.BOOT/SYSTEM/START 

The /APW. BOOT disk should now boot directly into APW. It will operate exactly as 
described for the / APW disk in the next section, "Running APW on Floppy Disks," except 
that the Program Launcher is not on the disk. 

Running APW on Floppy Disks 
You need at least two 800K disk drives to use APW: one to hold the / APW (or 
/ APW . BOOT) disk, and one to hold either the / APWU disk or a disk containing only the 
files you are working on. 

Important: Do not run APW from the original product disks. Make copies of 
your APW disks for everyday use, and put the original disks in a safe place. 

The / APW disk contains the Apple IIGS Program Launcher and a fully functional APW 
system, including the APW Assembler. This disk lacks only the help files and some of the 
APW utility programs. See Appendix A for a list of all the files on the / APW disk. The 
/ APWU disk contains a full set of utility programs plus the help files for all the APW 
commands. 

There are two ways to run APW on two 800K disk drives, as follows: 

• If you need an entire 800K disk for your program files, place /APW in the startup 
disk drive and the disk containing your files in the second drive, and then start up the 
computer. The Apple IIGS Program Launcher should load from the disk. Press the 
Return key twice to launch APW. You can now do anything described in this manual 
exceptconsu!t the oncline help files for APW commands or execute some of the utility 
programs. 

APDADraft 25 7127187 



Chapter 2: Using the Shell andEditor Apple llGS Pragrammer' s Workshop 

Note: To prepare an APW disk that boots directly into APW, follow the procedure 
in the section "Booting Directly Into APW," earlier in this chapter. 

• If your program fIles will fit on the /APWU disk, or if you need to use the help files or 
utility programs on that disk, · then launch APW as before and place the / APWU disk in 
the second disk drive. To cause APW to look on the / APWU disk for the help files 
and utility programs, enter the following command: 

MU 

If at any time you want to remove the / APWU disk and run AiJw exclusively from the 
/ APW disk, enter the following command: 

UMU 

The directory that is assumed when you do not specify a prefix in a patbname is called the 
current prefix. If the / APW disk is in your first disk drive and all your program fIles are 
on the disk in the second disk drive, you may wish to set the system to use a directory on 
your program-file disk as the current prefix. Use the APW Shell's PREFIX command to 
change the current prefix. For example, if yOIU' programs are in a subdirectory called 
/ APWU / MYPROGS / in the second disk drive, ,type the following command and press 
Return: 

PREFIX / APWU / MYPROGS 

Once you have set the current prefIX to that of your program disk, you need not include the 
prefIX in pathnames when executing commands. For example, if the current prefix is 
/ APWU / MYPROGS / , you could use the following command to obtain a directory listing of 
the subdirectory / APWU/MYPROGS / CSOURCE / : 

CATALOG CSOURCE 

Note: Do not include a slash (I) before the patbname when you omit the current 
prefIX from a pathname, or APW will look for a volume by that name. For 
example, if you typed CATALOG /CSOURCE in the preceding: example, you would 
get the message Volume not found. 

Prefixes used by APW are Illscussedin detail in the section "Using Prefix Numbers" later 
in this chapter. 

Keep the / APW disk in the first disk drive while you are running APW so that the system 
can have access to the APW.programs on that disk. 

Each time you start APW, it looks for a fIle named LOGIN in the APW system prefix 
(lAPw/ APW/SYSTEM/ LOGIN on the / APW disk, for example). The LOGIN fIle should 
have an APW language type of EXEC (see the section "Listing a Directory"later in this 
chapter). You can include any valid APW coinmand in this fIle. If it finds a LOG IN fIle, 
APW executesit before doing anything else. 

You can use a LOG IN fIle to set system defaults (such as the printer slot), to set the current 
prefix, to read a command table containing cotnmand-name aliases, or even to execute 
commands or utility programs. Examples of LOGIN files (and the procedures for creating 
them) are shown in the sections "Using Prefix Numbers" and "Using a Printer"later in this 
chapter. 

APDADraft 26 7127187 

. -. 



Apple IIGS Progr;ammer's Workshop Chapter 2: Uling the Shell and Editor 

You need not have a LOGIN flIe in yoW' system; if there is no LOGIN flIe, APW uses 
default settings for system parameters. . 

Running APW on a Hard Disk 
Once you have launched APW by selecting APW. SYS16 in the APW/ subdirectory on yoW' 
hard disk, all of the APW coIDIliands work exactly as they do on a floppy disk. The 
current directory is the APW / subdirectory on the hard disk. 

Your hard disk should have enough room on it to allow you to keep all of your APW flIes 
and yoW' program flIes on the same disk. To avoid confusion with APW system files, you 
should create one or more new subdirectories to hold your program files. Use the CREATE 
command to create a new subdirectory. To create the subdirectory MYFILES/ in the 
current prefix, for example, use the following command: . 

CREATE MYFILES/ 

Now to change the current directory to MYFILES/; you can use the following command: 

PREFIX MYFILES/ 

As discussed in the previous section, once you have set the current prefix to that of your 
program subdirectory, you need not include the prefix in pathnames when executing 
commands. 

The LOG IN file works on the hard disk just as it does on a floppy disk. Each time you 
select APW from the chooser or finder program, LOGIN is executed before the APW Shell 
prompt (#) appears on the screen. 

Shell Commands 
There are two main methods of sending commands to the APW Shell command interpreter. 
Either 

or 

• Type in any APW command on a sheIl command line and press the Return key. 
The shell is ready to accept a command when a number-sign (#) prompt appears at the 
screen's left edge followed by a solid-block cW'SOr. 

• Create a file of APW commands with the language type EXEC. When you enter the 
name of an Exec file as a command, APW executes the commands in the file as if they 
were typed from the keyboard. 

This section describes how to enter commands on a command line, but the rules presented 
here also apply to commands in Exec files. Exec flIes are described briefly in the section 
"Using Exec Files"later in this chapter and in detail in the section '\Exec Files" in Chapter 
3. 

APDADraft 27 7/27/87 



Chapter 2: Using the Shell and Editor Apple lIGS Programmer's Workshop 

Entering Commands 

APW requires every command to be entered in full, exactly as it appears in the list of 
commands you get when you type HELP and press Return (except that the command 
interpreter is not case sensitive). It is not necessary for you to type in the entire command, 
however; instead, you can type in the first letter or first few letters of the command and 
then press the Right Arrow key (-+). The shell consults the command table and prints out 
the full command name of the first command i.t finds thitt marches the letters you typed. 
For example, suppose you type the following command: 

co -+ 

The shell finds the first command name that begins with co in the command table, and 
prints the full commartd name: 

COMMANDS 

When you press Return, the entire command line is sent to the command interpreter 
regardless of the location of the cursor on the command line. 

If you like, you can add command aliases to the command table. For example, to make the 
shell recognize the command CMP as an alias for COMP ILE, add CMP io the colllIlllind table 
with the same command number-as COMPILE. See the section '.'Command Types and the 
Command Table" in Chapter 3 for' instructions on modifying the command table. You ((an 
also create temporary aliases for commands with the shell's ALIAS command. . 

You can use the line-editing commands in Table 2.1 when you are entering a command or 
modifying a previously entered command. 

Note: The APW Shell command interpreter is not case sensitive; that is, you can 
enter commands and ftlenames in any combination of uppercase and lowercase 
letters. Command examples are shown in uppercase letters in this book to help 
distinguish them from other text and because they are listed that way in the 
command table and help ftles. 

Table 2.1. Line-EditingCommands 

Command 
f-

-+ 
0-> or 0 -. 
0-< or 0 -, 
Delete 
0-Y or Control-Y 
O-E or Control-E 
O-Z or Control-Z 
Esc, Clear, or Control-X 
Return or Enter 

APDADraft 

Meaning 
cursor left 

cursor right 
end of line 
beginning of line 
delete character left 
delete to end of line 
toggle insert mode 
clear line and cancel command without saving changes 
clear line and cancel c"Ommand without saving changes 
save changes and execUte command 

28 7/27/87 



Apple lIes Programmer's Workshop Chapter 2: Using the Shell and Editor 

File Not Found and Other Errors 

When you type a command and press Return, APW fIrst checks the command table to see 
if it is a standard command. If the command is not in the command table, APW assumes it 
is the-name of an executable fIle and asks ProDOS 16 to-open a fIle' by that name in the 
current prefIx. If ProDOS 16 does not fInd a fIle by that name, the message 
ProDOS: File not found is printed on tI1e screen. TIlls message indicates that 
ProDOS 16 could not fInd a file with the name of the command you typed. Check the 
prefIx and spelling of yout command and trY again. 

The File not found enur can be confusing when you have al~o typed a pathname as a 
parameter for the command. For example, suppose that you want lo edit the file MYF ILE, 
and that you therefore enter the following command: 

ED MYFILE 

Unfortunately, ED is not a valid APW command (unless you have added it to the command 
table yourself or made it an alias for EDIT). APW looks in the command table for ED, 
doesn't fInd it, and calls ProDOS 16 to try to open a file named ED. ProDOS can't fInd the 
file, and the message File not found is printed on the screen. When you see this 
message, it is important to realize that the file that ProDOS 16 couldn't fmd is ED, not 
MYFILE. 

The File not . found message also appears when you attempt to execute the Paste 
command in the editor without fIrst executing a Copy or Cut command. When you execute 
the Paste command, the Editor looks for the file SYSTEMP in the work prefix; this .file does 
not exist, however, unless a Copy or Paste command has been executed first. 

A similar problem can occur if you remove your APW disk from the disk drive or change a 
prefix used by APW (see the section "Using Prefix Numbers" in this chapter) and then try 
to execute an external command (such as INIT) or to read a help file. In this case, 
ProDOS 16 cannot find the directory containing the utility progran;t or help file, and the 
message Vol ume not found or Path not found is printed to the screen. Again, it 
is important to realize that the volume or path that could not be found is the one containing 
the utility or help me, not one used in a parameter to the command. 

For example, if you execute the MU command to use the utility files on the / APWU file, and 
then remove the /APWU disk from the disk drive and enter the command DUMPOBJ 
MYFILE, ProDOS 16 cannot fInd the volume /APWU in order to load the DumpObj utility. 
In this case, the message Volume not found appears on the screen. 

Suspending Execution and Cancelling Commands 

In most cases when the shell lists text on the screen, you can cause the listing to pause by 
pressing any key: the Spacebar key is often convenient. You can use this feature, for 
example, to stop long catalog listings before they scroll off the ~en or to read text files 
that you list on the screen with the TYPE command. To continue the listing, press any key. 

APDADraft 29 7127187 



Chapter 2: Using the Shefl and Editor Apple IIGS Pmgliammer's Worlc$hop 

Most APW Shell conunands can be canceUedby ~ssillg Apple-Peri<?d (6-.). When a 
command prompts you for a filename, you can cancel the cominimd by pressing Return 
instead of entering a filename. 

Some prompts for shell commands require you to enter Y, N, or Q in ~Sc; (see. for 
example. the section "Using Wildcatd Charac\efS" later in this chapter). In thisCllSe. you 
can type Q and press Return to act on the files ,already selected and thenterminate,.the 
command, or ~ss Esc to cancel the command immediately without acting on any fIles. 
See the section "Using Wildcard Olatacters" later in this chapterJor an example of this 
feature . 

Scrolling Through Commands 

You can press the Up Arrow (t) and Down Arrow (!) keys to scroll through the last 20 
commands that you have entered. You can then modify a previous command and press 
Return to reenter it Each time you -enter or reenter a command, that command is appended 
to the 20-command list. 

To try out this feature. bootAPW and enter the command CATALOG to get a directory 
listing of the current directory (APw/). The directory listing includes the subdirectory 
UTILITIES /. To obtain a listing of this subdirectory, flI'St press the Up Arrow key. The 
command CATALOG reappears on the screen with the cun;or at the end of the command 
line. Type a space and the word UTILITIES. The command liRe now reads 
CATALOG UTILITIES. Press Return to get the directory listing. The command 
sequence is as follows (the colllIllllI1ds you type are shown in boldface): 

tCATALOG 

[press Return] 

[directory listing printed] 

tt 
tCATALOG UTILITIES 

[press Return] 

[directory listing printed] 

The UT IL I T IE S / subdirectory includes the subdirectory HELP / . Press the Up Arrow 
key again so that the command CATALOG UTILITIES reappears. Type /HELP (so that 
the command line reads CATALOG UTILITIES! HELP) rutdpress:Return. The HELP / 
subdirectory is listed. 

Now press the Up Arrow key ·again. Thecorrimand CATALOG UTILITIES/ HELP 
reappears. Press the Up-Arrow key another time. The command CATALOG -UTILITIES 
reappears. Press the Up-Arrow key once more to get thecommandcATIhl,OG again. The 
command sequence is as follows: 

# CATALOG 

APDADrajt 30 7/27187 



Apple lIGS Programmer's Workshop 

[press Return] 

[directory listing printed] 

#i 
'CATALOG UTILITIES 

[press Return] 

[directory listing printed] 

#i 
'CATALOG UTILITIES/HELP 

[press Return] 

[directory listing printed] 

ti 
#CATALOG UTILITIE.S/HELP i 
tCATALOG UTILITIES i 
#CATALOG 

Chapter 2: Using the Shell and Editor 

The 20-command list is circular; that is, once you have used the Up Arrow key or the 
Down Arrow key. 20 times to scroll through the 20 commands, pressing the same arrow 
key one more time returns you to the command you started with. Experiment with the 
command-line scrolling and with the line-editing commands in Table 2.1 for a while. You 
will find that these functions can save you a lot of time and frustration in entering long or 
complex commands. 

Entering Multiple Commands 

You can enter several commands on one line by separating each command from the 
preceding command with a semicolon. For example, to change the name of the file WHITE 
to BLACK and then open the fJIe for editing, type in the following command line and press 
Return: 

RENAME WHITE BLACK ; EDIT BLACK 

You can use this technique in Exec fJIes as well. 

Responding to Parameter Prompts 

If you enter an APW command that requires one or more parameters and do not include a 
required parameter, then APW prompts you for it. You are not prompted for optional 
parameters. For example, the following exchange shows what happens when you enter the 
RENAME command without parameters. The words shown in boldface are the ones you 
type in: 

APDADraft 31 7127187 



Chapter 2: Using the Shell and Editor 

RENAME 
File to rename: /APW/OLDNAME 
New name: /APW/NEWNAME 

APW prompts you for parameters in the sequence in wlili;h they, w:e shown in the col.JllI)alld 
descriptions in Chapter 3. For example, the RENAME comma!VheQ~s the current name 
of the file followed by the new name for the file, and that is the ooler in which you are 
prompted. 

If two parameters are required and you include only one, the shell always assumes that the 
first parameter was included and the second one was missing. For example, to change the 
name of OLDNAME to NEWNAME, you couId use the following command sequence: 

RENAME /APW/OLDNAME 
New name: /APW/NEWNAME 

If a wildcard character is allowed in the conunand line, you can use one in response to the 
prompt. Wildcard characters are described in the section "Using Wildcard Characters" in 
this chapter. 

Since you are not prompted for optional parameters, there are some operations you cannot 
carry out by simply responding to prompts. For example, jf you do not include any 
parameters after the COpy command, you are prompted for the ruename of the file to copy. 
However, since the target pathname is not a required parameter, you are not prompted for 
it. If you do not include the target pathname on the command line (or on the same line as 
the source filename in response to the File' Name prompt),then the current prefix is 
always used as the target directory (and the filename is not changed). The following 
example shows what happens when you include only the parameters for which you are 
prompted when using the COpy conunand: 

COpy 
Source file name: MYFlLE 
File exists-replace it? 

Since you used the current prefix for MYF I LE, and the current prefix is also assumed for 
the target directory (because no target directory was specified), APW asks if you want to 
replace an existing file. To replace the, rue,.type Y and press Return. To provide a new 
filename, type N and press Return. The following prompt appears.: 

New name: 

Type the new name for the file and press Return. 

You can include both the source file and the target directory in response to the prompt, as in 
the following example: 

COpy 
Source file name: MYFILE /MYPROGS/CSOORCE 

In this case, the file narned MYF ILE in the current prefix is copied to the directory 
/MYPROGS / CSOURCE/. ' . ,' " " 

APDADraft 32 7127187 



Apple JIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Important: Some commands, such as the COpy command, are used in examples 
and instructions given in this chapter. These examples do not show all of the ways 
in which the commands can be used. If you have trouble using any command, see 
the complete description of that command in Chapter 3. 

Pathnames 

Under ProD OS 16 on the Apple liOS, each disk (or RAM disk) has a name, called a 
volume name, and a directory of files on that disk (technically, a disk can contain more 
than one volume, but this is hardly ever the case). Among the fIles in the volume directory 
can be other directory files, which catalog the contents of subdirectories. 

Note: Although a directory or subdirectory is actually a file on the disk, in the 
following discussion the wordfi/e refers only to the program file or text file that we 
are using the patbname to specify. 

When you specify a fIle in an APW command, as when indicating which fIle to edit or 
utility to execute, you must specify the fIle's pathname. A patbname consists of a string 
of names, each preceded by a slash (I). The first name in a full pathname is the name of 
a volume directory. Successive names indicate the path, from the volume directory through 
any subdirectories to the file, that ProDOS 16 must follow to find the fIle. A partial 
pathname is a portion of a patbname; it must include the fIlename, and may include one or 
more subdirectory names. A partial pathname does not include the volume name and does 
not begin with a slash. A prefix is that part of the pathname that is left over when you 
remove the partial patbname: it begins with a slash and the volume name, and can include 
one or more subdirectories. The prefix does not include the filename. 

Assume, for example, that you want to edit a fIle called 

/ APW/MYPROGS / C.SOURCE / GOODSTUFF 

The filename is GOODSTUFF. There are two possible partial pathnames for this file, as 
follows: 

C.SOURCE/ GOODSTUFF 
MYPROGS/C.SOURCE / GOODSTUFF 

There are three possible prefixes for this fIle, as follows: 

/ APW/ 
/APW/ MYPROGS/ 
/ APW/MYPROGS / C.SOURCE/ 

As described in the following sections, you can use partial pathnames, prefix numbers, 
device names, and wildcard characters when specifying a pathname in APW. 

Using Partial Pathnames 

When you execute an APW command that requires a pathname, you can enter the full 
patbname or a partial pathname. If the patbname in the command does not begin with a 
slash (I), APW assumes that a partial pathname is being used and places the current prefix 

APDADraft 33 7/27/87 



Chapter 2: Using the Shell and Editor Apple lIGS Programmer's Workshop 

in front of the pathname in the command. When you fIrst launch APW from a chooser or 
fInder, the current prefIx is set by the chooser or fInder; it is typically the subdirectory 
containing the chooser or fInder program. If you use a self-booting disk, the current prefIx 
is the subdirectory containing the fIle APW. SYS16. You can change the current prefIx at 
any time with the PREF IX command. 

For example, when you boot APW from the 3.5-inch disk that came with the system, the 
current prefIx is set to / APW /, the name of the boot volume. In this case, the following 
two commands are eqnivalent: 

CATALOG /APW 
CATALOG 

The current prefIx can include as many levels of subdirectories as you wish (within the 64-
character limit on the length of pathnames set by ProDOS 16). For example, if you are 
working on a hard disk you might set the current prefIx to /HARDISK/ APW/. In this 
case, the following two commands are equivalent: 

CATALOG /HARDISK/APW/MYPROGS 
CATALOG MYPROGS 

Note: Do not include a slash (!) before the pathname when you omit the current 
prefIx from a pathname, or APW will look for a volume by that name. For 
example, if you typed CATALOG /MYPROGS in the preceding example, you would 
get the message Volume not found. 

You can "back up" one directory level from the current prefIx by starting the partial 
pathname with two periods ( .. ). For example, if the current prefIx is / HARDISK/ APw/, 
you-could use either of the following two commands to edit / HARD ISK/MYF I LE: 

EDIT /HARDISK/MYFILE 
EDIT " /MYFILE 

Because APW uses standard prefIxes to frod the APW system fIles it needs, APW 
commands and utilities continue to work correctly when you change the current prefix. For 
example, when you execute the MAKELIB command on a standard APW floppy disk, 
APW loads the me / APW/UTILITIES/MAKELIB, no matter what the current prefix is 
set to. The prefIxes that APW searches for APW system fIles can also be changed with the 
PREF IX command, as discussed in the next section, the section "Standard PrefIxes" in 
Chapter 3, and the description of the PREF IX command in Chapter 3. 

Using Prefix Numbers 

ProDOS 16 provides eight prefIx numbers that can be set to specifIc prefIxes. Prefix 0 is 
the current prefIx. APW uses prefIxes 2 through 6 to detennine where to search for certain 
files. Program launchers, including APW, set prefix Ito the prefIx of the last program 
executed. The prefIxes are set to the default values shown in Table 3.1 when you start 
APW. You can change any of the ProDOS 16 prefIxes with the PREFIX command, as 
described in the section "PREFIX" in Chapter 3, and you can include PREFIX commands 
in the LOG IN fIle, as illustrated at the end of this section. 

APDADraft 34 7127187 

"--. 



Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

The ProDOS 16 prefix numbers can be used instead of prefixes in pathnames.For 
example, if you set prefix 7 to / APW/ MYPROGS / , you can specify the pathname of 
/APW/ MYPROGS / C. SOURCE / GOODSTUFF as follows: 

7 / C.SOURCE/ GOODSTUFF 

Similarly, you could get a directory listing of the sulxlirectory / APW/MYPROGS / by using 
the following command: 

CATALOG 7 / 

You can "back up" one directory level from any prefIX by using two periods C •• ) after the 
prefix name or number. For example, if the system prefIX is / HARDISK/APW/ SYSTEM, 
you could use any of the following two commands to edit / HARDISK/ APW/ MYFILE: 

EDIT /HARDISK/APW/ MYFILE 
EDIT / HARDISK / APW/ SYSTEM/ .. ·/ MYFILE 
EDIT 4/ . • / MYFILE . 

Each time you restart your Apple llGS, ProDOS 16 retains the volume name of the boot 
disk. You can use an asterisk CO<) in a pathname to specify the boot prefIX in some 
commands. For example, if you booted the Apple llGS from a disk named / CHOOSER/ , 
and then started APW, you could edit the file / CHOOSER/SYS. UTIL by using the 
following command: 

EDIT */SYS . UTIL 

You cannot change the volume name assigned to the boot prefix except by rebooting the 
sysfem. 

You can put prefIX assignmen~s in your LOGIN file. For example, suppose you have all of 
your APW languages and your program files on a disk named / APW. LANG. The 
following procedure creates a LOGIN flle on your APW disk that sets the language prefix 
(prefIX 5) to the LANGUAGES / sulxlirectory on the / APW . LANG disk and that sets prefIX 7 
to the sulxlirectory / MYPROGS on that disk. 

1. Make sure your APW backup disk: is not write protected, put it in your startup disk 
drive, and boot APW. 

2. Type the following commands (press the Return key after each command): 

EXEC 

EDIT 4 / LOGIN 

3. You are now in the editor. If there is already a LOG IN file on your disk, it should be 
open on the screen; if not, the screen shpwd be blank except for the ruler and status 
lines at the bottom of the screen. Type the following lines, ending each line with a 
Return. You can use the arrow keys to move around in the file, and the Delete key 
to correct mistakes. 

PREFIX 5 / APW . LANG / LANGUAGES 
PREFIX 7 / APW . LANG / MYPROGS 

APDADraft 35 . 7127187 



Chapter 2: Using the Shell and Editor Apple IlGS Programmer's WorksJwp 

4. Press d-Q. When the editor's Quit menu appears, press S to save the file, then E to 
return to the shell. 

5. To test the setup, reboot APW, and then enter the following command: 

SHOW PREFIX 

The response should be as follows: 

System Prefix: 

Number 

* 
o 
1 
2 
3 
4 
5 
6 
7 

Name 

/ APW/ 
/APW/ 
/APw/ 
/APW/LIBRARIES/ 
/ APw/ 
/APW/ SYSTEM/ 
/APW.LANG/LANGUAGES 
/ APW/UTILITIES/ 
/APW.LANG/MYPROGS 

Using Device Names 

ProDOS 16 assigns a device name to each I/O device currently on-line. Use the SHOW 
UNITS command to obtain a list of the device names and the ProDOS volwnes currently in 
those devices. 

For example, suppose you have a hard disk attached to a controller board in slot 7, two 
800K disks attached to the built-in smart port and a RAM disk on-line. The SHOW UNITS 
command gives the following response (words shown in boldface are the ones you type 
in): . 

SHOW UNITS 
Units Currently On Line: 

Oevice 

.01 

.02 

.03 

.04 

. CONSOLE 
• PRINTER 

Name 

/ HARDISK 
/APW 
/RAM5 
/ MYPROGS 

Only those devices that contain fonnatted ProDOS disks are shown by the SHOW UNITS 
command. For example, if you removed the disk from your first 800K disk drive and 
repeated the command, you would get the following response: . 

APDADraft 36 7/27/87 



Apple IIGS Programmer's Workshop 

SHOW UNITS 
Units Currently On Line: 

Device 

.D1 

.D3 

.D4 

. CONSOLE 

. PRINTER 

Name 

/HARDISK 
/RAM5 
/MYPROGS 

Chapter 2: Using the Shell and Editor 

You can substitute a device name anywhere you would have used a volume name. For 
example, to get a directory listing of the subdirectory /MYPROGS/CSOURCE, you could 
use the following command: 

CATALOG .D4/CSOURCE 

The names . CONSOLE and. PRINTER can also be used as device names. The device 
name. CONSOLE represents the keyboard for input and the screen for output. The device 
name . PRINTER can be used to redirect output to a printer. See the section "Redirecting 
Input and Output" in Chapter 3 for information on redirection. 

Using Wildcard Characters 

Many of the APW commands allow you to substitite a special character, called a wildcard 
character, for one or more of the characters in a filename. APW recognizes two wildcard 
characters: the equal sign (-), and the question mark (?). The difference between these 
two characters is that if you use the question mark, then each time APW finds a match for 
the character it pauses and asks for confirmation before carrying out the command, whereas 
if you use the equal sign, APW carnes out the operation without asking for confirmation. 

For example, suppose you want to write-protect every file in a directory called 
/APW/MYFILES. The command DISABLE W pathname write-protects the file specified 
by pathname. To write-protect these files, use the following command: 

DISABLE W /APW/ MYFILES / = 

If you were deleting files rather than write·protecting them, on the other hand, it might be a 
good idea to double-check each match before letting APW delete it. To delete files in the 
directory /APW/ MYFILES/ that have the extension. BKUP, with APW asking for 
confirmation before deleting each ftle, use the following command: 

DELETE / APW/MYFILES/?BKUP 

Each time APW finds a filename in the directory /APW/MYFILES that ends in . BKUP, it 
writes the name of the fIle to the screen. A cursor appears after the filename. To indicate 
that this file should be deleted, type Y (for yes) and press Return. To indicate that the file 
should not be deleted. type N (for no) and press Return. In either case, when you press 
Return, the shell looks for the next match. If no further matches are found, it deletes the 
indicated files. To delete the indicated files and quit without looking for the next match, 
type Q (for quit) and press Return. No flies 'are deleted until all matches have been found 
or until you type Q and press Return. 

APDADraft 37 7127187 



Chapter 2: Using the Shell and Editor Apple lIGS Programmer' ~ Workshop 

Important: Typing Q does not terminate the command without acting on the 
selected fIles. When you type Q and press Return, APW stops looking for new 
matches to the wildcard filename and acts on all the fIles for which you have already 
responded by typing Y. To terminate the command without deleting any files, press 
Esc. 

You can specify as many or as few characters with a wildcard character as you wish. For 
example, the fIlename specification MY=ILE would match the names MYFILE, MYBILE 
and MYOWNFILE. You can use more than one wildcard character in a single fIlename. For 
example, =YF?LE would match MYFILE, MARYFILE, and MYFOOLE. You can use both 
equal signs and question marks in a fIlename specification, but as long as at least one 
question mark is present, APW stops and· waits for conf'mnation for every match. 

You cannot use wildcard characters for pathnames of directory fIles or for the directory 
portion of a pathname (that is, the prefix). In addition, with certain commands you cannot 
use wildcard characters in fIlenames at all. For example, you cannot use wildcard 
characters in the ASSEMBLE command or in the second fIlename of a RENAME command. 

Some commands accept wildcard characters but use only the first filename matched. For 
example, if you use a wildcard character for the first fIlename of a RENAME command, only 
the first fIle matched is renamed. If you use a question mark (?) in such a case, however, 
and respond N to the first fIle matched, then the next match is offered, and so forth until 
you accept one. The following sequence illustrates this feature. The words shown in 
boldface are the ones you type in: 

RENAME /APW/MY?ILE 
/APW/MYFILE 
/APW/MYBILE 

/APW/YOURFILE 
N 
Y 

In this example, the file MYFILE is left unchanged, and the fIlename MYBILE is changed 
to YOURFILE. 

Using Help Files 

APW includes a help fIle for each APW command. To obtain a listing of the APW 
commands, use the HELP command with no parameters. To display a help fIle on any 
command, use the HELP command with the command name as a parameter, as follows: 

HELP command 

Here command is the name of the command for which you need help. The help file for 
each command includes the command syntax, a brief command description, and a list of the 
required and optional parameters for the command, 

The APW help fIles are all contained in the HELP / subdirectory in the utilities prefix 
(prefix 6). Because they are standard ASCII text files, you can edit them if you wish. If 
you add an alias for a command to the command table, you might want to copy the help fIle 
for the command to a file with the alias command name. For example, if you create the 
alias CMP for the COMPILE command, use the following command to make a help fIle for 
CMP: 

APDADraft 38 7/27/87 



Apple llGS Programmer's Workshop Chapter 2: Using the Shell and Editor , 

COPY /APW/UTILITIES/HELP /COMP ILE /APW/UTLITIES/HELPICMP 

After you execute this command, there are two copies of the same help file in the HELP / 
subdirectory: one named COMP ILE, and one named CMP. You can then edit the CMP file 
to change the command name in the file from COMP ILE to CMP. 

Note: The HELP command does not show aliases created with the ALIAS 
command. Enter AL lAS to list all the aliases currently in effect 

Listing a Directory 

To obtain a listing of the files in a directdry. use the CATALOG command. For example. to 
get a listing of the contents of the /APw/ directory, enter 

CATALOG / APW 

Note: The CAT command is an alias for the CATLOG command; therefore the 
command CAT / APW also provides a listing of the contents of the / APW / 
directory. 

The directory listing for your program subdirectory might look something like Figure 2.1. 

/APW/MYPROGS/-

Name Type Blocks Modified Created Access Subtype 

MYSYSTEM S16 30 9 NOV 86 09:14 18 SEP 86 13:12 DNE R 
ABSPROG EXE 8 12 APR 86 11:02 4 MAR 86 03:01 NSWR 
ABS.SOURCE SRC 9 13 APR 86 18:18 4 MAR 86 03:19 DNSiiR A5M65816 
C.50URCE SRC 5 26 MAR 86 07 :43 29 FEB 86 12:34 DNBWR C 
COMMAND. FILE 5RC 1 9 APR 86 19:22 31 MAR 86 04 22 DNBWR EXE 
ASS.OBJECT OBJ 8 12 NOV 86 15:02 4 MAR 86 14:17 NBWR 
TEXTFILE TXT 1 24 DEC 85 24:59 24 DEC 85 11: 14 DNBWR 

Blocks Free: 1538 . Blocks Used: 62 Total Blocks; 1600 

Figure 2.1. Directory Example 

The fields in the directory listing are defined as shown in Table 2.2. 

APDADraft 39 7127/87 



Chapter 2: Using the Shell and Editor Apple lIas Programmer's Workshop 

Table 2.2. Fields in a Directory 

Field Meaning 

Name The name of the file. Names ate not case sensitive. 

Type The ProD OS 16 file type. ProDOS 16 file types ate described in the 
Apple IIGS ProD OS 16 Reference manual. The file types most commonly 
used in APW are as follows: 

Blocks 

D IR directory file (type $OF) 
EXE load fIle that runs under a shell program (type $B5) 
LIB library file (type $B2) 
OBJ APW object fIle (type $Bl) 
S 16 load file that runs independently of any shell program (type $B3) 
SRC APW source file (ProDOS 16 file type $BO) 
STR startup load file (type $B6) 
TXT ASCII text file (type $04) 

A more complete list of ProDOS 16 file types is given in Table 3.4. 

The number of blocks on the disk occupied by this file, including the blocks 
used by the fIle system. A block is 512 bytes. 

Modified The last date and time at which this file was modifIed. 

Created The date and time at which this file was fIrst created. 

Access Each of the letters in this list represents one of the ProDOS 16 access 
privileges, as follows: 

Subtype 

D "Delete" privileges. If you disable this attribute, the file cannot be 
deleted. 

N "Rename" privileges. If you disable this attribute, the file cannot be 
renamed. 

B "Backup required" flag. If this attribute is disabled, a backup utility 
assumes that the fIle has not been changed since the last time it was 
backed up. There is no AF?W command that disables this attribute. 

W "Write" privileges. If you disable this attribute, the fIle cannot be 
written to. 

R "Read" privileges. If you disable this attribute, the file cannot be 
read. 

Use the ENABLE and DISABLE commands to set and cleat these attributes. 

For an absolute load fIle, this fIeld shows the memory address at which the 
file is loaded when you run it. For an APW source fIle, this fIeld shows the 
APW language type. 

You can use the CATALOG command to get a complete listing of any subdirectory, to get 
catalog information on an individual file, or, with wildcatd chatacters, to list a specifIc 
subset of fIles on a subdirectory. For example, to list all of the fIles in the current directory 
that begin with MY and end in . PAS, use the following command: 

CATALOG MY=.PAS 

APDADraft 40 7/27/87 

\ 



Apple lleS Programmer's Workshop Chapter 2: Using the Shell and Editor 

You can use device names to list the directory on a volume even if you don't know the 
name of the volume. For example, to list the files in the second disk drive attached to your 
system, use the following command: 

CATALOG .D2 

To get information about a file named MYFILE in the subdirectory /APW/MYFROGS/, use 
the following command: 

CATALOG /APW/MYPROGS/MYFILE 

You can also use the Files utility to list directories. The Files utility can list all of the files 
in a directory, including the contents of all subdirectories; it can list filenames in several 
columns on the screen; and it can search for filenames that include a string that you specify. 
The Files utility is described in detail in Chapter 3. 

The Editor 
The Apple IIGS Programmer's Workshop Editor is a full-screen text editor, with 
considerable text-manipulation facilities. You can perform the following functions while in 
the editor: 

• delete text 

• copy text 

• move text 

• search for a text string 

• search for a text string and automatically replace it with another string 

• jump from one position in the file to another 

• scroll the screen down or up 

• set and clear tab stops 

• restore accidentally deleted text 

• define and use macros of editor keyboard commands 

You control the editor with keyboard commands. All of the editor's features are described 
in detail in Chapter 4. This section provides a brief introduction to the use of the editor. 

Calling the Editor 

To call the editor, use the following command: 

ED IT pathname 

Here pathname is the full or partial pathname of the file you wish to edit. The file you 
specify in the EDIT command is opened; if the file does not already exist on the disk, a 
new file with that name is opened. 

APDADraft 41 7127187 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

Language Types 

Every APW file has an APW language type. If you open a new file, it is given the current 
APW language type, whereas if you open a preexisting fIle, APW's current language 
changes to match the language type of that fIle. 

You can also change the current language by entering as a comniand the name of the 
language you wish to use. You can change the APW language type of any existing APW 
source fIle with the CHANGE command, described in Chapter 3. 

Each language compiler, assembler, interpreter, text fo=atter, or linker you add to APW 
has a language name that can be assigned to a fIle. To get a list of the languages defined in 
your system, use the command SHOW LANGUAGES. Commonly used APW language 
types are shown in Table 2.3. A more complete list of currently assigned APW language 
types isgiven in Appendix B. 

Table 2.3. Commonly Used APW Language Types 

Language Type Meaning 

EXEC An APW command fIle 

TEXT An ASCII text file (ProDOS 16 fIle type $Bl) 

PRODOS An ASCII text fIle (ProDOS 16 fIle type $04) 

ASM65816 APW 65816 assembly-language source code 

CC APW C source code 

LINKED APW Linker command fIle 

Opening and Saving a File 

Use the following procedure for opening and saving a new file named MYFILE: 

1. Enter as a command the language type you want to use for the file by typing the 
name of the language and pressing Return. For example, if you want to create a C 
source file, enter 

CC 

Note that if the new file is the same language type as the last file edited, you can skip 
this step. Use the SHOW LANGUAGE command to find out what the current 
language is set to. 

2. Type EDIT MYFILE and press Return. The editor opens a new file, named 
MYFILE. 

3. Press Control-Q or Apple-Q. The editor's Quit menu appears on the screen. Press 
S to save the file and E to exit the editor. 

Using the Editor 

The APW Editor allows you to enter and modify source files for all APW programming 
languages, and to write text ftIes with the APW TEXT language type or with the 

APDADraft 42 7127187 



Apple lies Programmer's Workshop Chapter 2.' Using the Shell and Editor 

ProDOS 16 standard text-file type. The editor provides a full range of editing functions, 
described in detail in Chapter 4 and summarized in Appendix B. In this section, enough 
commands are described to get you started using the editor. 

When you press the Esc key, the editor enters a special mode called escape nwde. You can 
cause a command to be repeated automatically up to 32767 times while in escape mode by 
typing the number of repetitions after you press the Esc key and before you execute the 
command. For example, to scroll down 10 lines, type Esc 10 Apple-P. If it is impossible 
for the editor to repeat the command as many times as you specify, it repeats it the 
maximum number of times possible. 

To exit escape mode, press the Esc key again. 

To get started using the editor, use the commands shown in Table 2.4. Note that (as 
shown in Chapter 4 and Appendix B) there are alternate key combinations for several of 
these commands; only one key combination is shown for each command here for the sake 
of simplicity. 

Note: Screen movement descriptions in this manual are based on the direction the 
display screen moves through the file, not the direction the lines appear to move on 
the screen. For example, if a command description says that the screen scrolls 
down one line, it means that the lines on the screen move up one line, and the next 
line in the file becomes the bottom line on the screen. 

APDADraft 43 7127187 



ChQpw 2: Us,ing the Shell and Editor Apple JIGS Programmer's Workshop 

Til.We .~,!I,13asic Editor Commands 

Command Key Action 

Help <1-1 Display the editor's help file. Use the Cursor Movement, Top of 
Screen/Page Up, and Bottom of Screen/Page Down commands to move 
througb the help file. Press Esc, Return, or Enter to return to your file. 

Cursor Movement t J. ~ ~ Move the cursor. Use the arrow keys to move the cursor around on the 
screen. 

Top of Screen 
/Page Up 

Bouom of Screen 
/Page Down 

Toggle Insert 
Mode 

Tab 

Set apd Clear 
Tabs 

Scroll Down 
One Line 
Scroll Up 
OneUne 

Clear 

Delete Character 
Left 

Undo Delete 

APDADrqft 

<1-t 

<1-J. 

<1-E 

Tab 

<1-Tab 

<1-P 

<1-0 

G.Delete 

Delete 

<1-Z 

Move the cursor to the top of the screen. If the cursor is 
already at the top of the screen, the entire screen is scrolled up one page 
(that is, one screen's height). 

Move the cursor to the bottom of the screen. If the 
cursor is already at the bottom of the screen, the entire screen is scrolled 
down one page. 

Change the editor to overstrike mode if insert mode is active; 
change the editor to insert mode if overstrike mode is active. In insert 
mode, each character you type is inserted in the line of text at the cursor 
position; any characters to the right of the cursor are pushed to the right 
to make room. In overstrike mode, each new character replaces the 
character the cursor is on. 

Press this key to move the cursor to the next tab stop. If you enter text 
after pressing Tab, or if you are in insert mode, spaces are inserted in 
.the line up to the tab stop. No tab character (ASCII code $09) is 
inserted in the file. 

If there is no tab stop at the cursor position, one is 
added. If there is a tab stop at the cursor position, it is removed. The 
default locations of tab stops depend on the APW language type as 
described in the section "Setting Editor Defaults" in Chapter 4. 

Use this command to scroll the screen down one line. 

Use this command to scroll the screen up one line. 

Mter pressing this key combination, use any of the cursor-movement 
or screen-scroll commands to mark a block of text (all other commands 
are ignored), then press Return. The selected text is deleted from the 
file. To cancel the Clear operation without deleting the text from the 
file, press Esc instead of Return. 

Press this key to delete the character to the left of the 
cursor. 

This command restores at the cursor position the last text deleted from 
the file. If the cursor has not been moved, the file is restored to its 
state before the delete. The undo buffer acts as a stack, so multiple 
Undo Delete operations are possible. TIlis command does not undo a 
Clear operation. 

44 7127187 



Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Table 2.4. Basic Editor Commands (continued) 

Copy (l-C After pressing this key combination. use cursor-movement or screen­
scroll commands to mark a block of text (all other commands are 
ignored). then press Return. The selected text is written to the file 
SYSTEMP in the work prefix (prefix 3). (To cancel the Copy operation 
without writing the block to SYSTEMP, press Esc instead of Return.) 
Use the Paste command to place the copied material at another position 
in the file. 

Cut (l-X 

Paste ~-v 

Search Down (l-L 

Search Up ~-K 

APDADrajt 

After pressing this key combination. use cursor-movement or screen­
scroll commands to mark a block of text (all other commands are 
ignored), then press Return. The selected text is written to the file 
SYSTEMP in the work preflX and deleted from the file you are editing. 
(To cancel the Cut operation without cutting the block from the file. 
press Esc instead of Return.) Use the Paste command to place the cut 
text at another location in the file. 

The contents of the SYSTEMP file are copied to the current cursor 
position. 

This command allows you to search through a file for a character or 
string of characters. Enter the search string in response to the prompt 
at the bottom of the screen. Searches are not case sensitive, and they 
include aU occurrences of the string, whether it is imbedded in.a longer 
string or not. 

When you press Rerum, the editor looks from the cursor position 
toward the end of the file for the search string. If the string is found, 
the screen is moved so that the next occurrence of the string is on the 
top line with the cursor placed on the first character of the target string. 
The search stops at the end of the file. 

This command operates exactly like Search Down. except that the editor 
looks for the search string staning at the cursor and proceeding toward 
the beginning of the file. The search stops at the beginning of the file. 

45 7127187 



Apple IIGSProgra77l1lUir':; Wurksh'1p 

1)J.:~~. ~c1.Ediror' CPInmands (continued) 
Sea!i;h~ el-J Thisconunand allows you to search through a file for a 
ReP.l3re~wn Char;lcler or string of characters and to replace the search string with a 

repJat:en\el!t suing. Enter the searCh ana repJacesttings in ~Se 10 
il>e:Pfompiut,iI1ecboilOlD df the screen. Si:ari:hesare not caSe 
Se~itive,8I\dtheyjnclude all occurrences of the'string, whether itis 
e/ltbeddw. in.a longer string. or not 

Search-and 
Rep~llP . , . . 

Quit 

el-H 

When you enter the 'Replace string and press Return; the'prompt 
Au.to or Manilal (A M Q)? appears. 

Type A and press Return 10 cause ·alloccurrences oUhe search string 
.fJ:Ofti the ~r positiOn ro the end oflhefile'·lObe repl:iced .. 
ruitomatlcally. ThectirsOr returns tb thestaning'point when the 
r~tisdone. 

If:you type'M and press Return, then when the search string· is found, it 
is highlighted on the top line of the screen· and the prompt 
Replace'('{ N 'Q) ? ·appemsattheboumnofthe .screen. Type '{ to 
replace the string and search for the next occurrence; N· 10. leave this 
oi:cUirence of the string IiDchanged and sealclrfor .the next occurrence; or 
Q toil:a,:e. tile string Wlchangedand terminate the S",!,ch andRep18ce 
Oi'#;IllotJ.1'ress Returil' tOexecutethe command. When the operation 
is:6)iiSiied, ihecursOi' returns to its stanirig,pOint. . 

'fype.Q·an.dpress Return in response 10 the 
AU-tO or Man.ual PfOl)lptt01el1ninate.the Search andRepJace 
Ql!e(lltiOli:anllreturn to theme you.ate editing. . 

. , 

Wl\enYOUl!llter a replacement string and press Aor M,.the editor loots 
fuin'l'!heCutsor'posi!ioolOward theend·oLthefile :fOr the searCh string. 
"Elie 'searChstop&atthe end.ofotheftle. .. 

This'command operates exactly like Search and·Replace 
DOwn, excePt that the editor looks for the sea.-thstrih.&.startlng at the 
cm.SQr.aiI.d]XOCeedingtoward .the beginriing-ilf'the 'file. . The search . 
S!<JI}Sat ·thehegirining of the me. 

This command c;ills the Quit menu, which allows you 10 save the me, 
savethe'f.Jetoa.new name, open a newifiie. Or·quit the editor and 

.~ IOtbe shell. See Chapter 4 fOra complete descriptionofan the 
oPtions. 

46 7[27.1.87 

..-~. 



Apple IIeS Programmer's Workshop · Chapter 2: Using the She}1 ~.nd Editor 

As you become familiar with APW, you can study Chapter 4 to learn the full capabilities of 
the editor and the fastest way to obtain results. Advanced features described in Chapter 4 
include the following: 

• Editor macros: a macro allows you to substitute a single keystroke for up to 128 
predefined keystrokes. A macro can contain editor commands and text 

• Editing modes: the operation of the editor depends on several modes that can be 
toggled between different states. Each APW language has a default setting for each 
mode. You can toggle the modes while in the editor, and you can change the default 
setting for any language (see the section "Setting Editor Defaults" in Chapter 4). 

• Additional commands: in addition to the commands mentioned here, there are several 
more commands for moving around iIi the file and manipulating text. 

Using a Printer 
You can send to a printer any APW output that would normally go to the screen. To 
redirect output to the printer, use the output redirection operator, >, anywhere on the 
command line. For example, to send a listing of the directory /APW/ MYPROGS/ to the 
printer, use the following command: 

CATALOG /APW/MYPROGS >.PRINTER 

See the section "Redirecting Input and Output" in Chapter 3 for more information on 
sending output to the printer. 

You can use this redirection facility together with the TYPE command to print out the 
contents of a text file, as follows: 

TYPE pathname >. PRINTER 

Here pathname is the full or partial pathname, including the filename, of the ftle you want 
to type. 

Default Printer Settings 

By default, APW 

• attempts to print from a printer connected to slot 1 

• sends a form-feed command to the printer after every 60 lines 

• does not add a line feed after a carriage return 

• does not count the characters in each line 

• does not send an initialization string when you direct output to the printer. 

You can use the following commands to oveni.de these defaults: 

SET PRINTERSLOT slotnum 

SET PRINTERINIT string 

APDADraft 47 7127187 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

SET PRINTERLINES linenum 

SET PRINTERLINEFEED value 

SET PRINTERCOLUMNS colnum 

Where: 

slotnum The number of the slot containing your printer-driver PC board (an ASCII 
number from 1-7) . 

string 

APDADraft 

The default value for slotnum is 1, the built-in printer port on the Apple 
IIOS. 

Important: If you specify the wrong slot number, the printer 
initialization string and output data are sent to the wrong slot, with 
consequences that depend on the device assigned to that slot. For 
example, the system might hang or reset. 

The initialization string to be sent to your printer each time you send text to 
the printer. Use this string to set the printer options you want to use, such 
as character pitch, print quality, line spacing, or boldfacing. Precede a 
character with a tilde (-) to indicate a control character. Precede a character 
with a number sign (jf) to indicate that the next character should have the 
most significant bit set. Precede the tilde with a number sign to indicate a 
control character with the most significant bit set. 

To specify the number-sign character ($23), use the sequence -i. To 
specify the tilde character ($7E), use the sequence --. To specify the tilde 
character with the most significant bit set ($FE), use the sequence jf--. A 
space is interpreted as a space character, $20. 

Important: The shell does no error checking on the initialization 
string. If you specify an illegal control character, the shell subtracts 
$40 from the character and sends it to the printer anyway. For 
example, if you specify -g, the shell sends $27 to the printer. 

The following command sends the string "Control-L Esc a 2" to the 
printer: 

SET PRINTERINIT -L-[a2 

For an Apple lmageWriter™ II printer, this string feeds the paper to the next 
top-of-form position and sets the printer to near-letter-quality mode. 

The following command sends the sequence $18 $44 $80 $00 to the 
printer: 

SET PRINTERINIT -[Djf-@-@ 

For an Apple lmageWriter II printer, this sequence adds an automatic line 
feed after every carriage return. 

See the manual that came with your printer for the options available and the 
codes necessary to set them. 

48 7127187 

-'-, 



Apple lIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

Important: If you are using a parallel interface card to connect a 
parallel printer to your Apple IIGS, you must use the initialization 
string Control-I SON to set the card to SO-column mode and turn off 
echoing to the screen. To do so, use the following command: 

SET PRINTERINIT -ISON 

Iinenum An ASCII number indicating the number of lines to be sent to the printer 
before a form-feed character ($OC) is sent. This command sets the page 
length. If Iinenum = 0, no form-feed characters are sent. Note that a form 
feed advances the paper to the next top-of-form position, which 
corresponds to the top of the next page only if you set up your printer 
correctly. See the manual that came with your printer for instructions on 
setting the top of form. (You can usually reset the top of form by turning 
off the printer, rolling the paper so that the top of the page is slightly above 
the print head, and turning the printer back on.) 

The default for Iinenum is 60. 

value If you set value to any value (TRUE would be appropriate, but any character 
or string of characters will do), then the printer driver automatically adds a 
line feed after every carriage return. To cancel this effect, use the 
UNSET PRINTERLINEFEED command. 

Depending on the printer you are using and how it is set up, it may or may 
not automatically add a line feed at the end of each line. If no line feed is 
added by either the printer or APW, the printer overprints every line of text 
without advancing the paper. If APW adds a line feed when the printer is 

. _ adding one too, the lines are double spaced. You can use the 
PrinterLineFeed variable to correct either condition without resetting 
your printer's DIP switches. If your output looks okay, you don't have to 
worry about this variable at all. 

The default for value is null-that is, no line feed is sent. 

colnum An ASCII number indicating the number of characters on a line. The printer 
driver assumes a new line has begun each time colnum+ I characters have 
been printed since the last carriage return. You can set this variable to cause 
the printer driver to count lines on a page in the case that your printer 
automatically inserts a carriage return and line feed to wrap lines that are too 
long. 

APDADraft 

If your printer stops printing at the end of the line, or returns to the start of 
the line and overprints the line, then the printer driver can keep track of the 
lines on the page by counting the number of carriage return characters in the 
file. In this case you can set colnum to 0 and the printer driver will count a 
new line only when a carriage return is sent. 

The default for colnum is O. 

49 7127187 



Chapter 2: Using the Shell and Editor Apple JIGS Programmer's Workshop 

Important: If you are using the built-in printer port on the Apple llGS, you can 
also use the Control Panel to control a variety of printer interface S!!ttings. Make 
sure that the Control Panel settings and APWprinter settings are consistent. For 
example, if you use the Control Panel to set the line length, you should set colnum 
to the same value to assure that the number of lines on the page are counted 
correctly in case some lines wrap to the next line. Also, if you set both value and 
the Conttol Panel to add a line feed after every carriage return, you will get two line 
feeds (three if the printer is adding one too). See the Apple JIGS Owner's Guide for 
insU"Uctions on using the Conttol Panel. 

Including Printer-Setup Commands in the LOGIN File 

You can include these commands in a LOGIN fIle so they are executed each time you load 
APW. Use the following procedure to create a LOGIN fIle: 

1. Boot APW. 

2. Type the following commands (press the Return key after each command): 

EXEC 
EDIT 4 / LOGIN 

3. You are now in the editor. Type the printer-setup commands, one per line, ending 
each line with a Return. See Table 2.4 for a set of basic editor commands. 

4. After the printer-setup commands, type an EXPORT command for each variable. 
The EXPORT command has the following form: 

EXPORT variable 

where variable is the name of one of the printer variables you just set. For example, 
if you used the SET PRINTERSLOT and SET PRINTERINIT commands, you 
must follow them with the following commands: 

EXPORT PRINTERS LOT 
EXPORT PRINTERINIT 

5. Press a-Q. When the editor's Quit menu appears, press S to save the file and then 
press E to return to the shell. 

6. To test the setup, ftrst make sure your printer is properly connected to your Apple 
IIGS as described in the Apple JIGS Owner's Guide. Then reboot APW, turn on 
your printer, and enter the following command: 

TYPE 4 / LOGIN >.PRINTER 

The contents of the LOG IN file should be sent to your printer. 

Using Exec Files 
The shell can accept commands from a command ftle, called an Exec file. To create an 
Exec fIle, use the following procedure: 

1. Change the currrent language to EXEC by typing EXEC and pressing the Return key. 

APDADraft 50 7127187 



Apple llGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

2. Type EDITjilename, wherejilename is the name you want to use for the Exec file, 
and press Return. 

3. Type the commands in the file. You can put one command on each line, or you can 
put several commands on each line, separated by semicolons (;). 

4. Press O-Q to quit the editor. Save the file when prompted to do so. 

Exec mes can include conditional-execution commands (IF statements, for example); you 
can also pass parameters into Exec meso An Exec me can call other Exec files, and it can 
be set to terminate automatically if a routine it calls returns an error. Exec mes and 
conditional-execution commands are described in the section "Exec Files" in Chapter 3. 

To execute an Exec file, type the pathname of the file as if it were an APW commancL If 
you need to pass parameters into the Exec me, list them after the mename, separated by 
spaces. (Note that the pathname is not case sensitive, but parameter values are case 
sensitive.) For example, if the Exec file had the pathname 
!MYPROGS !EXEC . FILES! ANIMALS and required two animal names as parameters, you 
could enter the following command to run it: 

! MYPROGS ! EXEC.FILES!ANlMALS d o g alligator 

APW executes each command in the me as if it were typed from the keyboard. 

You can also place an Exec file in the UTILITIES! subdirectory (prefix 6) and add it to 
the command table as a utility program. Then you can execute the program just by typing 
its name on the shell's command line; in this case, the full pathname of the Exec file is not 
needed. The command table is discussed in the section "Command Types and the 
Command Table" in Chapter 3. 

Exec-me variables, such as parameters passed into the me or those defined with SET 
commands, are normally local to that Exec file (that is, the definitions are not valid in any 
other Exec ftle). To use the variables in an Exec me called by that me, you must inclUde 
the variable name in an EXPORT commancL To use the variables in the Exec me that calls 
the file in which the variables are defined, you must execute the called Exec file with an 
EXECUTE command. The EXECUTE command can also be used from a command line to 
make the variables available at command level. The EXPORT and EXECUTE commands are 
described in detail in the section "Exec Files" in Chapter 3. 

Compiling (or Assembling) and Linking a Program 
The Apple IIGS Programmer's Workshop uses a single format for object ftles and a single 
set of commands for compiling or assembling programs written in any APW source 
language. Therefore, you can write different modules or routines of your program in 
different APW languages. Creating an executable program using APW is a three- or four­
step process, as follows: 

1. Write the source code. You can divide your source code among as many files as you 
wish and can use any combination of APW languages for your program. Each me, 
however, must consist of source code for only one language. If you are using more 
than one language, see the manuals that carne with your APW languages for 

APDADraft 51 7/27/87 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

instructions for passing parameters between languages and for examples of 
multilanguage programs. 

2. Compile the source code. The compiler (or assembler) converts the source code into 
machine-language instructions, data, and symbolic references, and writes the result 
out as object lIles. Each source file can yield one or more object lIles. Because the 
object mes contain symbolic references as opposed to actual memory addresses, they 
cannot be loaded by the System Loader or executed by ProDOS 16. In addition, 
some of the references in the object mes may be to routines in library mes, so that 
the set of object mes does not necessarily represent all of the object code for the 
program. 

3. Link the object and library meso The APW Linker replaces the symbolic references 
with entries in relocation dictionaries that can be used by the loader to relocate the 
references at load time. The linker also combines all of the object mes and 
referenced library subroutines into a single load me. The load me still does not 
contain actual memory addresses, but the relocation dictionaries created by the linker 
contain all the information the loader needs to load the me. 

4. As an optional step, if your load me contains many references that require relocation, 
you may be able to reduce its size significantly by running the Compact utility 
program. Compact is discussed in the section "Compacting Your Load File" later in 
this chapter. 

Note: For simplicity's sake, the words compiler and compile are used in this 
section to include assembler and assemble. 

This section begins with a short sample program that illustrates a typical sequence for 
writing, compiling, and linking a program, followed by a discussion of 'the other features 
of the commands for compiling and linking files. 

See the discussions of the ASML and L INK commands in Chapter 3, the section "Partial 
Assemblies or Compiles" in Chapter 3, and the section "Using the Advanced Linker" in 
Chapter 5 for more information on controlling assemblies, compiles, and links. 

A Sample Assembly and Link 

To get some practice in the use of APW, boot your APW disk and try the following 
procedure: 

1. Set the system language to the language type of the source code you intend to write. 
We are going to write a simple assembly-language me for this example, so enter the 
following command: 

ASM65816 

2. Set the current prefix to the subdirectory you want to use for your meso If your 
work disk is called /MYPROGS, for example, enter the following command: 

PREFIX /MYPROGS 

3. Open a me for editing. We will call our source me HW. To open an editor me 
named HW, enter the following command: 

EDIT HW 

APDADraft 52 7127187 



Apple lIes Programmer's Workshop Chapter 2: Using the Shell and Editor 

4. Write the source code for your program. For our example, type in the following 
program: 

MAIN 

KEEP 
MCOPY 
START 
PHK 
PLB 
WRITELN 
LDA 
RTL 
END 

HELLO Output filename 
2/AINCLUDE/M16.UTIL Macro file 

t' Hello world!' 
to 

Beginning of segment 
Set data bank equal 

to code bank 
Macro that writes string 
Set err.or c ode to 0 
Return to shell 
End of segment 

5. Press G-Q to quit the Editor. When the Quit menu appears, press S to save the file 
to disk and then press E to return to the APW Shell command line. 

6. To assemble, link, and execute the file HW, enter the following command: 

RUN HW 

The words He 110 wor 1d! should be written to the screen following the 
diagnostic output of the assembler and linker. If not, check your source file for 
errors and try again. 

7 . You now have a file on your worle: disk called HELLO. To execute this program, 
enter HELLO from the APW Shell command line. (Because it ends in an RTL 
instruction mther than a ProDOS QUIT call, this program cannot be executed from a 
[mder or chooser program.) 

Specifying Names for Output Files 

Before we go on to consider the use of APW commands to compile and link programs, we 
discuss in some detail the various ways in which you can specify the names of output files. 
If you do not specify the name for an object file, the compiler reads the source file and 
compiles it, but no object file is written to disk. Similarly, the linker can link a series of 
object flles and library flles without writing any load flle to disk if you do not specify the 
name for the load flle. There is no default fllename for output flles unless you set one. 
Therefore, it is important to understand the various options provided by APW for naming 
output fIles before attempting to use any of the commands to compile or link programs. 

As noted earlier, the output of a compile or assembly consists of one or more object flles. 
APW compilers and assemblers that are able to perform partial compiles or assemblies 
often create more than one object flle for a given program. Each object flle contains some, 
but often not all, of the object segments that make up that program. It is the job of the 
linker to extract the most recent version of each object segment from these flles and 
combine them all into a single load flle. Object fllenames are constructed to make this job 
easier for the linker: all the object flles created from a given source flle begin with the same 
root filename and end with distinct fllename extensions. 

The program MYFILE, for example, after several partial compiles, might include the object 
files MYFILE. O. ROOT, MYFILE . 0 .A, MYFILE.O. B, and MYFILE. O. C. The object­
file root filename in this case is MYFILE . o. The flle with the . ROOT extension contains 
the [lI'st segment to be processed by the linker. The flles with alphabetic extensions ( . A, 

APDADraft 53 7/27/87 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

. B, . C) contain other program segments; MYF I LE . 0 . C is the last file created by a partial 
compile. 

In addition to linking files that share the same root filename, the APW Linker can link 
together object fIles with different root fIlenames and library files. 

After linking, each program consists of a single load file. The full pathname of the load file 
can be anything other than the full pathname of the source file or of one of the object files. 

Depending on the assembler or compiler you are using, you have either two or three ways 
to specify the names of object files. 

• You can use the APW Shell's command-line KEEP parameter to specify the name of 
the object file. 

• You can specify a default object fIlename with the KeepName shell variable. 

• If your assembler or compiler provides a way to do so, you can specify the root 
filename of the object files in the source file. 

Note: These methods are listed in the order of priority followed by the shell. For 
example, if you specify different object filenames on the shell's command line and 
in the source fIle, the command-line name is used. On the other hand, any specific 
compiler might not support one or more of these methods. 

Since there is only one load file per program, the APW Linker does not append any 
extensions to load filenames. As with object filenames, there are several ways to specify a 
load filename, as follows: 

• You can use the APW Shell's command-line KEEP parameter to specify the name of 
the load file. 

• You can specify a default load filename for the LINK command with the LinkName 
shell variable. You can specify a default load filename for a LinkEd file with the 
KeepName shell variable. 

• You can specify the load filename by calling the advanced linker and specifying a 
KEEP command in the LinkEd file. 

• You use a shell command (such as ASML) that automatically calls the linker after a 
successful compile. In this case, the root filename used for the first object file is also 
used as the load filename. 

Note: These methods are listed in the order of priority followed by the shell. For 
example, if you specify different load filenames on the shell's command line and in 
the LinkEd file, the command-line name is used. 

Specifying the Object Filename on a Shell Command Line 

You can use the APW Shell's command-line KEEP parameter to specify the name of the 
object file. For example, to compile MYF ILE and write the object files to files with the root 
filename MYF ILE .0, you can use the following command: 

ASSEMBLE MYFILE KEEP=MYFILE.O 

APDADraji 54 7/27/87 

--..... 



Apple IlGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

In order to use the KEEP parameter when you specify multiple source fIlenames on the 
command line, you must use a wildcard character in the fIlename. Two wildcard characters 
are available for this purpose: % and $. When you use the percent sign (%) wildcard, the 
shell replaces it with the source fIlename. When you use the dollar sign ($) wildcard, the 
shell removes the last extension from the source filename and replaces the dollar sign with 
the resulting filename. 

For an example of the use of the percent sign wildcard, assume you execute the following 
corrunand: 

COMPILE MYFILE YURFILE KEEP =%.0 

The shell uses the name MYF I LE .0 • ROOT for the first object file created from the source 
fIle MYFILE and the name YURFILE .0. ROOT for the first object file created from the 
source file YURFILE. 

For an example of the use of the dollar sign wildcard, assume you execute the following 
command: 

COMPILE MYFILE.CC YURFILE.ASM KEEP=$ 

In this case, the shell uses the name MYF I LE • ROOT for the first object fIle created from the 
source fIle MYFILE. CC and the name YURFILE. ROOT for the first object fIle created 
from the source fIle YURFILE . ASM. 

Important: Because ProDOS 16 does not allow filenames longer than 15 
characters, you must be careful not to specify a fIlename in the KEEP parameter that 
will result in an output fIlename longer than 15 characters. For example, if you 
specify KEEP=% . OUT and the source fIlename is LONGNAME, the compile will fail 
when the shell tries to open the fIle LONGNAME • OUT. ROOT, which has 17 
characters. 

If you specify both a KEEP directive in the source file and a KEEP parameter on the 
command line, the command-line parameter takes precedence. 

Specifying a Default Object Filename With the KeepName Variable 

If you do not use the KEEP parameter, the compiler looks for a KeepName shell variable 
to detemrine the default output fIlename. To specify a default fIlename, use the following 
commands (replace value with the output filename you want to use): 

SET KEEPNAME value 
EXPORT KEEPNAME 

The SET command specifies the value for the KeepName variable. The EXPORT 
command makes that value available in Exec files. 

The KeepName variable can include the wildcard characters % and $. As for the KEEP 
parameter, the percent sign (%) is replaced with the source filename and the dollar sign ($) 
is replaced with the source fIlename with the last extension removed. You must be careful 

APDADraft 55 7127187 



Chaprer 2: Using rhe Shell and Ediror Apple IIGS Programmer's Workshop 

not to specify a combination of a KeepName variable and a source filename that will result 
in an output ftlename longer than 15 characters, or the compile will fail. 

You can include a definition for the KeepName shell variable in your LOG IN file. For 
example, to set KeepName to % .0, so that the default output filename is the source 
ftlename with the extension .0, put the following lines in your LOG IN ftle: 

SET KEEPNAME %.0 
EXPORT KEEPNAME 

Note that in this case the EXPORT command is required to make the value of KeepName 
available on the command line as well as in Exec ftles. 

Specifying the Object Filename in the Source File 

If your assembler or compiler provides a way to do so, you can specify the root fIlename of 
the object files in the source file. If you are using the APW Assembler, for example, put a 
KEEP directive at the beginning of the source fIle. 

If you have linked several source files together (such as with APPEND directives in 
assembly language or *append directives in C), the output ftlename you specify at the 
beginning of the first source ftle is used as the root filename for all the object fIles, even if 
the files are not all in the same language. 

Depending on the compiler you are using, the root filename specified in the source file may 
be overridden by the filename in the KEEP parameter and by the default ftlename set by the 
KeepName variable. 

Specifying the Load Filename on a Shell Command Line 

To specify names for load files, you use methods similar to those used to specify root 
names for object files. . 

As for object-fIle root names, you can use the APW Shell's command-line KEEP parameter 
to specify the name of the load ftle. For example, to compile MYF I LE, link the object ftles, 
and write a load file with the ftlenameMYFILE .0, you can use the following command: 

ASML MYFILE KEEP=MYFILE.O 

If you specify multiple source filenames on the command line, you must use a wildcard 
character in the filename as described in the section "Specifying the Object Filename on a 
Shell Command Line" earlier in this chapter. For example, assume you execute the 
foJllowing command: 

CMPL MYFILE YURFILE KEEP = %.0 

The shell uses the name MYF I LE .0 . ROOT for the first object file created from the source 
file MYFILE and the name YURFILE .0. ROOT for the first object file created from the 
source file YURF ILE. It uses the name MYF ILE .0 for the load ftle. 

APDADrajr 56 7127187 



Apple lies Programmer's Workshop Chapter 2: Using the Shell and Editor 

If you perfonn separate compiles and links, you can specify the load filename 
independently of the object fUename. For example, you could perform a compile and link 
with the following commands: 

COMPILE MYFILE YURFILE KEEP = %.0 
LINK MYFILE.O YURFILE.O KEEP=MYLOAD 

The result is identical to that for the CMF L command, except that the load file is named 
MYLOAD instead ofMYFILE .0. Note that the LINK command requires only the root 
filenames of the object files; the linker automatically links all files that share the same root 
filename. 

You can also specify a KEEP parameter on an ALINK command line. ALINK executes a 
LinkEd command file. If you specify a KEEP parameter that includes a wildcard character 
on an ALINK command line, the name of the LinkEd file (rather than the root name of the 
object file) is used to create the load fUename. 

The LINK and ALINK commands are discussed further in the section "Linking Your 
Program: The LINK and ALINK Commands" later in this chapter. 

Specifying a Default Load Filename With a Shell Variable 

If you don't use the KEEP parameter with the LINK command, the shell checks to see if 
you have specified a default output filename with the LinkName shell variable. To specify 
a default filename, use the following commands (replace value with the output filename you 
want to use): 

SET LINKNAME value 
EXPORT LINKNAME 

The SET command specifies the value for the LinkName variable. The EXPORT 
command makes that value available in Exec files. 

The LinkName variable can include the wildcard characters % and $. When you use the 
percent sign (%) wildcard, the shell replaces it with the object file's root filename. When 
you use the dollar sign ($) wildcard, the shell removes the last extension from the root 
filename and replaces the dollar sign with the resulting filename. For example, if 
LinkName is set to %.0 and you execute the command LINK MYFILE, the shell uses the 
name MYFILE. 0 for the load file. Similarly, if LinkName is set to $ and you execute the 
command LINK MYFILE. CC, the shell uses the name MYFILE for the load fUe. 

Important: Because ProDOS 16 does not allow filenames longer than 15 
characters, you must be careful not to specify a root filename-L inkName 
combination that will result in a load filename longer than 15 characters. For 
example, if LinkName is set to % • LOADFILE and the root name is LONGNAME, 
the link will fail when the shell tries to open the file LONGNAME . LOADF ILE, 
which has 17 characters. 

You can include a definition for the LinkName shell variable in your LOGIN file. For 
example, to set LinkName to % .0, so that the default output filename is the object root 
filename with the extension . 0, put the following lines in your LOG IN fIle: 

APDADraft 57 7/27187 



Chapter 2: Using the Shell and Editor Apple /lC;S Programmer's Workshop 

SET LINKNAME %.0 
EXPORT LINKNAME 

Note that in this case the EXPORT command is required to make the value of LinkName 
available on the command line as well as in Exec fIles. 

Note: The LinlcName variable can be used only with the LINK command. If you 
are using a LinkEd file, you can use the KeepName varia:ble to set a default load 
filename. The ASML and ASMLG commands (and their aliases) use the root 
filename of the first object file as the load filename, as discussed in the section 
"Using the Object-File Root Filename for the Load Filename," later in this chapter. 

Specifying the Load Filename in a LinkEd File 

If you perform a separate link by using a LinkEd file instead of the L INK command, you 
can use the LinkEd KEEP command to specify the load filename. There are three ways to 
execute a LinkEd file: 

• You can execute the LinkEd file separately from the compile with the shell's ALINK 
command. 

• You can append the LinkEd file to your source code (using an APPEND directive) and 
compile and link the program with one COMPILE or ASSEMBLE command. 

• You can name the LinkEd file as the last source fIle on the COMP ILE or ASSEMBLE 
command line. 

If you specify both a KEEP command in the LinkEd file and a KEEP parameter on the 
command line, the command-line parameter takes precedence. 

LinkEd and the LinkEd KEEP command are described in the section "Using the Advanced 
Linker" in Chapter 5. The AL INK command is discussed further in the section "Linking 
Your Program: The LINK and ALINK Commands" later in this chapter. 

Note: You cannot execute a LinkEd file with a LINK command. Use the ALINK, 
ASSEMBLE, or COMP ILE commands to execute a LinkEd file. 

Using the Object.File Root Filename for the Load Filename 

The ASML, CMPL, ASMLG, CMPLG, and RUN commands automatically call the standard 
linker after a successful compile. If you use one of these commands, the root filename 
used for the first object file created is also used as the load filename. For example, the 
following command assembles the file MYF I LE, links the resulting object files, and then 
runs the program: 

RUN MYFILE KEEP=MYFILE .O 

The flTSt object fIle has the fIlename MYF I LE .0 . ROOT. The linker links aU the object files 
with the root fIlename MYFILE. 0 and creates the load file MYFILE. o. After successful 
execution of this command, then, the following mes will be on the disk: 

APDADraft 58 7/27187 



Apple IIaS Programmer's Workshop. Chapter 2: Using the Shell andEditor 

MYFILE 

MYFILE . O.ROOT 

MYFILE.O.A 

MYFILE.O 

source code 

first object fIle 

second object fIle 

load fIle 

This relationship between the object fIle root fIlename and the load fIlename holds whether 
you used a directive in the source file, the KEEP parameter on the command line, or the 
KeepName shell variable to specify the output fIlename. 

Important: Because the shell will not let you overwrite a source file with a load 
fIle, you cannot set KeepName to % and use it with a link. For example, if 
KeepName is set to % and you tty to execute the command CMPL MYFILE, the 
link will fail when the linker tries to write a load fIle named MYF ILE. Similarly, 
the command CMPL MYFILE KEEP=MYFILE will fail when the linker tries to 
overwrite the source fIle MYF ILE with a load fIle of the same name. 

Assume, for example, that you execute the following command to compile and link three 
fIles, two in C and one in assembly language: 

CMPL MYFILE1 . CC MYFILE2.CC ·MYFILE3.ASM 

Assume further that you set the KeepName variable to $. After this CMPL command has 
been successfully executed, the following fIles are on the disk: 

MYFILE1. CC C source code 

MYFILE2.CC 

MYFILE3.ASM 

MYFILE1.ROOT 

MYFILE2 . ROOT 

MYFILE3.ROOT 

MYFILE3 . A 

MYFILEl 

C source code 

ASM65816 source code 

object fIle from the first C source fIle 

object fIle from the second C source fIle 

first object fIle from the assembler source fIle 

second object fIle from the assembler source fIle 

load fIle 

Notice that the root fIlename of the first object fIle created is used as the load fIlename. 

Specifying the File Type of Your Load File 

By default, load fIles created by the APW Linker have ProDOS 16 fIle type $B5 (shell load 
file) . You can change the fIle type of any fIle with the shell's FILETYPE command, 
which is described in the section "Command Descriptions" in Chapter 3. You can also 
change the default fIle type created by the linker. To do so, use the following commands: 

SET KEEPTYPE type 
EXPORT KEEPTYPE 

APDADraft 59 7/27/87 



Chapter 2: Using the Shell and Editor Apple lIes Programmer's Workshop 

For type. substitute the hexadecimal fIle type that you want assigned to load files by the 
linker. For example, to cause the linker to create fIles of type $B3 (ProDOS 16 system 
load files). use the following command: . 

SET KEEP TYPE $B3 

Valid fIle types for load files are $B3 through $BE as shown!in Table 2.5 

Table 2.5. Load File Types 

Value Abbreviation File Type 

$B3 S16 ProDOS 16 system load 
$B4 RTL Run-time library 
$B5 EXE Shell load 
$B6 STR Startup load 
$B8 NDA New desk accessory 
$B9 CDA Classic desk accessory 
$BA TOL Tool setflle 

You can include a defmition for the KeepType shell variable in your LOGIN file. To set 
KeepType to $B3. for example. so that the default fIle type created by the linker is a 
system load file. put the following lines in your LOGIN fIle: 

SET KEEP TYPE $B3 
EXPORT KEEP TYPE 

Shell Commands for Assembling, Compiling, and Linking 

The APW Shell provides several commands for assembling. compiling. and linking 
programs. These commands are powerful and versatile. and therefore somewhat complex. 
There are many ways of assembling. linking. and running a program in APW; the method 
you use will depend on your needs and personal preferences. In this section. we explore 
some of the functions performed by the shell commands for compiling and linking fIles. 

All of the shell commands are described in detail in the section "Command Descriptions" in 
Chapter 3. Examples of the use of these commands are given in the section "A Sample 
Assembly and Link" earlier in this chapter. 

The following APW Shell commands assemble or compile a program and then return 
control to the shell: 

• ASSEMBLE 

• COMPILE 

The following commands first assemble or compile a program. then call the linker. and 
then return control to the shell: 

• ASML 

• CMPL 

APDADraft 60 7127187 



Apple lIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

The following commands assemble or compile a program, call the linker, run the program, 
and then return control to the shell: 

• ASMLG 

• CMPLG 

• RUN 

The following commands call the linker and then return control to the shell: 

• ALINK 

• LINK 

The ASSEMBLE and COMPILE Commands 

The AS SEMBLE and COMP ILE commands are identical; that is, they are aliases for the 
same conunand. In the simplest case, you need name only the source fIle on the command 
line. The shell detennines the language type of the source file and calls the appropriate 
assembler or compiler. For example, to assemble or compile the file MYFILE, you can use 
either of the following commands: 

ASSEMBLE MYFILE 
COMPILE MYFILE 

As before, for simplicity's sake we use the tenns compiler and compile to include 
assembler and assemble. 

The complete syntax of these commands is as follows: 

COMPILE [+EI-E] [+LI~l [+SI~l [+TI=IJ [+WI=NJ 
filel rjile2 J [ ••• J [KEEP=ougileJ 
[NAMES- (segl [seg2] [ •.. ]) J [languagel= (option ... ) 
[language2= (option ... )] [ ... ]] 

Square brackets indicate optional parameters. Italics indicate variables that must be 
replaced with specific values. The vertical bar (I) indicates a choice. See the section 
"Command Descriptions" in Chapter 3 for a complete discussion of command syntax. 

In the following sections, we explain each of the components of these commands. Since 
the ASSEMBLE and COMP ILE commands perform a single main function (that is, an 
assembly or compile), they are a bit simpler to explain than most of the other commands 
listed above. Therefore, we explore these commands in some detail before going on to 
discuss some of the extra nuances introduced by the other commands. 

Diagnostic Output: the Land S Options 

By default, the only output of a compile written to the screen is the name of the compiler or 
assembler called, plus possibly the name of the segment being processed. If any errors 
occur, they are also written to the screen. The ASSEMBLE and COMP ILE commands 
provide parameters to control the output of source listings (the L parameter) and symbol 
tables (s) for those APW compilers that support such output 

APDADrajt 61 7127187 



Chapter 2: Using the Shell and Editor Apple II GS Programmer's Workshop 

The source listing shows the contents of the source file, with each line preceded by the line 
number used by the compiler while it processes the file. The line number is used in error 
messages and symbol-table listings, for example. The contents of a symbol-table listing, if 
any, depend on the compiler you are using; see the manual that came with your compiler 
for a description. Typically, the symbol table provides a cross-reference of symbolic 
references in the file and the numbers of the lines on which they are defined. 

Since the default is to not print the source listing or symbol table, you will usually use the 
+ L and +S forms of these parameters; these forms enable the listings. However, since 
your compiler might also let you control these listings from the source file, the shell also 
provides the -L and -S forms of these parameters; these forms override the source-fIle 
directives and turn the listings off. 

The L and S parameters must be placed before the name of the first source-code file on the 
command line. For example, to assemble the fIle MIT I LE and write the source-code 
listing on the screen as the assembly proceeds, you could use the following command: 

ASSEMBLE +L MYFILE 

Error Handling: the E, T, and W Options 

Under APW, there are two fundamental types of errors: fatal and nonfatal. A fatal error is 
one that precludes any further processing by the compiler or linker that is currently 
executing. In the case of a fatal error, processing stops immediately. When a nonfatal 
error occurs, processing can continue, but the fIle that is created almost certainly contains 
bugs. In the case of a combined compile and link (such as for the ASML command), the 
compiler can pass control to the linker or can tell the shell to terminate execution of the 
command when the compile is fmished, depending on the severity of the error. The error 
messages generated by the compiler or linker can help you diagnose the cause of the error. 

Linker errors and error levels are described in Appendix C. If you are writing a compiler 
or linker, see the section "Entry and Exit" in Chapter 6. 

The APW Shell provides several options that affect the way errors are handled. For 
compilers and linkers that support these options, you can control some aspects of APW's 
error handling with the E, T, and w command-line options, as follows: 

Note: Although APW defines conventions for handling errors and provides shell 
command-line options that affect error handling, any individual compiler or linker 
mayor may not follow these conventions. See the manual that came with the 
compiler or linker that you're using to see which of these options are valid for that 
program. 

• If you specify + E, when the compiler terminates execution due to a fatal error, it calls 
the APW Editor. The editor displays the source file with the offending line on the 
fourth line on the screen (or as far down on the screen as possible, if the error is in 
one of the first three lines of the file). If you specify - E and a fatal error occurs, you 
are returned to the shell's command line or the Exec file that executed the command. 
The default for this option is +E when the command is executed from the command 
line and -E when the command is executed from an Exec fIle. 

APDADraft 62 7/27/87 



Apple llcs Programmer's Workshop Chapter 2: Using the Shell and Editor 

• If you select +T, any error causes the compile to tenninate. If you select both +T and 
+ E, an error causes the sheIi to call the APW Editor and display the offending line as 
the fourth line on the screen. If you omit this option or select -T, only fatal errors 
cause immediate termination of the compile. 

• If you select +W, the compiler stops and waits for a key press when any error occurs, 
to give you the opportunity to read the error message and to decide whether to 
continue (that is, to continue the compile in case of a nonfatal error or to call the editor 
in case of a fatal error). Press Apple-Period (0-.) to halt execution, or press any 
character key or the spacebar to continue. If you omit this option or select -w, 
execution continues without pausing when an error occurs. 

Specifying Source Files 

In APW, you are not required to have all of your source code in a single file. You can use 
a separate command to compile each source file, or you can compile several source files 
with a single command There are two ways to use a single command to compile multiple 
source files: 

• You can append one source file to the end of another, using directives in the source 
files (if the language you are using provides such a directive). In APW Assembler, 
for example, you can use APPEND directives; in APW C you can use 'append 
directives. 

If the appended file is in the same language as the file being processed, the compiler 
treats the appended code as if it were in the file it is already processing. In this case, 
the compiler continues processing the program without a bceak. 

If, on the other hand, the appended file is in a different language than the file being 
processed, the compiler returns control to the shell, which calls the appropriate 
compiler for the new file. 

• You can name more than one source file in the command line. For example, to 
compile files MYFILEl and MYFILE2, you can use the following command: 

COMPILE MYFILEl MYFILE2 

In this case, regardless of the language type of MYFILE2, when the compiler fmishes 
processing MYFILE1, it returns control to the shell. The shell then calls the 
appropriate compiler for MYFILE2, which opens that fIle and compiles it. 

The KEEP Parameter 

If you have named an output file in a directive in the source fIle or if you have set the 
KeepName shell variable (see the section, "Specifying Names for Output Files" earlier in 
this chapter), MYF I LE is compiled and, if successful, one or more object fIles are written 
to disk. If you have not previously specified an output fIlename, you can do so on the 
command line with the KEEP parameter. For example, to compile MYFILE and write the 
object files to files with the root fllename MYFILE. 0, you can use the following command: 

ASSEMBLE MYFILE KEEP=MYFILE.O 

APDADraft 63 7127187 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

The first object file is named MYF ILE .0. ROOT. A second fIle named MYF ILE . 0 . A may 
also be written, depending on the assembler or compiler you are using and the number of 
segments in the source file. 

If you have listed more than one source file on the command line, you must use one or 
more wildcard characters in the KEEP parameter, as described in the section "Specifying 
the Object Filename on a Shell Command Line" earlier in this chapter. 

The NAMES Parameter 

The NAMES parameter is provided for those APW compilers that can do partial compiles. 
A partial compile involves recompiling one or more, but not all, of the segments in a 
program after at least one full compile has already been done. When you link the program, 
the linker automatically selects only the latest version of each segment. 

The purpose of partial compiles is to speed up the development process. Suppose you 
have written an assembly-language program that includes 25 segments, have assembled the 
program, and have discovered bugs in two of the segments. With the APW Assembler, 
you can correct the two problem segments and then reassemble those segments only; there 
is no need to reassemble the segments that were not changed. 

To perform a partial compile, you use the NAMES parameter on the command line to specify 
the segments to be compiled. For example, to do a partial assembly of the file MYFILE, 
reassembling the segments DICK and JANE, you could use the following command: 

ASSEMBLE MYFILE NAMES=(DICK JANE) 

Important: There are three circumstances in which you cannot perform a partial 
compile, but must do a full compile instead, as follows: 

• When you delete or rename a segment. If you do a partial compile in this case, the 
linker will not know that the old version of the segment is no longer valid and will 
link it into your program. 

• When the order in which the segments are linked is significant. 

• When you change the defmition of a global symbol. References to global symbols 
within each fIle are resolved by the compiler, so if you change the definition of a 
global symbol you must be sure that you recompile every segment in which that 
symbol is used. The best way to make sure you have caught every occurance of the 
symbol is to do a full compile. 

Partial assemblies and compiles are discussed in detail in the section "Partial Assemblies or 
Compiles" in Chapter 3. 

Language-Specific Parameters 

Since each compiler or assembler operating Wlder APW has its own requirements and 
abilities, the APW Shell allows you to pass parameters directly to compilers. To do this, 
you include the language name of the compiler on the command line, followed by an equal 
sign and a list of options in parentheses. The APW Shell does not do any error checking 
on the options string; it merely sends it on to the compiler. 

APDADraft 64 7/27/87 

.. - -..., 

-----" 



Apple lIOS Programmer's Workshop Chapter 2: Using the Shell and Editor 

For example, to pass the - D parameter (which assigns a definition to a symbol) to a C 
program named MYFILE, you might use the following command: 

COMPILE MYFILE CC=(-Dlucky=13) 

Note that the language name of C is CC. The language names of APW languages are listed 
in Appendix B. 

Linking Your Program: The LINK and ALINK Commands 

After you have created one or more object fIles by compiling your program, you must call 
the APW Linker to create an executable load fIle. While there are several APW commands 
that automatically call the standard linker, we first consider a separate link in order to make 
the relationships between object fIles, library files, and load files clearer. 

How much attention you must focus on the link process depends on the sort of 
programming you are doing. If you are writing simple programs or utilities using one or at 
most two or three source files, the standard linker with few or no parameters is adequate 
for your use. On the other hand, if you want to select specific segments Ol!t of object files, 
assign object segments to load segments during the link process, or control the diagnostic 
output of the linker during the link process, then you must use the advanced linker. In 
between these two extremes are command-line options that let you search nonstandard 
library files, link object fIles with different root fIlenames, and turn on or off the linker's 
diagnostic output. 

Note: You may have to use the advanced linker to make a segment dynamic. 
Refer to the manual that carne with the APW language you are using to see if there 
is a way to assign dynamic segments in the source code. 

For example, suppose you have compiled a program named MYF ILE and created the object 
files MYF I LE . 0 . ROOT and MYF I LE .0 . A. To link this program, you could use the 
following command: 

LINK MYFILE.O KEEP =MYFILE.O 

Assuming that there are no source files in the directory named MYF I LE . 0, the linker links 
the object fIles MYF ILE . 0 . ROOT and MYF ILE .0. A, creating the load me MYF ILE . O. 
If, after processing MYFILE.O . ROOT and MYFILE. 0 .A, there were any unresolved 
references, the linker would automatically search any library fIles in the library prefix, 
prefix 2. When it finds the segment it needs in a library fIle, the linker extracts only that 
segment and links it into the program. 

This program, in fact, would be an ideal candidate for use with one of the commands that 
automatically links the program after the compile. These commands are discussed in the 
next section. 

Now assume that your program has been compiled into two sets of object fIles, with root 
fIlenames MYFILE. 0 and MYTFINE .0. Assume further that you have created your own 
library fIle called MYLIB that you want to search as part of the link. To link this program, 
you could use the following command: 

LINK MYFILE.O MYTFINE.O MYLIB KEEP=MYPROG 

APDADraft 65 7127187 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

The linker first links MYFILE. 0, then links MYTFINE. 0, and then (if there are any 
unresolved references) searches MYLIB. Finally, if there are still unresolved references, 
the linker searches the library files in the library prefix. It creates a load file named 
MYPROG. 

Note that you have considerable control over the link with this command. The linker links 
object files and searches libraries in the sequence in which you list them. For example, 
suppose you had used the following command to link this program: 

LINK MYTFINE.O MYLIB MYFILE.O KEEP=MYPROG 

In this case, the linker would first link MYTF INE . 0, then search MYL IB, and then link 
MYFILE.O. Finally, if there were still unresolved references, the linker would search the 
library files in the library prefix. As before, it would create a load file named MYPROG. 

The LINK command takes the L and S parameters as well. The +L parameter generates a 
link map, which is a listing of the segments in the object file with the starting address, 
length in bytes, and segment type of each segment. The +S parameter generates a symbol­
table listing of all the global references in the object me. The default for these parameters is 
to generate no listings; since there is no way to turn these listings on in the object files, the 
-L and -S parameters have no real function in the LINK command. You may wish to use 
- L and -S in Exec files, however, just to remind yourself that the command will generate 
no diagnostic output other than error messages. 

If you need complete control over the link, you must use the advanced linker. The 
advanced linker is controlled by executing a LinkEd file. To execute a LinkEd file in a 
separate link, use the ALINK command. Actually, the ALINK command is an alias for the 
ASSEMBLE and COMP ILE commands. A LinkEd me is treated by APW like any other 
source file, except that when the shell processes a LinkEd file, it calls the advanced linker 
instead of calling a compiler or assembler. 

Although ALINK is an alias for ASSEMBLE, note that several of the parameters and options 
provided by APW for the ASSEMBLE command make no sense for a LinkEd file. Since 
only one link is done for each program, for example, listing two LinkEd files on the 
ALINK command line would cause two separate links to take place, not one link of two 
files. Because there is no such thing as a partial link, the NAMES parameter is not useful 
for LinkEd files, and because you cannot append a source me in any other language to a 
LinkEd file, the language-specific parameters have no function on an ALINK command 
line. 

The S and L parameters operate for ALINK exactly as they do for LINK, except that, 
because LinkEd files can include commands to turn the diaguostic output on, the -S and 
- L parameters are useful in the AL INK command to override those commands and turn the 
output off. 

Because LinkEd files are treated by the APW Shell like language mes, they can be executed 
in all the ways that languages can. That means they can be appended to the last source file 
processed or listed as the last language source me on an ASSEMBLE or COMP I LE 
command line. Note that the LinkEd me must be the last me processed, because no more 
source files will be compiled after the link. 

APDADraft 66 7/27/87 



"-

Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

The advanced linker is described in detail in the section "Using the Advanced Linker" in 
Chapter 5. 

Compiling and Linking : ASML, ASMLG, CMPL, CMPLG, and RUN 

There are several APW commands that automatically call the standard linker after a 
successful compile or assembly: ASML and CMPL compile and link the program; ASMLG, 
CMPLG, and RUN compile,link, and run the program. Actually, there are only two distinct 
commands: ASML and ASMLG. CMPL is an alias for ASML, while CMPLG and RUN are 
aliases for ASMLG. Furthermore, ASMLG is identical to ASML except that after a successful 
compile and link, ASML returns control to the shell whereas ASMLG runs the program. 
Therefore, the command ASML is used in this section as representative of this entire set of 
commands. 

All of these commands take the same parameters as the ASSEMBLE and COMPILE 
commands. Because the linker is called automatically, however, output files include the 
load fIle in addition to object fIles, and input files can include object fIles and library files in 
addition to source fIles. The section "Specifying Names for Output Flies," earlier in this 
chapter, presents the various ways you can determine the names of output files. In this 
section we explain how you can control the compile and link process by naming input fIles. 

When the shell executes the ASML command, it uses the following procedure: 

I . The shell looks for a source fIle with the filename of the first input file listed on the 
command line. If there is no source file by that name, the shell assumes it is an 
object file or a library file .and goes on to the next filename. 

2. The shell calls the compiler that corresponds to the APW language type of the first 
source file it fmds on the command line. 

3. The shell passes to the compiler the option flags (if any), the KEEP filename (if any), 
the NAMES segment list, and any language-specific options that match the language 
type of the ftle. 

4. The compiler processes the source fiie and any source files of the same language 
type appended to that source file. If the compiler comes to an appended ftle of a 
different language type, it goes to step 5. If it has come to the end of the last 
appended file, it goes to step 6. 

5 . The compiler returns control to the shell, which calls the compiler that corresponds 
to the language type of that file. Return to io step 3. 

6. The compiler returns control to the shell, which looks for the next source filename 
on the command line. If it finds another source fIlename, it returns to step 3. If 
there are no more source filenames, the shell goes on to step 7. 

7 . The shell calls the linker and passes to it the option flags (if any), any KEEP 
fIlename, and the list of input files from the comri:Iand line. 

8. The linker looks for an object file that corresponds to the first ftlename on the 
command line. If the first filename was a source ftle, the linker looks for the object 
file created from that source file. If the first filename was an object-ftle root 
filename, that object file is processed first. 

9 . The linker processes all of the remaining ftles in the sequence in which the fIlenames 
are listed. If a source fIlename is listed, the linker looks for the object fIles created 

APDADrq[t 67 7127187 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

from that source file. If an object-file root filename is listed, all the files with that 
root filename are linked. If a library filename is listed, that file is searched for any 
unresolved references . 

10. If there are still any uruesolved references, the linker searches the library files in the 
library prefix. 

11. The linker writes the load fIle to disk and retruns control to the shell. (In the case of 
the ASMLG, CMPLG, and RUN commands, the shell executes the load file.) The 
name of the load file is the name used in the KEEP parameter on the command line, if 
any. If there was no KEEP parameter, the root fIlename of the first object ftle created 
is used as the load filename. 

For example, suppose you have a program consisting of source files MYF I LE and 
MYTF INE, plus object files START. ROOT, GDAY . ROOT, and GDAY . A. In addition to the 
system libraries, you want to search the library file MYL IB, but you want to search that fIle 
before GDAY is linked. Assume that the user has set the KeepName shell variable to % • O. 
The first segment of the program is in START. ROOT. To compile,link, and run this 
program, you can use the following command: 

CMPLG START MYFILE MYTFINE MYLIB GDAY 

The program is processed in the following sequence: 

1. The shell looks for a source file with the ftlename START. Since there is no source 
file by that name, the shell assumes it is an object file or a library file and goes on to 
the next filename. It is important to note that, if there were a source file by that 
name, it would be compiled and the file START. ROOT would be overwritten. 

2. The shell calls the compiler that corresponds to the APW language type of the first 
source fIle it finds on the command line-in this case, MYFILE. 

3. The compiler processes MYF ILE, including any source fIles of the same language 
type appended to MYFILE. The resulting object files are written to the disk with the 
fIlenames MYFILE. O. ROOT and MYFILE. O. A. Assume that the compiler fmds 
no appended source ftles of a different language type; it comes to the end of the last 
appended me and returns control to the shell. 

4. The shell looks for the next source mename on the command line--in this case, 
MYTFINE. 

5. The compiler processes MYTF INE, including any source fIles of the same language 
type appended to MYTFlNE. The resulting object files are written to the disk with 
the filenames MYTF INE .0 . ROOT and MYTF INE • 0 . A. Assume that this time the 
compiler finds a source file of a different language type appended to MYTFlNE, 
called MYOTHER; in this case, the compiler retruns control to the shell, which calls 
the compiler that corresponds to the language type of the appended file. 

6. The new compiler processes the appended me (MYOTHER). The resulting object me 
is written to the disk with the filename MYTF INE .0 . B. When the compiler comes 
to the end of the last appended file, it returns control to the shell. 

7. The shell can find no more source files, so it calls the linker and passes to it the list 
of input files from the command line, with the appropriate object-me root filenames 
substituted for the source filenames. For example, the name MYFILE. 0 is passed 

APDADraft 68 7/27/87 



~-

Apple lIes Programmer's Workshop Chapter 2: Using the Shell and Editor 

to the linker instead of MYF ILE. Since the first object file created had the root 
filename MYF I LE .0, that name is paSsed to the linker as the KEEP filename. 

8. The linker looks for an object file that corresponds to the first filename on the 
command line, START. It finds the file START. ROOT and links it. 

9. The linker processes MYFlLE.O. ROOT, MYFlLE. 0 .A, MYTFlNE.O . ROOT, 
MYTF lNE .0. A, and MYTF lNE .0. B. 

10. Assuming there are some unresolved references, the linker searches MYL lB. 

11. The linker links GDAY . ROOT and GDAY . A 

12. If there are still any unresolved references, the linker searches the library files in the 
library prefix. 

13. The linker writes the load file to disk with the load filename MYFl LE .0 and returns 
control to the shell. 

14. The shell executes MYF ILE • O. 

Before executing the CMPLG command, the following files were in your directory: 

START. ROOT object file containing first segment of program 

MYFILE source file 

MYTFlNE source file 

MYOTHER source file 

MYLIB library file 

GDAY.ROOT object file 

GDAY.A object file 

After executing the CMPLG command, you have the following files in the directory: 

START. ROOT object file containing first segment of program 

MYFlLE source file 

MYTFlNE source file 

MYOTHER source file 

MYLlB library file 

GDAY.ROOT object file 

GDAY.A object file 

MYF ILE .0 • ROOT object file from MYF ILE 

MYFlLE.O.A object file from MYF ILE 

MYTFlNE.O.ROOT object file from MYTF lNE 

MYTFlNE.O.A object file from MYTF lNE 

MYTFlNE.O.B object file from file appended to MYTFlNE 

MYFlLE.O load file 

APDADraft 69 7127187 



Chapter 2: Using the ShelL.and Editor AJ!PlellGS Programmer's Workshop 

In summary, each source file listed on the command line is fITSt compiled independently, 
then the linker.is called just as if the L INK command had been used . . The compilers ignore 
object files and library files. The shell replaces each source filename with the root filename 
of the object files created from that source file, and then the entire list of filenames is sent to 
the linker. All command-line parameters that would be passed by the COMP ILE command 
are passed to each compiler called. All parameters that would be passed by the LINK 
command are passed to the linker. 

The ASML and related commands let you combine the functions of the COMPILE and LINK 
commands in one line. In the case of a fairly simple program, with one source file and no 
custom library files, the ASML command makes the link process nearly invisible. You can 
compile and link the program with one command, without worrying about which object 
files to link or which library files to search. In the case of a complex program for which 
you want to compile some source files and link them to some files already compiled (that 
is, to some object files), and perhaps search some custom library files while you're at it, 
the ASML command gives you the power to do so. For even more control over the link 
process, you can use a LinkEd command file. The cost of increased versatility and power, 
however, is increased complexity. 

Compacting Your Load File 

As a fmal step in program development, you can run the Compact utility program. 
Compact converts a load file to the most compact form provided by the object module 
format. To compact the load file MYPROG and create the compacted load fIle 
MYPROG. CMPCT, for example, use the following command: 

COMPACT MYPROG MYPROG.CMPCT 

Compacted load fIles take up less space on diSk and load faster than noncompacted load 
files. In addition, Compact can be used to help make programs restartable. See the section 
"Command Types and the Command Table" in Chapter 3 for a discussion of restartability. 

Not all load files are significantly iinproved by compacting, however, so you may want to 
test both a compacted and noncompacted version of your program before releasing it. 

Important: In order to load a compacted load file, you must have version 1.2 or 
later of the system loader on your boot diSk, 

Launching Programs 
Under ProDOS 16 on the Apple lIas computer there are two principal types of executable 
load files: system load files (file type $B3) and shell load files (fIle type $B5). After you 
have written a program, you can use the F ILETYPE command (described in Chapter 3) to 
assign a file type to it. . 

System load files take over complete control of the computer; they do not operate under a 
shell program. APW itself is an example of such a program. To execute a system load 
file, the calling program (such as a fmder or chooser) executes a ProDOS 16 QUIT call, 
shutting itself down. When the called program finishes and executes a QUIT call, ProDOS 
16 normally relaunches the calling program. (For a more complete description of the QU IT 

APDADraft 70 7/27/87 

--, 



Apple IIes Programmer's Workshop Chapter 2: Using the Shell and Editor 

call, see the Apple IIes ProD OS 16 Reference.) A system load file must make Apple nos 
tool calls to set up the environment it needs, including the graphics or text screen it needs 

~ and the input it accepts. 

, .. 

Shell load files run under a shell program (such as the APW Shell); they do not remove the 
shell from memory. The shell uses System Loader calls to load the program, and then 
transferS control to it. When the program terminates, it returns control to the shelL A shell 
load file uses the environment set up for it by the shell under which it runs. For more 
information on writing a program to run under a shell, see the sections "APW Utilities" in 
Chapter 6 and "Shell Load Files" in Chapter 7. 

To launch a program of either file type from the APW shell, enter the pathname of the file 
as a command. For example, if you want to run a program called STAR. WARP that is in 
the subdirectory /MYPROGS / GAMES /, type the following line and press Return: 

/MYPROGS/GAMES/STAR.WARP 

Note that ProDOS 8 SYS files can be launched by APW only if the ProDOS 8 operating 
system (the file pa) is present in the system prefix (prefix 4) of your disk and that BIN 
files cannot be executed by the APW Shell. 

Using the Apple IIGS Debugger 
Once you have created an executable load file, you can use the Apple nos Debugger as an 
aid in debugging it The Apple nos Debugger is both powerful and versatile. The 
debugger can execute a load file in memory one instruction at a time, showing you the 
contents of Apple nos registers, stack, direct page, and memory at any step. You can 
execute each instruction individually, or have the debugger automatically execute each in 
turn until it reaches a breakpoint that you have set (or until the program hits a BRK 

. instruction or crashes). If you have timing-critical code, you can execute specified 
subroutines or the entire program at the full speed of the Apple nos CPU. You can change 
the contents of registers or memory locations at any time and resume execution of the 
program. You can display any of the debugger's diagnostic displays or the normal display 
of your program, and you can switch back and forth between displays at any time. 

The debugger shows an assembly-language disassembly of the machine code in memory as 
it steps through your program. It shows absolute addresses in the disassembly. The 
debugger cannot translate machine code into any higher-level language or keep track of 
symbols. You will probably find the debugger of most use, therefore, in debugging 
assembly-language programs, because it is relatively easy to relate your assembly-language 
code to the disassembly. For higher-level languages, the debugger might give you some 
insight into what is going wrong with the execution of the program, but it is up to you to 
figure out the source-code command or statement responsible. 

The APW Debugger is described in detail in the Apple lIes Debugger Reference. 

Using the Utilities 
The Apple nos Programmer's Workshop Shell includes most of the functions that you 
need to write, compile, link, and run programs. A few functions, however, are 

APDADraft 71 7/27/87 



Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop 

implemented as separate routines designed to be run under t!Ie shell; these are referred to as 
APW utility programs, or utilities. 

Most APW utilities, such as Init (which formats disks), require no more input than any 
other shell command; in this manual such utilities are referred to as external commands. 
You use them just like other APW commands, but they must be present in the utilities 
prefix (prefix 6). You may have a few utilities on yoUr system, however, that perform 
more complex functions and that require some interactive input. If you add such a utility 
program to your system, refer to the documentation and help file that came with the 
program for instructions in its use. . 

Summing It All Up: Developing and Running a 
Program 

This section illustrates the interactions among the various programs in the Apple IIGS 
Programmer's Workshop by presenting a typical sequence of procedures and events 
involved in developing and running a multilanguage program. For this purpose, we 
assume that you are developing an application written mostly in C, with some routines 
written in 65816 assembly language. See the manuals that came with your APW languages 
for actual multilanguage programming examples that you can run on your Apple IIGS. The 
process described here is illustrated in Figure 2.2. 

See the Apple IIGS ProD OS 16 Reference manual for a complete description of the 
program load process as implemented by the System Loader and Memory Manager. 

APDADraft 72 7127(87 



Apple IIGS Programmer's Workshop 

C 
Source 

~ 

~ 
! 
! 

Editor: 
rewrite C 
routines 

'P : 
: • • : • 
i 
: • • • 
! • • • • • : • • • : • • • • 
I • • • : 

C compiler: 
.......... compllec 

programs 

Load 
lIIe 

C 
object 

Shell: run 
program 

Loader and 
Memory 

..... - ... Manager: 
load 
program 

~ ~T \ \ I LOQd I Shell: call 

\............ ftle · ~~~~gl~~; 
.................. (DebUgger: 

............. -......... ~~~~&n 

Figure 2.2. Program Interactions 

APDADrajt 73 

Chapter 2: Using the Shell and Editor 

Program 
in 
memory 

Program 
In 
memory 

~ .. "' .... "'---.'" -_._ ... __ .... _ ...................... . 

65816 
source 

~ , 
i 
i 
! , 
i 
i 

EdltOf: rewrite 
ASM65816 
routines 

t' 
: , , , , , 
• • : , 
: 
: , , , 
: , 
• , , 
: , , 
• , , , , 
1 , 
I 

j 
:' 

,../ 
./ .... 

.' .' .' .... 
...... 

7127187 



Chapter 2: Using the Shell and Editor Apple lies Programmer's Workshop 

1. Using an APW Shell command, set the current language for APW to CC. (Every 
APW file has an APW language type; if you open a new fIle, it is given the current 
APW language type.) · 

2. Call the APW Editor and open a new fIle. 

3. Use the editor to write the C-language routines. You can divide the program among 
as many fIles as you wish. In APW C, you can specify which subroutines go in 
which load segments. You do not have to return to the shell between files; instead, 
you can save one file and open another within the editor. Until you open a non-C 
fIle with the editor or use a shell command to change the current language, the 
current language remains CC. 

4. Quit the editor, change the current language to ASM65816, call the editor, and open 
a new fIle. You can divide the 65816 assembly-language routines among as many 
files and as many segments per fIle as you wish. The APW Assembler allows you 
to specify which object segments go in which load segments. Make the assembly­
language routines relocatable: that is, use no absolute addresses-use labels and 
relative addressing only. 

If you have used macros in your assembly-language program, you can run the 
MacGen utility to generate a custom macro fIle for the program. 

Until you use a shell command to change the currrent language or open a non­
assembly-language file with the editor, the current language remains ASM658 16. 

5. Quit the editor, call the APW Assembler to assemble the 65816 assembly-language 
routines, and call the APW C Compiler to compile the C routines. You can compile 
both languages with a single command by listing all the files on the same command 
line or by appending one fIle to the other with APPEND directives and then executing 
the COMPILE command. 

6. Use the APW Linker to link the object fIles into a load file. You can link the object 
fIles with the standard linker or with the advanced linker. The standard linker places 
all object segments with the same load-segment name into a single load segment, 
while the advanced linker ignores the load-segment names in the object file and 
follows the directions in a LinkEd file to determine which object segments go in each 
load segment. 

You can compile and link both languages with a single command by listing all the 
files on the same command line or by appending one file to the other with APPEND 
directives and then executing the CMPL command • 

The shell checks the language type of the first fIle and calls the C compiler. When 
the compiler gets to a 65816 fIle, it returns control to the shell, which calls the APW 
Assembler. When the assembler is finished, it returns control to the shell again, 
which calls the standard linker. The object files output from the C compiler and 
those that are output from the APW Assembler are all in the same fonnat and so are 
indistinguishable to the linker. The linker combines the object fIles, resolves 
references, writes the load file, and retumscontrol to the shell. 

If you want to change load-segment assignments or control the sequence in which 
load segments are created, you must use the advanced linker. Write a LinkEd fIle 
like a language source file: that is, first set the system language to LINKED and then 
use the editor to write the fIle. 

To compile and link the entire program in one operation using the advanced linker, 
do the following: 

APDADraft 74 7127187 



Apple JIGS Programmer's Workshop Chapter 2: Using the Shell and Editor 

a. Using the editor, tie all of your source fIles together by placing an APPEND 
directive (in assembly language) or a 'append function (in C) at the end of each 
fIle. 

b. Put an APPEND directive that references the LinkEd fIle at the end of the last fIle 
in the program. 

c. In the shell, execute the ,COMP ILE command. 

Alternatively, you can list all the source files, including the LinkEd fIle, on the 
COMP ILE command line. Make sure that the LinkEd file is the last one listed. 

The shell checks the language type of the first fIle and calls the C compiler. When 
the compiler gets to a 65816 file, it returns control to the shell, which calls the APW 
Assembler. When the assembler gets to the LinkEd fIle, it returns control to the shell 
again, which calls the advanced linker. The advanced linker, controlled by the 
commands in the LinkEd file, can do the following: 

• combine the object files 
• resolve references 
• assign object segments to load segments 
• label certain load segments as dynamic 
• search libraries 
• write the load fIle 

When it is finished, the linker returns control to the shell. 

7. Run the program by typing in the name of the load file and pressing the Return key. 
(You can also automatically execute a program after linking by using the CMPLG 
command) When a program is run on the Apple IIGS, the following events occur: 

a. The System Loader loads the first segment into memory (calling the Memory 
Manager to request the block of memory it needs). This segment is static: that is, 
it remains in memory during the execution of the program. The loader uses the 
relocation dictionary of the segment to relocate the code to its present location in 
memory. 

b. The loader loads all other static segments into memory. relocating them as 
necessary. 

c. The loader passes control of the system to the program and the program begins 
to execute. 

d. When a reference to a subroutine in a dynamic segment is encountered, control is 
returned to the System Loader. If the segment is already in memory. the loader 
transfers control to the segment. If not, the loader locates the segment, loads it 
into memory, and transfers control to the segment. The System Loader keeps 
track of all the segments in memory. 

When there is insufficient room in memory to load a segment. the Memory 
Manager calls the System Loader to unload a dynamic segment from memory. 

8. If the program does not run correctly, you can use the Apple IIGS Debugger to step 
through or trace the code, to inSert breakpoints, to disassemble the machine code, 
and to examine the contents of registers and memory locations. You can modify the 
code in memory and rerun the program until the bug is fixed. 

9. Correct the source code and recompile the program. If the language you are using 
supports partial compiles, you can do a partial compile to recompile only the routine 
containing the bug. 

APDADroft 75 7127187 



Chapter 2: Using the Shell and Editor Apple llGS Programmer's Workshop 
. . . 

10. Relink the program and rerun it. If you have used partial compiles, the linker selects 
only the most recent version of each segment to put in thdoad me . . 

11 . You can use the Crunch utility to combine the files ci:eated by partial compiles into a 
single object file. Then link the program once again. Using Crunch is optional; if 
you have performed several partial assemblies, using this utility speeds up the link 
process. 

12. After you have fmished debugging the program, you can use the Compact utility to 
decrease the size of the load file and to make it load faster. 

Advanced Features 
This chapter has covered the simpler and more ba~iC.procedures you need in order to write, 
compile or assemble, link, debug, and run a program using the Apple nos Programmer's 
Workshop. APW has many additional capabilities not covered in this chapter. The 
following list gives some indication of other functions and where to find information about 
them in this manual. See the Preface for a chapter-by-chapter description of this book. 
Use the table of contents and the index to find the specific topics in which you are 
interested. 

• You can pipeline commands: that is, you can automatically use the output of one 
command as the input of another. See "Pipelining Programs" in Chapter 3. 

• You can redirect to a disk me the output that wOuld normally go to the screen. You 
can redirect input that would normally come from the keyboard to be from a disk me. 
See "Redirecting mput and Output" in Chapter 3. 

• You can link two or more object mes that have different root menames into the same 
load fIle. See the discussions of the ASl:fl, and LINK commands in Chapter 3. 

• You can list the segments, segment-header Contents, and segment contents of any file 
on disk in object module format. See the discussion of the DUMBOBJ command in 
Chapter 3. 

• You can control the APW Linker from a file of linker commands, called a LinkEd file. 
LinkEd files provide much more versatile control of the linker than do the shell LINK, 
CMPL, and CMPLG commands. The LinkEd command language makes it possible for 
you to 

choose specific segments to link 

place specific object segments in a load segment 

create multiple load segments 

start segments at specified locations 

link any number of program files 

- search a library 

set the program counter 

open a fIle for output 

control the printed output 

For more information about using LinkEd fIles, see the section "Using the Advanced 
Linker" in Chapter 5. 

APDA Draft 76 7127187 



Apple IIGS Programmer's Workshop Chapter 2: -Using the Shell and Editor 

• You can specify which subdirectories are searched for specific routines. For 
example. you can change the subdirectory searched for utility programs from 
/APW/UTILITIES/ to /PRODOS/WORKSHOP /EXT. COM/. See the section 
"Standard Prefixes" and the discussion of the PREF IX command in Chapter 3. 

I 
• You can use shell commands to initialize disks. to mov<:. copy. and rename files, and 

to create subdirectories. See the section "Command Descriptions" in Chapter 3. 

• You can define temporary aliases for commands with t1!e AL IAS command. See the 
discussion of the ALIAS command in Chapter 3. ' 

• You can read in a new command table at any time to defme new command names or 
aliases or to add new external commands to the system. See the section "Command 
Types and the Command Table" and the discussion of the COMMANDS command in 
Chapter 3. 

• You can create your own library files. See the discussion of the MAKELIB command 
in Chapter 3. 

• You can create a ProOOS 8 executable load file (a BIN file) from a ProOOS 16 load 
file. See the discussion of the MAKEBIN command in Chapter 3. 

APDA Draft 77 7/27/87 



Chapter 2: Using the Shell and Editor Apple lIGS Programmer's Workshop 
. . 

APDADraft 78 7127187 



Part II 

Reference 





Apple lIGS Programmer's Workshop Chapter3: Shell 

Chapter 3 

Shell 

The Apple IIGS Programmer's Workshop Shell includes the command interpreter that you 
use to control the Apple IIGS Programmer's Workshop, and it provides the interface 
between APW and the Apple IIGS operating system. The shell also provides the following 
features of APW: 

• facilities for copying, renaming, deleting, and moving files 

• executable command files (Exec files) for automatic execution of shell commands 

• redirection of input and output 

• pipelining of programs 

• the addition, deletion, and renaming of commands 

• the creation of aliases for commands 

• a command to assign subdirectories to the ProDOS 16 prefix'designators 

• commands for assembling, compiling, linking, and running programs 

• commands to execute other APW programs such as the editor and the MacGen utility 

• the ability to execute other Apple IIGS programs 

This chapter provides a reference guide to the APW Shell commands and Exec files. The 
fIrst part of the chapter explains how to redirect input and output, set standard prefixes, and 
pipeline commands. It includes an explanation of partial compiles and provides an 
introduction to shell command types and the command table. The central and largest part 
of this chapter provides complete descriptions of all of the shell commands. You should 
tum to this section any time you need a full explanation of a command or command 
parameters. The last part of the chapter explains how to write and use Exec files and 
describes in detail the commands that are used primarily in Exec files. 

The following shell-related topics are covered in Chapter 2, "How to Use the Shell and 
Editor": 

• entering commands 

• scrolling through previously entered commands 

• entering multiple commands on a single command line 

• responding to parameter prompts 

• using prefIx numbers for patbname prefIxes 

• using device names for volume names 

• using wildcard characters in fIlenames 

APDADra!t 79 7/27/87 



Chapter 3 Shell Apple JIGS Programmer's Workshop 

See Pan m, "Inside the Apple lIas Programmer's Workshop," for the infonnation you 
need in order to add a program to APW. 

Standard Prefixes 
When you specify a file on the Apple lIaS, as when indicating which file to edit or utility to 
execute, you must specify the file's pathname as discussed in the section "Pathnames" in 
Chapter 2. ProDOS 16 provides eight prefix numbers that can be used in the place of 
prefixes in pathnames. This section describes the APW default prefix assignments for 
these ProDOS 16 prefixes. 

APW uses six of the ProDOS 16 prefixes (0 and 2 through 6) to detennine where to search 
for certain files. When you stan APW, these prefixes are set to the default values shown in 
Table 3.1. You can change any of the eight ProDOS 16 prefixes with the APW PREFIX 
command, as described in this chapter, and you can include PREF IX commands in the 
LOG IN file, as shown in the section "Using Prefix Numbers" in Chapter 2. 

You can use the ProDOS 16 prefix numbers instead of prefixes in pathnames. For 
example, if you set prefix 7 to /APW/MYPROGS/, you can specify the pathname of 
/APW/MYPROGS/C.SOURCE/GOODSTUFFas 7/ C.SOURCE / GOODSTUFF. 

Table 3.1. Standard Prefixes 

Prefix Number 

.. 
o 
1 
2 
3 
4 
5 
6 
7 

Use 

Boot prefix 
Current prefix 
Application 
APWlibrary 
APWwork 
APWsystem 
APW language 
APW utility 
undefined 

Default 

Boot prefix 
Undefmed 
Prefix of APW . SYS 16 
I/LIBRARIES/ 
1/ 
I/SYSTEM/ 
I/LANGUAGES/ 
I/UTILITIES / 

Each time you restart your Apple lIas, ProDOS 16 retains the volume name of the boot 
disk; this volume name is the boot prefix. You can use an asterisk ( .. ) in a pathname in 
some commands to specify the boot prefix. You cannot change the volume name assigned 
to the boot prefix except by rebooting the system 

Note: When you use an asterisk followed by a space on a command line, it is 
interpreted as a comment; see the description of the COMMENT command in the 
section "Exec Files" in this chapter for details. 

The application prefix is the prefix of the last application run, whether it's the APW 
Shell, the APW Editor, a utility program, or any other program. 

The current prefix (also called the default prefix) is the one that is assumed when you 
use a panial pathname. After APW is started, the currerit prefix (prefix 0) is undefined 
unless you use the PREFIX command to set it. 

APDADraft 80 7127187 



Apple lIGS Programmer's Workshop Chapter 3: Shell 

When you start APW, ProDOS 16 and the APW Shell become resident in memory. so 
changing the current prefix does not affect the ability of the shell to function. The 
following paragraphs describe APW' s use of the standard prefixes. 

APW looks in the current prefix (prefix 0) when you use a partial pathname for a file. 

When you first boot APW, the application prefix (prefix 1) is set to the prefix of the 
APW. SYS16 file and is used to set the other prefixes used by APW. As soon as you run 
another program. such as the editor or a compiler, prefix 1 is reset The other APW 
prefixes do not change when prefix 1 changes, however. 

The standard linker searches the files in the APW library prefix (prefix 2) to resolve any 
references not found in the object files being linked. For infonnation on creating and using 
APW Assembler library files, see the discussion of the MAKEL IB command in this chapter, 
and the Apple lIGS Programmer's Workshop Assembler Reference manual. 

The work prefix (prefix 3) is used by some APW programs for temporary files. For 
example, when you pipeline two or more programs so that the output of one program 
becomes the input to the next, APW creates temporary files in the work prefix for the 
intermediate results (pipelines are described in the section ''Pipelining Programs" later in 
this chapter). Commands that use the work prefix operate faster if you set the work prefix 
to a RAM disk, since I/O is faster to and from memory than to and from a disk. If you 
have enough memory in your system to do so (1280K should be sufficient), use the Apple 
IIGS control panel to set up a 256K RAM disk, and then use the PREFIX command to 
change the work prefix. To change prefix 3 to a RAM disk named /RAM5, for example, 
use the following command: 

PREFIX 3 /RAM5 

APW looks in the APW system prefix (prefix 4) for the following files: 

• ED ITOR The APW Editor (see Chapter 4). 

• LOGIN 

• SYSCMND 

• SYSEMAC 

• SYSHELP 

• SYSTABS 

An optional Exec file that is executed automatically at load time if it 
is present (see the section "Exec Files" later in this chapter). 

The shell's command table (see the section "Command Types and 
the Command Table" later in this chapter). 

Editor macros (see the section "Macros" in Chapter 4). 

The help file for the editor (see the discussion of the HELP 
command in Chapter 4). 

The default tab and editing-mode settings for the editor (see the 
section "Setting Editor Defaults" in Chapter 4). 

APW looks in the language prefix (prefix 5) for the APW Linker, the APW Assembler, and 
any other assemblers. compilers. and text formatters that you have installed in your copy of 
APW. 

APW looks in the utility prefix (prefix 6) for all of the APW utility programs except for the 
editor, assembler, and compilers. Prefix 6 includes the programs that execute external 
commands, such as CRUNCH. INIT,'and MAKELIB. The utility prefix also contains the 
HELP / subdirectory, which contains the text files used by the HELP command. Command 

APDADraft 81 7127187 



Chapter 3 Shell Apple llGS Programmer's Workshop 

types are described in the the section "Command Types and the Command Table" later in 
this chapter. 

Note: The UTILTIES / subdirectory on the /APW disk that comes with APW 
Version 1.0 contains no help files and only a subset of the utility programs. The 
/APWU disk contains a complete UTILTIES/ subdirectory. If you are running 
APW from floppy disks, you can use the MU command to change the utility prefix 
to /APWU/UTILTIES/ and the UMU command to change the utility prefix to 
/APW/APW/UTILTIES/ 

Redirecting Input . and Output 
Most Apple IIGS programs use tool calls to accomplish input and output functions. The 
Text Tool Set accepts input from whatever device driver routine is pointed to by standard 
input and sends output to .the device driver routine pointed to by standard output. (The 
Text Tool Set is described in Volume II of the Apple llGS Toolbox Reference.) Input 
received through standard input is usually from the keyboard, while output through 
standard output is usually sent to the screen. APW allows you to redirect the input and 
output of any program-including the APW Shell and utilities-that uses standard I/O. 
Input to a command or program can come from a text file or from the output of a program 
instead of from the keyboard. Output from a command or program can be sent to a printer 
or a disk file instead of to the screen. 

Error messages can be redirected independently of other output Error output is used 
instead of standard output so that error messages can be displayed on the screen (for 
example) even when standard output is going to a file. By redirecting error output, you can 
place error messages in a separate disk file from that used for program listings and other 
output. 

Note that the input and output of programs that do not use standard I/O cannot be redirected 
by APW. 

To redirect standard input or output, use the following conventions on the command line: 

<inpuu1evice Redirect standard input to be from inputdevice. 

>outputdevice Redirect standard output to go to outputdevice. 

> >outputdevice Redirect standard output to be appended to the current contents of 
outputdevice. 

> &outputdevice Redirect error output to go to outputdevice. 

»&outputdevice Redirect error output to be appended to the current contents of 
outputdevice. 

You can include spaces before or after the redirection operators «, >, », >&, »&) to 
improve readability, but no spaces are necessary. 

APDADraft 82 7127187 



Apple IIes Programmer's Workshop Chapter 3: Shell 

The input device can be the keyboard or any text or source file. The keyboard is the default 
input device. To reassign the keyboard as the input device after input has been redirected, 
use the device name . CONSOLE. 

The output device can be the screen, the printer, or any file. If the file named does not 
exist, APWopens a file with that name. To redirect output to the printer, use. PRINTER. 
The screen is the default output device. To reassign the screen as the output device after 
output has been redirected, use the device name . CONSOLE. 

Warning: Be sure the printer is on-line before directing output to it. With some 
hardware (such as parallel printer cards), the system hangs if the printer is not on­
line. 

If you use output redirection to open a new file on disk, the file has the file type TXT 
(ProDOS 16 file type $04). If you use output redirection to send output to an existing file, 
the file's language type is not changed. 

Warning: If you redirect output to an existing file, the original contents of that file 
are destroyed without warning, regardless of the flIe type of the flIe. If you do not 
want to overwrite an existing file, check to make sure there is no flIe with the 
pathname you intend to specify before executing the redirection. 

Important: If a disk flIe is used for input or output, the disk must remain on-line 
until the command finishes executing. 

Both input and output redirection can be used on the same command line. The input and 
output redirection instructions can appear in any position on the command line. 

For example, to redirect output from an assembly of the program MYPROG to the printer, 
you could use either of the following commands: 

ASSEMBLE MYPROG >.PRINTER 

ASSEMBLE >.PRINTER MYPROG 

To redirect output from the CATALOG command to be appended to the data already in a 
disk flIe named CATSN . DOGS, use the following command: 

CATALOG »CATSN.DOGS 

To redirect input in response to the AINPUT directives in an assembly-language source flIe 
to be from the file ANSWERS rather than the keyboard, you could use one of the following 
commands: 

ASSEMBLE <ANSWERS MYPROG 

ASSEMBLE MYPROG <ANSWERS 

Input and output redirection can be used in Exec flIes. See the section "Exec Files" later in 
this chapter for a description of Exec files. 

APDADraft 83 7/27/87 



Chapter 3 Sh£1I Apple llGS Programmer's Workshop 

Pipelining Programs 
APW lets you automatically execute two or more programs in sequence, directing the 
output of one program to the input of the next. As illustrated in Figure 3.1, the output of 
each program but the last is written to a temporary file in the work: subdirectory named 
SYSPIPEn, where n is a number assigned by APW. The first temporary file opened is 
assigned an n of 0; if a second SYSP IPEn fIle is opened for a given pipeline, it is named 
SYSPIPEl, and so forth. 

Important: Pipelining works only with programs that take their input from 
standard input and send their output to standard output. 

To pipeline, or sequentially execute programs PROGO, PROGl, and PROG2, use the 
following command: 

PROGOIPROGliPROG2 

The output of PROGO is written to SYSP IPEO. The input for PROG 1 is taken from 
SYSPIPEO and the output is written to SYSPIPEl. The input for PROG2 is taken from 
SYSPIPEl, and the output is written to standard output. 

SYSP IPEn files are text files (ProDOS 16 file type $04) and can be opened by the editor. 

PROGOIPROGliPROG2 

~ Standard Input 

PROGO 

SYSPIPEO 

SYSPIPEl 

Figure 3.1. Pipelining Programs 

PROG2 

Standard 
Output 

For example, suppose you have a utility program called ALP HA that takes a list of items 
from standard input, alphabetizes them, and writes them to standard output. You could use 
the following command line to alphabetize the contents of the current directory and write 
them to the screen: 

APDADraft 84 7127187 



Apple lIes Programmer's Workshop Chapter 3: Shell 

FILES I ALPHA 

To send the output to the file LISTING rather than to the screen, use the following 
conunand line: 

FILES I ALPHA >LISTING 

The SYSPIPEn files are not deleted by APW after the pipeline operation is complete. For 
this reason, you can use the editor to examine the intermediate steps of a pipeline as an aid 
to finding errors. The next time a pipeline is executed, however, any existing SYSP IPEn 
files are overwritten. 

Partial Assemblies or Compiles 
If you are writing a large program, you may find that the debugging process is being 
slowed considerably by the amount of time it takes to compile the program. You can often 
speed up this process by using partial compiles or assemblies. 

Note: Currently, the APW Assembler is the only program that provides this 
capability, but other APW compilers may suppon partial compiles in the future. 
Check the manual that came with your compiler to see if it allows you to perform 
partial compiles. 

In a partial compile or assembly, you specify wbich object segments are to be compiled. 
The new versions of the segments are placed in a file with the same root filename as the 
rest of the program, but with the next higher alphabetic extension. The root filename of a 
file is the fllename minus any fllename extensions added by the assembler or compiler. For 
example, the files MYFILE. ROOT, MYFILE .A, and MYFILE. B all have the same root 
filename: MYFILE. (The root fllename can include a period (.). For example, MYFILE.O 
is a valid root fllename from which the APW Assembler would create flles 
MYFILE .O.ROOT and MYFILE .0.A.) 

Important: The root fllename cannot be longer than 10 characters for files to 
which the . ROOT extension will be appended because ProDOS 16 limits the entire 
fllename to 15 characters. Using more than 10 characters in such a fIlename will 
result in a fatal assembler or compiler error (Unable to open output 
file) . 

To do a partial compile or assembly, you must use one of the following shell conunands: 

• ASSEMBLE 

• ASML 

• ASMLG 

• COMPILE 

• CMPL 

• CMPLG 

• RUN 

APDADraft 85 7127187 



Chapter 3 Shell Apple IIGSProgrammer's WorksluJp 

These commands are all very similar. The ASML and CMPL commands automatically link 
the program after compiling or assembling it; ASMLG, CMPLG, and RUN also link the 
program, and then automatically run the program after linking it The COMP ILE command 
is actually an alias for the ASSEMBLE command, as is CMPL for ASML and CMPLG (and 
RUN) for ASMLG. All of these commands are described in this chapter. 

Each of these commands has an optional parameter called NAMES, which you follow with a 
list of the names of segments you want to compile or assemble. When the shell finds a 
NAMES parameter, it performs a partial compile or assembly. Keep the following points in 
mind when using the NAMES parameter: 

• The name to list is the object-segment name, not the load-segment name. In an 
assembly-language source file, the label ofa START, PRIVATE, DATA, or 
PRIVDATA directive is the object-segment name; the operand of the directive is the 
load-segment name. Any number of object segments can have the same load-segment 
name. Load-segment names are used by the linker and have no effect on an 
assembly. 

• Object-segment names are case-sensitive. If the language you are using is not case­
sensitive, it converts all names to uppercase in the object file, regardless of how they 
appear in the source file. When using the NAMES parameter for case-insensitive 
languages, you must enter the segment names in all uppercase. For case-sensitive 
languages, on the other hand, you must list all object-segment names exactly as they 
appear in the source code. Assembly language is case-insensitive in APW unless you 
have used the CASE ON directive in the source file. 

• You can include in one NAMES parameter list the names of all the segments you want 
to use. This is true whether you have only one source file or you are compiling 
several files at once. 

• Be sure to include a KEEP directive in the file or a KEEP parameter in the command 
line, or to define a shell KeepName variable. If you don't, the program is compiled, 
but the output is not saved. 

• Use the same root filename for the partial compile as you used for the original 
compile. The linker can automatically scan all files with the same root filename for 
the most recent version of each segment. 

An example of a sequence of partial assemblies is given at the end of this section. 

There are two circumstances under which a fIle with a higher alphabetic suffix (. B, • C, 
and so on) is created. 

• If you include a NAMES parameter on the command line to request a partial assembly 
or compile, only the segments named are compiled, and they are placed in a file with 
the next available alphabetic extension. For example, if the files MYPROG . ROOT and 
MYPROG.A are already on the disk, a partial assembly creates the file MYPROG. B. 

• If the compile involves more than one language, then the first compiler or assembler 
creates the . ROOT file and may create the . A file, the second compiler might create the 
. B fIle, and so on. 

APDADraft 86 7127187 



Apple IIGS Programmer's WorksJwp Chapter 3: Shell 

Note: You cannot have more than 26 alphabetic-extension files (.A through. z) 
for each root fllename. You can use the CRUNCH command described in this 
chapter to combine all the alphabetic-extension mes for one root filename into one 
• A me at any time. . 

When the linker links the program, it uses the following procedare: 

1. It starts with the . ROOT file and links the segment contained in that me. 

2. It looks for a . A fIle. If it finds one, the linker looks for a . B fIle, and so on. 

3. It links the segments in the fIle that has the highest alphabetic suffix it has found. 

4. It works its way back through the alphabet to the . A fIle, ignoring any segments 
with object-segment names identical to those it has already found, and linking the 
rest 

You can also control which segments are linked and in what sequence by using a LinkEd 
command me; see the section "Linking With a LinkEd Command File" in Chapter 5 for 
details. 

Important: During a partial compile, the compiler first looks for a . ROOT file, 
then a . A fIle, then a . B me, and so on. The search is terminated as soon as one 
file in the sequence is not found, and the next file created is given the next higher 
alphabetic suffix. Therefore, if the files MYF ILE . A, MYF ILE . B, and 
MYF ILE • D are in the subdirectory, but MYF ILE • C is not, the assembler or 
compiler never fmds MYFILE. D. The next file created by a partial assembly or 
compile, then, would be MYF ILE • C. You must be careful not to let such a 
situation occur, because (in this example) the linker would start the next link with 
the fIle MYF ILE . D. 

An example of a partial compile and assembly is shown in Figure 3.2. Assume you have 
written a program consisting of two source files. The first file, named MYPROG, is in 
65816 assembly language. It includes the main part of the program, and has four object 
segments named MAIN, SEG1, SEG2, and DATA. The second me, named MYPROGC, is 
in C. It includes a couple of mathematical subroutines that you didn't want to write in 
assembly language. The subroutines are named Lagrange and Fourier. At the end of 
the assembly-language routine is an APPEND directive that appends MYPROGC. MYPROG 
begins with a KEEP directive that names the output file as TRANSFORM. To assemble 
MYPROG and compile MYPROGC, enter the following command: 

ASSEMBLE MYPROG 

APDADrajr 87 7127187 



Chapter 3 Shell App/eIIGS Programmer's Workshop 

MYPROG 

MAIN 

SEGI 

'" ... 
e 

SEG2 '" .. .. 
DATA cz: 

Lagrang 

Fourier 

TRANSFORM,ROOT 

MAIN 

SEGI 

SEG2 

DATA 

TRANSFORM,B 

Lagrang 

Fourier 

MYPROG 

MAIN 

SEGI 
TRANSFORM,C 

... 
c SEG2 

(revised) ~--I"" 

DATA 
(revised) 

MYPROGC 

Lagrange 

(revised) 

Fourier 

r;-
Oo 

.......... 
E TRANSFORM, 
co 
u ., r-. Lagrange -... ., ... 
'-' 

MYPROGC 

Lagrange 

(revised 
again) 

Fourier 

., -... ., ... 

D 

Lagrange 

Figure 3.2. An Example of the Use of Partial Compiles 

APDA Draft 88 

TRANSFORM 

7127187 

-~, 



Apple llGS Programmer's Workshop Chapter 3: Shell 

The APW Shell processes the program as follows: 

I. The shell checks the language type of MYPROG and calls the APW Assembler. 

2. The assembler starts to assemble MYPROG; it opens TRANSFORM. ROOT and puts 
the flTSt segment (MAIN) in that file. 

3. The assembler closes TRANSFORM. ROOT, opens TRANSFORM. A, and puts the rest 
of the segments in there. 

4. When it gets to the APPEND directive, it opens MYPROGC and checks its APW 
language type. Finding that it's not an assembly-language file, the assembler closes 
MYPROGC and TRANSFORM. A and returns control to the shell. 

5. The shell calls the C compiler, which compiles MYPROGC, placing both subroutines 
in TRANSFORM. B. 

The following files are now present on disk: 

• MYPROG 

• MYPROGC 

• TRANSFORM.ROOT 

• TRANSFORM.A 

assembly-language source me 

C source file 

object me containing the segment MAIN 

object file containing SEG1, SEG2, and DATA 

• TRANSFORM.B object me containing segments Lagrange and Fourier 

After working on the program for a while, you have changed segments SEG2, DATA, and 
subroutine Lagrange. Rather than reprocess the entire program, you perform a partial 
assembly by using the following command: 

ASSEMBLE MYPROG NAMES=(SEG2 DATA Lagrange) 

Note that the segment names for the C routine must be entered exactly as they appear in the 
source code, since C is a case-sensitive language. The assembler fmds the segments SEG2 
and DATA in MYPROG, assembles them, and places them in the me TRANSFORM. C. Then 
the shell calls the C compiler, which extracts subroutine Lagrange and places it in the file 
TRANSFORM. D. 

Finally, you make one more change to Lagrange. To recompile that routine only, you 
need not process MYPROG at all. Instead, use the following command: 

COMPILE MYPROGC KEEP=TRANSFORM NAMES=(Lagrange) 

This time you used the COMP ILE command rather than the ASSEMBLE command because 
it satisfied your sense of aesthetics to use a compile command with a compiler. Actually, 
the COMPILE and ASSEMBLE commands are aliases-they call the same APW Shell 
routine. Note that you have to use the KEEP parameter in the command line, since the file 
MYPROGC contains no KEEP command. 

This last partial compile creates the file TRANSFORM. E. 

Finally, to link the program and create the load fIle TRANSFORM, you use the following 
command: 

APDADraft 89 7127187 



Chapter 3 Shell Apple IlGS Programmer's Workshop 

LINK TRANSFORM KEEP=TRANSFORM 

The linker does the following: 

1. It finds the ftle TRAN SFORM • ROOT and links the segment MAIN. 

2. It fmds the ftle TRANSFORM. A, then searches for TRANSFORM. B, and so on until 
it finds TRANSFORM. E. It links Lagrange from TRANSFORM. E. 

3. It finds Lagrange in TRANSFORM. D, realizes it has already linked it, and ignores 
it. 

4. It links SEG2 and DATA in TRANSFORM. C. 

5. It links Fourier in TRANSFORM. B, ignoring the older version of Lagrange it 
finds there. 

6. It links SEGl in TRANSFORM. A, ignoring SEG2 and DATA. 

Command Types and the Command Table 
The Apple llGS Progranuner's Workshop includes a large number of commands that 
perform a variety of functions, from listing a disk directory to compiling a program There 
are three types of commands in APW: internal, external, and language. 

• An internal command is one included in the APW Shell. Internal commands are 
resident in memory whenever you are in the Apple llGS Programmer's Workshop. 

• An external command is a separate APW utility program. These programs are in the 
utility prefix (prefix 6) and are loaded from disk when you execute the commands. 

• A language command changes the default APW language type. Any new ftle opened 
for editing with the EDIT command is given the default language type. 

Note: The existence of a language command on your system does not necessarily 
indicate that you have the compiler for that language on your disk. Check the 
contents of the language prefix (prefix 5) to see which compilers are installed in your 
copy of APW. 

The APW language type of a ftle is stored in the ProDOS 16 directory entry for the file, but 
is separate from the ProDOS 16 file type. The APW language types include all assemblers 
and compilers recognized by APW, plus AScn text ftles (which have the language type 
PRODOS), LinkEd command files (LINKED), and shell command files (EXEC). 

Your APW disk or directory includes a language subdirectory (prefix 5, normally 
LANGUAGES!). Note that, while compilers, assemblers, and the APW Linker are included 
in the language prefix, some of the language types included in APW do not have 
corresponding flies in the language prefix. The EXEC, PRODOS, and TEXT language 
types, for example, do not have compilers and so do not appear in the language prefix. 

If you open an existing file for editing, the default language type changes automatically to 
match that me. The language type of any source or text file can be changed with the 
CHANGE command. Use the SHOW LANGUAGES command (note the plural) for a list of 
the language commands available, and the SHOW LANGUAGE (singular) command for the 
current default. 

APDADraft 90 7127187 



Apple IIGS Programmer's Workshop Chapter 3: Shell 

AU APW compiler and assembler source files, LINKED files, and EXEC files are ProDOS 
16 file type $BO. PRODOS text files are ProDOS 16 file type $04. 

Table 3.2 shows some of the language types that APW recognizes. For a more complete 
list of language numbers that have been assigned for APW, see Appendix B. The 
assignment of a language number does not necessarily imply that that language is currently 
available. To see a complete list of all APW language numbers, obtain the latest version of 
Apple nas Technical Note #20. 

Table 3.2. APW Language Types 

Language Number Use 

ASM65816 3 65816 assembler source 
CC 10 APWCsource 
EXEC 6 command file 
LINKED 9 APW Linker command language 
PRODOS 0 ProDOS 16 text file (ProDOS 16 file type $04) 
TEXT 1 APW text file 

All APW source files have a ProDOS 16 file type of $BO; the APW language type allows 
APW to distinguish between source files in different language,. APW TEXT files are 
standard ASCn files with ProDOS 16 file type $BO and an APW language type of TEXT. 
The TEXT language type is provided to support any text formatters that may be added to 
APW in the future. The PRODOS language type creates standard ASCII files with 
ProDOS 16 file type $04; these files are shown in a directory listing as TXT files. See the 
Apple IlGS ProDOS 16 Reference for a discussion of ProDOS 16 file types. 

You can add, delete, and rename commands by editing the default command table, which is 
in a file called SYSCMND in the system prefix (prefix 4). This command table is read by the 
shell at load time. You can also cause the shell to read a custom command table at any time 
by using the COMMANDS command. 

You can alter the contents of the command table to add command names to the shell, to 
create permanent aliases for commands. or to delete commands. To change the contents of 
a command table, open the command-table file with the EDIT command. Each command 
in the command table is on a separate line; each line contains three fields, separated by 
spaces, as illustrated in Figure 3.3. The fields specify the commands as foUows: 

1. The first field is the command name, which must follow the rules for a legal 
ProDOS 16 filename. Command names are not case-sensitive. 

2 The second field indicates the command type. Enter a C for an internal command, a 
U (for utility) for an external command, or an L for a language. If you precede the 
command type with an asterisk (*), the shell assumes that the program can be 
restarted and does not remove it from memory as long as that memory is not needed 
for other purposes. In this case, if that command is executed again, the program 
need not be reloaded from disk. (This feature is useful only for utilities (U) and 
compilers (L); if you precede a C with an asterisk, the shell ignores the asterisk.) 

APDADraft 91 7/27/87 



Chapter 3 Shell Apple llGS Programmer's Workshop 

Important: If you put an asterisk: in the command table in front of the 
command type of a utility or language that cannot be restarted, an error may 
occur the first time the shell tries to restan that program. See the discussion of 
restartability following Figure 3.3. 

3. The third field specifies the command number or language number. For internal 
commands, you must use an existing command number. For languages, you must 
use one of the recognized language numbers listed in Appendix B. For external 
commands, the third field is blank. 

Note: If you add an internal shell command to the command table with. a new 
command number, the command will not work and an error message will be 
generated when you try to execute the command. To add a new command to APW, 
create a utility program as described in Chapter 6, "Adding a Program to APW." 

The third field can be followed by a space or tab and a comment Blank lines are ignored. 
You can create a comment line by starting it with a semicolon (; ). 

Sample command table 
ALINK C 3 
ASM65816 *L 3 
ASML C 1 
ASMLG C 2 
ASSEMBLE ,C 3 
CC *L 10 
COMMANDS C 35 
COMPILE C 3 
CONTINUE C 26 
COpy C 5 
DUMPOBJ *U 
ECHO C 29 

Figure 3.3. Sample of a Command Table 

In Figure 3.3, you can see that ALINK, ASSEMBLE, and COMP ILE all have the same 
command number: 3. These internal commands (type C) are all aliases. ASM65816, on 
the other hand, is a language command (type L). Language number 3 is not related to 
command number 3. DUMPOBJ is a restartable utility program. 

Restartability: For a program to be restartable, it must reinitialize all variables 
and arrays each time it starts. To make it easier for you to write restartable 
programs, OMF version 2.0 provides initialization segments, which are reloaded 
from disk and executed each time a program is restarted from memory, and reload 
segments, which are reloaded from disk each time a program is restarted. 

Because OMF Version 1.0 does not support reload segments, and because the 
current version of the linker generates OMF Version 1.0 files , the linker cannot 
create reload segments. The Compact utility, however, converts OMF Version 1.0 
load files to OMF Version 2.0. If it finds a load segment named -g loba Is or 
-arrays, Compact makes it a reload segment. In addition, if you set the KIND 
field in the segment header to $IF, Compact makes that segment a reload segment. 

APDADraft 92 7127187 

.--. 



Apple lies Programmer's Workshop Chapter 3: Shell 

See the description of the LinkEd SEGMENT command in Chapter 5 for a way to set 
the KIND field of a load segment The Compact utility is described later in this 
chapter. 

The commands delivered with APW are shown in Table 3.3. 

Table 3.3. APW Commands 

Command Use Type 

* Comment character Internal 
ALIAS Assign a remporary alias 10 a command InremaJ 
ALINK Compile a linker command ftle InremaJ 
ASM65816 Change default language 10 65816 assembly language Language 
ASML Assemble and link the program InremaJ 
ASMLG Assemble. link. and go (run the program) InremaJ 
ASSEMBLE Assemble the program Internal 
BREAK Exec·file command InremaJ 
CANON Replaces words with the canonical spelling specified ExremaJ 

in a dictionary file 
CAT List the disk directory Internal 
CATALOG List the disk directory InremaJ 
CC Change default language 10 APW C Language 
CHANGE Change the language type of an existing source file Inlemal 
CMPL Compile and link the program InremaJ 
CMPLG Compile. link. and go (run the program) InremaJ 
COMMANDS Read the Command table InremaJ 
COMMENT Comment InremaJ 
COMPACT Converts load file 10 compact form Exremal 
COMPILE Compile the program InremaJ 
CONTINUE Exec·ftle command InremaJ 
COpy Copy a file. direclOry. or volume InremaJ 
CREATE Creare a new subdirectory InremaJ 
CRUNCH Combine object files fanned by partial compiles Exremal 

or assemblies into a single ftle 
DEBUG Execute the Apple nGS Debugger program(if instaIled) Exremal 
DELETE Delete 8 file Internal 
DISABLE Disable file attributes InremaJ 
DUMPOBJ List the contents of an OMF file to standard output External 
ECHO Exec·file command InremaJ 
EDIT Edit an existing file. or open a new file InremaJ 
ELSE Exec·file command InremaJ 
ENABLE Enable file attributes InremaJ 
END Exec·file command Internal 
EQUAL Compares two files or direclOres for equality ExremaJ 
EXEC Change default language 10 EXEC command language Language 
EXECUTE Execute an Exec file at present command level Inlemal 
EXIT Exec·fOO command InremaJ 
EXPORT Expon a shell variable InremaJ 
FILES LiS! the contents of a directory. including subdirectories Exremal 
FILETYPE Change file type 10 type specified Inlemal 
FOR Exec·fOO command Inlemal 
HELP Provide on·screen help for commands. or list all internal 

available commands 

APDADraft 93 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

Table 3.3. APW Commands (continued) 

HISTORY List last 20 commands entered Internal 
IF Exec-fIle~ Internal 
INIT Initialize a disk External 
LINK Link an object file Internal 
LINKED Change defalllt \aniua&e 10 the LinkEd command language lJmguage 
LOOP Exec-file command Internal 
NACGEN Generate a macro library for a specific program External 
MAKEBIN Create a ProWS 8 binary fIle from a ProWS 16 load fIle External 
MAKELIB Generate a libmry fIle from an object file External 
MOVE Move a flIe 10 another directory or volume Internal 
PREFIX Change the default prefixes Internal 
PRODOS Change default lancuall" 10 ProWS 16 text lJmguage 
QUIT QuitAPW Internal 
RENAME Change a fIlename Internal 
RUN Same as ASMLG or CMPLG Internal 
SEARCH Search a file for a string External 
SET Set shell variables Internal 
SHOW Show languages, system default language, prefixes, Internal 

time, volumes on line 
TEXT Change default language 10 TEXT lJmguage 
TYPE Type a fIle 10 slalldard output Internal 
UNALIAS Delete an alias created with the AL lAS command Internal 
UNSET Delete a sheU variable Internal 
VERSION Displays version of APW you are using External 

See Chapter 6 for instructions on adding APW utilities to the Programmer's Workshop. 

APDADraft 94 7/27187 



Apple lies Programmer's Workshop Chapter 3: Shell 

Command Descriptions 
The following notation is used to describe commands: 

UPPERCASE Uppercase leners indicate a command name or an option that must 
be spelled exactly as shown. The command interpreter is not case 
sensitive; that is, you can enter commands in any combination of 
uppercase and lowercase letters. Segment names are case-sensitive. 
In case-sensitive languages, segment names must be entered exactly 
as they appear in the source code. Segment names in case­
insensitive languages must be entered in uppercase. 

italics Italics indicate a variable that you must replace with specific 
information, such 3$ a pathname or file type. 

directory 

filename 

pathname 

APDADraft 

TIris parameter indicates any valid directory pathname or partial 
pathname. It does not include a filename. If the volume name is 
included, directory must start with a slash (I); if directory does not 
start with a slash, the current prefix is assumed. For example, if 
you are copying a file to the subdirectory SUBDIRECTORY on the 
volume VOLUME, the directory parameter would be 
/ VOLUME/SUBDIRECTORY/ . If the current prefix were 
/ VOLUME / , you could use SUBDIRECTORY for pathname . 

The device names .D1, .D2, .... Dncanbeusedforvolume 
names. If you use a device name, do not precede it with a slash. 
For example, if the volume VOLUME in the above example were in 
disk drive . D 1, you could enter the directory parameter as 
.D1 / SUBDIRECTORY/. 

ProDOS 16 prefix numbers can be used for directory prefixes. Two 
periods ( .. ) can be used to indicate one subdirectory above the 
current subdirectory. If you use one of these substitutes for a 
prefix, do not precede it with a slash. For example, the HELP / 
subdirectory on the APW disk can be entered as 6 /HELP / . 

This parameter indicates a men arne, not including the prefix. The 
unit names . CONSOLE and. PRINTER can be used as filenames. 

TIris parameter indicates a full pathname, including the prefIX and 
filename, or a partial pathname, in which the current prefix is 
assumed. For example, if a file is named FILE in the subdirectory 
DIRECTORY on the volume VOLUME, the pathname parameter 
would be / VOLUME/DIRECTORY / FILE. If the current prefix 
were / VOLUME/, you could use DIRECTORY / FILE for 
pathname. A full pathname (including the volume name) must begin 
with a slash (I); do not, however, precede pathname with a slash if 
you are using a partial pathname. 

The device names . CONSOLE and. PRINTER can be used as 
filenames; the device names . D1, . D2, .... Dn can be used for 
volume names; and ProDOS 16 prefix numbers or double periods 
( .. ) can be used instead of a prefix. 

A vertical bar indicates a choice. For example, + L I - L indicates 
that the command can be entered as either + L or as - L. 

95 7127187 



Chapter 3 Shell Apple lIGS Programmer's Workshop 

AlB. 

[ 1 

An underlined choice is the default value. 

Parameters enclosed in square brackets are optional. 

Ellipses indicate that a parameter or sequence of parameters can be 
repeated as many times as you wish. 

The following pointers will help you use the APW Shell command interpreter: 

• The command-line prompt is a number sign (#); whenever a number sign appears at 
the left edge of the screen followed by a cursor, you can enter a command. 

• You must separate the command from its parameters by one or more spaces. 

• You can use the Right Arrow key to expand command names as described in the 
"Entering Commands" section of Chapter 2; you can use the Up and Down Arrow 
keys to scroll through previously entered cOfDmands. 

• There are no abbreviations for command names, except for those aliases that you add 
to the system as described in the section "Command Types and the Command Table" 
in this chapter and in the description of the AL IAS command in this chapter. 

• All commands and parameters, except for segment names, can be entered in any 
combination of uppercase and lowercase characters. Segment names are case­
sensitive. In case-sensitive languages, segment names must be entered exactly as 
they appear in the source code. Segment names in case-insensitive languages must be 
entered as all uppercase characters. 

• When you are calling an assembler, compiler, or liilker, if there is a conflict between a 
parameter in a command line and a source-code command, the command-line 
parameter takes precedence. When neither a source-code command nor a command­
line parameter has been used, the default parameter is used. 

For example, if you specify + L as a parameter for the ASSEMBLE command, a 
source-code listing is included in the output even if you include a LIST OFF 
directive in the source code. If you include neither the LIST directive nor the L 
parameter, the default (no listing) is used. 

• If you fail to enter a required parameter, you are prompted for it, as described in 
Chapter 2. 

• Any of the APW Shell commands can be placed in an Exec command ftle for 
automatic execution. Exec ftles are described in the section "Exec Files" later in this 
chapter. 

ALIAS 

ALIAS [alias [command]] 

This internal command assigns an alias to an APW Shell command. 

alias The alias that you want to assign to this command. If you do not include an 
alias, all aliases for all commands that are in effect are written to the screen. 

command The shell command for which you want to define an alias. You can include 
one or more parameters as part of the command. If you do not include a 
command name, the command for which alias is an alias is written to the 
screen. 

APDADraft 96 7/27/87 



Apple lIGS Programmer's Workshop Chapter 3: Shell 

You can use this command to assign temporary aliases for APW commands. An alias 
assigned by this command is local to the Exec me in which it is defined and is passed on to 
any Exec file called by that file. An alias defined in the LOG IN me is valid on the 
command line and in all Exec files. An alias defined in an Exec file is valid in all Exec files 
called by that fIle, but not at higher levels unless the Exec fIle is called with an EXECUTE 
command. 

For example, suppose you want to create the alias DIR for the CATALOG command. To do 
so, execute the following command: 

ALIAS DIR CATALOG 

Now, each time you type D IR, you get a catalog listing. 

As another example, suppose you want to create an alias called VOLUMES that lists the 
units that are on line plus the current date and time. To do so, execute the following 
command: 

ALIAS VOLUMES SHOW UNITS TIME 

Now, each time you type VOLUMES, the system responds as if you had typed 
SHOW UNITS TIME. 

The AL lAS command makes a single substitution for whatever alias name you specify. It 
also allows you to use an existing command for an alias. Thus, the following command is 
valid: 

ALIAS SHOW SHOW UNITS 

This command makes SHOW an alias for the command SHOW UNITS. If you execute this 
ALIAS command, then each time you enter SHOW, the system responds as if you typed 
SHOW UNITS. For example, if you type SHOW TIME, the system responds as if you 
typed SHOW UNITS TIME. 

Note: The ALIAS command does not check to see if the command for which you 
are creating an alias is valid. Therefore, you can create a nonfunctional alias or 
even accidently make an existing command nonfunctional. For example, if you 
enter the command ALIAS SHOW TIME, the alias SHOW is substituted for the 
command TIME, making the original command SHOW inoperative. Because there is 
no TIME command, when you enter SHOW, you get the error message 
ProDOS: File not found. To correct this condition, use the UNALIAS 
command (in this example, UNALIAS SHOW). 

The AL lAS command does not modify the command table; aliases are lost each time you 
. boot the system (unless they are included in the LOGIN file). See the section "Command 
Types and the Command Table" earlier in this chapter for instructions on creating 
permanent aliases for commands. 

Use the UNALIAS command to delete aliases set with the ALIAS command. 

APDADraft 97 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

ALINK 

ALINK [option ... J file1 [file2 ... J [KEEP=ou(fileJ 

This internal command calls the APW Linker to process one or more mes of LinkEd 
commands. 

Note: ALINK is a synonym for ASSEMBLE; you can use the ASSEMBLE or 
COMPILE commands instead of ALINK if you prefer. The ALINK command 
accepts all of the parameters of the ASSEMBLE command; however, some of these 
parameters are ignored by the linker. Only those parameters that are used by the 
linker are described here. See the ASML command for a complete list of 
parameters. 

option... You can specify as many of the following options as you wish by 
separating the options with spaces. 

APDADraft 

+E I -E If you specify +E, when the linker terminates execution due to a 
fatal error or because you also specified +T, it calls the APW 
Editor. The editor displays the source me with the offending line 
on the fifth line on the screen (or as far down on the screen as 
possible, if the error is in one of the first four lines of the file). If 
you specify - E and a fatal error occurs, you are returned to the 
shell's command line or the Exec file that executed the command. 
The default for this option is +E when the command is executed 
from the command line and -E when the command is executed 
from an Exec file. 

+ L I::L If you specify + L, the linker generates both a listing of the LinkEd 
source code and a listing (called a link map) ofthe segments in 
the object file, including the starting address, the length in bytes 
(hexadecimal) of each segment, and the segment type. If you 
specify - L, the source-<:ode listing and link map are not produced. 
The L parameter in this command overrides any LIST and 
SOURCE conimands in the LinkEd source file. 

+S I.=.S. If you specify +S, the linker produces an alphabetical listing of all 
global references in the object file (called a symbol table). If you 
specify -S, the symbol table is not produced. The S parameter in 
this command overrides the SYMBOL command in the LinkEd 
source file. 

+T I.::..T If you select +T, any error causes the link to terminate. If you omit 
this option or select -T, only fatal errors cause immediate 
termination of the link. 

+w I.::H If you select +W, the linker stops and waits for a key press when 
any error occurs in order to give you the opportunity to read the 
error message and to decide whether to continue (that is, to 
continue the link in case of a nonfatal error or to return to the shell 
in case of a fatal error). Press Apple-Period (0...) to halt 
execution, or press any character key or the Space bar to continue. 
If you omit this option or select -w, execution continues without 
pausing when an error occurs. 

98 7127187 



Apple IIas Programmer s Workshop Chapter3: Shell 

filel file2 '" The full pathnames or partial pathnames (including the filenames) of one 
or more LinkEd source files. The fJ.les are processed in the sequence in 
which they are listed. Each source file perfOims a separate link and creates. 
a separate load fJ.le. To use multiple LinkEd files to create a single load ftle, 
use the LinkEd APPEND and COpy commands. 

KEEP=outfile You can use this parameter to specify the patbname or partial patbname 
of the load file. There must not be any spaces between KEEP and the equal 
sign (=). 

In order to use the KEEP parameter when you specify multiple LinkEd 
source filenames on the command line, you must use a wildcard character in 
the ftlename. Two wildcard characters are available for this purpose; % and 
$. The percent sign (%) is replaced with the pathname of the LinkEd ftle. 
The dollar sign ($) is replaced with the patbname of the LinkEd ftle but with 
the last extension removed. For example, assume you execute the 
following command; 

ALINK LINKl LINK2 KEEP = % • 0 

The shell uses the name LINKl .0 for the load ftle created by executing the 
LinkEd file LINKl and the name LINK2 . 0 for the load ftle created by the 
LinkEd file LINK2. Similarly, if you execute the command 
ALINK MYFILE. LNK KEEP=$, the shell uses the name MYFILE for the 
load file. 

Important: Remember the following points regarding the KEEP parameter: 

• If you have a KEEP command in the LinkEd file and you also use the KEEP 
parameter, the KEEP parameter ou the command line takes precedence. 

• You can specify a default load filename by using the KeepName shell variable. Shell 
variables are described in the section "Variables" later in this chapter. 

• If you use neither the KEEP parameter, the KeepName shell variable, nor the KEEP 
command, no load ftle is produced. 

• To use the KEEP parameter with multiple LinkEd source files, you must use a 
wildcard character in the KEEP parameter. 

• Because ProDOS 16 does not allow ftlenames longer than 15 characters, you must be 
careful not to specify a ftlename in the KEEP parameter that will result in a load 
filename longer than 15 characters. For example, if you specify 
KEEP=%. LOADFILE and the LinkEd name is LONGNAME, the link will fail when the 
shell tries to open the file LONGNAME. LOADFILE, which has 17 characters. 

• If a load file named outjile already exists, it is overwrinen without a warning when 
this command is executed. 

• If a source ftle named outfile already exists, APW will not let you overwrite it and the 
link will fail. 

APDADraft 99 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

The output listing of the link is sent to the screen unless you redirect output to the printer or 
use the PRINTER ON LinkEd command. Output redirection is described in the section 
"Redirecting Input and Output" earlier in this chapter. 

Important: If you do not need to take advantage of the advanced link: capabilities 
provided by LinkEd, do not create a LinkEd fIle, and do not use the ALINK 
command. Instead, use one of the following commands to link your program: 
LINK, ASML, ASMLG, CMPL, CMPLG, or RUN. The linker is described in detail in 
Chapter 5. 

ASM65816 

ASM65816 

This language command sets the shell default ianguage to APW 65816 assembly language. 

ASML 

ASML [option ... J filel (file2J [ ... J [KEEP=ouifileJ 
[NAMES= (segl [seg2J [ ... J) J [/anguagel= (option ... ) 
[/anguage2= (option ... ) J [ ••• J J 

This internal command assembles (or compiles) one or more source fIles and links one or 
more object and library files. The APW Shell checks the language of each source file and 
calls the appropriate assembler or compiler. If the maximum error level returned by each 
assembler or compiler is less than or equal to the maximum allowed (0 unless you specify 
otherwise with the HERR directive or its equivalent in the source file), the standard linker is 
called to link: the resulting object files plus any other object and library files named on the 
ASML command line. 

The CMPL command is an alias for ASML. 

Note: Not all compilers or assemblers make use of all the parameters provided by 
this command (or by the ASSEMBLE, ASMLG, COMPILE, CMPL, CMPLG, and 
RUN commands, which use the same parameters). The APW Assembler, for 
example, includes no language-specific options, and so makes no use of the 
/anguage= (option ... ) parameter. If you include a parameter that a compiler or 
assembler cannot use, it ignores it; no error is generated. 

If you include more than one source fIle, or use APPEND directives to tie together 
source files in more than one language, then all parameters are passed to every 
compiler. Each compiler uses those parameters that it recognizes. See the reference 
manual for the compiler you are using for a list of the options that it accepts. 

Note: Command-line parameters (those described here) override source-code 
options when there is a conflict. 

APDADraft 100 7127187 



Apple IlGS Programmer's Workshop Chapter 3: Shell 

option. .. You can specify as many of the following options as you wish by 
separating the options with spaces. 

+ E 1 - E If you specify + E, when the compiler terminates execution due to a 
fatal error, it calls the APW Editor. The editor displays the source 
file with the offending line on the fIfth line on the screen (or as far 
down on the screen as possible, if the error is in one of the fIrst 
four lines of the file). If you specify -E and a fatal error occurs, 
you are returned to the shell's command line or the Exec file that 
executed the command. The default for this option is +E when the 
command is executed from the command line and - E when the 
command is executed from an Exec file . 

+ L I.::I. If you specify + L, the assembler or compiler generates a source 
listing; if you specify - L, the listing is not produced. The L 
parameter in this command overrides the LIST directive in the 
source fIle. 

+S 1 =S. If you specify +S, the linker produces an alphabetical listing of all 
global references in the object file; the assembler or compiler may 
also produce a symbol table. The APW Assembler, for example, 
produces an alphabetical listing of all local symbols following each 
END directive. If you specify -S, these symbol tables are not 
produced The S parameter in this command overrides the 
SYMBOL directive in the source file. 

+T 1.=1. If you select +T, any error causes the compile to terminate. If you 
omit this option or select -T, only fatal errors cause immediate 
termination of the compile. Note that if you select both +T and + E, 
any error causes the shell to call the APW Editor and display the 
offending line as the fIfth line on the screen. 

+w 1.=Ill If you select +w, the compiler stops and waits for a key press when 
any error occurs, to give you the opportunity to read the error 
message and to decide whether to continue (that is, to continue the 
compile in case of a nonfatal error or to call the editor in case of a 
fatal error). Press Apple-Period (0-.) to halt execution, or press 
any character key or the Space bar to continue. If you omit this 
option or select -W, execution continues without pausing when an 
error occurs. 

file1 file2 ... The full pathnames or partial pathnames (including the fIlenames) of the 
source files to be assembled (or compiled). You can also include the full 
pathnames or partial pathnames, minus filename extensions, of additional 
object and library files to be passed on to the linker. You may include as 
many source, object, and library files as you choose, but at least one of the 
files must be a source fIle. Separate the filenames with spaces. 

APDADraft 

The source fIles do not all have to have the same APW language type. 
Note, however, that if you include a LinkEd fIle, it must be the last fIle 
listed. This is because once the advanced linker has been called by a 
LinkEd file, the linker is not called again regardless of how many source or 
object fIles follow the LinkEd file. 

101 7127187 



Chapter 3 Shell Apple llGS Programmer's Workshop 

The first object file you list must have a . ROOT file; for the other object 
files, either a . ROOT file or a . A file must be present. On the command 
line, use the filename without any . ROOT or alphabetical extension. For 
example, the program TEST might consist of object files named 
TEST. ROOT, TEST . A, and TEST .B, all in mrectory / APW/ MYPROG / . 
In this case, you would use / APW/MYPROG / TEST for the object-file 
filename. . 

Any library files specified are searched in the order listed. If a library file is 
listed before one or more object or source files, the li brary frle is searched 
before those files are linked. Only the segments needed to resolve 
references that haven't already been resolved are extracted from library ftles. 
See the discussion of the MAKELIB command in this chapter for more 
information on library frles. 

The ASML command is equivalent to an ASSEMBLE command followed by 
a LINK command. During the assembly stage, the source files are compiled 
or assembled as if they had been listed in an ASSEMBLE command; the 
object and library files listed on the command line are ignored. The source 
frlenames are replaced with the root filenames of the object frles created 
from those source files; then the entire list of ftlenames is sent to the 
standard linker as if they were listed in a L INK command. 

Important: If there is a source file on the disk with the same name as a root 
filename you list in this command, the source me will be compiled and the object 
frle you had intended to use will be overwritten or ignored. For example, if the 
object file MYFILE . ROOT and the source fIle MYFILE are both on the disk and 
you include the filename MYFILE on the command line with the intention of linking 
MYFILE. ROOT, the shell will fInd MYFILE during the assembly stage of this 
command and assemble it instead. 

KEEP=outfile You can use this parameter to specify the pathname or partial pathname 
(including the filename) of the output file. There must not be any spaces 
between KEEP and the equal sign (=). 

APDADraft 

For a one-segment program, the assembler or compiler names the object me 
outfile . ROOT. If the program contains more than one segment, the 
assembler places the first segment in outfile . ROOT and the other segments 
in outfile. A. If this is a partial assembly (or several source files with 
different programming languages are being compiled), other filename 
extensions may be used; see the section "Partial Assemblies or Compiles" in 
this chapter. 

If the assembly is followed by a successful link, the load frle is named 
outfile. 

In order to use the KEEP parameter when you specify multiple source 
filenames on the command line, you must use a wildcard character in the 
filename. Two wildcard characters are available for this purpose: % and $. 
The percent sign (%) is replaced with the patbname of the source fIle. The 
dollar sign ($) is replaced with the patbname of the source file with the last 
extension removed. For example, assume you execute the following 
command: 

ASML MYFILE YURFILE KEEP = %. 0 

102 7127187 

.--" 



Apple IIGS Programmer's Workshop Chapter 3: Shell 

The shell uses the name MYF I LE .0 . ROOT for the first object file created 
from the source file MYFILE and the name YURFILE. O. ROOT for the first 
object file created from the source file YURF ILE. Similarly, if you execute 
the command 
ASML MYF ILE . C KEEP=$, the shell uses the name MYF ILE . ROOT for 
the first object file. 

In the case of multiple source files, if the assembly is followed by a 
successful link, the load file is given the root name of the first object file 
linked. 

Important: Keep the following points in mind regarding the KEEP parameter: 

o If you have a KEEP directive in the source file and you also use the KEEP parameter, 
the parameter on the command Jine ·takes precedence. 

o You can specify a default filename for object files by using the KeepName shell 
variable. Shell variables are described in the section "Variables" later in this chapter. 

o The rules by which the shell names load files, in order of precedence, are as follows: 

o If the KEEP parameter is specified on the command line, that name is used. If the 
KEEP parameter contains a wildcard character, the root name is based on the 
name of the first object me created. (Note that, if the first filename on the 
command line is an object fIle, that is the first file linked, but it was not the fU'St 
object file created by the ASML command, so its root name is not used for the load 
fIle.) 

o If there is no KEEP parameter, the root name specified by KeepName is used for 
the load filename. If the KeepName variable includes a wildcard character, the 
load filename is based on the name of the first object file created. 

o If KeepName has not been set, the root name of the first object file as determined 
by a directive in the source fIle is used. 

o If you use neither the KEEP parameter, the KEEP directive, nor the KeepN arne 
shell variable, then the object fIles are not saved at all. In this case, the link 
cannot be performed, because there is no object file to link. 

o To use the KEEP parameter with multiple source files, you must use one or more 
wildcard characters in the KEEP parameter. 

o Because ProDOS 16 does not allow filenames longer than 15 characters, you must be 
careful not to specify a fIlename in the KEEP parameter that will result in an output 
fIlename longer than 15 characters. For example, if you specify KEEP=% . OUT and 
the source filename is LONGNAME, the compile will fail when the shell tries to open 
the file LONGNAME . OUT. ROOT, which has 17 characters. 

o If object files with the root fIlename outfile already exist, they are overwritten without 
a warning when this command is executed. Similarly, if a load ftle named outfile 
already exists, it is overwritten without a warning when the program is linked. 

o If a source file named outfile already exists, APW will not let you overwrite it and the 
link will fail. 

o The linker may attempt to link any ftle in the same prefix as outfile that has the root 
ftlename outfile and ends in an alphabetic sufftx. For example, suppose outfile is 
named OUTFILE and there is already a file named OUTFILE. B in the same prefix. 

APDADraft 103 7127187 



Chapter 3 Shell Apple llaS Programmer's Workshop 

When you execute the ASML command, the assembler creates the flies 
OUTFILE • ROOT and OUTFILE . A; then the Linker attempts to link OUTFILE . B 
along with the other files. Make sure no such files are present in the prefix of outfile 
before executing the ASML command. 

NAMEs=(seg1 seg2 ... ) This parameter causes the assembler or compiler to perform 
a partial assembly or compile; the operands seg 1, seg2 , ... specify the 
names of the segments to be assembled or compiled.. There must not be any 
spaces between NAMES and the equal sign (=). Separate the segment names 
with one or more spaces. The APW Linker automatically selects the latest 
version of each segment when the program is linked. 

APDADraft 

In case-sensitive languages, segment names must be entered exactly as they 
appear in the source code. Segment names in case-insensitive languages 
must be entered as all uppercase characters. 

The object flIe created when you use the NAMES parameter contains only the 
specified segments. In assembly language, you assign names to segments 
with START, DATA, PRIVATE, or PRIVDATA directives. In most high­
level languages, each subroutine becomes an object segment and the 
segment name is the same as the subroutine name. 

You must use the same output filename for every partial compile or 
assembly of a program. For example, if you specify the output flIename as 
OUTF ILE for the original assembly of a program, the assembler creates 
object files narned OUTFILE • ROOT and OUTFILE .A. In this case you 
must also specify the output filename as OUTF ILE for the partial assembly. 
The new output flIe is named OUTFILE. B and contains only the segments 
listed with the NAMES parameter. When you link a program, the linker 
scans all the files whose filenames are identical except for their extensions 
and takes the latest version of each segment. 

If you include more than one source-file filename on the command line, the 
complete list of segment names in the NAMES parameter is used for each 
source rue. Thus, for example, if you list two source-flIe filenames and 
include the parameter NAMES= (TOM DICK HARRY) on the command 
line, then a partial assembly or compile is done for each of the two source 
files and each of the source files is searched for segments TOM, DICK, and 
HARRY. 

Note: No spaces are permitted immediately before or after the equal sign 
in the NAMES parameter. 

See the section "Partial Assemblies or Compiles" earlier in this chapter for 
more information on partial assemblies. 

104 7127187 



Apple IIGS Programmer's Wor/cshop Chapter3: Shell 

languagel=(option ... ) ... This parameter allows you to pass parameters directly to 
specific APW compilers or assemblers. For each compiler or assembler for 
which you want to specify options, type the name of the language (exactly 
as shown by the SHOW LANGUAGES command), an equal sign (=), and the 
string of options enclosed in parentheses. The contents and syntax of the 
options string is specified in the compiler or assembler reference manual. 
Note that the APW Shell does no error checking on this string before 
passing it through to the compiler or assembler. You can include option 
strings in the command line for as many languages as you wish; if a 
language compiler is not called, the string for that language is iguored. 

Note: No spaces are permitted immediately before or after the equal sign 
in this parameter. 

When you execute the ASML command, the following sequence of events occurs: 

I. The shell calls the assembler or compiler that corresponds to the APW language type 
of the first source file listed on the command line. For example, if the APW 
language type of the first source file is ASM658 16, the shell calls the APW 
Assembler. 

2. The assembler or compiler processes the source file. One or more object files are 
created, assuming that you provided a filename for it and that no errors are found 
with error level greater than that set by HERR. 

3 . The assembler or compiler passes control back to the shell, which calls the 
appropriate assembler oc compiler to process the next source file. This process is 
repeated until all source files have been compiled. 

4 . The shell calls the standard linker and passes to it the root filenames of all the object 
files to be linked, together with any library files listed on the command line. The 
object files include those created in steps 2 and 3 plus any object files you listed on 
the command line. 

5. The linker links the object files and searches the library files in the sequence in which 
the files were named on the command line. For example, suppose the command line 
included the source file MYPROG, the Object-file root filename MYOBJ, and the 
source file MYCPROG, as follows: 

ASML MYPROG MYOBJ MYCPROG 

Assume funher that MYPROG genemtes the object files MYPROG. ROOT and 
MYPROG. A, that MYCPROG genemtes the object file MYCPROG. ROOT, and that the 
object files MYOBJ • ROOT, MYOBJ • A, and MYOBJ • B are present on the disk. In 
that case, the linker would process these files in the following sequence: 

MYF ROG • ROOT 
MYPROG.A 
MYOBJ.RooT 
MYOBJ .A 
MYOBJ.B 
MYCPROG.RooT 

6. Any library files listed on the command line are searched for unresolved references . 
(if any) in the sequence in which those files are listed. For instance, assume the 
example in step 5 had included the library fJle MYLIB, as follows: 

ASML MYPROG MYOBJ MYLIB MYCPROG 

APDADra!t 105 7127187 



Chapter 3 Shell Apple/las Programmer's Workshop 

In that case, the linker wo.uld process the files in the follo.wing sequence: 

MYPROG.ROOT 
MYPROG.A 
MYOBJ.ROOT 
MYOBJ.A 
MYOBJ.B 
MYLIB 
MYCPROG.ROOT 

7. If there are still any unresolved references, the library files in the library prefIx 
(prefIx 2) are searched. .. 

8. The linker creates a lo.ad file. The filename is the same as the root filename o.f the 
fIrst o.bject fIle created. It is determined by KEEP parameter in theco.mmand line; if 
there is is no. KEEP parameter, the KeepName shell variable is used; if no. 
KeepName variable has been set, the KEEP directive in the frrst source file is used. 

Press Apple-Period (0-.) to. sto.p the assembly o.r co.mpile after it has begun. The 
assembler o.r co.mpiler may respond by halting executio.n and calling the editor with the frrst 
line o.f yo.ur source fIle at the to.p o.f the screen, or it may return yo.u to. the shell. 

Listings and error messages are sent to the screen unless yo.u either include a PRINTER 
ON directive (or equivalent) in the so.urce file o.r redirect o.utput to a disk fIle o.r the printer. 
Output redirectio.n is described in the sectio.n "Redirecting Input and Olltput" earlier in this 
chapter. . . . 

The fo.llo.wing co.mmand. assembles and links a source file named MYF ILE and writes the 
load file to. disk as the file MYPROG. No. source listing or symbol table is produced unless 
called fo.r by directives in MYFILE: . 

ASML MYFILE KEEP=MYPROG· 

The fo.llo.wing co.mmand also. assembles and links a so.urce file named MYFILE and writes 
the lo.ad fIle to. disk as the fIle MYPROG. A symbol table is produced, but no. source listing 
is generated regardless o.f whether o.ne is called fo.r by directives in MYF I LE: 

ASML -L +S MYFILE KEEP=MYPROG 

The fo.llo.wing command assembles the segments TOOLCALLand TEXT_OUT in the source 
fIle named MYF ILE, links the pro.gram, and writes the lo.ad· file to disk as the file MYPROG: 

ASML MYFILE KEEP=MYPROG NAMES=(TOOLCALL TEXT_OUT) 

The fo.llo.wing co.mmand assembles the source fIle named MYFILE . SRC. If 
MYFILE . SRC or a fIle appended to MYFILE . SRC is a C program, the C-co.mpiler o.ptio.n 
that adds a prefIx to. the include-file path list is passed to. the C co.mpiler. Object fIles are 
named MYF I LE . ROOT, MYF I LE . A, and so. o.n. After the pro.gram is assembled o.r 
co.mpiled, it is linked and the lo.ad fIle iswrittefl to. disk as the fIle MYF nE: 

ASML MYFILE.SRC KEEP=$.EXE CC=(-:I!APW/LIBRARIES!CINCLUDE) 

APDADraft 106 7/27/87 



Apple llGS Programmer's Workshop Chapter 3: Shell 

The following command assembles the ASM65816 source file named MYFILE and 
compiles the C source file named MYCF ILE. The object files created are saved with names 
specified by the KeepName 'variable or by KEEP directives in the source files. After the 
programs are assembled and compiled. the object files created from MYFILE, the object 
files with the root name MYOBJ, and ~ object files created from MYCFILE are linked. 
The name of the load file is the root filename of the first object flle created: 

ASML MYFILE MYOBJ MYCFILE 

The following command assembles the source file MYFILE. The object files created are 
saved with the root filename MYPROG. After the program is assembled, the object files 
created from MYF ILE and the object files with the root name MYOBJ are linked. If the 
linker cannot resolve all references, it searches the library file MYL lB. The load file is 
written to disk with the filename MYPROG: 

ASML MYFILE MYOBJ MYLIB KEEP=MYPROG 

Note: If you have appended a LinkEd file to the end of your program, the link is 
controlled by the commands in the LinkEd file. In this case, the standard linker is 
not called, and the operation of the ASML command is identical to that of the 
ASSEMBLE command. 

Foc IIlOre examples and discussion of the use of the ASML command, see the section 
"Compiling (or Assembling) and Linking a Program" in Chapter 2. 

ASMLG 

ASMLG [option ... J filel [file2J [ ... J [KEEP=ou!filej 
[NAMES~ (segl [seg2J [ ... J) J [/anguagel= (option ... ) 
[language2= (option ... ) J [ •.• JJ 

This internal command assembles (or compiles) one or more source files, links one or more 
object and library files, and runs the resultins load file. Its function is identical to that of 
the ASML commaud. except that once the program has been successfully linked, it is 
executed automatically. See the ~SML command for a list of options and a description of 
the parameters. 

The CMPLG and RUN commands are aliases for ASMLG. 

ASSEMBLE 

ASSEMBLE [option ... J filel [file2J [ ... J [KEEP=ou!fileJ 
[NAMES= (segl [seg2] [ ... J) J [/anguagel= (option ... ) 
[/anguage2= (option , .. ) J [ ..• J] 

This internal command assembles (or compiles) one or more source files. Its function is 
identical to that of the ASML command, except that the ASSEMBLE command does not call 
the linker to link the object files it creates; therefore, no load file is generated. You can use 
the LINK command or a LinkEd file to link the object files created by the ASSEMBLE 

APDADr~t 107 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

command. See the ASML command for a list of options and a description of the 
parameters. . . • 

The COMP ILE command is an alias for ASSEMBLE. 

BREAK 

BREAK 

This internal command is used to tenninate a FOR or LOOP statement. See the section 
"Exec Files" later in this chapter for a more complete discussion of this command. 

CANON 

CANON [+AI-A] [+C n] [+S I=.S.] dictiooory [input/ile] 

This utility compares the spelling of words in the input file with words in the dictionary 
fIle. Any words in the input file that are included in the dictionary file are replaced with the 
canonical spelling specified in the dictionary file. The result is written to standard output 
(by default, the screen). 

+ A 1 - A If you specify + A, the following characters are treated like letters by Canon: 
$ % @ 

If you specify -A or omit this parameter, these characters cannot' be 
included in the character strings in the dictionary, except as leading 
characters for search strings (as explained below). 

+C n If you specify +C followed by a number, only n characters are considered 
significant when matching pallerns. If you do not specify this parameter, all 
characters are considered significant. Note that there must be space between 
+C and n. 

+S I-S If you specify +S, pallern matching is case sensitive. If you specify -S or 
omit this parameter, pattern matching is not case sensitive .. 

dictiooory The full pathname or partial pathnaine '(including the fIlename) of the 
dictionary fIle. 

input/ile The full pathname or partial pathname (including the filename) of the input 
fIle. You can use wildcard characters in the fIlename. 

Canon works in a manner similar to a global search and replace function in a text editor, 
except that any number of different character strings can be searched for simultaneously. 
The dictionary fIle is a text fIle that specifies the character strings to be replaced and the 
replacement strings (the canonical spellings). 

The maximum length of a line in the dictionary fIle is 256 characters. Each string must 
begin with a letter and can contain any number of leiters and numerals. The underscore 
character C) is considered a letter by Canon. If you specify the +A option, the dollar sign 
($), percent sign, (%), and at sign (@) are also considered letters. 

APDADraft J08 7127187 



Apple IIGS Programmer s Workshop Chapter 3: Shell 

Each line of the dictionary file can contain either one or two strings. If a line contains one 
string, Canon uses that string as both the search and replace string. For example, suppose 
the di~onary contains the following line: 

main 

If YQW" search is not case sensitive (that is, the conunand line does not include the +S 
parameter), the following strings are all converted to main: 

Main 
MAIN 
mAIN 

If your search is restricted to four characters (that is, the command line includes the +C 4 
parameter), the following strings are all converted to main: 

mainstream 
mainly 
maintenance 

If a line of the dictionary file contains two strings, Canon searches for the first string and 
replaces it with the second. For example, suppose the dictionary contains the following 
line: 

Main main 

If yOW" search is not case sensitive (that is, the conunand line does not include the +S 
parameter), this line functions exactly like a line containing the single string main. If the 
search is case sensitive, however, only the string Main is converted to main. In this case, 
the following strings would not be convened to main: 

MAIN 
mAIN 
MaiN 

The search string can include a prefix consisting of any number of characters that are not 
recognized as letters or numerals by Canon. Canon replaces only those strings that match 
the entire search string, including the prefix, but does not replace the prefix. For example, 
suppose the dictionary contains the following line: 

.seconds tenths 

In this case, Canon would convert the string hours .minutes. seconds to 
hours .minutes. tenths. The string hours / minutes / seconds would not be 
cluinged, however. 

Canon writes the converted file to standard output (by default, the screen). To save the 
result in a file, you must redirect output to a pathname. For example, to process the file 
MYPROG. SRC with the dictionary C. CONVERT, creating the new file MYPROG. CC, you 
could use the following command line: 

CANON C.CONVERT MYPROG.SRC > MYPROG.CC 

APDADraft 109 7/27/87 



Chapter 3 Shell Apple lIes Programmer's Workshop 

CAT 
CAT [path1Ull7U! ... J 

This internal conunand is an alias for CATALOG. 

CATALOG 
CATALOG [pathname ... J 

This internal conunand lists to the screen the directory of the volume or subdirectory you 
specify. 

pathname The pathname or partial pathname of the volume, directory, subdirectory or 
file for which you want directory information. You can include any number 
of pathnames; the directory for each pathname is listed in turn. If you 
include a filename, you can use wildcard characters in the filename. 

For example, to list the entire contents of the current directory, use the following command: 

CATALOG 

To list the entire contents of the subdirectory / APW/ UTILITIES / , use the following 
conunand: 

CATALOG / APW/UTILITIES 

To get directory information about the MAKELIB file in the UTILITIES/ subdirectory 
when the current prefix is / APw / , use the following command: 

CATALOG UTILITIES / MAKELIB 

To list every file beginning with M or N in the UTILITIES / subdirectory, use the 
following command: 

CATALOG / APW/UTILITIES / M= / APW/ UTILITIES / N= 

Or, for example, if / APW/ UTILITIES/ were the cmrentdirectory, you could use the 
following conunand to achieve the same result: ' 

CATALOG M= N= 
, 

See the section "Listing the Directory" in Chapter 2 for a description of the fields in the 
directory listing. A list of ProDOS 16 file types is given in Table 3.4 in the discussion of 
the FILETYPE command. 

APDADraft 110 7127187 

• 



---

Apple IIGS Programmer's Workshop Chapter3: Shell 

CC 

CC 

This language command sets the shell default language to APW C. 

CHANGE 

CHANGE pathname language 

This internal command changes the language type of an existing file. 

pathname The full pathname or partial pathname (including the filename) of the somce 
file whose language type you wish to change. You can use wildcard 
characters in the filename. 

language The language type to which you wish to change this file. 

In APW, each somce or text file is assigned the current default language type when it is 
created. When you assemble or compile the file. APW checks the language type to 
determine which assembler. compiler. linker. or text formatter to call. Use the CATALOG 
command to see the language type currently assigned to a file. Use the CHANGE command 
to change the language type to any of the languages listed by the SHOW LANGUAGES 
command The section "Command Types and the Command Table" earlier in this chapter 
includes a discussion of language types and language commands. 

You can use the CHANGE command to correct the APW language type of a file if the editor 
was set to the wrong language type when you created the file, for example. Another use of 
the CHANGE command is to assign the correct APW language type to an AScn text file 
(ProDOS 16 file type $04) created with another editor. 

CMPL 

CMPL [option ... ] filel [jile2] [ ... ] [KEEP~oU{file] 
[NAMES=(seg1 [seg2] [ ... ])] [/anguagel=(option ... ) 
[/anguage2= (option ... )] [ ... ]] 

This internal command compiles (or assembles) one or more somce files and links one or 
more object and library files. Its function. options. and parameters are identical to those of 
the ASML command. See your compiler manual for the language-specific options available. 

The CMPL command is an alias for ASML. 

APDADraft 111 7127187 



Chapter 3 Shell Apple IIos Programmer's Workshop 

CMPLG 

CMPLG [option ... J filel [file2] [ ... ] [KEEP=ouifile] 
[NAMES= (segl [seg2] [ ... ])] [languagel= (option ... ) 
[language2= (option ... )] [, .. ]] 

This internal command compiles (or assembles) one or more source files, links one or more 
object and library files, and runs the resulting load file. See the ASML command for a list 
of options and a description of the parameters. See your compiler manual for the language­
specific options available. 

The CMPLG and RUN commands are aliases for ASMLG. 

COMMANDS 

COMMANDS pathname 

This internal command causes APW to read a command-table me, resetting all the . 
commands to those in the new command table. 

pathname The full pathname or partial patbnarne (including the filename) of the me 
. containing the command table. .. 

When you load APW, itrelids the command-table file named SYSCMND in prefix 4. You 
can use the COMMANDS comffiand to read in a custom command table at any time. 
Command tables are described in the section "Command Types and the Command Table" 
earlier in this chapter. 

Note: The shell does no error checking when it executes the COMMANDS 
command. Any error in your custom command table will not show up until you try 
to execute the command that is defined in the line that contains the error. 

COMMENT 

COMMENT [text] 

This internal command, or an asterisk C*) is used to enter comments into Exec files. There 
mU$t be a space between the COMMENT command and the comment. See the section "Exec 
Files" later in this chapter for a more complete discussion of this command. 

COMPACT 

COMPACT infile [-0 ouifile] [-P] [-R] [-S] 

This utility converts a load file to the most compact form provided for by the object module 
format. 

infile 

APDADraft 

The full path name or partial pathname (including the filename) of the load 
file that you wish to compact. . You can use wildcard characters in the 
filename. 

112 7127187 



Apple !lGS Programmer's Workshop Chapter3: Shell 

outfile 

-P 

-R 

-S 

The full patbname or partial patbname (including the filename) of the output 
flle. If you do not specify -0 outfile, then infile is overwritten. 

If you specify the - P option, a progress report is written to standard output. 
The progress report first shows the version number of Compact that you are 
using, and then shows the number of the segment being processed and the 
operation being performed on that segment 

If you specify the -R option, any load segment named -globals or 
-arrays is made a reload segment. 

If you specify the -S option, a summary report is written to standard output 
when Compact is finished. The summary report shows the total number of 
segments in the flle and the number of each OMP record type compacted, 
copied, or created. 

Press Apple-Period (0...) to cancel the command. 

The Compact utility can decrease the size ofload files by 20 percent to 70 percent and make 
them load up to 25 percent faster. The amount of reduction in size and loading time 
achieved for a particular file depends on the number and nature of symbolic references in 
the fIle. 

In addition to compacting a flle, the Compact utility converts OMF version 1.0 flles to 
version 2.0. If you specify the -R option and Compact finds a load segment named 
-globals or -arrays, Compact makes it a reload segment. See Chapter 7 for a 
description of OMF 2.0 and reload segments, and the section "Command Types and the 
Command Table" earlier in this chapter for a discussion of restartability. 

Important: In order to load a compacted load flle, you must have Version 1.2 or 
later of ProDOS 16 and the System Loader. 

Use Compact as the last step in program development, after the program has been 
completely debugged, to maximize the performance and minimize the size of the load fIle. 

COMPILE 

COMPILE [option ... J filel [jile2 ... J [KEEP=ouifjleJ 
[NAMES= (segl [ seg2 [ ... J]) J [languagel= (option ... ) 
[language2= (option ... ) [ ... ]]] 

This internal command compiles (or assembles) one or more source fIles. Its function is 
identical to that of the ASML command. except that it does not call the linker to link the 
object fIles it creates; therefore. no load flle is generated. You can use the L INK command 
or a LinkEd flle to link the object flles created by the COMP ILE command. See the ASML 
command for a list of options and a description of the parameters. See your compiler 
manual for the language-specific options available. 

The COMPILE command is an alias for ASSEMBLE. 

APDADraft 113 7/27/87 



Chapter 3 Shell Apple llGS Programmer's Workshop 

CONTINUE 

CONTINUE 

This internal command causes control to skip over following statements to the next END 
statement that isn't the END for an IF statement. See the section "Exec Files" in this 
chapter for a more complete discussion of this command. 

COpy 

COpy [-C I pathnamel [pathname21 
",COpy [-D I volwnel volwne2 

This internal command copies a file to a new subdirectory or to a duplicate file with a 
different filename. This command can also be used to copy an entire directory or to 
perform a block-by-block disk copy. 

--c If you specify -C before the first pathname, COpy does not prompt you if 
the target filename (pathname2) already exists. 

pathnamel The full or partial pathname (including the filename) of the flle or directory 
to be copied. Wildcard characters can be used in the fllename. If you do 
include wildcard characters, both files and subdirectories that match 
pathnamel are copied. 

pathname2 The full or partial pathname (including the filename) to be given to the copy 
of the file or to the directory to which the file is to be copied. Wildcard 
characters cannot be used in this fllename. If pathname 1 does not include 
wildcard characters, all of the directories and subdirectories in pathname2 
must already exist. If pathnamel does include wildcard characters and the 
last filename in pathname2 does not exist, a subdirectory with that name is 
created. If pathnamel and pathname2 are both directories, a subdirectory 
named pathnamel is created in pathname2 and the entire directory (including 
all the files, subdirectories, and fIles in the subdirectories) is copied into it. 
If you omit pathname2, the current directory is used and the new fIle has the 
same name as the file being copied. 

-D If you specify -D before the frrst pathname, both pathnames are volume 
names, and both volumes are the same size, then a block-by-block disk 
copy is performed. 

Note: A block-by-block disk copy is much faster than a file-by-file 
copy. Use the -D option whenever you can. 

volwnel The name of a volume that you want to copy onto another volume. The 
entire volume (including all the files, subdirectories, and files in the 
subdirectories) is copied. If both pathnames are volume names, both 
volumes are the same size, and you specify the -D parameter, then a block­
by-block disk copy is performed. You can use a device name (such as 
. D 1) instead of a volume name. 

volwne2 The name of the volume that you want to copy onto. You can use a device 
name instead of a volume name. 

APDADraft 114 7(27(87 



Apple IIGS Programmer's Workshop Chapter3: Shell 

Warning: Under certain conditions, COpy can peIfonn a recursive copy. For 
example, if CD IR is a subdirectory of BD IR, which in turn is a subdirectory of 
I ADIR, and the current directory is BDIR, then the following command copies 
I ADIR and all of its subdirectories into CDIR: COPY -C I ADIR CDIR. 
Because CDIR is a subdirectory of l AD IR, it is copied into itself, then all of the 
subdirectories of I ADIR, including the new copy of CDIR, are copied into the new 
CDIR, and so forth. 

Unless you specify the -D parameter, the COpy command copies individual files. If a file 
with'the same filename as one you are trying to copy exists in the target subdirectory, you 
are asked if you want to replace the target file. Type Y and press Return to replace the file. 
Type N and press Return to copy the file to the target prefix with a new filename. In the 
latter case, you are prompted for the new filename. Enter the filename, or press Return 
without entering a filename to cancel the copy operation. If you specify the - C parameter, 
the target file is replaced without prompting. 

Note: If you do not include any parameters after the COpy command, you are 
prompted for a pathname, since APW prompts you for any required parameters. 
Since the target prefix and fIlename are not required parameters, however, you are 
not prompted for them. Consequently, the current prefix is always used as the 
target directory in such a case. To copy a fIle to any subdirectory other than the 
current one, you must include the target pathname as a parameter either in the 
command line or following the pathname entered in response to the 
Source file name prompt. 

If you use volume names for both the source and target and specify the - D parameter, the 
COpy command copies one volume onto another. In this case, the contents of the target 
disk are destroyed by the copy operation. The target disk must be initialized as a ProOOS 
16 volume (use the INIT command) before this command is used. Because this command 
performs a block-by-block copy, it makes an exact duplicate of the disk. Therefore, both 
disks must be the same size for this command to work. You can use device names rather 
than volume names to peIfonn a disk copy; device names are described in the section 
"Using Device Names" in Chapter 2. 

The following command makes a copy of the file F ILEA on the current prefix, gives the 
copy the filename F I LEB, and places it in the same prefix: 

COPY FILEA FILEB 

Notice that trailing slashes (I) are not significant to ProDOS 16; they are stripped by the 
shell. If a target directory already exists, ProDOS recognizes it as a directory. If a target 
filename does not already exist and you are copying a single file to it, the target is treated as 
a filename; if you are copying more than one file to it, the target is treated as a directory 
name and a directory by that name is created. 

Assume, for example, that you have a directory named PROGRAMS I on your disk. In this 
case, the following command copies the file MYPROG from the directory APw/ into the 
subdirectory / APW/PROGRAMS/ without changing the name of MYPROG: 

COPY IAPW/ MYPROG / APW/ PROGRAMS / 

APDADraft 115 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

If there is no file or directory named / APW /PROGRAMS / on the disk, however, this same 
command copies the file /APW/MYPROG to another fIle named /APW/PROGRAMS. On the 
other hand, the, following command copies all the files and subdirectories that begin with 
the string MYPROG from the directory /APw/ into the directory /APW/PROGRAMS/: 

COpy /APW/MYPROG= /APW/PROGRAMS/ 

If PROGRAMS / does not already exist, it is created by this command. 

The following command copies the subdirectory /APW/ UTILITIES/HELP / into the 
subdirectory /HARDISK/DOCUMENTS/HELP /: 

COpy / APW/UTILITIES/HELP / / HARDISK/DOCUMENTS 

An error results if /DOCUMENTS/ does not already exist 

The following command performs a block-by:block disk copy of the volume / APW onto 
the volume in disk drive . D 2: 

COpy -D /APW/ .D2 

CREATE 

CREATE directory] [directory2 ... J 

This internal command creates a new subdirectory. 

directory] directory2 ... The path names or partial pathnames of the subdirectories you 
wish to create. 

CRUNCH 

CRUNCH rootname 

'Ibis external command combines the object files created by partial assemblies or compiles 
into a single object file. For example, if an assembly and subsequent partial assemblies 
have produced the object fIles FILE. ROOT, FILE .A, FILE. B, and FILE. C, then the 
CRUNCH command combines FILE .A, FILE .B, and FILE. C into a new file called 
FILE. A, deleting the old object files in the process. The new FILE. A contains only the 
latest version of each segment in the program. New segments added during partial 
assemblies are placed at the end of the new FILE. A. 

rootname The full pathname or partial pathname, including the filename but minus any 
ftIename extensions, of the object fIles you wish to combine. For example, 
if your object files are named FILE. ROOT, FILE. A, and FILE. Bin 
subdirectory /HARDISK/ MYFILES/, use /HARDISK/ MYFILES/FILE 
for rootname. 

All files with the root filename you specify and an alphabetic suffix must be object files. 
For example, if the object files FILE. ROOT, FILE. A, and FILE. B are present together 
with the source file FILE. C, an error occurs when the Crunch utility tries to process 

APDADraft Il6 7127187 

.. -----



Apple llGS Programmer's Workshop Chapter 3: Shell 

FILE. C. In addition, there must be no gaps in the sequence. For example, if you have 
the object fIles FILE. ROOT, FILE. A, FILE. B, and FILE. D, the Crunch utility cannot 
find FILE. D. 

Use the DUMPOBJ command to obtain a listing of the segments in any object or load file. 
See the section "Partial Assemblies or Compiles" earlier in this chapter for more 
information on partial assemblies. 

DEBUG 

DEBUG 

This exterual command calls the Apple IIGS Debugger if it is present in the utility 
subdirectory (prefix 6). If you do not have the debugger, you get a message informing you 
that the debugger is not available. 

The debugger is described in detail in the Apple llGS Debugger Reference. 

DELETE 

DELETE [-C 1 pathnamel [pathname2 ... J 

This interual command deletes the file or files you specify. 

-C If you specify -C before the patbname, DELETE does not prompt you 
before deleting the contents of a directory. 

pathnamel pathname2 ... The full patbnames or partial pathnames (including the 
filenames) of the files to be deleted. Wildcard characters may be used in the 
filenames. 

To delete all the contents of a directory, use the pathname of the directory followed by an 
equal-sign (=) wildcard character. For example, to delete the contents of the directory 
/MYFILES/BACKUPS/, use the following command: 

DELETE /MYFILES/BACKUPS/= 

When you do so, the prompt Are you sure? appears on the screen. Type Y and press 
Return to execute the command. Type N and press Return to abort the command. To 
suppress the prompt, use the - c parameter with the DELETE command. 

You cannot delete a directory that is not empty; you must delete the contents of the directory 
first, and then delete the directory. To delete the directory /MYFILES/BACKUPS/ 
together with all its contents, suppressing the Are you sure? prompt, for example, use 
the following commands: 

DELETE -C / MYFILES / BACKUPS/= 
DELETE / MYFILES/BACKUPS 

APDADraft 117 7127187 



Chapter 3 Shell Apple IlGS Programmer's Workshop 

DISABLE 

DISABLE DIN I W I Rpathnamel [pathname2 ... J 

This internal command disables one or more of the access attributes of a ProDOS 16 file. 

D "Delete" privileges. If you disable this attribute, the file cannot be deleted. 

N "Rename" privileges. If you disable this attribute, the file cannot be 
renamed. 

W "Write" privileges. If you disable this attribute, the file cannot be written to. 

R "Read" privileges. If you disable this attribute, the file cannot be read. 

pathnamel pathname2 ... The full pathnames or partial pathnames (including the 
filenames) of the files whose attributes you wish to disable. You can use 
wildcard characters in the filenames. 

Note: The "backup required" flag cannot be disabled by the DISABLE command. 
This flag can be disabled only by backup programs: that is, programs that create 
backup copies of files on a disk. When set, the backup required flag indicates that 
the file has not been backed up since the last time the file was modified. 

You can disable more than one attribute at one time by typing the operands with 110 

intervening spaces. For example, to "lock" the file TEST so that it cannot be wrinen to, 
deleted, or renamed, use the command 

DISABLE DNW TEST 

Note: In order to protect a file so that it cannot be altered by the editor, you must 
disable the Delete access attribute. This is because, when the editor saves a file, it 
first deletes any existing file with that name and then creates a new file with the 
same name. 

Use the ENABLE command to reenable attributes you disabled with the DISABLE 
command. 

When you use the CATALOG command to list a directory, the attributes that are currently 
enabled are listed in the Access field for each file. ProDOS 16 access attributes are 
described in the Apple lIGS ProDOS 16 Reference. Directory listings are described in the 
section "Listing a Directory" in Chapter 2. 

DUMPOBJ 

DUMPOBJ (option ... J pathame [NAMES= (segl [seg2J [ ... J) J 

The DumpOBJ utility writes the contents of an object file to standard output (normally the 
screen). The default format for the listing is object-module-format (OMF) operation codes 
and records. You can also list the file as a 65816 machine-language disassembly or as 
hexadecimal codes. 

APDADraft ll8 7/27187 



Apple lIeS Programmer's Workshop Chapter 3: Shell 

option... You can specify as many of the following options as you wish by 
separating the options with spaces. If you select two mutually exclusive 
options (such as +X and +D), the last one listed is used. If an option can't 
function due to the other options set, it is ignored. For example, if you 
select -H to suppress segment headers, and also specify -s to select shon 
headers, then the - S is ignored. 

- A Suppress all information but the operation codes and operands for 
each line of an OMF-format or 65816-format disassembly. The 
default is to include the displacement into the file and the program 
counter for each line at the beginning of the line. 

+D Write the fJ.le dump as a 65816 disassembly rather than as OMF 
records. 

- F Suppress the checking of the fJ.le type. You can use this option to 
dump the contents of any fJ.le, whether it is in OMF or not. See the 
following discussion for more information on examining non-OMF 
fJ.les. 

- H If the output format is hexadecimal codes (+ X option), this option 
causes the headers to also be listed as hexadecimal codes. For all 
other output formats, the headers are not printed at all. 

-I For 65816 disassembly listings, assume that the CPU is set to shon 
. index (X and Y) registers at the start of the disassembly, rather than 
starting in full native mode. This option has no effect on OMF-format 
and hexadecimal listings. 

-L Don't show the contents of CONST and LCONST records for an OMF­
format disassembly. This option lets you see the structure of an OMF 
fJ.le without listing all of the data in the fJ.le. 

-M For 65816 disassembly listings, assume that the CPU is set to shon 
memory (accumulator) registers at the start of the disassembly, rather 
than starting in full native mode. This option has no effect on OMF­
format and hexadecimal listings. 

-0 Don't show the contents of the segments; that iS,list the headers only. 

-S Write only the name of the segment and the segment type for the 
segment headers. The default is to include all of the information in the 
segment header. 

+X Write the file dump in hexadecimal codes rather than as OMFrecords. 
Segment headers are always printed in ASCII text unless you also 
select the -H option. 

pathname The full pathname or partial pathname (including the fIlename) of the file 
you wish to dump. The file may be a library file, the output of an assembler 
or compiler, a load fIle, or any other fJ.le that conforms to APW object 
module format. If you use the -F option, you can specify a file of any fIle 
type. 

APDADrqfi 119 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

seg 1 seg2 ... The names of specific segments you wish to dump. If you specify the 
NAMES parameter, only the se~nts you specify are processed. To get a 
list of segments in the file, use the -0 and -s options with the DUMPOBJ 
command. In case-sensitive languages, segment names must be entered 
exacdy as they appear in the source code. Segment names in case­
insensitive languages must be entered as all uppercase characters. 

Press Apple-Period (Q..) to cancel the DurnpOBJ listing and return to the sh«11. 

If the file consists of more than one segment, each segment is listed separately. Each 
segment listing begins with the segment header, followed by the segment body. A typical 
segment header is shown in Figure 3.4. The fields in the segment header are described in 
the section "Object Module Format" in Chapter 7. 

Byte count $00000078 120 
Reserved space: $00000000 0 
Length $00000021 33 
Label length $OA 10 
Number length $04 4 
version $02 2 
Sank size $00010000 65536 
Kind $0000 static code segment 
Org $00000000 0 
Alignment $00000000 0 
Number sex $00 0 
Segment number: $0001 1 
Segment entry $00000000 0 
Disp to names $002C 44 
Disp to body $0040 64 
Load name 
Segment name SECOND 

Figure 3.4. Sample DumpOBJ Segment Header 

The format in which the body of the segment is shown depends on the option used. The 
default is to show the contents of each record in the segment in object module format. A 
typical OMF segment dump is shown in Figure 3.5. The fIrSt column shows the actual 
displacement into the segment, in bytes, of that record Because the segment header takes 
up 61 bytes (that is. it ends at byte $3C). the first record in the segment starts at $3D. The 
second column shows the setting of the program counter for that segment: that is, the 
cumulative number of bytes that the linker will create in the load me. The third and fourth 
columns show the record type and operation code of the OMF record shown on that line. 
The last column shows the contents of the record. Expressions are shown in postfix form: 
that is, the values being acted on are written first, followed by the operator. OMF records 
and expressions are described in the section "Object Module Fonnat" in Chapter 7. 

Note: The OMF dump is provided to aid in the debugging of compilers. If you 
are not highly familiar with the OMF, the default DumpOBJ listing will not be of 
much use to you. You can, however. use the options provided to examine the 
contents of an object me in machine-language disassembly fonnat or as 
hexadecimal codes. 

APDADraft 120 7127187 



Apple IIGS Programmer's Workshop Chapter 3: Shell 

00003D 000000 USING ( $E4) DATA 
000043 000000 CONST ($03 ) 4BABAE 
000047 000003 EXPR ($EB) 02 : L:MSG2 
000050 000005 CONST ( $04) AOOOOOB9 
000055 000009 BEXPR ($ED) 02 : MSG2 
00005E OOOOOB CONST ($04) DA5A4820 
000063 OOOOOF BEXPR ($ED) 02 : -COUT 
00006D 000011 CONST ( $OA) 7AFAC8CADOFIA9000060 
000078 00001B END ($00) 

Figure 3.5. DwnpOBJ OMF-Format Segment Body 

If you select the +D option, the segment body is displayed in 65816 disassembly format. A 
typical disassembly segment dwnp is shown in Figure 3.6. The first column shows the 
actual displacement into the segment, in bytes, of the first byte in the line. The second 
column shows the setting of the program counter for that segment: that is, the cwnulative 
nwnber of bytes that the linker will create in the load file. The third column shows the 
disassembly. The disassembly stans with LONGA and LONG I directives, indicating 
whether the disassembler is assuming long or shon operands for the accumulator and index 
registers. The APW Assembler is described in the Apple llGS Programmer's Workshop 
Assembler Reference manual. 

Note: The disassembler tries to keep track of REP and SEP instructions, which 
are used to set bits in the status register. The status register settings determine 
whether 16-bit (native mode) or 8-bit (emulation mode) index-register (X and Y) 
and accumulator-register transfers are used by the CPU. Any time the disassembler 
finds an REP or SEP instruction. it inserts the appropriate LONGA and LONG I 
directives in the disassembly to indicate the state of the registers. (The LONGA and 
LONG I directives tell the APW Assembler whether to use long or shon operands 
for transfer instructions.) LONGA and LONG I directives arC also placed at the 
beginning of every segment in the disassembly to indicate the state of the registers 
on entering the segment. If an expression involving a label was used as the 
operand of the REP or SEP instruction. the disassembly might lose track of the 
setting of the status register. 

APDADraft 121 7/27/87 



Chapter 3 Shell Apple lIeS Programmer's Workshop 

000030 000000 LONGA ON 
000030 000000 LONGI ON 
000030 000000 SECOND START 
000030 000000 USING OATA 
000043 000000 PHK 
000045 000001 PLB 
000046 000002 LOX L:MSG2 
00004B 000005 LOY #$0000 
00004F 000008 LOA MSG2,Y 
000054 OOOOOB PHX 
000056 OOOOOC PHY 
000057 000000 PHA 
000058 OOOOOE JSR -COUT 
000050 000011 PLY 
00005F 000012 PLX 
000060 000013 INY 
000061 000014 OEX 
000062 000015 BNE *+$Fl 
000064 000017 LOA #$0000 
000067 00001A RTS 
000068 00001B END 

Figure 3.6. DumpOBJ Disassembly-Format Segment Body 

If you select the + X option, the segment body is dlsplayed in hexadecimal format A 
typical hexadecimal segment dump issljown in Figure 3.7. The fIrst column shows the 
actual displacement into the segment" in bytes, of the fIrst bYle in the line. The next four 
columns show the next 16 bytes in the ftle. The last column shows the ASCn equivalents 
of those bytes. The hexadecimal'dump starts with the fIrst byte after the segment header 
(unless you specify the - H option, in which case the segment header is included in the 
hexadecimal dump ),and ends at ihe last byte before the next segment header. Because all 
segments in object ftles start on block (that is, 512-byte) boundaries, the bytes from the 
END record to the end of the block are meaningless (in Figure 3.7 they contain repetitions 
of the data in the segment). " 

APDADraft 122 7127187 

-. 



Apple IIeS Programmer's Workshop Chapter3: Shell 

00003D E4044441 5441034B ABAEEB02 84044D53 d DATA K+.k MS 
00004D 47320004 AOOOOOB9 ED028304 4D534732 G2 9rn MSG2 
00005D 0004DA5A 4820ED02 83057E43 4F555400 ZZH m -COUT 
00006D OA7AFAC8 CADOF1A9 00006000 434F4E44 zzHJPq) · COND 
00007D E4044441 5441034B ABAEEB02 84044D53 d DATA K+.k MS 
00008D 47320004 AOOOOOB9 ED028304 4D534732 G2 9rn MSG2 
00009D 0004DA5A 4820ED02 83057E43 4F555400 ZZH m -COUT 
OOOOAD OA7AFAC8 CADOFIA9 00006000 434F4E44 zzHJPq) COND 
OOOOBD E4044441 5441034B ABAEEB02 84044D53 d DATA K+.k MS 
OOOOCD 47320004 AOOOOOB9 ED'028304 4D534732 G2 9rn MSG2 
OOOODD 0004DA5A 4820ED02 83057E43 4F555400 ZZH m -COUT 
OOOOED OA7AFAC8 CADOFIA9 00006000 434F4E44 zzHJPq) • COND 
OOOOFD E4044441 5441034B ABAEEB02 84044D53 d DATA K+.k MS 
00010D 47320004 AOOOOOB9 ED028304 4D534732 G2 9rn MSG2 
00011D 0004DA5A 4820ED02 83057E43 4F555400 ZZH m -COUT 
00012D OA7AFAC8 CADOF1A9 00006000 434F4E44 zzHJPq) • COND 
00013D E4044441 5441034B ABAEEB02 84044D53 d DATA K+.k MS 
00014D 47320004 AOOOOOB9 ED028304 4D534732 G2 9m MSG2 
00015D 0004DA5A 4820ED02 83057E43 4F555400 ZZH rn -COUT 
00016D OA7AFAC8 CADOFIA9 00006000 434F4E44 zzHJPq) • COND 
OOO17D E4044441 5441034B ABAEEB02 84044D53 d DATA K+.k MS 
00018D 47320004 AOOOOOB9 ED028304 4D534732 G2 9m MSG2 
00019D 0004DA5A 4820ED02 83057E43 4F555400 ZZH m -COUT 
0001AD OA7AFAC8 CADOFIA9 00006000 434F4E44 zzHJPq) • COND 
0001BD E4044441 5441034B ABAEEB02 84044D53 d DATA K+ . k MS 
0001CD 47320004 AOOOOOB9 ED028304 4D534732 G2 9m MSG2 
0001DD 0004DA5A 4820ED02 83057E43 4F555400 ZZH rn -COUT 
0001ED OA7AFAC8 CADOFIA9 00006000 434F4E44 zzHJPq) • COND 
0001FD E40444 d D 

Figure 3.7. DumpOBJ Hexadecimal-Fonnat Segment Body 

DumpOBJ can be used to dump the contents of any file, even if it is not in OMF. To dump 
the contents of a non-OMF file, use the -Hand - F options, together with either the + x or 
+D options. 

Important: Any other combination of options, or no options, will probably 
produce unusable results, since in that case DumpOBI attempts to scan the fIle for 
segments as if it were in OMF. 

DumpOBJ is extremely useful for debugging compilers and assemblers, but it is also useful 
whenever you want to see the contents of an OMF fIle. For example, before using the 
SELECT command in a LinkEd file to extract specific segments from the object file 
GOOD. STUFF, you could use the following command to list the names and segment types 
of all the segments in the fIle: 

DUMPOBJ -S -0 GOOD.STUFF 

DumpOBI specifies the type of each segment (such as static data, static code, dynamic 
data, and so forth). Code segments are created by a START-END pair of directives in an 
assembly-language source me; data segments are created by a DATA-END pair. In most 
high-level languages, each subroutine corresponds to an object segment. Static and 
dynamic segments are assigned by the linker; you can use LinkEd commands to control 
these assignments. See Chapter 5 for a discussion of LinkEd commands. 

APDADraft 123 7/27/87 



Chapter 3 Shell Apple /lOS Programmer's Workshop 

ECHO 

ECHO string 

This internal command lets you write messages to the screen from an Exec file. See the 
section "Exec Files" earlier in this chapter for a more complete discussion 'of this command. 

EDIT 

EDIT pathname 

This internal command calls the APW Editor and opens a fIle to edit. 

pathname The full pathname or partial pathnarne (including the fIlename) of the fIle 
you wish to edit. If the fIle named does not exist, a new file with that name 
is opened. If you use a wildcard character in the fIlename, the first file 
matched is opened. 

The APW default file type changes to match the fIle type of the open fIle. If you open a 
new file, that file is assigned the current default file type. Use the CHANGE command to 
change the fIle type of an existing file. To change the APW default fIle type before opening 
a new fIle, type the name of the language you wish to use, and press Return. 

The editor is described in Chapter 4. 

ELSE 

ELSE 
ELSE IF 

This internal command is used as part of an IF command. See the section "Exec Files" 
later in this chapter for a more complete discussion of this command. 

ENABLE 

ENABLE DIN I B I W I R pathnamel [pathname2 ... J 

This internal command enables one or more of the access attributes of a ProDOS 16 file, as 
follows: 

D "Delete" privileges. If you enable this attribute, the file can be deleted. 

N "Rename" privileges. If you enable this attribute, the fIle can be renamed. 

B "Backup required" flag. If you enable this attribute, a backup utility 
program will assume that this file has not been backed up since the last time 
it was modified. 

W "Write" privileges. If you enable this attribute, the fIle can be written to. 

R "Read" privileges. If you enable this attribute, the file can be read. 

APDADrajt 124 7/27/87 



Apple llGS Programmer's Workshop Chapter 3: Shell 

pathnamel pathname2 ... The full pathnames or partial pathnames (including the 
filenames) of the fIles whose attributes you wish to enable. You can use 
wildcard characters in the fIlename. 

You can enable more than one attribute at one time by typing the operands with no 
intervening spaces. For example, to "unlock" the fIle TEST so that it can be written to, 
deleted, or renamed, use the command 

ENABLE DNW TEST 

When a new fIle is created, all the access attributes are enabled. Use the ENABLE 
command to reverse the effects of the DISABLE command. 

END 

END 

This internal command terminates a FOR, IF, or LOOP command. See the section "Exec 
. Files" later in this chapter for a more complete discussion of this command. 

EQUAL 

EQUAL (option ... J parhamel parhname2 

The Equal utility compares two fIles or directories for data equality and can show 
differences in fIle dates or types. 

option 

APDADrajr 

You can specify as many of the following options as you wish by 
separating the options with spaces. 

±.lll-D If you specify -D, Equal docs not compare the creation and 
modification dates and times of files. If you do not include this 
option or specify +D, creation and modification dates and times are 
compared. 

±M I -M If you specify -M, Equal docs not list the names of missing files: 
that is, files that are present in one of the directories you listed but 
not in the other. If you do not include this option or specify +M, 
missing files are listed. 

+N n Display the first n mismatched bytes. If you specify a value for 
this option, the output for each file stops after n bytes of the fIles 
that do not match have been listed. If you set n to 0, no 
mismatches are displayed. If you do not select this option, the 
display stops after 10 mismatches for each file. Note that there 
must be space between N and n. 

+ P I ~ If you specify + P, Equal shows progress information. Progress 
information consists of brief messages that tell you what the utility 
is currently working on: for example, which subdirectory is 
currently being processed. If you do not include this option or 
specify - P, progress information is not produced. 

125 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

.±I. I -T If you specify -T, Equal does not compare the file types of files. 
If you do not include this option or specify +T, file types are 
compared. 

pathnamel pathname2 The full pathnames or partial pathnames of the two directories 
or files that you want to compare. If you name two directories, all files and 
subdirectories in the two directories are compared. 

You can use Equal to determine whether two files are identical or whether the contents of 
two directories are the same. If you list the pathnames of two directories, a file-by-file 
comparison is made of the directories. Equal reads the filename, file type, and creation and 
modification dates of a file in the first directory and then checks to see if a file of the same 
name exists in the second directory. If it does, Equal compares the files byte-by-byte, 
leaving the files and going on to the next pair after listing 10 bytes if they are not identical. 
You can set options to suppress the comparison of file types, to suppress the comparison 
of file dates and ftle times, and to specify a different number of bytes to compare before 
going on to the next file. By default, Equal lists any filenames of files that exist in one file 
but not in the other. You can suppress that output as well. 

By specifying ftlenames instead of directory names, you can compare two files with 
different filenames. 

EXEC 

EXEC 

This language command sets the shell default language to EXEC. When you type the name 
of a file that has the EXEC language type and press Return, the shell executes each line of 
the file as a shell command. Exec command files are described in the section "Exec Files" 
later in this chapter. 

EXECUTE 

EXECUTE pathname [paramlistl 

This internal command executes an Exec file. If this command is executed from the APW 
Shell command line, the variables defmed in the Exec file are treated as if they were defmed 
on the command line. 

pathname The full or partial path name of an Exec file. This filename cannot include 
wildcard characters. 

paramlistt The list of parameters being sent to the Exec fIle. 

You can execute an Exec fIle by using the EXECUTE command instead of just typing the 
name of the Exec fIle and typing Return. The difference between these two methods of 
executing Exec files is as follows: if you use the EXECUTE command from the shell 
command line, any variables defined in the Exec file remain valid after control returns to the 
shell; if, on the other hand, you do not use the EXECUTE command, variables are valid 
only within the Exec fIle in which they are defmed. See the section "Exec Files" in this 
chapter for a more complete discussion of this command. 

APDADraft 126 7127187 



Apple IIGS Programmer's Workshop Chapter 3: Shell 

EXIT 

EXIT [number] 

This internal command tenninates execution of an Exec file. See the section "Exec Files" 
later in this chapter for a more complete discussion of this command. 

EXPORT 

EXPORT [variable ... ] 

This internal command makes the specified variables available to Exec files called by the 
current Exec file. See the section "Exec Files"later in this chapter for a more complete 
discussion of this command. 

FILES 

FILES [option ... ] [directory] 

The Files utility lists the contents of a directory. You can use this utility to list the full 
contents of a directory, including the contents of all included subdirectories. You can also 
search for filenames that include a specified string. 

option 

APDADraft 

You can specify as many of the following options as you wish by 
separating the options with spaces. 

+C n When you specify +c followed by a number, Files displays the 
filenames in n columns. If you omit this parameter, one column is 
used. You cannot specify the +C parameter together with the + L, 

. +F, or +R options. Note that there must be a space between the +C 
and the n. 

+ F string When you specify + F followed by a character string, Files lists 
all files in the specified directory whose filenames include the 
string. This option searches all included subdirectories regardless 
of whether the + R option is also used. When you specify both the 
+ F and + L options, the + L option is ignored. Note that there must 
be a space between +F and string. 

+ L 1 =L. When you specify + L, Files lists detailed information about each 
file, similar to the information listed by the CATLOG command (see 
below). If you omit this parameter or specify -L, Files lists only 
filenames. 

+ P 1.::£ When you specify + P, Files shows the version number and the 
current date and time. If you omit this parameter or specify -P, 
Files lists the directory contents with no header information. 

+ R I =B When you specify + R, Files lists all files in the directory, including 
all files in included subdirectories. If you omit this parameter or 
specify - R, Files lists only the files in the directory specified by 
directory. 

127 7127187 



Chapter 3 Shell Apple lIGS Programmer' s Workshop 

direcrory The full pathname or partial pathname of the directory for which you want a ------· 
catalog listing. 

When you specify the +L option, you get detailed infonnation about the directory, as 
follows: 

Name Type Size (in blocks) Modified (date and time) Oeated (date and time) SUbtype 

The subtype corresponds to the Subtype column in the CATALOG command, but does not 
display mnemonics. The subtype of source mes (file type SRC) indicates the APW 
language type; use the SHOW LANGUAGES command to get a listing of tile language 
numbers of the APW languages installed in your system. 

The Files utility generates output with no column headings to facilitate its use as input to 
future utilities. 

FILETYPE 

FILETYPE pathnamejiletype 

This internal command changes the ProDOS 16 file type of a file. 

pathname The full pathname or partial patbname (including the fIlename) of the me 
whose ftJe type you wish to change. 

jiletype The ProOOS 16 fIle type to which you want to change the file. Use one of 
the following three fonnats for jiletype: 

• A decimal number 0-255. 

• A hexadecimal number $O(h$FF. 

• The three-letter abbreviation for the file type used in disk directories: 
for example, 51!5, OBJ, EXE. A partial list of ProOOS 16 file types is 
shown in Table 3.4. See the Apple lIGS ProDOS 16 Reference for a 
complete list of me types. 

You can change the fIle type of any ftJe with the FILETYPE conunand; APW does not 
check to make sure that the format of the ftJe is appropriate. 

Table 3.4. ProDOS File Types 

Decimal Hex Abbreviation File Type 

004 $04- TXT Text 
006 $06 BIN ProDOS 8 binary load 
015 $OF DIR Directory 
176 $BO SRC Source 
177 $BI OBJ Object 
178 $B2 LIB Library 
179 $B3 516 ProDOS 16 load 
180 $B4 RTL Run-time library 
181 $B5 EXE Shell load 
182 $B6 STR Startup load 

APDADrajt 128 7127187 



Apple IIes ProgrGnll/'U!r's Workshop 

184 . 
185 
186 
249 
255 

FOR 

$B8 
$B9 
$BA 
$F9 
$FF 

NDA 
CDA 
TOL 
P16 
SYS 

FOR variable [ IN value1 value2 ... 1 

New desk accessory 
Classic desk accessory 
Tool set file 
ProDOS 16 system file 
ProDOS 8 load 

Chapter 3: Shell 

This internal connnand, together with the END statement, creates a loop that is executed 
once for each parameter-value listed. See the section "Exec Files" in this chapter for a more 
complete discussion of this command. 

HELP 

HELP [commanifname ... J 

This internal command provides on-line help for all the connnands in the command table 
provided with APW. If you omit commandname, the HELP connnand causes a list of all 
the commands in the command table to be printed on the screen. 

commandname ... The names of the APW Shell connnands about which you want 
information. 

When you specify commandname, the shell looks for a text file with the specified name in 
the HELP I subdirectory in the utility prefix (prefix 6). If it finds such a file, the shell 
prints the contents of the file on the screen. Help files contain information about the 
purpose and use of connnands. They show the command syntax in the same format as 
used in this manual. 

If you add commands to the connnand table or change the name of a command, you can 
add, copy, or rename a file in the HELP I subdirectory to provide information about the 
new command. 

HISTORY 

HISTORY 

This internal connnand lists to the screen the last 20 commands that you have entered on the 
APW command line. Use the Up Arrow and the Down Arrow keys to scroll through these 
commands as described in the section "Scrolling Through Commands" in Chapter 2. 

IF 

IF expression 

APDADraft 129 7127187 



Chapter 3 SJreJl 

Thisintemal command, togetha" with the ELSE IF, ELSE', ami END . statements. provides 
conditional branching. in Exec ·fdes. see the section "Exec F!les"later in this chapter for a 
more complete discussion of this command. 

INIT 

INIT [-C) device [name} 

This external command formats a disk. as a ProDOS 16. volume. 

-C If you specify -C before the pathname, INIT does not prompt you before 
destroying the current contents of the disk. 

Warning: IN IT destroys any files on the disk. being formatted. Be very careful 
when using the -C parameter: it is possible to delete the entire contents of a hard 
disk without warning by using this command. 

device The device name (such as .01) of the disk drive containing the disk to be 
formatted. If the disk being fonnatted already bas a volume name, you can 
specify the volume name instead of a device name. 

name The new volume name for the disk. 'The volume name must begin with a 
slash (I). If you do not specify name, the name /BLANK is uS.ed. 

APW recognizes the device type of the disk drive specified by device and uses the. 
appropriate format. INIT works for all disk formalS supported by ProDOS 16.. 

If you do nO! include the -C parameter and INIT finds a readable directory 00 the disk you 
want to format, the following prompt appears on the screen: 

Destroy /&s~e (Y or N)? 

Here &s~ is the name of the volume you specified in the INIT command. Type Y 
and press Return to initialize the disk. Type N and press Return to cancel the command. 

INSTALL 

INSTALL volume 
INSTALL /APW directory 

This external command installs an APW distribution disk. 

volume The name of the APW volume that you want to install. 

directory The name of the directory into which you want to install APW. TItis 
parameter is used only when you are installing the / APW disk. 

This command can be used to install any APW disk distributed by Apple. To install the 
/ APW and / APWU disks that came with APW, see the section "Installing APW on a Hard 
Disk" in Chapter 2. (If you are using APW on floppy disks, these disks require no 
installation.) To install any other APW disk, such as APWC, see the installation 
instructions in the manual that came with that disk. 

APDADraft 130 7127187 

'-. 



Apple IIGS Programmer's Workshop Chapter 3: Shell 

LINK 
LINK [+LI.=L] [+SI=.5.] [ +WI=NJ filel [jile2J [ ... J [KEEP=ouifjle] 

This internal command calls the APW linker, which links object files to create a load file. 
You can use this command to link object files created by APW assemblers or compilers and 
to cause the linker to search library files. If any unresolved references remain after all the 
specified object files and library files have been specified, the library files in prefix 2 are 
searched in the order in which they appear in the directory. 

The linker is described in detail in Chapter 5. 

+L I-L If you specify +L, the linker generates a listing (called a link map) of the 
segments in the object file, including the starting address, the length in bytes 
(hexadecimal) of each segment, and the segment type. If you specify - L, 
the link map is not produced. 

+S I-S If you specify +S, the linker produces an alphabetical listing of all global 
references in the object file (called a symbol table). If you specify -S, the 
symbol table is not produced. 

+w I-w If you select +W, the linker stops and waits for a key press when a nonfatal 
error occurs, to give you the opportunity to read the error message and to 

. decide whether to continue the li.nk. Press Apple-Period (0-.) to halt 
execution, or press any character key or the Space bar to continue. If you 
omit this option or select -W, execution continues without pausing when a 
nonfatal error occurs. Execution terminates immediately when a fatal error 
occurs, regardless of the setting of this option. 

filel file2 ... The full pathnames or partial pathnames, minus filename extensions, of 
all the object files to be included, plus the full or partial pathnames of any 
library files you want to search. Separate the filenames with spaces. The 
first file you list, filel , must have a . ROOT fIle; for the other object files, 
either a . ROOT file or a . A file must be present For example, the program 
TEST might consist of object files named TEST1. ROOT, TESTl .A, 
TESTl . B, TEST2 .A, and TEST2. B, all in directory /APW/MYPROG/. 
In this case, you would use /APW/MYPROG/TESTl 
/APW/MYPROG/TEST2 for objectfile. 

You can also specify one or more library files (ProDOS 16 fIle type $82) to 
be searched. Any library files specified are searched in the order listed. If a 
library file is listed before an object file, the library file is searched before 
that object file is linked. Only the segments needed to resolve references 
that haven't already been resolved are extracted from library files. See the 
discussion of the MAKELIB command in this chapter for more information 
on library files. 

KE EP =outfile Use this parameter to specify the pathname or partial pathname of the 
executable load fIle. 

APDADraft 

You can specify a default load filename by using the LinkName shell 
variable. Shell variables are described in the section "Variables" later in this 
chapter. If you do not specify either the KEEP parameter or a LinkName 
variable, the link is performed but the load fIle is not saved. 

131 7127187 



Chapter 3 Shell Apple.//GS Programmer':r Worlcshop 

Important: If you do not include any .parameters after the LINK connnand, you 
are prompted for an input filename, as APW prompts you for any required 
parameters. Since the output patbname is oot a required parameter, however, you 
are not prompted for it. Consequently, the link is performed, but the load file is not 
saved unless you have specified a LinkName variable. Note that you can include 
the KEEP parameter following the pathname you enter in response to the File 
name prompt. 

As an example of the use of the LINK command, suppose you want to link /APW/TESTl, 
consisting of object fIles TESTl • ROOT, TESTl • A, and TESTl . B. The following 
command creates the load file / APW/MYTEST; no link map or symbol table is produced: 

LINK /APW/TESTl KEEP= / APW/MYTEST 

Suppose you want to link TESTl consisting of objectfIles TEST. 1 . ROOT, TEST. 1 . A, 
and TEST. 1 . B, search the libraty file MYLTB, and link TEST. 2 consisting of object files 
TEST.2 • A and TEST. 2 • B. The following command creates the load file MYTEST, 
printing the link map but suppressing the symbol table. Note that the library file MYLIB is 
searched before TEST. 2 is linked: 

LINK +L -S TEST.l MYLIB TEST.2 KEEP=MYTEST 

To automatically link a program after assembling or compiling it, use one of the following 
commands instead of the LINK command: ASML, ASMLG, CMPL, CMPLG, RUN. 

If you need to take advantage of the advanced link capabilites provided by the APW Linker, 
create a file of LinkEd connnands and process it using the ALINK connnand (or by 
appending it to the last source file when you compile or assemble your program). The 
linker is described in detail in Otapter 5. 

Important: The LINK command can be used only to process object files and 
library Illes; do not try to process a LinkEd file with the LINK command. 

LINKED 

LINKED 

This language command sets the default language type to the APW Linker command 
language, LINKED. To process a file of LinkEd commands, use one of the following shell 
commands: ALINK, ASSEMBLE, or COMPILE. 

If you do not need to take advantage of the advanced link capabilities provided by LinkEd, 
do not create a LinkEd file, and do not use the ALINK command. Instead, use one of the 
following commands to link your program: LINK, ASML, ASMLG, CMPL, or CMPLG. 
The linker is described in detail in Chapter 5. 

LOOP 

LOOP 

APDADraft 132 7/27/87 



Apple lles Programmer's Workshop Chapter 3: Shell 

Together with the END statement, thisintemal command defmes a loop that repeats 
continuously until a BREAK or EXIT command is encountered. The loop is also tenninated 
if any command in the loop returns a nonzero error status while the value of the variable 
Exit is not null (see the section "Variables" later in this chapter for a discussion of Exit). 
This statement is used primarily in Exec files. See the section "Exec Files"later in this 
chapter for more information on loops in Exec files. 

MACGEN 

MACGEN [.±.C.I -C J infile ouifile macrofilel [macrofile2 ... J 

The MacGen utility creates a custom macro file for an APW Assembler program by 
searching one or more macro libraries for the macros referenced in the program and placing 
the referenced macros in a single file. 

+C I-C If you omit this parameter or specify +C, all excess spaces and all comments 
are removed from the macro file to save space. If you use the GEN ON 
directive (to include expanded macros in your source-file listing) or the 
TRACE ON directive (to include conditional execution directives in your 
source-file listing), then use the -C parameter with the MACGEN command 
to improve the readability of the listing. 

in file The full pathname or partial pathname (including the filename) of the APW 
Assembler source file. MacGen scans infile for references to macros. 

outjile The full pathname (including the filename) of the macro file to be created by 
MacGen. 

macrofilel macrofile2 ... The full pathnames or partial pathnames (including the 
filenames) of the macro libraries to be searched for the macros referenced in 
infile. At least one macro library must be specified. Wildcard characters 
can be used in the filenames. If you specify more than one filename, 
separate the names with one or more spaces. 

Since macro-library searches are time-consuming and any given program may use macros 
from several macro libraries, it is often IIiOre efficient to create a custom macro library 
containing only those macros needed by your program. The MacGen utility generates such 
a library. 

MacGen scans infile, including all files referenced with COpy and APPEND directives, and 
builds a list of the macros referenced by the program. Next, MacGen scans macrofilel for 
macros referenced in infile. If there are still unresolved references to macros, MacGen then 
scans macrofile2, and so on. MacGen can handle macros that call other macros. If there 
are still unresolved references to macros after all the macro files you specified in the 
command line have been scanned, MacGen lists the missing macros and prompts you for 
the name of another macro library. Press Return without a filename to tenninate the 
process before all macros have been found. After all macros have been found (or you 
press Return to end the process), outjile is created. 

The following example scans the file / APW/ MYPROG for macro names, searches the macro 
libraries / LIB/MACROS and /LIB/MATHMACS for the referenced macros, and creates the 
macro file / APW/MYMACROS: 

MACGEN /APW/MYPROG / APW/MYMACROS / LIB / MACROS /LIB/MATHMACS 

APDADraft 133 7127187 



Chapter 3 Shell Apple IlOS Programmer's WorJcshop 

You can specify a previous version of outfue as one of the macro libraries to be searched. 
For example, suppose the program MYPROG already has a custom macro fIle called 
MYMACROS, but you want to add one or more macros from the me LIB. MACROS. In this 
case, you could use the following command: 

MACGEN MYPROG MYMACROS MYMACROS LIB.MACROS 

Important: Before you assemble your program. make sure that the source code 
contains the directive MCOPY outfile to cause the assembler to search outfile for the 
macros. 

MAKEBIN 

MAKEBIN loadfile [bitifilel [ORG=vall 

The MakeBin utility convens a ProOOS 16 load ftle (ftle type $B5 only) to a ProDDS 8 
binary load ftle (me type $(6). 

loadfile The full or partial pathname of a load ftle that contains a single static load 
segment 

bitifile The full or partial patbname of the binary ftle you want to create. If you do 
not specify bitifile, loadfile is.overwritten with the binary file. 

oRG=val The binary ftle is given a fixed start location at val and all code is relocated 
for execution starting at the address val. You can use a decimal number for 
valor you can specify a hexadecimal number by preceding val with a dollar 
sign ($). If you omit this parameter, loadfile is relocated to start at $2000. 

The MakeBin utility does no checking to make sure that your program will run under 
ProDDS 8. The load ftle must consist of a single static load segment. It can be absolute or 
relocatable. If you include an ORG directive in the source file, that ORG is respected; if 
there is a source-file ORG and you specify a conflicting ORG in the MAKEBIN command, 
however, an error occurs and the the binary file is I\Ot created. See the ProDOS 8 
Reference manual for the requirements for a binary load ftle. 

APW does not launch or run binary load ftles (file type $(6). You can use the BLOADand 
BRUN commands in Applesoft BASIC to run these programs. (Applesoft BASIC is the 
program BASIC. SYSTEM on your Apple IIGS system disk.) See the BASIC 
Programming with ProDOS manual for a description of the BLOAD and BRUN commands. 

MAKELIB 

MAKELIB [-FJ [-DJlibjile [+objectfile ... J [-objectfile ... J [Aobjectfile ... J 

The MakeLib utility creates or modifies a library file. 

- F If you specify - F, a list of the ftlenames included in libfile is produced. If 
you leave this option out, no ftlename list is produced. 

-D If you specify -D, the dictionary of symbols in the library is listed. Each 
symbol listed is a global symbol occurring in the library file. If you leave 
this option out, no dictionary is listed. 

APDADraft 134 7127187 



Apple llGS Programmer's Workshop Chapter 3: Shell 

libfile The full pathname or partial patbname (including the filename) of the library 
file to be created. read, or modified. 

+objecrjilen The full pathname or partial pathname (including the filename) of an object 
file to be added to the library. You can specify up to eight object files to 
add. Separate object filenames with spaces. 

-objecrjilen The flIename of a component file to be removed from the library. This 
parameter is a filename only, not a pathname. You can specify up to eight 
component files to remove. Separate men ames with spaces. 

Aobjecrjilen The full pathname or partial pathname (including the filename) of a 
component flIe to be removed from the library and written out as an object 
flIe. If you include a prefix in this pathname, the object me is written to 
that prefix. You can specify up to eight files to be written out as object 

. files. Separate filenames with spaces. 

Note: You must specify at least one object file and no more than eight object files. 
IT you do not specify at least one object file, the message No act ion 
requested appears on the screen. 

An APW library me (ProDOS 16 file type $B2) consists of one or more component flies, 
each containing one or more segments. Each library flIe contains a library dictionary 
segment that the linker uses to find the segments it needs. 

As illustrated in Figure 3.8, MakeLib creates a library file from any number of object files. 
In addition to indicating where in the library flIe each segment is located, the library 
dictionary segment indicates which object flIe each segment came from. The MakeLib 
utility Can use that information to remove any component files you specify from.a library 
flIe. MakeLib can even recreate the original object flIe by extracting the segments that made 
up that file and writing them out as an object file. Use the -F and -D parameters to list the 
contents of an existing library file. 

Note: The MAKELIB command is for use only with APW object-module-format 
(OMF) library files used by the linker. For information on the creation and use of 
libraries used by language compilers, consult the manuals that came with those 
compilers. 

APDADraft 135 7127187 



Chapter 3 Shell Apple llGS Programmer's Workslwp 

Ubflle 
r. ;11 Library List at object flies 

t-- Dlctlonary 
r-... Segment 

Cross reference 
S8 

between fllenames, 
segments, and 

• 
:" - symbol namas 

I sein r - .. list at symbol ,~ •• '9 • 

Object2 

~ .... .. 
CI) 

~ 
~ ., 

~ 1: • 
~ ". 

I • r • sean 

Object3 

~ ~ -
~ 

• .. 
T 

• 

~ 

Figure 3.B. Creation of a Library File 

To create an OMP library file using the APW Assembler, use the following procedure: 

1, Write one or more source flles in which each library subroutine is a separate 
segment, You might want to make the first segment of each file a dummy, to be 
discarded later as explained in the next two steps, 

2 . Assemble the programs, specifying a unique name for each program with the KEEP 
parameter in the ASSEMBLE command, Each multisegmentprogram is saved as two 
object flles: one with the extension . ROOT and one with the extension . A. The 
.ROOT flle contains the first segment and the . A file contains all the rest. If you . 
made the first segment a dummy, then the . ROOT file contains only the dummy 
segment 

3. Run the MakeLib utility, specifying each object file to be included in the library file. 
For example, if you assembled two files, creating the object files L IBOBJI . ROOT, 
LIBOBJl.A, LIBOBJ2. ROOT, LIBOBJ2 .A, and your library file is named 
LIBFILE, then your command line should be as follows: 

APDADraft 136 7127187 



Apple IlGS Programmer's Workshop Chapter3: Shell 

MAKELIB LIBFILE +LIBOBJ1.ROOT +LIBOBJ1.A +LIBOBJ2 . ROOT +LIBOBJ2 . A 

If you made the first segment of each flle a dummy, however, then you do not need 
to include the . ROOT files, and your command line should be as follows: 

MAKELIB LIBFILE +LIBOBJ1.A +LIBOBJ2.A 

4. Place the new library flle in the LIBRARIES/ subdirectory. (You can accomplish 
this in step 3 by specifying /APW/LIBRARIES/LIBFILE for the library flle, or 
you can use the MOVE command after the flle is created.) 

APW OMF library files and library-dictionary segments are described in the section "Object 
Module Format" in Chapter 7. The APW Linker is described in Chapter 5. 

MOVE 

MOVE [ - C] pathnamel [pathname2] 
MOVE [-C] pathname [directory] 

This internal command moves a flle from one directory to another; it can also be used to 
rename a file. 

-C If you specify -c before the fITst fllename, then MOVE does not prompt you 
if the target filename (pathname2) already exists. 

pathnamel The full pathname or partial patbname (including the filename) of the file to 
be moved. Wildcard characters may be used in this filename. 

pathname2 The full pathnarne or partial pathnarne of the flle you wish to move the file 
to. If you specify a target filename, the flle is renamed when it is moved. 
Wildcard characters cannot be used in this pathnarne. If the prefix of 
pathname2 is the same as that of pathnamel, then the file is renamed only. 

pathname The full pathnarne or partial pathname (including the filename) of the file to 
be moved. Wildcard characters may be used in this fllename. 

directory The patbname or partial pathname of the directory you wish to move the file 
to. If you do not include a filename in the target pathnarne, the flle is not 
renamed. Wildcard characters cannot be used in this patbname. 

If the file you wish to move and the target directory are on the same volume, APW calls 
ProOOS 16 to move the directory entry (and rename the flle, if a target fllename is 
specified). If the source and destination are on different volumes, the file is copied; if the 
copy is successful, the original file is deleted. If the file . specified in pathname2 already 
exists and you complete the move operation, then the old fIle named pathnome2 is deleted 
and replaced by the file that was moved. 

MU 

MU 

This command is an alias for PREFIX 6 / APWU/ UTILITIES. You can use this 
command when you are running APW from floppy disks to switch the utility prefix (prefix 
6) to the utility subdirectory on the / APWU disk, which contains a full set of utility 

APDADrajt 137 7/27/87 



Chapter 3 Shell Apple llGS Programmer's Workshop 

programs and help files. Use the UMU command to switch the utility prefIx back to the 
/ APW disk. 

Note: The MU and UMU commands are created by ALIAS commands in the LOGIN 
file of the floppy-disk version of APW. These aliases are not included in the APW 
command table and are not set by the hard-disk version of the LOG IN file (that is, 
the LOGIN file put on a hard disk by the INSTALL command). 

PREFIX 

PREFIX [n] directory 

This internal command sets any of the eight standard ProDOS 16 prefIxes to a new 
subdirectory. 

n A number from 0 through 7, indicating the prefix to be changed. If this 
parameter is omitted, 0 is used. This number must be preceded by one or 
more spaces. 

directory The pathname or partial pathname of the subdirectory to be assigned to 
prefix n. 

PrefIx 0 is the current prefIx; all shell commands that accept a pathnarne use prefIx 0 as the 
default prefix if you do not include a slash (!) at the beginning of the pathname. Prefixes 1 
through 6 are used for specifIc purposes by ProD OS 16 and APW; see the section 
"Standard PrefIxes" earlier in this chapter for details. The default settings for the prefIxes 
are shown in Table 3.1. Use the SHOW PREFIX command to find out what the prefIxes 
are currently set to. 

The prefIx assignments are reset to the defaults each time APW is booted. To use a custom 
set of prefix assignments every time you start APW, put the PREFIX commands in the 
WG IN file. (The WG IN file is an Exec file that is executed automatically at load time if it 
is present See the section "Exec Files" later in this chapter for instructions on writing an 
Exec file. See the section "Installing APW on a Hard Disk" in Chapter 2 for an example of 
a LOGIN file that uses PREFIX commands.) 

PRODOS 

PRODOS 

This language command sets the APW Shell default language to ProDOS 16 text. ProDOS 
16 text files are standard-ASClI files with ProDOS 16 flie type $04; these files are 
recognized by ProDOS 16 as text files. APW text files, on the other hand, are standard­
ASClI flies with ProDOS 16 file type $BO and an APW language type of TEXT. The 
APW language type is not used by ProDOS 16. See the Apple llGS ProD OS 16 Reference 
for a discussion of ProDOS 16 file types. 

APDADraft 138 7127187 



Apple llGS Programmer's Workshop Chapter 3: Shell 

QUIT 

QUIT 

This internal command tenninates the APW program and returns control (0 ProDOS 16. If 
you called APW from another program, ProDOS 16 returns you to that program; if not, 
ProDOS prompts you for the nexl program 10 load. 

RENAME 

RENAME pathnamel palhname2 

This internal command changes the name of a file. You can also use this command 10 
move a file from one subdirectory to another on the same volume. 

pathnamel The full pathname or partial pathname (including the filename) of the file to 
be renamed or moved. If you use wildcard characters in the filename, the 
first filename matched is used. 

pathname2 The full pathname or partial patbname (including the filename) to which 
pathnamel is to be changed or moved. You cannot use wildcard characters 
in the filename. 

If you specify a different subdirectory for pathname2 than for pathnamel, the file is moved 
to the new directory and given the filename specified in palhname2. 

Important: The subdirectories specified in pathnamel and pathname2 must be on 
the same volume. To rename a me and move it to another volume. use the MOVE 
command. 

RUN 

RUN [option ... J filel [jile2J [ ... J [KEEP=ouifjleJ 
[NAMES= (segl [seg2 ] [ ... J) 1 [languagel= (option ... ) 
[language2= (option ... ) J [ ••• JJ 

This internal command compiles (or assembles) one or more source files, links one or more 
object and library files, and runs the resulting load file. See the ASML command for a list 
of options and a description of the parameters. See your compiler or assembler manual for 
the default values of the parameters and the language-specific options available. 

The RUN and CMPLG commands are aliases for ASMLG. 

SEARCH 

SEARCH [+C I=C:J [+L I.=.L] [+P 1.::£.] string pathname 

The Search utility searches a file or files for the string you specify. 

APDADraft 139 7127187 



Chapter 3 Shell Apple Ilas Programmer's Workshop 

+C I -C If you specify +C, a match is found only if the string found matches the 
search string exactly, including case. If you omit this option or specify - C, 
searches are not case sensitive. 

+ L I - L If you specify + L, search lists the line number and the contents of the line in 
which it found a match for the search string. If you omit this option or 
specify -L, only the name of the file in which a match was found is listed. 

+P I-P If you specify +P, search displays progress information. Progress 
information consists of brief messages that tell you what the utility is 
currently working on; for example, which file is currently being searched. 
If you omit this option or specify - P , no progress information is displayed. 

string The string for which you wish to search. To specify a string that includes 
spaces, enclose the string in double quotation marks ( n). 

pathname The full pathoame or partial pathname, including filename, of the file you 
want to search for string. You can include wildcard characters in this 
filename. 

You can use this utility to search a text or source fIle for all occurrences of a string, or, by 
using wildcards in the fIlename, to search through several files to find out in which one the 
string occurs. 

For example, to search the file /APW/MYFILES/DONUT for all occurences of the word 
HOLE, you could use the following command: 

SEARCH -L HOLE / APW/MYFILES/DONUT 

To search all fIles in the directory MYFILES to determine which fIles contain the string 
Donut Hole, making the search case-sensitive, you could use the following command: 

SEARCH -C 'Donut Hole' / APW/ MYFILES / = 

SET 

SET [variable [valuell 

This internal command allows you to assign a value to a variable name. You can also use 
this command to obtain the value of a variable or a list of all defined variables. 

variable The variable name you wish to assign a value to. Variable names are not 
case-sensitive, and only the first 255 characters are significant. If you omit 
variable, a list of all defined names and their values is written to standard 
output. 

value 

APDADraft 

The string that you wish to assign to variable. Values are case sensitive and 
are limited to 255 characters. All characters, including spaces, starting with 
the first nonspace character after variable to the end of the line, are included 
in value. If you include variable but omit value, the current value of 
variable is written to standard output. 

140 7127187 

-'.-



Apple I/GS Programmer's Workshop Chapter 3: Shell 

The SET command can be used on a shell command line or in an Exec file. Use the 
UNSET command to delete the definition of a variable. Variables are valid only within the 
Exec me in which they are defmed unless you use the EXPORT or EXECUTE conunands. 
See the section "Exec Files" later in this chapter for a more complete discussion of the SET, 
EXPORT, and EXECUTE conunands. 

Important: Certain variable names are reserved. See the section "Variables" later 
in this chapter for a list of reserved variable names. 

SHOW 

SHOW [LANGUAGE] [LANGUAGES] [PREFIX] [TIME] [UNITS] 

This internal command provides infonnation about the system 

LANGUAGE Shows the current system-default language. 

LANGUAGES Shows a list of all languages defined in the command table, including 
their language numbers. . 

PREFIX Shows the current subdirectories to which the ProDOS 16 prefixes are set 
See the section "Standard Prefixes" later in this chapter for a discussion of 
APW prefixes. 

TIME Shows the current time and date. 

UNITS Shows the available units, including device names and volume names. 
Only those devices that have formatted ProDOS volumes in them are 
shown. To see the device names for all of your disk drives, make sure that 
each drive contains a ProDOS disk. 

More than one parameter can be entered on the command line; to do so, separate the 
parameters by one or more spaces. If you enter no parameters, you are prompted for them. 

TEXT 

TEXT 

This language conunand sets the APW Shell default language to APW TEXT. APW text 
files are standard-ASCII files with ProDOS 16 file type $BO and an APW language type of 
TEXT. The TEXT language type is provided to support any text formatting programs that 
may be added to APW. TEXT files are shown in a directory listing as SRC files with a 
subtype of TEXT. 

Use the PRODOS command to set the language type to ProDOS 16 text: that is, standard­
ASCII files with ProDOS 16 file type $04. ProDOS 16 text files are shown in a directory 
listing as TXT files with no SUbtype. See the Apple I1GS ProD OS 16 Reference manual for 
a discussion of ProDOS 16 me types. 

APDADraft 141 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

TYPE 

TYPE [+N l.=Hl pathnamel [startlinel [endlinel)) 
[pathname2 [startline2 [endline2)) [ ... )) 

This internal command prints one or more text or source fIles to standard output (usually 
the screen). 

+N I-N If you specify +N, the shell precedes each line with a line number. The 
default is - N: no line numbers are printed. If you type more than one file, 
the line numbers are IWt reset at the start of each file. 

pathnamel ... pathname2 ... The full pathnarnes or partial pathnames (including the 
filenames) of the files to be printed. You can use wildcard characters in 
these fIlenames, in which case every text or source file matching the 
wildcard filename specification is printed. If you specify more than one 
pathnarne in the command, separate the pathnames with spaces. 

startlinel The line number of the first line of pathnamel to be printed. If this 
parameter is omitted, the entire file is printed. 

endlinel The line number of the last line of pathndmel to be printed. If this 
parameter is omitted, the file is printed from stanline to the end of the fIle. 

ProDOS 16 text files and APW source files (including APW TEXT fIles) can be printed 
with the TYPE command. For example, to write lines 2 through 5 of sourcefile MYPROG 
and 9 through 18 of text file RELEASE .NOTES, use the following command: 

TYPE MYPROG 2 5 RELEASE.NOTES 9 18 

To redirect output to a printer or fIle, use output redirection as described in the section 
"Redirecting Input and Output" later in this chapter. For example, to send to the printer the 
entire file MYFILE and the fIle YOURFILE from line 9 to the end of the file, preceding each 
line with a line number, use the following command: 

TYPE +N MYFILE YOURFILE 9 >.PRINTER 

UM~ 

UMU 

This command is an alias for PREFIX 6 4/ •• /UTILITIES. You can use this 
command when you are running APW from floppy disks to switch the utility prefix (prefix 
6) from the utility subdirectory on the / APWU disk:, which contains a full set of utility 
programs and help files, to the utility subdirectory on the /APW disk. Use the MU 
command to switch the utility prefix to the /APWU disk. 

Note: The MU and UMU commands are created by AUAS commands in the LOGIN 
fIle of the floppy-disk: version of APW. These aliases are not included in the APW 
command table and are not set by the hard-disk: version of the LOG IN fIle (that is, 
the LOG IN fIle put on a hard disk by the INSTALL command). 

APDADraft 142 7/27/87 



Apple lIes Programmer's Workshop Chapter3: Shell 

UNALIAS 

UNALIAS aliasI [a/ias2 ... J 

This internal command deletes aliases for commands. 

aliasI alias2 ... The names of the aliases you wish to delete. 

Use the ALIAS command to defme an alias. 

UNSET 

UNSET variable1 [variable2 ... J 

This internal command deletes the definition of a variable. 

variableI variable2 ... The names of the variables you wish to delete. Variable names 
are not case sensitive, and only the first 255 characters are significant 

Use the SET command to define a variable. See the next section, "Exec Files," for a more 
complete discussion of the SET command 

VERSION 

VERSION 

This external command displays the version number of the APW Shell program you are 
using. 

Exec Files 
You can execute one or more APW Shell commands from a command file called an Exec 
file. To create a command file, first set the system language to EXEC by typing EXEC and 
pressing Return, and then open a new me with the editor. Any of the commands described 
in this chapter can be included in an Exec me. The commands are executed in sequence, as 
if you had typed them from the keyboard. . 

To execute an Exec file, type the full patbname or partial pathname (including the filename) 
of the Exec file and press Return. You can also execute an Exec me using the EXECUTE 
command. The advantages of doing so are described in the section on the EXECUTE 
command later in this chapter. 

You can place an Exec file in the UTILITIES/ subdirectory (prefix 6) and add it to the 
command table as a utility program. Then you can execute the program just by typing its 
name on the shell's command line (or by typing EXECUTE and the filename); in this case, 
the full patbname of the Exec file is not needed. The command table is discussed in the 
section "Command Types and the Command Table" eatlier in this chapter. 

When an Exec file terminates, it returns control to the Exec file that called it, or to the shell 
if it was executed from a shell command line. If you execute an interactive utility, such as 

APDADraft 143 7127187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

the APW Editor, from an Exec file, the utility operates nonnally, accepting input from the 
keyboard. If the utility name was not the last command in the Exec file, you are returned to 
the Exec file when you quit the utility. 

Exec files are programmable: that is, APW includes several commands designed to be used 
within Exec files that pennit conditional execution and branching. You can also pass 
parameters into Exec flles by including them on the command line. These features are 
described in the following sections. 

Exec files can call other Exec files. The level to which Exec flles can be nested and the 
number of variables that can be defined at each level depend on the available memory. 

You can put more than one command on a single line of an Exec file by separating the 
commands with semicolons (; ). 

The commands described in this section are usually used in Exec files; note, however, that 
any of these commands can also be used from a shell command line. For example, the 
following command line would delete from a directory all files that ended in the extensions 
. OLD, . BAK, and . TEST: 

FOR EXT IN OLD BAK TEST; DELETE =.{EXT} ; END 

FOR-END loops are described later in this section. 

The following subsections explain how to write Exec files. You are told how to pass 
parameters into Exec files, how to use variables in Exec files. and how to use each of the 
shell commands that provide conditional execution, branching. and other functions useful 
in ExeC files. 

Passing Parameters Into Exec Files 

When you execute an Exec file, you can include the values of as many parameters as you 
wish by listing them after the pathnarne of the Exec flle on the command line. Separate the 
parameters with spaces or tab characters. To specify a parameter value that has embedded 
spaces or tabs, enclose the value in quotation marks ("). Quotation marks embedded in a 
parameter string must be doubled. 

For example, suppose you want to execute an Exec file named FARM, and you want to pass 
the following parameters to the me: 

• cow 

• chicken 

• one egg 

• "Old" MacDonald 

In this case, you would enter the following command on the command line: 

FARM cow chicken "one egg" """Old"" MacDonald" 

Parameters are assigned to variables inside the Exec flle as described in the next section. 

AFDADraft 144 7127187 

--... 



"-_ .. 

Apple llGS Programmer's Workslwp Chaprer 3: Shell 

Programming Exec Files 

In addition to being able to execute any of the shell commands discussed in the "Command 
Descriptions" section of this chapter. Exec files can use several special commands that 
pennit conditional execution and branching. This section discusses the use of variables in 
Exec files and the logic operators used to fonn Boolean Oogical) expressions. 

Variables 

Any alphanumeric string up to 255 characters long can be used as a variable name in an 
Exec file. (If you use more than 255 characters. only the first 255 are significant) All 
variable values and parameters are ASCII strings of 255 or fewer characters. Variable 
names are not case-sensitive. but the values assigned to the variables are case-sensitive. 

To define values for variables. you can either pass them into the Exec file as parameters or 
include them in a FOR command or a SET command as described in the sections on those 
commands later in this chapter. To assign a null value to a variable (a string of zero 
length). use the UNSET command. 

Curly brackets ( { ) ) around a variable name indicate the value of the variable. For 
example. if you execute the command SET ECHO ON. then {Echo) refers to the value 
ON. 

Variables included in an EXPORT command on a shell command line can be used within 
any Exec file. Variables included in an EXPORT command within an Exec file are valid in 
any Exec files called by that file; they can be redefmed locally. however. Variables 
redefmed within an Exec file revert to their original values when that Exec file is tenninated 
unless the file was called with an EXECUTE command. 

The following variable names are reserved. Several of these variables may have number 
values; keep in mind that these values are literal ASCII strings. A null value (a string of 
zero length) is considered undefined. Use the UNSET command to set a variable to a null 
value. Several of the predefined variables are used to set up a printer. See the section 
"Using a Printer" in Chapter 2 for a discussion of printer initialization. 

Variable Name 

o 
1, 2 t ... 

CaseSensitive 

Command 

APDADraft 

Value 

The name of the Exec flle being executed. 

Parameters from the command line. Parameters are numbered 
sequentially in the sequence in which they are entered. 

The number of parameters passed. 

If you set this variable to any non-null value. string comparisons 
are case-sensitive. The default value is null. 

The name of the last command executed, exactly as entered. 
excluding any command parameters. For example. if the 
command was ! APW!MYPROG. then Command equals 
! APW !MYPROG. while if the command was EXECUTE 
! APW ! MYEXEC. then Command equals EXECUTE . The 
Parameters variable is set to the value of any parameters. 

145 7127187 



Chapter 3 Shell 

Echo 

Exit 

KeepType 

KeepName 

APDADraft 

Apple IIes Programmer's Workshop 

If you set this variable to a non-null value, then commands within 
the Exec file are printed to the screen before being executed. The 
default value for Echo is null (undefined); use the UNSET 
command to set Echo to a null value (that is, to delete its 
defmition). 

If you set this variable to any non-null value, and if any command 
or nested Exec file returns a nonzero error status, then execution 
of the Exec file is terminated The default value for Exi t is non­
null (it is the ASCII string true). Use the UNSET command to 
set Exi t to a null value (that is, to delete its definition). 

A hexadecimal number (represented as an ASCII string) 
corresponding to a load file type. If KeepType is undefined or 
set to a nonvaJid file type, $B5 (shell load file) is used. The most 
common alternative is $B3 (system load file). Valid load file types 
are $B3 through $BE. 

If you set this variable to any non-null value and do not include a 
KEEP parametq on the shell command line when you compile or 
compile and link a program, then the shell uses this variable to 
name the output files. If you set KeepName to a non-null value, 
it overrides any KEEP directive in the source file. The default 
value for KeepName is null (undefined); use the UNSET 
command to set KeepName to a null value (that is, to delete its 
defmition). 

The KeepName variable can include the wildcard characters % and 
$. The percent sign (%) is replaced with the source filename. The 
dollar sign ($) is replaced with the source filename with the last 
extension removed. For example, if {KeepName} is set to % . 0 
and you execute the command CMPL MYF ILE, the shell uses the 
name MYF ILE .0. ROOT for the object file and the linker uses the 
name MYFILE. 0 for the load file. Similarly, if KeepName is set 
to $ and you execute the command CMPL MYFILE. C, the shell 
uses the name MYFILE . ROOT for the object file and the name 
MYF ILE for the load file. 

The KeepName variable is not used by the LINK command. See 
the description of the LinkName variable, below, for a way to set 
default load filenames. 

Important: Because ProDOS does not allow filenames 
longer than 15 characters, you must be careful not to use a 
source filename that will create an output filename longer 
than 15 characters. For example, if KeepName is set to 
% • OUT and the source filename is LONGNAME, the compile 
will fail when the shell tries to open the file 
LONGNAME . OUT. ROOT, which has 17 characters. 

Because the shell will not let you overwrite a source file 
with a load file, you cannot set KeepName to % and use it 
with a link. For example, if KeepName is set to % and you 
try to execute the command CMPL MYF ILE, the link will 

146 7/27/87 



'~-,-. 

AppLe lleS Programmer's Workshop Chaprer 3: Shell 

LinkName 

fail when the linker tries to write a load me named 
MYFILE. 

If you set this variable to any non-null value and you do not 
include a KEEP parameter on the shell command line, then the 
shell uses this variable to name the load me. If you set 
LinkName to a non-null value, it overrides any KEEP command 
in the LinkEd source me. The default value for LinkName is null 
(undefined); use the UNSET command to set LinkName to a null 
value (that is, to delete its definition). 

The LinkName variable can include the wildcard characters % and 
$. The percent sign (%) is replaced with the object me's root 
fIlename. The dollar sign ($) is replaced with the object me's root 
fIlename with the last extension removed. For example, if 
LinkName is set to % .0 and you execute the command LINK 
MYFILE, the shell uses the name MYFILE. 0 for the load file. 
Similarly, if LinkName is set to $ and you execute the conunand 
CMPL MYFILE. C, the shell uses the name MYFILE for the load 
file. 

If you name more than one object me on the command line and the 
LinkName variable includes a wildcard character, the shell 
applies the L i nkN arne variable to the root name of the first object 
fIle linked-

Important: Because ProDOS does not allow filenames 
longer than 15 characters, you must be careful not to use a 
value for LinkName that will create a load fIlename longer 
than 15 characters. For example, if LinkName is set to 
% • LOADF ILE and the root filename is LONGNAME • ROOT, 
the compile will fail when the shell tries to open the fIle 
LONGNAME • LOADF ILE, which has 17 characters. 

Because the shell will not let you overwrite a source me 
with a load file, you cannot set {LinkName} to % when 
the object file's root mename is the same as the source 
filename. For example, if {LinkName} is set to % and 
you try to execute the command CMPL MYF ILE, the link 
will fail when the linker tries to write a load file named 
MYFILE. 

Parameters The parameters of the last Exec file executed, exactly as entered, 
excluding the Exec file's pathname. For example, if you execute 
an Exec file with the command /APW/FARM COW DUCK, then 
{Parameters} equals COW DUCK. 

P ri n te rCol umns An ASCII number indicating the number of characters on a line. 

APDADrafr 

The printer driver assumes a new line has begun each time 
, {P r interColumns} + 1 characters have been printed since the 
last carriage return. The printer driver uses this parameter to count 
lines on a page in case your printer automatically inserts a carriage 
return and line feed to wrap lines that are too long. If your printer 
stops printing at the end of the line, or returns to the start of the 

147 7127187 



Chapter 3 S/i£li 

Printerlnit 

Apple IIGS Programmer's Workshop 

line and overprints the line, then set {PrinterColurnns} to 0 
and the printer driver will count a new line only when a carnage 
return is sent. 

The initialization string to be sent to your printer each time you 
send text to the printer. Use this string to set the printer options 
you want to use, such as character pitch, print quality, line 
spacing, or boldfacing. Precede a character with a tilde (-) to 
indicate a control character. Precede a character with a number 
sign (II) to indicate that the next character should have the most 
significant bit set. Precede the tilde with a number sign to indicate 
a control character with the most significant bit set. 

To specify the number-sign character ($23), use the sequence -II. 
To specify the tilde character ($7E), use the sequence --. To 
specify the tilde character with the most significant bit set ($FE), 
use the sequence 11--. A space is interpreted as a space character 
($20). 

Important: The shell does no error checking on the 
initia1ization string; if you specify an illegal control 
character, the shell subtracts $40 from the character and 
sends it to the printer anyway. For example, if you specify 
-g, the shell sends $27 to the printer. 

The following command sends the string "Control-L Esc a 2" to 
the printer (for an Apple ImageWriter II printer, this string feeds 
the paper to the next top-of-form position and sets the printer to 
near-letter-quality mode): 

SET PRINTERINIT -L-[a2 

The following command sends the sequence $1B $44 $80 $00 to 
the printer (for an Apple ImageWriter II printer, this sequence 
adds an automatic line feed after every carnage return): 

SET PRINTERINIT -[D#-@-@ 

See the manual that came with your printer for the options 
available and the codes necessary to set them 

PrinterLineFeed If this variable is not defined, no line-feed character ($OA) is 
inserted after a carnage return ($OD). If this variable is non-null, 
the printer driver automatically inserts a line feed after every 
carriage return. If no line feed is added when one is needed, the 
printer overprints every line of text without advancing the paper. 
If a line feed is added when one is not needed, the lines are double 
spaced. 

PrinterLines An ASCII number indicating the numberoflines to be sent to the 
printer before a form-feed character ($OC) is sent. If 
{P rinterLines} = 0, no form-feed characters are sent. 

PrinterSlot An ASCII number from 1 through 7 indicating the number of the 
slot containing your printer-driver PC board. The default value 
for PrinterSlot is 1. 

APDADraft 148 7127187 



Apple lieS Programmer's Workshop Chap~r 3: Shell 

Status 

Logic Operators 

Important: If' you specify the wrong slot number, the 
printer initialization string and output data are sent to the 
wrong slOl, with consequences that depend on the device 
assigned to that slot. For example, the system might hang 
or reset. 

The error status returned by the last command oc Exec file 
executed. This variable is the AScn character 0 (S30) if the 
command was executed successfully. Foc most commands, if an 
error occumd, the error value returned by the command is the 
AScn string 65535 (representing the error code SFFFF). 

APW includes two operatocs that you can use to focm Boolean (logical) expressions. 
String comparisons are case sensitive if {CaseSensitive} is not null (the default is for 
string comparisons to not be case sensitive). If an expression's result is true, the 
expression returns the character 1. If an expression's result is not true, the expression 
returns the character o. There must be one or more spaces before and after the comparison 
operator. 

The two Exec file logic operatcrS are defined as follows: 

slrI -= str2 

slrI ! - str2 

String comparison: true if string str I and string str2 are identical; 
false if not. . 

String comparison: false if string strI and string slr2 are identical; 
true if not. 

Operations can be grouped with parentheses. For example, the following expression is 
true if one of the expressions in parentheses is false and one is true; the expression is false 
if both expressions in parentheses are true or if both are false: 

IF ( COWS -- KINE) != ( CATS =- DOGS ) 

Important: Every symbol or string in a logical expression must be separated from 
every other by at least one space. In the preceding expression, for example, there is 
a space beween the string comparison operator ! = and the left parenthesis, and 
another space between the left parenthesis and the string CATS. 

Entering Comments 

To enter a comment into an Exec file, use the COMMENT command (or its alias, an 
asterisk (*», followed by a space and the comment See the section on the COMMENT 
command, later in this chapter, for details. 

LOGIN Files 

Each time you start APW, it looks for an Exec file named LOGIN in the APW system 
prefIX (prefIX 4). If it fmds such a file, APW executes it before doing anything else. You 
can use LOGIN to set system variables such as PrinterS lot, to change default prefix 

APDADrafl 149 7127187 



Chapter 3 Shell Apple lies Programmer's_Workshop 
" ,,' 

assignments, or even to execute a utility program. Any APW.command described in this 
chapter can ··be used in a LOG IN fIle. . . 

Any system variables set in a LOGIN file must be included in an EXPORT command to be 
exported to the shell command level and to other Exec fIles. To reexecute LOG IN without 
reloading APW (to reset system parameters to your selected defaults, for example), use the 
command EXECUTE 4 / LOGIN. 

Exec File Command Descriptions 

The commands described in this section can be used in Exec files to control conditional 
execution and branching and to assign values to variables. 

The following notation is used to describe commands: 

UPPERCASE 

italics 

[ 1 

• 
• 
• 

BREAK 

BREAK 

Uppercase letters indicate a commarid name or an option that must 
be spelled exactly as shown. The APW Shell command interpreter 
is not case sensitive; that is, you can enter commands.in any 
combination of uppercase and lowercase letters. 

Italics indicate a variable that you must replace with specific 
information, such as a pathname or fIle type, 

. Parameters enclosed in square brackets are optional. 

Ellipses indicate that a parameter or sequence of parameters can be 
repeated as many times ~ you wish. 

Vertical ellipses indicate that any number of shell commands can be 
inserted .between the two commands shown. 

This internal conlmand terminates the innennost FOR or LOOP statement currently 
executing. For example. if a FC)R loop is executing inside an IF statement and a BREAK 
statement is encountered. control passes to the statement following the FOR loop's END 
statement A BREAK statement can be used to terminate a LOOP loop. 

APDA'Draft 150 7/27/87 



Apple Ilcs Programmer' s Workshop Chapter 3: Shell 

COMMENT 

COMMENT [text) 

This internal command, or an asterisk (*), is used to enter c011lIilents into Exec files. 

teXt The comment that you want to include in the file. All characters starting 
with the first nonspace character after the COMMENT or * conunand to the 
end of the line are part of the conunent. To include a semicolon (;), vertical 
bar (I), greater-than sign (», or less-than sign «) in the comment, enclose 
text in double quotation marks ("). You must include a space after the 
asterisk or COMMENT, or the shell interprets the line as a pathname. 

The asterisk and the word COMMENT are included in the command table as null commands. 
They are treated by the shell as commands that do nothing. Consequently, a semicolon 
terminates the comment; the text following the semicolon is interpreted as another 
command. If you include a redirection operator (> or <) or pipeline operator (I), the shell 
attempts to redirect the comment as it would any command. 

As an example of the use of this conunand, the following Exec file sends a catalog listing to 
the printer: 

CATALOG >.PRINTER 
* Send a catalog listing to the printer 

The following line uses a semicolon to place the conunent on the same line as the 
CATALOG command: 

CATALOG >.PRINTER ;* Send a catalog listing to the printer 

CONTINUE 

CONTINUE 

This internal command causes control to skip over following statements to the next END 
statement that isn't the END for an IF statement. It does not cause termination of the loop 
(unless the last value has been used in a FOR loop). 

ECHO 

ECHO string 

This internal command lets you write messages to the screen. 

string The string that you wish to print to the screen. All characters starting with 
the first nonspace character after the ECHO command to the end of the line 
are printed to the screen. If you include variables in the string, they are 
expanded--that is, their current value is substituteci--before they are printed 
to the screen. To include leading space characters, enclose string in double 
quotation marks ("). 

APDA Draft 151 7127187 



Chapter 3 Shell Apple I/GS Programmer's Workslwp 

EXECUTE 

EXECUTE path/UJllU! [paramlistJ 

This internal command executes an Exec fIle, treating the commands in the fIle as if they 
were in the Exec fIle that contains the EXECUTE command. If this command is executed 
from the APW Shell command line, any variables deflned in the Exec file are treated as if 
they were defined on the shell command line. 

path/UJllU! The full or panial pathname of an Exec fIle. This fIlename cannot include 
wildcards. 

paramlist The list of parameters being sent to the Exec fIle. Separate the parameters 
by one or more spaces. 

Exec fIles can be nested: that is, one Exec me can include a statement that executes another 
Exec me, that me can in turn call a third, and so on until your Apple IIGS runs out of 
memory. Normally, variables defined within each Exec me are local to that fIle; that is, the 
values are not valid in any other Exec me (see the discussion of the EXPORT command 
later in this chapter for an exception to this rule). If you use an EXECUTE command, 
however, any commands executed in the Exec me called by the EXECUTE command (the 
nested me) are treated as if they were executed in the me that contains the EXECUTE 
command (the calling fIle). Consequently, any variables defmed in the calling Exec fIle are 
valid in the nested Exec fIle, and any variables defmed in the nested Exec fIle remain valid 
after the nested Exec fIle flnishes executing. 

As illustrated in Figure 3.9, when you execute an Exec fIle with the EXECUTE command, 
it's as if the commands in the nested Exec me are insetted into the calling Exec fIle. The 
Exec files illustrated in part B of this flgure are exactly equivalent to those illustrated in part 
A. Note that EXEC4 is not called with an EXECUTE command, and so it does not share 
variable definitions with EXEC2 or EXECl. 

APDADraft 152 7/27/87 



Apple lIes Programmer's Workshop Chapter 3: Shell 

EXEC I 

SET Vorl vall 
SET Var2 val2 
SET Var3 val3 

- EXEC2 

-
EXECUTE EXE~ SET Val volA EXEC3 

~ 
SET Var2 vaiB 
SET Var4 vav 

V SET Var5 valX 

EXECUTE EXES3 .......... 

- EXEC4 
EXEC4 

.L 

R ./ SET Var4 valQ 
SET Var6 valR 

-
-

EXEC I ../ 

SET Vorl vall 
SET Var2 val2 
SET Va3 val3 

-
-
SET Vorl volA 
SET Var2 valB 
SET Var4 valD 

SET Vcr5 valX 

- EXEC4 
EXEC4 ... 

........ 

~ SET Var4 valQ 
SET Var6 voiR 

B -
-

../ 

Figure 3.9. Effect of the EXECUTE Command 

The definitions of variables resulting from the SET commands and Exec-me calling 
sequence shown in part A of Figure 3.9 are illustrated in Figure 3.10. 

APDADraft 153 7127187 



Chapler 3 Shell Apple IIGS Programmer's Workshop 

EXECl 
EXEC2 

SET Vorl voll 
SET Vor2 vol2 (VOrl/-Vail 
SET Vor3 vol3 (Vor2 -vol2 

(Var3j=vol3 

EXECUTE EXEC2 SET Vorl volA 
lvorl/=voIA SET Vor2 volB 
Vor2 =volB SET Vor4 voiD 

lvor3j=vo'3 
Vor4j=volD 

(VorSj=voIX 
EXECUTE EXEC3 

(VorlrVOIA .... 
(Vor2 =volB 
(Var3 =vol3 
lvor4/ E vo'D 
VorS =volX 

EXEC4 

torlrVOIA Vor2 =volB 
Vor3 =vol3 

lvor4j-vo'D · 
VorS =volX 

Figure 3.10. Variable Definitions and EXECUTE commands 

EXEC3 

(Vorl j=volA 
lvar2/=vo'B 
Vor3 =vol3 

(Var4j=volD 

SET VorS volX 

(Vorlj=volA 
(Var2j=volB 
(VOr3j E VOI3 
(Vor4 =volD 
(VorSj=voIX 

EXEC4 

SET Var4 volQ 
SET Vor6 voiR 

lvor4j=vo,Q 
Vor6 =volR 

Similarly, if you use an EXECUTE command on the shell command line to execute an Exec 
file, the variables defined in that Exec file are treated as if they were typed on the command 
line. For example, suppose you write an Exec file called SETUP that contains the 
following lines: 

SET ECHO ON 
SET PRINTERSLOT (1) 

You can excute this Exec file from the command line with the following command: 

SETUP 2 

In this case, the variable Echo is set to ON and PrinterSlot is set to 2 (the value 
passed as a command-line parameter) only while the Exec file is executing. When the Exec 
file finishes, Echo and PrinterS lot return to their default values. To make the values 

APDADraft 154 7127187 

.- . 



Apple lies Programmer's Workshop Chapter 3: Shell 

of Ec ho and PrinterSlot remain valid after the fIle SETUP has finished excuting, use 
the following command: 

EXECUTE SETUP 2 

In this case, the shell acts as if the commands SET ECHO ON and 
SET PRINTERSLOT 2 were typed on the command line: that is, {Echo} is still set to 
ON and {P rinterSlot} is still set to 2 after the Exec file returns control to the shell. 

Note: When the APW Shell finds an Exec file named LOGIN in the APW system 
prefix (prefix 4) during system load, the shelf automatically executes LOGIN 
immediately after loading APW. Use the EXPORT command in the LOGIN file to 
make variable definitions valid at the shell command level and in other Exec files. 
To reexecute LOGIN without reloading APW-to reset system parameters to your 
selected defaults, for example-use the command EXECUTE 4/LOGIN from a 
shell command line. 

EXIT 

EXIT [number) 

This internal command terminates execution of the Exec file. 

number This parameter is the error status with which the Exec file terminates. It: 
you specify a value for number and the Exec file was executed from another 
Exec file, the predefmed variable Status is set to nwnber. This 
parameter is useful only for nested Exec files since it is used to terminate the 
calling Exec file if a nested Exec file terminates with an error. 

EXPORT 

EXPORT [variable ... ) 

This internal command makes the specified variables available to Exec files called by the 
current Exec file. 

variable ... The names of the variables you wish to make available to enclosed Exec 
files. Variable names are not case sensitive, and only the first 255 
characters are significant. If you omit variable, a list of all exported 
variables (for the current Exec file) is written to standard output. 

APDADraft 155 7127187 



Chapter 3 Shell Apple llGS Programmer's Workshop 

The following statements describe the action of EXPORT commands: 

• Variables included in EXPORT commands in a shell command line can be used within 
any Exec fIle called from the command line. 

• Variables included in EXPORT commands in an Exec file can be used in any Exec file 
called by that fIle. 

• Exported variable definitions are passed on to any Exec files enclosed at lower levels. 

• An EXPORT command does not affect the values of variables in an Exec fIle that 
called the fIle that includes the EXPORT statement. 

• Variables defined within an Exec fIle and not exported are local to that ftle. 

• When a variable that has been exported is redefined, the new value is valid for all 
Exec ftles enclosed at lower levels without the necessity of reexporting the variable. 

• Variables exported and redefined within an enclosed Exec fIle reven to their original 
values when the enclosed Exec fIle is terminated. 

• Variables exponed from the LOG IN fIle act as if they had been exported from the 
command level. 

For example, suppose that you execute the Exec file EXEC. 1 from the shell command line 
and that EXEC. 1 calls EXEC. 2, and EXEC. 2 calls EXEC. 3. In this case, the followng 
statements are true: 

• A variable defined on the command line and specified in an EXPORT statement is 
valid in EXEC. 1, EXEC. 2, and EXEC. 3. 

• A variable specified in an EXPORT statement in EXEC . 1 is valid in EXEC. 2 and 
EXEC. 3 but not on the command line. 

• A variable exported from EXEC. 2 is valid in EXEC. 3, but not in EXEC . 1 or on the 
command line. 

• If a variable is defined in EXEC. 1 and exponed, and then redefmed in EXEC. 2, its 
value is changed in EXEC. 2 and EXEC. 3 but not in EXEC. 1 or the command level. 

The LOG IN file, which is executed at APW boot time, constitutes a special case of the use 
of EXPORT commands. Variables included in an EXPORT command in the LOGIN file are 
exported to the shell command level when the LOG IN fIle is executed at boot time. These 
variable definitions are valid at all levels of nested Exec files. 

Note that you do not need to use an EXPORT command to use variable definitions in an 
Exec file that you call with an EXECUTE command. See the.discussion of the EXECUTE 
command for details. 

FOR-END 

FOR variable [IN value1 value2 ... 1 
• 
• 

END 

APDADraft 156 7127187 



Apple IIGS Programmer's Workshop Chapter 3: Shell 

lbis command sequence creates a loop that is executed once for each parameter value 
listed. . 

variable The name of the variable whose value changes each pass through the loop. 
H variable has not been previously defIned, this statement defInes it. 

IN value1 value2 ... Each value or string listed after the optional parameter IN is 
assigned to variable for one pass through the loop. That is, the fIrst time 
through the loop (variable) is equal to value1; the second time through the 
loop {variable} is equal to value2, and so forth. The values of value must 
be separated by one or more spaces. 

H IN is omitted, the parameters listed after the Exec fIle pathname (when the 
Exec fIle is called) are used. The Exec file pathname itself (parameter 0) is 
not used as a value for variable. 

END Each of the commands between FOR and END is executed once for each 
value of value (or for each parameter, if IN is not used). H variable appears 
in any of these statements, it takes on the current value of value. 

For example. the following Exec fIle. narned ERASE. would delete from a directory all files 
that ended in the extensions . OLD, .BAK, and . TEST. Note that the equal sign used here 
is a wildcard character in the DELETE command, not an Exec-fIle logic operator: 

ERASE 

FOR EXT IN OLD BAK TEST 
DELETE =. {EXT} 
END 

The same result could be obtained by including the extensions as parameters on the 
command line and omitting them from the FOR command: 

ERASE OLD BAK TEST 

FOR EXT 
DELETE =. {EXT} 
END 

IF-END 

IF expression 

[ELSE IF expression] 

[ELSE I 

END 

APDADraft 157 7(27187 



Chapter 3 Shell Apple IIGS Programmer's Workshop 

This command sequence provides conditional branching in Exec files. The expressions are 
tested until one evaluates as true, then the statements between that IF or ELSE IF and the 
following ELSE IF, ELSE, or END are executed. All other statements between the IF 
and END are skipped. If none of the expressions evaluate as true and if an ELSE statement 
is included, the statements between the ELSE and the END are executed. 

expression Any expression formed with one of the logical operators discussed in the 
section "Logic Operators" earlier in this chapter. 

LOOP-END 

LOOP 

END 

This command sequence defInes a loop that repeats continuously until a BREAK or EXIT 
command is encountered. The loop is also terminated if any command in the loop returns a 
nonzero error status while {Exit} is not null (see the section "Variables" in this chapter 
for a discussion of Exi t). . 

SET 

SET [variable [valuell 

This internal command allows you to assign a value to a variable name. You can also use 
this command to obtain the value of a variable or a list of all defIned variables. 

variable The variable name you wish to assign a value to. Variable names are not 
case-sensitive, and only the first 255 characters are significant If you omit 
variable, a list of all defIned names and their values is written to standard 
output. 

value The string that you wish to assign to variable. Values are case-sensitive and 
are limited to 255 characters. All characters, including spaces, starting with 
the first nonspace character after variable and continuing to the end of the 
line, are included in value. If you include variable but omit value, the 
current value of variable is written to standard output 

Use the UNSET command to delete the defInition of a variable. Variables defIned within an 
Exec file and not exported are local to that fIle. See the discussions of the EXPORT and 
EXECUTE commands for ways to share variable defmitions between Exec files. 

Important: Certain variable names are reserved. See the section "Variables" 
earlier in this chapter for a list of reserved variable names. 

UNSET 

UNSET variable 

APDADraft 158 7127187 



Apple lIes Programmer's Workshop Chapter 3: Shell 

This internal command deletes the definition of a variable. 

variable The name of the variable you wish to delete. Variable names are not case-
sensitive, and only the first 255 characters are significant 

Use the SET command to define a variable. Variables defined within an Exec me and not 
exported are local to that file. See the discussions of the EXPORT and EXECUTE 
commands for ways to share variable defmitions between Exec files. 

Example 

When the following Exec me is executed, it attempts to assemble and link a source me. If 
the operation is unsuccessful, it attempts to assemble and link: a different source me. If 
neither program can be assembled and linked, the Exec file writes a message to the screen. 
If either me can be assembled and linked, then that program is run. 

UNSET EXIT 
* 
SET Message No luck! 
ASML PROGl KEEP=TESTI 
* 
IF {Status) == 0 
TESTl 
EXIT 
ELSE 
ASML PROG2 KEEP=TEST2 
* 
IF {Status) == 0 
TEST2 
EXIT 
ELSE 
ECHO {Message) 
END 
END 

;*Don't abort the program if 
an assemble or link fails. 

;*Message to send if we fail. 
;*Attempt to assemble and link 

the first program. 
;*If first prog was successful 
;*run the program and 
;*quit. 
;*If first prog failed 
;*attempt to assemble and link 

the second program. 
;*If second prog was successful 
;*run the program and 
;*quit. 
;*If both programs failed 
;*send message. 
;*End of second IF statement 
;*End of first IF statement. 

Note: When reading this example, remember that equal signs (=) can have three 
different functions in Exec meSo They can function 1) as a wildcard character in a 
filename; 2) as part of an APW command parameter (for example, KEEP=TEST); 
3) in the string-comparison operators == and ! =. 

APDADraft 159 7127187 



Chapter 3 Shell Apple llGS Programmer's Workshop 

APDADrajt 160 7/27/87 



Apple IIGS Programmer's Workshop Chapter4: Editor 

Chapter 4 

Editor 

The APW Editor allows you to write and edit source and text files for use with APW 
assemblers, compilers, and utility programs. A brief introduction to the use of the editor is 
given in the section "Using the Editor" in Chapter 2. This chapter provides reference 
material on the editor. All editing commands are described in detail. 

The first section in this chapter, "Modes," describes the different modes in which the editor 
can operate. The second major section, "Command Descriptions," describes each editor 
command and gives the keys or key combinations assigned to the command. The third 
major section, "Macros," describes how to create and use editor macros, which allow you 
to execute a string of editor commands with a single keystroke. The fourth section, 
"Setting Editor Defaults," describes how to set the defaults for editor modes and tab 
settings for each language. 

An on-line help facility is available for the editor. To see the help file, press Apple-Slash 
(a-I) or Apple-Question Mark (a-?), then use the Up Arrow (i), Down Arrow (J..), 

Apple-Up Arrow (a-i), and Apple-Down Arrow (d-J..) keystrokes to scroll through the 
help file. Press Esc, Return, or Enter to return to the fIle you are editing. 

Modes 
The behavior of the APW Editor depends on the settings of several modes, as follows: 

• insen 

• escape 

• auto indent 

• select 

• automatic wrap 

Each of these modes has two possible states; you can toggle between the states while in the 
editor. All of these modes are described in this section. The commands for toggling 
modes are described in the section "Command Descriptions" later in this chapter. For 
example, to learn how to toggle wrap mode, look up "Toggle Wrap Mode." 

The default settings for the auto-indent, select, and word-wrap mode depend on the 
language type of the file you are editing. You can change the default settings for a 
language, as described in the section "Setting Editor Defaults" in this chapter. 

APDADraji 161 7/27/87 



Chopter4: Editor Apple IIGS Programmer's Workshop 

Insert 

When you first start the editor, it is in overstrike mode; in this mode the characters you type 
replace any characters the cursor is on. If you press Control-E or Apple-E to toggle to 
insert mode, any characters you type are inserted at the left of the cursor while the cursor, 
the character the cursor is on, and any characters to the right of the cursor are moved to the 
right. 

Although the editor can display only 80 columns of text, you can continue to insert 
characters into an 80-column line when the cursor is in any column other than the last. If 
you do so, the characters at the end of the line move off the screen to the right. The 
maximum length of a line in the APW Editor is 255 characters (including spaces). If you 
insert characters after the line is 255 characters long, the characters at the end of the line are 
lost. To bring characters beyond column 80 back into view, insert a carriage return near 
the end of the line; the characters are moved to the next line down. 

Note: If the editor is in insert mode and you continue typing when the cursor 
reaches column 80, each additional character is inserted at column 80 and the 
characters to the right of the cursor move off the screen to the right. As a result, the 
new characters you type are inserted in reverse order. For example, if you start 
typing in column 76 and type 12345 when the editor is in insert mode, the 5 is in 
column 80. If you then type 6, the 6 is inserted at column 80 and the 5 moves off 
the screen to the right. If you continue with 789, and then insert a carriage return 
before the 1 to move the suing to the next line, you will fmd you have inserted 
123498765 into the file. 

If the editor is both in insert and automatic-wrap modes, when the cursor reaches the end­
of-line marker (usually at column 80 as explained in the section "Setting Editor Defaults" 
later in this chapter), the editor inserts a carriage return before the word you are currently 
typing. The result is that the word that included column 80 and all remaining characters on 
the line (up to the 255th character) are moved to the next line down. See the section 
"Automatic Wrap" later in this chapter for an example. 

To toggle from insert mode to overstrike mode, press Control-E or Apple-E one more time. 

Escape 

When you press the Esc key or Control-Underscore (Control-.J, the editor enters escape 
mode. Escape mode has several special features: 

• You can cause a command to be repeated automatically up to 32767 times while in 
escape mode by typing the number of repetitions before you execute the command. 
For example, the command Control-T deletes a line of text, so to delete 10 lines of 
text (starting with the line the cursor is on), type Esc 10 Control-T. 

• If it is impossible for the editor to repeat a command as many times as you specify, it 
repeats it the maximum number of times possible. For example, if you type 
Esc 50 Up Arrow when you are only 20 lines from the top of the file, the cursor 
moves up 20 lines (to the top of the file) and stops. 

• Although you can type letters and punctuation in escape mode as you can in edit 
mode, to type a numeral in escape mode you must hold down the Apple key. 

APDADraft 162 7127187 



Apple I/GS Programmer's Workslwp Chapter4: Editor 

To exit escape mode and return to edit mode, press Esc one more time or press 
Control-Apple-Underscore (Control-G-~. 

Auto Indent 

You can set the editor so that pressing Return moves the cursor to the flrst colwnn of the 
next line (in this case, auto-indent mode is said 10 be off), or so that it follows indentations 
already set in the text (auto-indent mode is on). When you press Return while auto-indent 
mode is on, the editor puts the cursor on the flrst nonspace character in the next line. If the 
line is blank, the cursor is placed in the same colwnn as the first nonspace character in the 
first non blank line above the cursor. If the screen is blank, the cursor is placed in 
column I. 

Auto-indent mode is convenient for writing programs in some high-level languages, such 
as Pascal, in which lines are indented to help clarify the structure of the program. 

Press Apple-Return, Apple-Enter, or Control-Apple-M to toggle auto-indent mode off or 
on. 

Select 

The Cut, Copy, and Delete commands require that you first select a block of text. The 
APW Editor has two modes for selecting text: line-oriented and character-oriented selects. 
As you move the cursor in line-oriented select mode, text or code is marked a line at a time. 
In the character-oriented select mode, you can start and end the marked block at any 
character. Line-oriented select mode is the default for assembly language; for text fIles and 
most high-level languages, character-oriented select mode is the default. 

While in either select mode, the following cursor-movement and screen-scrolling 
commands are active: 

• Bottom of Screen/Page Down 

• Top of Screen/Page Up 

• Cursor Down 

• Cursor Up 

• Screen Moves 

In addition, while in character-oriented select mode, the following cursor-movement 
commands are active: 

• Cursor Left 

• Cursor Right 

• Stan of Line 

• End of Line 

• Tab 
• Tab Left 

• Word Right 

APDADraft 163 7127187 



Chapter4: Editor Apple IIGS Programmer's Workshop 

• Word Left 

As you move the cursor, the text between the original cursor position and the final cursor 
position is marked (in inverse characters). Press Return to complete the selection of text. 
Press Esc to abort the operation, leave select mode, and return to normal editing. 

Press Control-Apple-X to toggle between line-oriented and character-oriented select modes. 

Automatic Wrap 

For line-oriented computer languages like assembly language, each program statement must 
fit on one line; for such languages, you may nO! want the editor to automatically break a 
line of text and keep entering text on the next line. For other languages and for text files, it 
is better if the editor continues entering text when you reach the end of the line by 
automatically inserting a carriage return and moving the cursor to the next line down. You 
can toggle the APW Editor between these two modes of operation by pressing 
Control-Apple-W. 

In nonwrap mode, when you reach the end-of-line mark (usually at column 80 as explained 
in the section "Setting Editor Defaults"later in this chapter), any additional characters you 
type overwrite the last character on the line. In automatic-wrap mode, when you type one 
character too many to fit on the line, the entire word that that character is part of is wrapped 
to the next line. For example, suppose you are typing the word pneumat o lys is, and 
the letter t falls on column 79. In nonwrap mode, the additional characters overwrite the 
last character on the line and the line ends with pneumat s; in automatic-wrap mode, on 
the other hand, the entire word pneumatolysi s is moved to the beginning of the next 
line. 

Note: The APW Editor does nO! have "soft" carriage returns; that is, once a line is 
broken by the automatic-wrap feature, there is a permanent carriage return at the end 
of the line. If you delete characters on the first line, the following line does not 
move back up to maintain the length of the first line. To remove the carriage return 
you must first enter insert mode, then move the cursor to the beginning of the 
second line, and finally execute a Delete Character Left command. 

If the editor is in automatic-wrap mode, when the cursor reaches the end of the line (usually 
column 80), the editor inserts a carriage return before the word you are currently typing. If 
the editor is both in insert and automatic-wrap modes, the characters to the right of the 
cursor are pushed off the screen to the right until the cursor reaches the end of the line, and 
then the word that included column 80 and all remaining characters on the line (up to the 
255th character) are moved to the next line down. 

Note that the line does not wrap when the last character in the line reaches column 80 but 
when the cursor reaches column 80. For example, suppose you begin inserting characters 
in the following line. The editor displays only the first 80 characters on the line. Column 
numbers are shown above the line for purposes of illustration only. The cursor is shown 
as a solid square (_) at the end of the line . 

. ... •.. .. 1. .... .. .. 2 ••• •••••. 3 • •.. • .... 4. ... .. ... 5 . .•.. •.. . 6 •..• •• .. . 7 • • .• • . .• • 8 

ted e arlier . t h e mi ne r al s i n t his spec i men appear t o have pneumato l ysis .• 

APDADraft 164 7/27/87 

.. ---.. 



Apple lIGS Progrtl1T/lMr's Work.rhop Chapter 4: Editor 

Now. with insert and automatic-wrap modes active, you begin to type characters in column 
6(): ' 

..•. ••• .. 1. •.•. . ..• 2 .••• •• .• • 3 •• • •• • • •• 4 ••• •• •• • • 5 ••••• • •• • 6 ......... 1 ......... 8 

ted ear lier, the minerals in this speeimen appear to have formed as 4 result ot. 

Thefin of (the last character of the newly inserted text) has reached column 79. so the 
cursor is in column 80 and the line wraps as follows: 

•. •••••.. 1. ••••.•. • 2 ... . ..... 3 •••• • • ••• 4 •• •• •• . •• 5 • • ••••• • • 6 ••••••• • • 1 .. ... . ... 8 

t ed earlier, the minerals in this specimen appear to have formed as a result 
o f pneumat olys1s .• 

If you paste characters into the line or insert spaces with the Insert Space command. the line 
doesn't wrap; instead. the characters at the end of the line move off the screen to the right. 
The maximum length of a line in the APW Editor is 255 characters (including spaces). If 
you insert text or spaces after the line is 255 characters long, the characters at the end of the 
line are lost To bring characters beyond column 80 back into view, insert a carriage return 
near the end of the line; the characters are moved to the next line down. 

Command Descriptions 
This section describes the function of each of the editor commands. The keystrokes used 
for each command are shown with the command desaiption. 'Note that for many of the 
commands. there is more than one keystroke that executes the command. You can use 
whichever keystroke you prefer; there is no functional difference between alternate ways of 
executing a given command 

If you are familiar with the commands and just need a summary of the keystrokes to use for 
each command. see Appendix B. 

Note: Screen-movement descriptions in this manual are based on the direction the 
display screen moves through the file, not the direction the lines appear to move on 
the screen. For example. if a command description says that the screen scrolls 
down one line, it means that the lines on the screen move up one line, and the next 
line in the file becomes the bottom line on the screen. 

Beep the Speaker 

Control-G 

The ASCII control character BEL ($07) is sent to the output device. Normally. this causes 
the speaker to beep. 

Begin Macro Definitions 

See Define Macros. 

APDADraft 165 7127187 



Chapter4: Editor 

Beginning of . Line 

0-, 
0-< 

The cursor is placed in column I of the line it is in. 

Bottom of Screen / Page Down 

Control-O-I 
0-,1. 

App(e IIGS Programmer's Workshop 

The cUtsor moves to the last visible line on the screen, preserving the cursor's column 
position. If the cursor is already at the bonom of'the screen, the screen scrolls down one 
screen's height. For example, if the screen is 22 lines high, the screen scrolls down 22 
lines. 

Change 

See Search and Replace. 

Clear 

O-Delete 

When you execute the Clear command, the editor enters select mode, as discussed in the 
section "Select" earlier in this chapter. Use any· of the cursor-movement or screen-scroll 
commands to mark a block of text (all other commands are ignored) and then press Return. 
The selected textis deleted from the fIle. ([0 cancel the Clear operation without deleting 
the block from the file, press Esc instead of Return.) 

Important: The Undo pelete command does not work for text removed with the 
Clear command Use the Cut command to remove a block of text from the 
document if you want to be able to restore it later. 

Copy 

Control-C 
O-C 

When you execute the Copy command, the editor enters select mode, as discussed in the 
section "Select" earlier in this chapter. Use cursor-movement or screen-scroll commands to 
mark a block of text (all other commands are ignored), and then press Return. The selected 
text is written to the file SYSTEMP in the work prefix. ([0 cancel the Copy operation 
without writing the block to SYSTEMP, press Esc instead of Return.) Use the Paste 
command to place the copied material at another position in the file. 

APDADraft 166 7/27/87 



Apple lIGS Programmer's Workshop 

Cursor Down 

Control-I 

i 

Chopter4: Editor 

The cursor is moved down one line, preserving its column position. If it is on the last line 
of the screen, the screen scrolls down one line. 

Cursor Left 

Control-H 

The cursor is moved left one column. If it is in column I, the command is ignored. 

Cursor Right 

Control-U 

-+ 

The cursor is moved right one column. If it is on the end-Of-line marker (usually column 
80), the command is ignored. 

Cursor Up 

Control-K 

i 

The cursor is moved up one line, preserving its column position. If it is on the first line of 
the screen, the screen scrolls up one line. If the cursor is on the first line of the file, the 
command is ignored. 

Cut 

Control-X 
o-x 
When you execute the Cut command, the editor enters select mode, as discussed in the 
section "Select" earlier in this chapter. Use cursor-movement or screen-scroll commands to 
mark a block of text (all other commands are ignored) and then press Return. The selected 
text is written to the file SYSTEMP in the work prefix and deleted from the file. (To cancel 
the Cut operation without cutting the block from the file, press Esc instead of Return.) Use 
the Paste command to place the cut text at another location in the file. 

APDADraft 167 7127187 



Chqpter4: Editor Apple IIGS Programmer's Workshop 

Define Macros 

Ll-Esc 

The editor enters the macro-defInition mode. Press Option-Esc to terminate a defmition, 
and then press Option to terminate macro-defInition mode. The macro-defInition process is 
described in the section "Macros" later in this chapter. 

Delete 

See Oear, Delete Character, Delete Character Left, Delete Line, Delete to EOL, Delete 
Word. 

Delete Character 

Control-F 
Ll-F 

The character that the cursor is on is deleted and put in the Undo buffer (see the description 
of the Undo Delete command). Characters to the right of the cursor are moved one space to 
the left to fill in the gap. The last column on the line is replaced by a space. 

Delete Character Left 

Delete 
Control-D 

The cursor is moved left one column, and a Delete Character command is executed. If the 
cursor is in column 1 and the overstrike mode is active, no action is taken. If the cursor is 
in column 1 and the insert mode is active, the line the cursor is on is appended to the line 
above and the cursor remains on the character it was on before the delete. 

Delete Line 

Control-T 
Ll-T 

The line that the cursor is on is deleted and the following lines are moved up one line to fill 
ih the space. The deleted line is put in the Undo buffer (see the description of the Undo 
Delete command). 

Delete to EOL 

Control-Y 
G-Y 

APDADraft 168 7127187 

.-~. 



'-

Apple IIGS Programmer's Workshop Chapter4: Editor 

The character that the cursor is on and all the characters to the right of the cursor to the end , 
of the line are deleted and put in the Undo buffer (see the description of the Undo Delete 
command). 

Delete Word 

Control-W 
O-W 

When you execute the Delete Word command, the cursor is moved to the beginning of the 
word it is on, then Delete Character commands are executed for as long as the cursor is on 
a nonspace character. This command thus deletes the word plus all punctuation up to the 
next space character or the end of the line, whichever comes first. If the cursor is on a 
space when the command is executed, that space and all following spaces are deleted, up to 
the start of the next word. All deleted characters, including punctuation and spaces, are put 
in the Undo buffer (see the description of the Undo Delete command). 

End Macro Definition 

Option-Esc 

When you are in macro definition mode, press Option-Esc to terminate a definition, and 
then press Option to terminate macro-definition mode. The macro-definition process is 
described in the section "Macros" later in this chapter. 

End of Line 

0-. 
0-> 

If the last column on the line is not blank, the cursor moves to the last column. If the last 
column is blank, the cursor moves to the right of the last nonspace character in the line. If 
the entire line is blank, the cursor is placed in column 1. 

Note: The editor automatically deletes any space characters at the end of a line, so 
this command puts the cursor to the right of the last actual character on the line. 

Enter Escape Mode 

See Turn On Escape Mode. 

Execute Macro 

Option-letter 

APDADraft 169 7127187 



Chapter4: Editor Apple IIGS Programmer's Workslwp 

Use this command to execute a macro that you have defmed. The macro-definition process 
is described in the section "Macros"later in this chapter. 

Find 

See Search. 

Help 

LJ..? 
LJ../ 

A window containing the contents of the SYSHELP me in the system prefix appears on the 
screen. Use the Up Arrow, Down Arrow, Apple-Up Arrow and Apple-Down Arrow to 
scroll through the me. Press Return, Enter, or Esc to return to the editor window. Any 
other key is ignored. 

Insert Line 

Control-B 
o-B 

A blank line is inserted at the cursor position, and the line the cursor was on and all 
subsequent lines are moved down to make room. The cursor remains in the same position 
on the screen. 

Insert Space 

LJ..Space bar 

A space is inserted at the cursor position. Characters from the cursor to the end of the line 
are moved right to make room. Any character in column 255 on the line is lost. The cursor 
remains in the same position on the screen. Note that since spaces to the right of the last 
character on the line are not significant, the Insert Space command has no effect when the 
cursor is at the end of the line. Note also that the Insert Space command can extend a line 
past the end-of-line marker. 

Paste 

Control-V 
LJ..V 

The contents of the SYSTEMP file are copied to the current cursor position. If the editor is 
in line-oriented select mode, the line the cursor is on and all subsequent lines are moved 
down to make room for the new material. The cursor's column position is unchanged. 

APDADraft 170 7127187 



Apple IIGS ProgrQl/'/l7'U!r's WorkshDp Chopter4: Editor 

If the editor is in character-oriented &elect mode, the marerial is copied at the cursor's 
present position. The cursor remains in the same position on the sm:en. Characters from 
the cursor to the end of the line are moved right 10 make room. 

It is best to use the same mode for pasting in lelU as you used when you cut or copied the 
text 

Warning: If enough characters are insened 10 make the line longer than 2SS 
characters, the excess characters are lost 

If you attempt to execute the Paste command when 110 CUt or Copy COImnand was executed 
(that is, there is no SYSTEMP file), the following crrormessage appears on the screen: 

ProDOS: File not found 

Quit 

Control-Q 
d-Q 

Exit to the editor's Quit menu. The following options arc listed, followed by the prompt 
Enter selection: 

APDADroft 171 7127187 



, Chapter- 4: Editor AppleJIGSProgrammer',s WorksJwp 

R Return control to the editor. YOJl are returned to same editing mode and to the 
same positiorrin the file you were at when you quit it. ' 

S Save the file to the c~ent filename (shoWn at the toii of the menu) and retum to 
the Quit menu. " 

N Save the fIle to a new filename. You are prompted for a new filename, and the 
fIle is saved to that filename; then you are returned to the Quit menu. You can 
enter a full or partial pathnilme forthe fIle, and you can use device names and 
prefix numbers as described in the section "Entering Commands""in Chapter 2. 

If a text fIle or APW source fIle'with the same name as the fIle you have 
specified already exists, you are prompted for verification before the old verSion 
is overwritten. If a file that is not a text or APW source file exists and has the 
name you have specified, you are not allowed to overwrite it. Instead, the 
following message appears at the bottom of the screen: 
Incompatible file format. 
Hit ESC to continue. 
When you press Esc, the prompt Enter selection: reappears. Press N 
again to enter another filename. 

L Load a fIle. You are prompted for a filename, and that file is loaded from disk. 
If the fIle~ame you specify is not on the. disk, a new file is opened with that 
name. 'If you have not yet saved the changes 'to the file you just quit, you are 
asked to verify that you don't want to save those changes before the new file is 
loaded. 

You can enter a full or partial pathname for the file, and you can use device 
names, prefix numbers, and wildcards as described in the section "Entering 
Commands" in Chapter 2. If you specify a wildcard character, the first 
filename matched is used. If this fIle is the wrong file type, the the following 
message appears at the bottom of the screen: 
Incompatible file format. 
Hit ESC to continue. 
When you press Esc, the prompt Enter selection: reappears. Press L 
again to enter another filename. 

When the file you specify is loaded, the editor places the cursor on the first 
character in the file. If the new file has the same language type as the previous 
one, the editor does not reset default modes and parameters; if you do change 
languages, the editor is set to the default parameters in the SYSTABS file for the 
new file's language. 

E Leave the editor and return to the shell. If you have not yet saved the changes 
to the file you just quit, you are asked to verify that you want to quit the editor 
without saving changes. 

Press the letter corresponding to the option you want and enter a pathname if prompted to 
do so. If you press Return without entering any other data in response to a prompt, the 
command is aborted and control returns to the menu. 

APDADraft 172 7127187 



Apple lies Programmer's Workshop Chapter4: Editor 

Quit Macro Definitions 

Option 

When you are in macro definition mode, press Option-Esc to terminate a definition, and 
then press Option to terminate macro-definition mode. The macro-defmition process is 
described in the section "Macros" later in this chapter. 

Remove Blanks 

Control-R 
C-R 

If the cursor is on a blank line, that line and all subsequent blank lines up to the next 
non blank line are removed. If the cursor is not on a blank line, the command is ignored. 

Repeat Count 

1 to 32767 

When in escape mode, you can enter any number from 1 to 32767 immediately before a 
command, and the command is repeated as many times as you specify (or as many times as 
is possible, whichever comes first). Escape mode is described in the section "Escape" 
earlier in this chapter. 

Return 

Return 
Control-M 

The Return key works in one of two ways, depending on the setting of the auto-indent 
mode toggle. Pressing the Return key can 1) move the cursor to column 1 of the next line; 
or 2) place the cursor on the first nonspace character in the next line or, if the next line is 
blank, move the cursor down one line and place it in the same column as the first nonspace 
character in the first nonblank line on the screen above the cursor. If the screen is blank, 
the cursor is placed on column 1 of the next line. 

If the cursor is on the last line on the screen, the screen scrolls down one line. 

Screen Moves 

C-l to C-9 

The file is divided by the editor into eight approximately equal sections. Each of the 
screen-move commands Apple-2 (C-2) through Apple-8 (C-8) moves the display to one of 
the boundaries between two of these sections. The cursor remains in the same position 
(that is, the same line and column) on the screen. The command Apple-l moves the cursor 

APDADraft 173 7127187 



Chapter4: Editor Apple IIGS Programmer's Workshop 

to the first character in the file, and Apple-9 moves the cursor to the last character in the 
file. 

Scroll Down One Line 

Control-P 
Q-P 

The editor moves down one line in the fIle, causing all of the lines on the screen to move up 
one line. The cursor remains in the same position on the screen. Scrolling can continue 
past the last line in the file. 

Scroll Down One Page 

See the Bottom of Screen/Page Down command. 

Scroll Up One Line 

Control-O 
Ll-O 

The editor moves up one'line in the file, causing.all of the lines on the screen to move down 
one line. The cursor remains in the same position on the screen. If the fmt line of the fIle 
is already displayed on the screen, the command is ignored. 

Scroll Up One Page 

See the Top of Screen/Page Up command. 

Search Down 

Q-L 

This command allows you to search through a file for a character or string of characters. 
When you execute this command, the prompt Search string appears at the bottom of 
the screen. If you have previously entered a search string, the previous string appears after 
the prompt as a default. Type in the string for which you wish to search, and press Return. · 
Searches are not case-sensitive, and they include all occurrences of the string, whether it is 
embedded in a longer string or not. For example, if you search for the string NOT, any of 
the following strings could be found: 

APDADraft 174 7/27/87 



Apple JIGS Programmer's Workshop Chapter 4: EtJjtor 

not 

Note 

prothonotary 

Important: Any spaces at the end of the line in a search string are significant but 
not visible. Press 0-> to move the cursor to the end of the line to see whether there 
are any trailing spaces in the search string. 

The following editing commands are active when you are entering the search string: 
+- CttrnorLeft 

-t Cursor Right 
0 -> or 0-. End of Line 
0-< or 0 -, Start of Line 
Delete Delete Character Left 
0-Y or Control-Y Delete to End of Line 
O-Z or Control-Z Undo changes 
O-E or Control-E Toggle Insert Mode 

In addition, the following commands are used to terminate the search string: 

Esc, Clear, or Control-X 
Return or Enter 

cancel command without saving changes 
save changes and execute command 

When you press Return, the editor looks from the cursor position toward the end of the me 
for the search string. If the string is found, the screen is moved so that the next ocC\lffence 
of the string is on the top line. The cursor is placed on the first character of the target 
string. The search stops at the end of the file. To search between the current cursor 
location and the beginning of the file, use the Search Up command. 

If the string is not found, the following message appears on the screen: 

String Not Found 

Search Up 

o-K 

This command operates exactly like Search Down, except that the editor looks for the 
search string starting at the cursor and proceeding toward the beginning of the file. The 
search stops at the beginning of the file. To search between the current cursor location and 
the end of the fIle, use the Search Down command. 

Search and Replace Down 

o-J 

This command allows you to search through a me for a character or string of characters and 
to replace the search string with a replacement string. When you execute this command, 
the prompt Search string appears at the bottom of the screen. If you have previously 

APDADraft 175 7127187 



Chapter4: Editor Apple llGS Progra~r's Workshop 

entered a search string, the previous string appears after the prompt as a default. Type in 
the string for which you wish to search, and press Return. Searches are not case-sensitive, 
and they include all occurrences of the string, whether it is embedded in a longer string or 
not. 

When you enter the search string and press Return, the prompt Replace string 
appears at the bottom of the screen. If you have previously entered a replacement string, 
the previous string appears after the prompt as a default. Enter the string with which you 
want to replace the search string, and press Return. 

If you press Return without entering any replace string, the prompt 
Replace with null string (Y N Q) ? appears. Press Y to delete each 
occurrence of the search string. Press N to return to the Replace string prompt. 
Press Q to quit the Search and Replace operation and return to editing the file. 

After you enter a replace string and press Return, or press Y in response to the Replace 
with null string prompt, the prompt Auto or Manual (A M Q)? appears. 

A Press A to cause all occurrences of the search string from the cursor 
position to the end of the file to be replaced automatically. The cursor 
returns to the starting point when the replacement is done. 

M If you Press M, then when the search string is found, it is highlighted on 
the top line of the screen and the prompt Replace (Y N Q)? appears at 
the bottom of the screen. Press Y to replace the string and search for the 
next occurrence; N to leave this occurrence of the string unchanged and 
search for the next occurrence; or Q to leave the string unchanged and 
terminate the search and replace operation. When the operation is finished, 
the cursor returns to its starting point. 

Q Press Q to terminate the search and replace operation and return to the file 
you are editing. 

Important: Any spaces at the end of the line in a search string or replacement 
string are significant but not visible. Press 0-> to move the cursor to the end of the 
line to see whether there are any trailing spaces in the search or replacement strings. 

The following editing commands are active when you are entering text in response to the 
Search String and Replace String prompts. 

~ Cmsoruft 

~ 

0-> or 0-. 
0-< or 0-, 
Delete 
0-Y or Control-Y 
O-Z or Control-Z 
O-E or Control-E 

CmsorRight 
End of Line 
Start of Line 
Delete Character uft 
Delete to End of Line 
Undo changes 
Toggle Insert Mode 

In addition, the following commands are used to terminate the search and replace strings: 

APDADraft 176 7127187 



Apple IIGS Programmer's Workshop Chapter4: Editor 

Esc, Clear, or Control-X 
Return or Enter 

cancel command without saving changes 
save changes and go on to next prompt 

When you enter a replacement string and press A or M, the editor looks from the cursor 
position toward the end of the fIle for the search string. The search stops at the end of the 
fIle. To search between the current cursor location and the beginning of the fIle, use the 
Search and Replace Up command. 

Search and Replace Up 

o-H 

lbis command operates exactly like Search and Replace Down, except that the editor looks 
for the search string starting at the cursor and proceeding toward the beginning of the file. 
The search stops at the beginning of the file. To search between the current cursor location 
and the end of the fIle, use the Search and Replace Down command. 

Set and Clear Tabs 

O-Tab 
Control-O-I 

If there is a tab stop in the same column as the cursor, this command clears it; if there is no 
tab stop in the cursor column, this command sets one. 

Tab settings remain in effect only as long as you are editing the current file. Tab settings 
are not saved with a file. If you close the current file and open a new fIle, the default tab 
settings are used. 

Start of Line 

See Beginning of Line. 

Tab 

Tab 
Control-I 

The cursor is moved to the next tab stop. If there are no more tab stops, the cursor is 
moved to the end of the line. If the editor is in insert mode, space characters are inserted 
from the cursor's starting location to the tab stop; any characters to the right of the cursor 
are moved to the right to make room. If the editor is in overstrike mode, on the other hand, 
the tab acts only as a cursor-control commaod: no space characters are inserted. 

Note that spaces to the right of the last nonspace character on the line are not significant; 
that is, the editor never puts spaces at the end of a line. 

APDADrajt 177 7127187 



Chapter4: Editor 

Tab Left 

Control-A 
O-A 

Apple lIGS Programmer's Workshop 

The cursor is moved to the previous tab stop, or to the beginning of the line if there are no 
more tab stops to the left of the cursor. This command does not enter any characters in the 
file. . 

Toggle Auto Indent Mode 

O-Return 
O-Enter 
Control-O-M 

If the editor is set to put the cursor on column 1 when you press Return, it is changed to 
put the cursor on the fust nonspace character in the next line. If the editor is set to move 
the cursor to the fust nonspace character on the next line, it is changed to put the cursor on 
column 1. The auto-indent mode is described in the section "Auto Indent" earlier in this 
chapter. 

Toggle Escape Mode 

Esc 

If the editor is in the edit mode, it is put in escape mode; if it is in escape mode, it is put in 
edit mode. See also the Turn On Escape Mode and Turn Off Escape Mode commands. 
Escape mode is described in the section "Escape" earlier in this chapter. 

Toggle Insert Mode 

Control-E 
Ll-E 

If insen mode is active, the editor is changed to overstrike mode. If overstrike mode is 
active, the editor is changed to insen mode. Insen and overstrike modes are described in 
the section "Insen" earlier in this chapter. 

Toggle Select Mode 

Control-Ll-X 

If the editor is set to select text for the Cut, Copy, and Delete commands in units of one 
line, it is changed to select individual characters instead; if it is set to character-oriented 
selects, it is toggled to select whole lines. See the section "Select" earlier in this chapter for 
more information on select mode. 

APDADraft 178 7127187 



Apple IlGS Programmer's Workshop 

Toggle Wrap Mode 

Control-cj-W 

Chapter4: Editor 

If the editor is set to stop at the end of a line and ignore addtional characters, it is changed 
to insert a carriage return after the last full word in the line and continue entering text on the 
next line. If it is set to wrap lines, it is changed to stop at the end of the line. The wrap 
mode is described in the section "Automatic Wrap" earlier in this chapter. 

Top of Screen / Page Up 

Control-Ll-K 

Ll-i 

The cursor moves to the fIrSt visible line on the screen, preserving the cursor's horizontal 
position. If the cursor is already at the top of the screen, the screen scrolls up one screen's 
height (for example, if the screen is 22 lines high, the screen scrolls up 22 lines). If the 
cursor is at the top of the screen and less than one screen's height from the beginning of the 
file, then the screen scrolls to the beginning of the file. 

Turn Off Escape Mode 

Control-cj-_ 

If the editor is in escape mode, it is put in edit mode. If the editor is in edit mode, this 
command does nothing. This command is especially useful in editor macros, where you 
can use it to assure that edit mode is turned 011. See also the Tum On Escape Mode and 
Toggle Escape Mode commands. Escape mode is described in the section "Escape" in this 
chapter. 

Turn On Escape Mode 

Control-_ 

If the editor is in edit mode, it is put in escape mode. If the editor is in escape mode, this 
command does nothing. This command is especially useful in editor macros, where you 
can use it to assure that escape mode is turned on. See also the Turn Off Escape Mode and 
Toggle Escape Mode commands. Escape mode is described in the section "Escape" earlier 
in this chapter. 

Undo Delete 

Control-Z 
Ll-Z 

The last character or block of characters deleted using the Delete Character, Delete 
Character Left, Delete Line. Delete to EOL, or Delete Word commands is inserted at the 

APDADraft 179 7127187 



Chapter 4: Editor Apple IIGS Programmer's Workshop 

cursor position. If the cursor has not been moved, the file is restored to its state before the 
delete. 

Important: The Undo Delete command does not work for blocks of text deleted 
with the Cancel command. Use the Cut command to remove a block of text from 
the document if you want to be able to restore it later. 

The Undo buffer functions as a stack, so multiple undos are possible. For example, 
suppose you delete the errors (shown in boldface) in the following text, in the order in 
which they appear (that is, first the e, then the 1, and so on): 

Ita wou11d appear that an appppea1 to reason would not go 
unAanswered. 

When you execute the Undo Delete command one time, the text deleted last is restored-in 
this case, an a. If you execute a second Undo Delete command, the text deleted before 
that, pp, is restored, and so on. In this example, fOUT Undo Delete commands in a row 
would put the following text on the screen: 

Apple 

A maximum of 10240 characters can be stored in the Undo buffer. No warning is issued if 
you delete more than 10240 characters. 

Word Left 

O-f­
Control-C-H 

The cursor is moved to the beginning of the next non blank sequence of characters to the left 
of its current position. If there are no more words on the line, the cursor is moved to the 
last word in the previous line, or if the previous is blank, to the last word in the first 
nonblank line preceding the cursor. 

Word Right 

C-~ 
Control-C-U 

The cursor is moved to the start of the next non blank sequence of characters to the right of 
its current position. If there are no more words on the line, the cursor is moved to the first 
word in the next nonblank line. 

Macros 
You can define up to 26 macros for the APW Editor, one for each letter on the keyboard. 
A macro allows you to substitute a single keystrOke for up to 128 predefined keystrOkes. 
A macro can contain both editor commands and text and cancaIl other macros. 

APDADraji 180 7127187 

.. " ...... , 



-. ' 

Apple IIGS Programmer's Workshop Chapter4: Editor 

To define a macro, press Apple-Esc. The first ten of the current macro definitions appear 
on the screen. To see the next ten macros, press the Right Arrow key. Press the Right 
Arrow key again to see the fmal six macros, or press the Left Arrow key to see the 
previous screen of macro definitions. 

Before you can redefme a macro, you must first display the current definition of that macro 
on the screen. After pressing Apple-Esc and using the arrow keys (as necessary) to display 
the macro, press the letter key that corresponds to that macro and then type in the new 
macro defmition. Press Option-Esc to terminate the macro definition. You can include 
Control-key combinations (where key represents any key), Apple-key combinations, 
Option-key combinations, and the Return, Enter, Esc, Delete, and arrow keys. The 
conventions in Table 4.1 are used by the editor to display keystrokes in macros; 

Table 4.1. Conventions for Displaying Keystrokes in Editor Macros 

Keystroke Convention Used to Display the Keystroke 

Control-key 

G-key 

Option-key 

Esc 

Return 

Enter 

t 

J.. 

~ 

~ 

Delete 

Oear 

The uppercase character corresponding to key is shown in 
inverse video. 

An inverse A followed by key (for example, 

IK) . 
An inverse B followed by key (for example, 

IK) . 
An inverse left bracket (this command is equivalent to 
Control-[ ). 

An inverse M (Control-M). 

An inverse M (Control-M). 

An inverse K (Control-K). 

An inverse J (Control-J) . 

An inverse H (Control-H). 

An inverse u (Control-V). 

A block (_). 

An inverse X (Control-X). 

Note: Each a-key combination or Option-key combination counts as two 
keystrokes in a macro defmition. Although an G-key combination looks (in the 
macro definition) like a Control-A followed by key. and an Option-key combination 
looks like a Control-B followed by key, you cannot enter Control-A when you 
want an a or Control-B when you want an Option key. 

If you make a mistake while entering a macro definition, press Option-Delete to delete the 
character to the left of the cursor. 

APDADraft 181 7/27/87 



Chapter4: Editor Apple lIes Programmer's Workshop 

When you are finished entering macros, press Option-Esc to tennin<lte the last option. 
definition, and then press Option to end macro entry. The following prompt appears on the 
screen: 

Write macros to disk? 

Press Y to save the new macro definitions on disk. Press N to return to the file without 
saving the macros. Macros are saved on disk in the file SYSEMAC in the APW system 
prefix (prefix 4). 

The commands used to create and edit maCro definitions are summarized in Table 4.2. 

Table 4.2. Commands Used for Defining Editor Macros 

d-Esc 

letter 

Option-Delete 

Option-Esc 

Option 

Begin macro definitions. 

Display the next screen of macro definitions. 

Display the previous screen of macro definitions. 

Begin defining the macro corresponding to the letter-key letter. 
Note that letter must be displayed on the screen before you begin to 
define it. 

Delete the character to the left of the cursor. 

Terminate the macro defUlition. 

Stop defining macros and return to editing the file. If you are 
currently defUling a macro, press Option-Esc first to terminate the 
macro defUlition, and then press Option to return to the me. 

To execute a macro while in the editor, hold down Option and press the key corresponding 
to that macro. 

For example, assume you want to define a macro that draws a box such as the one in 
Figure 4.1. The macro must insert the box into the file regardless of what text surrounds 
it, and leave the cursor in the top left corner of the box. 

Figure 4.1. Output of an Editor Macro 

Use the following procedure to defUle this macro: 

1. Open an editor me and press Apple-Esc to enter macro-definition mode. The current 
definitions of macros A through J are now displayed on the screen. To see the 
macros defined for the other letter keys, press the Right Arrow key. 

2. We will assign macros to the letters A, B, and C to accomplish our task. Use the 
Left-Arrow key to return to macros A through J. 

APDADraft 182 7127187 



Apple IJGS Programmer's Workshop Chapter4: Editor 

3 . Press A. The editor clears the macro definition for the letter A and places the cursor 
just after the A: near the top of the screen. 

4. Type in the following command sequence, being sure to include a space between the 
Apple-< and the first hyphen. If you make a mistake while typing in the definition, 
press Option-Delete to delete the character to the left of the cursor: 

O-B 0-< --c---------------,----------
; 

The macro definition for the letter A now should appear as shown in Figure 4.2. 
This command sequence inserts a blank line in the file, moves the cursor to the left 
margin, and inserts a space followed by 27 hyphens. 

5. Press Option-Esc to tenninate the definition of macro A. 

6 . Press B to begin definition of macro B and then type in the following command 
sequence, being sure to include a space between the 27 and the Esc: 

O-B 0-< 1 Control-_ 27 Esc I 

The macro defmition for the letter B now should appear as shown in Figure 4.2. 
This sequence inserts a blank line in the me, moves the cursor to the left margin, 
inserts a vertical bar, enters escape mode, inserts 27 spaces, leaves escape mode, 
and inserts another vertical bar. 

We use the Control-_ command here to turn on escape mode because this command 
will do nothing if escape mode is already on. If we used Esc instead and escape 
mode were already on, the command would toggle escape mode off, and the macro 
would not work. Note that when the macro is fInished executing, escape mode will 
be off, whether it was on or off when the macro was called. 

7 . Press Option-Esc to terminate the definition of macro B. 

8 . Press C to begin defmition of macro C and then type in the following command 
sequence: 

Option-A Option-B Option-B Option-B Option-B Option-A 0-<.1-+ 

The macro defmition for the letter C now should appear as shown in Figure 4.2. 
This sequence executes macro A to insert a line of dashes, executes macro B four 
times to insert four blank lines bracketed by vertical bars, then executes macro A 
again, and finally moves the cursor to the left margin, down one line, and one space 
to the right 

9. Press Option-Esc to terminate the definition of macro C and then press the Option 
key to tenninate macro-definition mode. When the prompt Wr i t e macros to 
di sk? appears, press Y to save the macro definitions and return to the fIle you were 
editing. 

A: IBI< ---------------------------

B: IBI<1127 II 
c: IAIBIBIBIBIAI<II 

Figure 4.2. Macro Definitions 

Now when you press Option-C, the following sequence occurs: 

APDADraft 183 7127187 



Chapter4: Editor Apple IIGS Progr~r' s Workshop 

1. The editor calls macro A, which inserts a blank: line in the fIle, moving the line the 
cursor was on and all subsequent lines down to make room, and then puts a space in 
column 1 followed by a string of hyphens. 

2. The editor calls macro B four times in a row. Each time macro B is executed, the 
last line written is pushed down out of the way and a new line is written consisting 
of two vertical bars separated by a string of spaces. 

3. The editor calls macro A again, which inserts another blank line at the top of the four 
lines just written and then writes another string of hyphens. 

4. The cursor moves down one line and right one column, to the first blank space in the 
box just created (see Figure 4.1). 

Setting Editor Defaults 
When you start the APW Editor, it reads the fIle narned SYSTABS, which is located in the 
APW system prefix, and' which contains ihe default tab-stop and editor-mode settings for 
each language. Because the SYSTABS fIle is an ASCII text file that you can edit witli the 
APW Editor, you can change these defaults at any time. Note also that you can change tab 
settings and toggle editing modes while in the editor; the defaults set by the SYSTABS fIle 
only determine the configuration of the editor when a file is opened. 

Each language recognized by APWis assigned a language number. The SYSTABS file has 
three lines associated with each language: 

1. The language number. 

2. The default settings for auto-indent, select, and word-wrap modes. 

3. The default tab and end-of-line (EOL) settings. 

For a discussion of APW languages, see tlie section "Command Types and the Command 
Table" in Chapter 3. A complete list of APW languages and language numbers is given in 
Appendix B. ' 

The first line of each set of lines in the SYSTABS fIle specifies the language that the next 
two lines apply to. APW languages can have numbers from 0 to 32767 (decimal). The 
language number must start in the first column; leading zeros are permitted and are not 
significant, but leading spaces are nOI allowed. 

The second line of each set of lines in theSYSTABS file sets the defaults for various editor 
modes, as follows: . . 

I. The first column sets auto-indent mode. If the fust column contains a 0, auto-indent 
mode is off when the file is opened; if it's a I, auto-indent mode is on. 

2 . The second column sets select mode. If the second character is 0, the editor is set to 
line-oriented selects; if 1, it is set to character-oriented selects. 

3. The third column sets automatic wrap mode. If the third character is 0, the cursor 
stops when it reaches the end of a line; if 1, the editor inserts a carriage return and 
wraps to the next line. 

4. The fourth character is reserved for future enhancements. It should be blank or O. 

5. The fifth character is reserved for future enhancements. It should be blank or O. 

APDADraft 184 7127187 

.~. 



Apple lIGS Programmer's Workshop Chapter 4: Emtor . 

6. The sixth and any additional characters are ignored. They should be blank or O. 

The third line of each set of lines in the SYSTABS file sets default tab stops. There are 80 
zeros and ones in this line, representing the 80 columns on the screen. The ones indicate 
the positions of the tab stops. A two in any column of this line sets the end of the line. 
The column containing the two then replaces column 80 as the default right margin when 
the editor is set to that language. 

For example, the following lines define the defaults for APW 65816 assembly language 
andAPWC: 

3 
000 
00000 000010000 01000000000 0000 000000000 0 010000 001 0000 0001 00 00 000100000 001 0000 0002 
10 
101 
0001 000 1000 1000 10001 00010001 000100010001000100010 00100 0 10001000100010001 00 010002 

The first three lines in this example set the defaults for the language with language nwnber 
3: that is, APW 65816 assembly language. The second line sets auto-indent mode off, sets 
line-oriented selects, and sets word-wrap mode off. The third line sets tab stops in 
columns 10, 16,41,48, 56, 64,and 72, and setl the end of the line at column 80. The 
next three lines set the defaults for language nwnber 10: APW C. The fifth line sets auto­
indent mode on, sets line-oriented selects, and sets word-wrap mode on. The sixth line 
sets tab stops at every fourth column and the end of the line at column 80. 

lf no defaults are specified for a language (that is, there are no lines for that language in the 
SYSTABS fIle), the editor assumes the following defaults: 

• Auto-indent mode off. 

• Line-oriented selects. 

• No word wrapping: the cursor stops at the end of me line. 

• There is a tab stop every eighth column. 

• The end of the line is at column SO. 

APDADraji 185 7127187 



Chapter4: Editor Apple lIas Programmer's Workshop 

----" 

APDADraft 186 7127187 



Apple IIGS Progranuner's Workshop Chapter 5: Linker. 

Chapter 5 

Linker 

This chapter describes the APW Linker, including its input, output, options, and 
commands. 

A linker is a program that locates individual program segments, resolves references 
between segments, and combines them into a complete, executable program. The APW 
Linker is independent of source-code language. It is capable of extracting specific code 
segments from multiple library and object files, and can create segmented load files. 

The APW Linker works with any assembler or compiler that generates files confonning to 
the Apple IIGS object module format (OMF). The linker can join separate files produced by 
Apple IIGS-compatible assemblers and compilers and convert them into the form needed by 
the Systern Loader for loading into the computer. Together, these three components 
(assembler or compiler, linker, and loader) provide a very powerful and flexible 
programming facility. 

Although the APW Linker is a single program, conceptually there are two APW linkers. 
Normally, the linker is called directly by a shell command (such as LINK or ASML). These 
commands provide a limited number of linker options; most linker options are either not 
available or are set to default values. In this manual, this aspect of the linker is referred to 
as the standard linlcer. Alternatively, all functions of the APW Linker can be controlled by 
compiling a file of linker commands, called a UnkEdjile. In this manual, the aspect of the 
linker controlled by LinkEd fIles is referred to as the advanced linlcer. 

The advanced linker is provided for programmers who require maximum flexibility from 
the system; for most purposes, the standard linker is completely adequate. When a 
statement in this book applies equally to the standard and advanced aspects of the APW 
Linker, the terms APW Linker or linlcer are used. 

Operations you can perform through LinkEd commands include the following: 

• selecting specific segments from an object file 

• assigning object-file segments to specific load-fIle segments 

• assigning load-file segments as static or dynamic 

• specifying the exact order in which to search libraries 

• controlling the diaguostic output of the linker 

Most users will never need the options provided by LinkEd. The first several sections of 
this chapter describe features common to the standard linker and advanced linker. with 
emphasis on the standard linker. The advanced linker is described in detail at the end of 
this chapter. 

APDADraft 187 7127187 



Chapter 5: Linker Apple Has Programmer's Workslwp 

The principal tasks of a linker are to bring together the segments needed for a program and 
to resolve global references. Because most Apple IIGS code is relocatable, the APW Linker 
must work together with the System Loader to resolve and relocate global references. The 
linker provides the relocation information necessary for the loader to relocate all references 
after loading. Much of the work of the linker therefore consists of constructing tables of 
information for the loader to interpret, so that it may load and relocate the linker's output 
correctly. 

Operation of the Linker 
This section describes 

• 

• 

• 

the formats and types of input fIles (object ftles) to the linker 

the formats and types of output files (load files) that it produces 

the diagnostic output from the linker 

Object Files: Input to the Linker 

Object files are the output from an assembler or compiler and the input to a linker. 
Although both object ftles and load files conform to the Apple IIGS object module format 
(OMP), only object files can be processed by the linker. Only object-fIle information 
specifically related to the operation of the linker is discussed in this chapter; see Chapter 7 
for m\>re detailed information on the Apple lIGS object module format. 

Object files (ProDOS 16 file type $B I) contain data or program code that has been 
translated (assembled or compiled) into machine language but that may contain unresolved 
references to external subroutines or data. The linker processes object files, resolves 
external references, and produces load files. Load files contain all the information 

. necessary to relocate external references, and are ready to be loaded into the computer by 
the System Loader. 

Note: The default file type for the load files the linker creates is set by the APW 
Shell's KeepType variable; if KeepType is not set, the file type is $B5, shell 
load file. If you are using the advanced linker, you can use the LinkEd 
KEEPTYPE command to set the file type of the load file. To change the file type of 
an existing load file, use the shell's FILETYPE command. Use the shell's SET 
command to change the value of the KeepType variable. 

Each object file consists of segments. Each segment is a separate entity that contains all the 
information necessary to link it with other segments. A segment consists of a header 
followed by a body; the header contains name, size, type, and other information about the 
segment, while the body consists of sequential records, each one of which consists of 
either program code or information for the linker or loader. Segments are discussed in the 
section "Program Segmentation" in Chapter I and are fully described in Chapter 7. 

Library Files 

Library files (ProDOS 16 file type $B2) contain object segments useful to many programs. 
The linker can search library files to resolve references unresolved within the program 

APDADraft 188 7127187 



Apple /lGS Programmer's Workshop Chapter 5: Linker 

source code. Library flies are normally kept in the APW library prefix (prefix 2). When 
you use the standard linker, it first links the source code and any library files you specify, 
and then if there are any remaining unresolved references, it automatically searches the files 
in the library prefIX until all references are resolved . . The advanced linker searches only 
those library files that you specify in the LinkEd file. 

Library files differ from object files in that each library file includes a segment called the 
library dictionary segment (segment-type KIND = $08). The library dictionary segment 
contains the names and locations of all Segments in the library ftle. The linker can look 
through the library dictionary segment for the names of segments it needs, so the library 
dictionary segment allows the linker to find segments much more quickly than if it had to 
scan through the entire file. Library files are created from object files by the MakeLib 
utility program (described in the section "Command Descriptions" in Chapter 3). Each 
library file can be created from any number of object files. 

Important: Once a library flIe has been searched, it is not returned to by the APW 
Linker. Therefore. a reference in a library flIe cannot refer to a segment in a library 
file that precedes it in the directory. You can. however. use the MARELIB program 
to combine as many object flies into a single library file as you choose. and there 
are no restrictions on segments referencing each other within a single library file. 
The order of subroutines within a single library file can affect the time necessary to 
complete a link but is otherwise not important 

Partial Assemblies and Filename Conventions 

When you assemble or compile a program, you can use a KEEP directive (or the equivalent 
for the language you are using) in the source code oc the KEEP parameter in the command 
line to specify a flIename foc the output If you are assembling or compiling the entire 
program, and the program consists of more than one segment. then the first segment to be 
executed when the program is run is placed in one file and the remaining segments are 
placed in a second flIe. If the filename you specify is MYPROG. the first file is named 
MYPROG • ROOT and the second one is named MYPROG. A. 

Important: The root flIename cannot be longer than 10 characters for files to 
which the . ROOT extension will be appended because ProDOS 16 limits the entire 
filename to 15 characters. Using more than 10 characters in such a filename will 
result in a fatal assembler oc compiler error (Unable to open output 
file). 

There are two circumstances under which a file with a higher alphabetic suffix ( . B, . C, 
and so on) is created, as follows: 

• If the compile involves more than one language, the first compiler or assembler 
usually creates the . ROOT and . A files. the second compiler creates the . B file. and 
so on. 

• If you include a NAMES parameter on the command line. a partial assembly or compile 
is performed. In this case, only the segments named are compiled, and they are 
placed in a file with the next available alphabetic extension. Partial assemblies are 
described in the section "Partial Assemblies or Compiles" in Chapter 3. 

APDADro/t 189 7127187 



Chapter 5: linker Apple !lGS Programmer's Workshop 

Note: You can use the CRUNCH command described in Chapter 3 to combine all 
the alphabetic-extension files into one . A file. 

The advanced linker processes segments in the order specified by the LinkEd commands. 
The standard linker selects the object flies to process as follows: 

I. The linker first scans the output disk for a ftlename with the proper extension 
(MYPROG. ROOT in this example). The object segment in that file will become the 
first segment in the output (load) file. 

2. The linker then looks for a ,A file. If it fmds one, the linker looks for a . B ftle, and 
so on, until it lpcates the last object ftle created by finding the ftle (with name 
MYPROG) with the alphabetically highest extension. 

3. It takes subroutines from this ftle in the order encountered, links them, and places 
them in the load fIle. . 

4. The linker then looks at the ftlewith the next highest extension. If it fmds a 
subroutine that has not yet been linked, it adds it to the load ftle. Any subroutines 
with the same labels as those of already linked subroutines are assumed to be older 
versions and are ignored. 

5. The linker continues in reverse alphabetical order through the files until they all have 
been searched. If there are still unresolved references, the linker assumes that they 
are references to library ftles. 

6. The linker automatically searches the library directory for library ftles. Each library 
ftle is searched in the order in which it appears in the ditectory. Any library segment 
that corresponds to an unresolved reference is extracted. processed, and placed in the 
load ftle. 

Once all the necessary segments have been located, the linker proceeds to a second pass 
through the fIle. The result of pass two is a load ftle (ProDOS 16 file type $B5 unless you 
have set the shell KeepType variable to another value), ready for loading by the System 
Loader. Load files are described in this section. 

Load Files: Output From the Linker 

Load ftles (types $B3 through $BE) are the result of the processing of object files by the 
linker (and, optionally, the shell's FILETYPE command). They contain segments that are 
ready to be loaded into memory by the System Loader. Load files conform to a subset of 
the Apple lIGS object module format and do not contain any unresolved symbolic 
references. 

Both object ftles and load files are segmented. but a load segment may contain more than 
one object segment. In assembly language, both the object-segment name and the name of 
the load segment to which that object segment is to be assigned can be specified with a 
START, DATA, PRIVATE, or PRIVDATA ditective. APW C provides the overlay 
function to allow you to assign subroutines to specific load segments. As a default, some 
APW compilers assign one load-segment name (a string of spaces) to all code segments, 
and another (-g lobal) to all global variables. 

When you call the linker by using an APW Shell command, the linker assigns object-file 
segments to load-file segments based on the load-segment names. Ail object-file segments 
with the same load-segment name are collected into a single static load segment. 

APDADraft 190 7127187 



Apple IIGS Programmers Workshop Chapter 5: linker 

The linker may produce a single load file from a single object file or from several object 
files, as described in the discussions of the L INK command in Chapter 3 and LinkEd 
command files in this chapter. 

For a complete description of load files and the function of the System Loader, see the 
section "Object Module Format" in Chapter 7 and the description of the System Loader in 
the Apple IIGS ProDOS 16 Reference manual. 

Diagnostic Output 

In addition to the load file itself, the linker produces diagnostic output to show what it has 
done and to aid debugging. Output is sent to standard output (usually the screen). Most of 
the output can be suppressed, if desired, with cOlIl1lW1d-line parameters. Each of the types 
of information output by the linker is described in the following sections. Figure 5.1 
shows the sample output of a LinkEd command file. 

Link Editor Vl.0 

1 KEEP LINKTEST 
2.S0URCE ON 
3 SYMBOL ON 
4.LIST ON 
5 LINK/ALL TEST 
6 LIBRARY * 

o errors found in source file. 

00000000 00000020 Code; 
00000020 000000IB Code: 
0000003B 000000IC Data: 
00000057 00000034 Code: 
0000008B 00000002 Code: 

Global symbol table: 

0000003B 01 DATA 
00000049 01 MSG2 
00000020 00 SECOND 

Segment Information: 

MAIN 
SECOND 
DATA 
-COUT 
STOUT 

00000000 00 MAIN 
00000049 01 MSG3 
0000008B 00 STOUT 

Number Type Length Org 

1 $00 $00000080 Relocatable 

0000003B 01 MSGI 
00000057 01 MSG4 
00000057 00 -COUT 

There is 1 segment, for a length of $00000080 bytes. 

Figure 5.1. Sample Output of a LinkEd Command File 

APDADraft 191 7127187 



Chapter 5: Linker Apple llGS Programmer's Workshop 

Error Messages 

Errors can be caused by source-code errors in a LinkEd file, by mistakes in the command 
line, or by problems encountered whie trying to link an object fIle. Appendix C gives a full 
list of error messages and their meanings. Error messages cannot be suppressed. 

Link Map and Source Listing 

If you use the +L command-line parameter or the LinkEd LIST ON command, as the 
linker processes each segment or subroutine, it writes the starting address of the segment, 
the length in bytes (hexadecimal) of the segment, the segment type (code or data), and the 
name of the segment If the program is relocatable, the starting-address calculation is based 
on the assumption that the program starts at $000000. _ 

If you call the linker from a LinkEd file and use the + L command"line parameter or the 
LinkEd SOURCE ON command, the LinkEd source code is written to standard output. A 
sample LinkEd output listing is shown in Figure 5.1. 

Symbol Table 

If you use the +S command-line parameter or the LinkEd SYMBOL ON command, an 
alphabetized global-symbol table is printed. The table presents the following information 
for each symbol: 

• assigned value (hexadecimal) 

• classification number 

• symbol name 

The classification number is a pair of hexadecimal digits. If it is $00, the symbol is a 
global label or subroutine name; if the number is nonzero, the symbol is a data label and the 
value of the digit is the number of the data segment that defined it. 

A sample symbol table is shown as part of the output in Figure 5.1. 

Symbol Types: The Apple IIGS object module fonnat defines three types of 
symbols: global, private, and local. Global symbols can be referenced in any 
segment. For APW assembly-language programs, for example, global symbols 
include object-segment names defined by START and DATA directives and any 
symbols defined in an ENTRY or GEQU directive. Private symbols are available to 
any segment in the same object file, but not to segments in other object files that are 
part of the same program. For APW assembly-language programs, private 
symbols include object-segment names defined by PRIVATE and PRIVDATA 
directives. Local symbols are labels that are defined only within individual code or 
data segments. 

Local symbols are normally accessible only within the segment in which they 
appear. However, a segment may gain access to local symbols in another data 
segment by issuing a US ING assembler directive: The US ING directive cannot 
refer to a code segment 

APDADraft 192 7/27/87 

- ~ 



Apple lies Programmer's Workshop Chapter 5: linker 

Be sure that no two global symbols (or local symbols in data segments) with the 
same name appear anywhere in the program. Two private symbols with the same 
name cannot appear in the same object file but can appear in separate object files that 
are pan of the same program. 

The assembler or compiler resolves local references, so the linker never sees them. 
Therefore, local symbols never appear in the symbol table, with the exception of 
local labels in a data segment named in a us ING directive. 

Summary Table 

When it finishes, the linker prints a summary giving the number of errors detected (if any) 
and the highest error level encountered (see Appendix C). A table of load segments is 
printed, indicating the segment number and type of each load segment created, along with 
its length and absolute origin (if any; see Figure 5.1). The last line tells how many 
segments there are, and how many bytes long the program is (in hexadecimal). 

Using the Standard Linker 
You can call the APW Linker by executing an APW Shell command The following 
commands allow you to call the linker without having to execute a LinkEd command file: 

• ASML 

• ASMLG 

• CMPL 

• CMPLG 

• RUN 

• LINK 

The LINK command differs from the other five commands in several ways. First, the 
LINK command lets you perform a link separate from the compile or assembly. The other 
commands call the linker automatically after a successful assembly or compile has been 
completed. Each of these commands lets you print the link map and symbol table; for all 
but the LINK command, however, you can print the link map only if you also print the 
source listing of the assembler or compiler. Finally, the LINK command lets you specify a 
name for the load file, whereas the other commands let you specify a root filename for the 
object f!l.es, which is then also used as the name of the load file. 

Important: If you are linking object files with the root name rootname, make sure 
there are no other files in the same prefIX as rootname with the same rootname and 
an alphabetic extension. For example, if you are linking MYF ILE • ROOT and 
MYFILE. A, make sure there are no files named MYFILE.B or MYFILE. C in the 
same directory before linking. 

The following linker defaults are used when you execute one of these APW Shell 
commands: 

APDADraft 193 7127187 



Chapter 5: Linker Apple IIGS Programmer's Workshop 

• Load-segment names are used to determine which object segments to put in which 
load segments: all object segments with the same load-segment name are placed in the 
same load segment. In assembly language, for example, you can specify the load­
segment name as the operand of a START, DATA, PRIVATE, or PRIVDATA 
directive. Most APW compilers use a string of spaces for the load-segment name of 
alI code segments, and thus put alI global label definitions and data in segments with 
the load-segment name -global. 

• Object segments are scanned in the sequence in which they appear in the object file. 
Load segments are placed in the load me in the order of the load-segment name's first 
appearance in the object file. The LINK command lets you specify more than one 
object file to be included in the link. 

• If segment KINDs are specified in the source file and the KINDs of the object 
segments placed in a given load segment are not all the same, the segment KIND of 
the resulting load segment is unpredictable. 

• Any library mes specified on the command line are searched in the order in which 
they are listed. If any references remain unresolved after alI the object and library 
mes listed in the command line have been linked, the library files in the library prefix 
(prefix 2) are searched. 

• The load address of absolute code must be specified in the source me; there is no 
command-line parameter to set a load address. 

• No load file is saved to disk: unless the KEEP parameter is used on the command line, 
or the KEEP directive is used in the source file. (If you use the LINK command, you 
must use the KEEP parameter on the command line to save the load file.) 

If you need to have more control over the link, use a LinkEd me, as described in the 
following section. All of the APW Shell commands are described in the section 
"Command Descriptions" in Chapter 3. The fIle type of load files produced by the standard 
linker is set by the KeepType shel1 variable; the default is ProDOS 16 file type $B5. You 
can use the shell's FILETYPE command to change the me type of an existing load file or 
the shel1's SET command to change the value of the KeepType variable. 

Using the Advanced Linker 
You can control every aspect of a link by using a linkEd command ftle. linkEd mes are 
APW source files with a language type of LINKED (see the section "Language Types" in 
Chapter 2 for instructions on assigning a language type to a source file). To execute a 
LinkEd file, use one of the following APW Shel1 commands: 

• ALINK 

• ASSEMBLE 

• COMPILE 

Note: These are all aliases for the same command, which checks the language type 
of the file and calls the linker for fIles with language type LINKED. 

Alternatively, you can append the LinkEd file to the last source-code file; when the 
compiler or assembler gets to the linkEd file, it returns control to the APW Shell, which 
calls the APW Linker. If you append the LinkEd file to the last me of the source code, the 

APDADraft 194 7/27/87 



Apple JIGS Programmer's Workslwp · Chapter 5: Linker 

file is linked automatically every time the program is compiled or assembled. When the 
linker finishes processing the file, it tells the APW Shell not to call another compiler or the 
linker. For this reason, you can use the ASML, ASMLG, CMPL, CMPLG, and RUN 
commands with a linkEd file without causing any errors. This also means, however, that 
LinkEd must be the last language called All of the APW Shell commands are described in 
the section "Command Descriptions" in Chapter 3. 

The Structure of a LinkEd File 

A LinkEd fIle is more than a set of linker parameters stored in a fIle; it isa set of commands 
that give you a high degree of control over the link process. The following rules 
summarize the structure of a LinkEd fIle: 

• LinkEd commands are processed sequentially from the beginning of the fIle. Because 
only one pass is made through the LinkEd fIle by the linker, the order of the 
commands is important. 

• The name of the load fIle must be specified before any output is generated for it. If 
you have not specified a name for the load fIle with a KEEP parameter on the 
command line or by specifying a default load fIlename with the KeepName shell 
variable, then you must include a KEEP command in the linkEd fIle and it must be 
placed before the first SEGMENT, LINK, or LIBRARY command. 

• The name of the load segment must be specified before any output is generated for it. 
Load segment names are specified with the SEGMENT command 

• The commands that extract segments from object and library fIles (LIBRARY, LINK, 
LOADSELECT, and SELECT) may leave label references unresolved; these references 
can be resolved when segments are extracted by later commands. An error results 
only if a label remains unresolved after all the commands in the fIle have been 
executed 

LinkEd Command Descriptions 

LinkEd source fIles consist only of linkEd commands and comments. Each command 
must be on a separate line. Comments consist of either blank lines or lines that start with 
an asterisk (*) or semicolon (; ). 

linkEd commands are case insensitive. Any combination of uppercase and lowercase 
letters may be used when writing commands. In the examples shown here all commands 
are in uppercase to help set them apart from comments and text. 

Important: Segment names are case sensitive. For case-sensitive languages 
(such as C), segment names must be entered in LinkEd commands exactly as they 
are listed in the source code, including case. For case-insensitive languages, the 
compiler normally writes all segment names to object files as all uppercase, so for 
such languages, segment names must be entered in uppercase. 

The linker can produce diagnostic output to show what it has done and to aid debugging. 
Output is sent to standard output (usually the screen). Except for error messages, the 
output can be turned on or off with linkEd commands. Where conflicting command-line 
parameters and LinkEd commands are used, the command line takes precedence. 

APDADraft 195 7127187 



Chapler 5: Linker Apple lIGS Programmer's Workshop 

The following notation is used to describe commands: 

UPPERCASE 

italics 

palhname 

AID. 

[ 1 

APPEND 

APPEND linkedname 

Uppercase letters indicate a command name or an option that must 
be spelled exactly as shown. 

Italics indicate a variable that you must replace with specific 
infonnation, such as a patlmame or address. 

This parameter indicates a full pathname, including the prefix and 
filename, or a partial pathname, in which the current prefix is 
assumed. For example, if a file is named FILE in the subdirectory 
DIRECTORY on the volume VOLUME, the palhnome parameter 
would be: /VOLUME/DIRECTORY/FILE. If the current prefix 
were /VOLUME/, you could use DIRECTORY/FILE for 
parhnome. A full pathname (including the volume name) must begin 
with a slash (I); do nor, however, precedepathnome with a slash if 
you are using a partial pathname. 

The device names. Dl •. D2 •••.. DII can be used for volume 
names and ProDOS 16 prefix numbers or double periods ( .. ) can be 
used instead of a prefix. 

A vertical bar indicates a choice. For example, LIST ON I OFF 
indicates that the command can be entered as either LIST ON or as 
LIST OFF. 

An underlined choice is the default value. 

Parameters enclosed in square brackets are optional. 

Elipses indicate that a parameter or sequence of parameters can be 
repeated as many times as you wish. . 

LinkEd appends the LinkEd file with the pathname /inkedname to the present LinkEd 
source file. Any statements after the APPEND command in the present LinkEd file are 
ignored. 

/inked1ll1T/le The full or partial pathname of the LinkEd file you want to append. 

COpy 

COPY /inked1ll1T/le 

LinkEd stops processing the present LinkEd file temporarily and processes all statements in 
the LinkEd file specified by /inkedname. LinkEd then resumes processing the present file 
at the statement immediately following the COpy command. 

APDADrafr 196 7/27/87 



Apple lies Programmer's Workshop Chapter 5: Linker 

linkedname The full or partial pathname of the LinkEd ·fIle to which you want to 
transfer control. 

CopiedTIles can copy other files, with no fixed limit to the number of nested levels. The 
only constraint is the amount of available memory; it is generally safe to assume that you 
may copy eight levels deep. 

EJECT 
~. . 

EJECT 

This command controls printer output. If output is to a printer, EJECT causes the printer 
to skip to the top of the next page. If output is to a CRT screen, EJECT has no effect. 

KEEP 

KEEP loadname 

The typical output fIle produced by LinkEd is a relocatable load fIle, ready for loading and 
executing at any free memory location. A load file may contain sever.lI segments (see the 
discussion of the SEGMENT command, later in this chapter), each of which can be loaded 
independently and automaticaUy during program execution. 

loadname The full or partial pathname of the load fIle you want to create. 

The KEEP command opens the output fIle (load file) specified by loadname. All segments 
subsequently processed by LinkEd are placed in loadname, in the order in which they are 
encountered. The KEEP command must be placed before the first statement that creates 
output: that is, before the fIrst SEGMENT, LINK, or LIBRARY command. 

The load filename is determiiled frrst by the KEEP parameter on the command line. If there 
is no KEEP parameter, the KeepName shell variable is used. The LinkEd KEEP command 
IS used only if neither the KEEP parameter nor the KeepName shell variable is specified. 
Notice that the. LinkName shell variable is used only by the LINK command and has no 
effect on LinkEd files. 

Important: You cannot use a LinkEd KEEP command if you append the LinkEd 
file to your source code and the source code includes a KEEP directive (or 
equivalent). 

Use the KEEPTYPE command to set the fIle type of a load file. 

KEEPTYPE 

KEEPTYPEjiletype 

This command sets the fIle type of the load file produced by the linker. 

filetype The ProDOS 16 file type to which you want to set the load file. Use one of 
the following three formats for filetype: 

APDADraft 197 7127187 



Chapter 5: Linker Apple IIGS Programmer's Workshop 

• A decimal number 179-191. 

• A hexadeCimal number $B3--$BF. 

• The three-letter abbreviation for the file type used in disk directories, as 
shown in Table 5.1. 

The position in the LinkEd file of the KEEP TYPE command is not important. 

The default file type of load files produced by the APW Linker is set by the KeepType 
shell variable; if this variable is null, the default is ProDOS 16 file type $B5. You can use 
the shell's FILETYPE command to change the file type of an existing load file or the 
shell's SET command to change the default file type. 

Table 5.1. File Types of ProDOS Load Files 

Decimal Hex Abbreviation File Type 

179 $B3 S16 ProDOS 16 system load 
180 $B4 RTL Run-time library 
181 $B5 EXE Shell load 
182 $B6 STR Startup load 
184 $B8 NDA New desk accessory 
185 $B9 CDA Cassic desk accessory 
186 $BA TOL Tool set file 

LIBRARY 

LIBRARY libname 
LIBRARY /LOADSELECT /ibname Iseg 

A library file is a me ofProDOS 16 me type $B2 containing object segments, such as 
general utilities, that may be called by other programs. The LIBRARY command causes the 
linker to search the library file specified by libname for· segments that have been referenced 
by a source file; any that are found are included in the output load file. See the discussion 
of the MakeLib utility in Chapter 3 for instructions on creating your own library files. 

APDADraft 198 7127187 



Apple IIGS Programmer's Workshop Chapter 5: Linker 

libname The full or partial pathname of the library file you want to search. If you 
use an asterisk (*) for libname, the linker scans all the files in the current 
APW library prefix (prefix 2). 

/ LOADSELECT If you include the / LOADSELECT parameter, only those segments 
with the load-segment name specified by lseg are searched. If the 
/LOADSELECT parameter is omitted, the linker ignores load segment 
names in library files. There cannot be any spaces between the LIBRARY 
command and the /LOADSELECT parameter. 

lseg The load-segment name of the object segments that you want to search. To 
search all object segments with a blank load segment name, use an asterisk 
(*) for lseg. In case-sensitive languages, segment names must be entered 
exactly as they appear in the source code. Segment names in case­
insensitive languages must be entered as all uppercase characters. 

For example, suppose your library file MYL IB contains the object segments PETER, 
PAUL, and MARY, and each of these object segments is assigned either to the load segment 
WHITE or the load segment BLACK, as follows: 

O. Object-segment name: PETER 
Load-segment name: WHITE 

1. Object-segment name: PAUL 
Load-segment name: BLACK 

2 . Object-segment name: MAR Y 
Load-segment name: WHITE 

The following LIBRARY command searches the file MYLIB. If an unresolved reference 
exists to any of the segments in MYLIB or to any of the labels in those segments, the 
referenced segments are extracted and linked into load segment GRAY. 

SEGMENT GRAY 
LIBRARY MYLIB 

Suppose, on the other hand, that you use the following commands in your LinkEd file: 

SEGMENT GRAY 
LIBRARY / LOADSELECT MYLIB WHITE 

In this case, only the object segments PETER and MARY are searched, since each of these 
segments has the load-segment name WHITE. If an unresolved reference exists to either of 
these segments or to any of the labels in these segments, that segment is extracted and 
linked into load segment GRAY. 

The following command causes a search of all the segments with blank load-segment 
names in all of the files in the library prefix: 

LIBRARY / LOADSELECT * * 

APDADraft 199 7127187 



Chapter 5: linker Apple lies Programmer's Workshop 

LINK 

LINK [/ALL 1 objname 

This command causes the object file specified by objname to be included in the output file. 
All segments of the fIle specified by objname not already included are added to the 
program. If the LINK command follows a SEGMENT command, all the object segments in 
objname are placed in the load segment defmed by the SEGMENT command. If the LINK 
command does not follow a SEGMENT command, all object segments are placed in a load 
segment whose name consists often space characters. The LINK command ignores 
source-code load-segment names, such as those specified by the operand of an APW 
Assembler START directive. 

Use the SELECT command to link individual object segments frorn a given fIle. 

/ ALL If you use the / ALL qualifier, all fIles with the root fIlename specified by 
objname and . ROOT or alphabetic filename extensions are searched to make 
sure the most recently assembled version of each file segment is included 
(see the section "Partial Assemblies and Filename Conventions" earlier in 
this chapter). There cannot be any spaces between the LINK command and 
the / ALL parameter. 

objname The full or partial pathname of the object fIle you want to include. 

For example, suppose you use the following command: 

LINK/ ALL MYFILE 

If fIles MYFILE. A and MYFILE . B are in the current directory, the linker first searches 
MYFILE. ROOT, then MYFILE. B, and finally MYFILE. A. 

Important: If you are linking object files with the root name rootname, make sure 
there are no other files in the same prefix as rootname with the same roomame and 
an alphabetic extension. For example, if you are linking MYF I LE • ROOT and 
MYF ILE . A, make sure there are no files named MYF ILE • B or MYF ILE . C in the 
same directory before linking. 

If you do not include the / ALL qualifier, you must specify the full pathname (including 
filename extension, if any). 

Note: The LinkEd. LINK command does not automatically search library files in 
the library prefix (prefix 2). If any of the references in your program refer to labels 
in library files, you must use LinkEd LIBRARY commands to specify which 
libraries to search. 

LIST 

LIST ONIQIT. 

The LIST command controls the output of the link map. 

APDADraft 200 7/27/87 

."---. 



Apple IIGS Programmer's Workshop Chapter 5: Linker 

ON IOFF LIST ON causes all subsequent segment names to be sent to standard 
output; LIST OFF suppresses output (unless an error occurs). 

The link map is a listing of each segment, with its starting address and length, followed by 
a summary table showing the segment number, segment type (the KIND field in the 
segment header), the length of the segment, and the origin address (if any). This command 
is overridden by the L option in the shell's ASSEMBLE and COMPILE command lines. 

LOADSELECT 

LOADSELECT[!SCAN] objname lseg 

This command causes the object segments that have the load segment name lseg in the 
object fIle specified by objname to be included in the output file. If the LOADSELECT 
command follows a SEGMENT command, the object segments are placed in the load 
segment defined by the SEGMENT command. If the LOADSELECT command does not 
follow a SEGMENT command, all object segments are placed in a load segment with a blank 
segment name (its name consists of ten space characters). 

If the LOADSELECT command is not used, the linker ignores source-code load-segment 
names, such as those specified by the operand of an APW Assembler START directive. 

/ SCAN If you include the / SCAN parameter, all fIles with the root filename of the 
file specified by obj~ l!l1d . ROOT or alphabetic filename extensions are 
searched to make sure the most recently assembled version of each file 
segment is included (see the section "Partial Assemblies and Filename 
Conventions" earlier in this chapter). There cannot be any spaces between 
the SELECT command and the / SCAN parameter. 

objname The full or partial pathname of the object fIle you want to search. If you do 
not include the / SCAN parameter in the command, you must use the 
complete filename, including the filename extension. If you do include the 
/ SCAN parameter, do oot include the filename extension in objname. 

lseg The load-segment name of the object segments that you want to extract. To 
select all object segments with a blank load-segment name, use an asterisk 
(*) for lseg. In case-sensitive languages, segment names must be entered 
exactly as they appear in the source code. Segment names in case­
insensitive languages must be entered as all uppercase characters. 

For example, suppose your object me MYF ILE . A contains the object segments PETER, 
PAUL, and MARY, and each of these object segments has either the load-segment name 
WHITE or the load-segment name BLACK, as follows: 

O. Object-segment name: PETER 
Load-segment name: WHITE 

1. Object-segment name: PAUL 
Load-segment name: BLACK 

2 . Object-segment name: MARY 
Load-segment name: WHITE 

APDADrq[t 201 7127187 



· Chllpter 5: Unker Apple JIGS Programmer's Workshop 

Furthennore, suppose you use the following commands in your LinkEd file: 

SEGMENT GRAY 
LOADSELECT MYFILE.A WHITE 

This command extracts the object segments PETER and MARY, each of which has the load­
segment name WHITE, and places them in the load segment GRAY. Note that the object· 
segments with the load-segment name WHITE are not actually put in a load segment named 
WHITE unless you also use that load-segment name in the SEGMENT command, as in the 
following set of commands: 

SEGMENT WHITE 
LOADSELECT MYFILE.A WHITE 

As an example of the use of the / SCAN parameter, suppose files MYFILE. ROOT, 
MYFILE.A, and MYFILE.B are in the current directory and you use the following ' 
command: 

LOADSELECT/SCAN MYFILE WHITE 

In this case, the linker first searches MYFILE. ROOT, then MYFILE. B, and finally 
MYF I LE • A for object files that have the load-segment name WHI TE. 

OBJ 

OBJval 

OBJ sets the value of the program counter (pc, a pseudo-address for the next line of code), 
so that subsequent lines of code will be linked as if the sequence had started at the address 
val. 

val The value to which you want to set the program counter. 

Unlike ORG, OBJ has no effect on the actual physical location at which the code is initially 
loaded; instead, OBJ is used when part of a program must be moved (to val) before 
execution. 

Code produced in this way is not relocatable by the System Loader because references 
within it are to absolute addresses, starting at val. Such code may, however, be included in 
a segment that is relocatable. Use the OBJEND command to end the effect of the OBJ 
command. 

Note: This command is provided for those programs that have their own routines 
to move segments to specific absolute addresses. We strongly recommend that you 
not use this command, but take advantage of the capabilites of the Apple IIGS 
System Loader and Memory Manager instead. Programs that do their own loading 
and memory management are very unlikely to work successfully with any other 
Apple IIGS routines. 

APDADraft 202 7127187 

--. 

'- . 



'--

Apple IIGS Programmer's Workshop Chapter 5: Linker 

OBJEND 

OBJEND 

OBJEND resets the program counter to the current physical address in the file. The 
program counter and the physical address always match unless an OBJ command has been 
given. 

ORG 

ORG val 

The ORG command sets the value of the program counter. 

val The value at which you want to set the program counter. 

The operation of ORG depends on where it is used, as follows: 

• If the ORG conunand is used before any code segments in the current load segment 
have been processed, the load segment is given a fixed stan location equal to val, and 
all code is linked for execution staIting at the address val. 

• If the ORG conunand is used after a code segment has been processed, LinkEd inserts 
zeros from the present location until the specified location is reached. If val is smaller 
than the current value of the program counter, the bytes between val and the program 
counter are deleted. If val is smaller than the program-{;ounter value at the ~tan of the 
code segment, an error is returned. An ORG command cannot be used within a load 
segment unless another ORG command was used at the beginning of the load 
segment. 

Important: An ORG command in a LinkEd file does not override an ORG directive 
in the source code; rather, the linker processes all ORGs in the order in which it 
encounters them. 

The parameter val can be specified as either a decimal number (for example, 126720) or a 
hexadecimal number (for example, $OlEFOO). 

Note: We strongly recommend that you not use this command, but take advantage 
of the capabilites of the System Loader and Memory Manager instead Programs 
that do their own loading and memory management are very unlikely to work 
successfully with any other Apple llGS routines. 

PRINTER 

PRINTER ONlmI 

The PRINTER command controls output to the printer. 

APDADraft 203 7127187 



Chapter 5: Linker Apple IIGS Prqgrammer's Wqrkslwp 
" ./ 

ON IOFF PRINTER ON sends the LinkEd source listing and symbol table to the 
printer; PRINTER OFF stops output. The default value is OFF. 

This command overrides any output redirection used in the APW Shell's ASSEMBLE, 
COMPILE, or ALINK command line. 

SEGMENT 

SEGMENT[lDYNAMICI/kindj segname 

The SEGMENT command defines the beginning of a new load segment in the current load 
file, giving it the load-segment name segname. You can use the LINK, LOADSELECT, 
and SELECT commands to put any number of object segments ina load segment. Load­
file segments may be loaded independently by the System Loader, as required. 

Note: If the L INK or SELECT commands are used before any SEGMENT 
command, all object segments are placed in a load segment whose name consists of 
ten space characters. LinkEd ignores any load-segment assignments in your source 
code unless you use the LOADSELECT command. 

Important: Some languages (such as C) are case sensitive; segment names for 
such a language must be entered in LinkEd commands exactly as they are listed in 
the source code, including case. For case-insensitive languages, segment names 
must be entered in uppercase. 

/DYNAMIC The linker automatically flags segments as static. However, adding the 
/DYNAMIC qualifier to the SEGMENT command makes the segment 
dynamic. There cannot be any spaces between the SEGMENT command 
and the /DYNAMIC parameter. You cannot use both the /DYNAMIC 
and / kind qualifiers in the same SEGMENT command. 

Note: Dynamic segments are supported so that you can write programs that make 
highly efficient use of memory. Keep in mind, however, that any code that is 
needed at all times (or frequently) by the program cannot be dynamic. See the 
following note on load segments. 

APDADraft 204 7/27/87 



Apple IIGS Programmer's Workshop Chapter 5: Linker 

I kind The Apple IIGS object module fonnat defines several segment types in 
addition to static, dynamic, code, and data. The segment type is specified in 
the KIND field of the segment header. You can use the I ldnd qualifier to 
specify a special segment type for a load segment. There carmot be any 
spaces between the SEGMENT command and the I ldnd parameter. Precede 
the number with a dollar sign ($) to indicate a hexadecimal number. 

The linker presently generates files that conform to OMF Version 1.0, so 
you must enter a I-byte Version 1.0 KIND in this parameter. In OMF 
Version 2.0, the KIND field is 2 bytes long. OMF Version 1.0 arid 2.0 
KIND fields are described in Chapter 7 . You can conven the load me to 
OMF 2.0 by using the Compact utility, as described in Chapter 3. The 
Version 1.0 KIND field does not defme the No Special Memory and Reload 
segment types; however, the Compact utility adds the appropriate bits to the 
Version 2.0 KIND field if you set the Version 1.0 segment type as follows: 

KIND Segment Type 

$IE cannot be loaded in special memory 
$lF reload segment 

You cannot use both the I DYNAMIC and lkind qualifiers in the same 
SEGMENT command. 

segname The name of the load segment into which you want to link object segments. 
Segment names are case sensitive. 

Examples of SEGMENT commands are shown in the section "Sample LinkEd Files" at the 
end of this chapter. 

The end of a load segment is marked by 

• another SEGMENT command 

• the end of the source me 

Load Segments: Each load file has at least one segment-the main 
segment-which, along with all other static segments, is loaded first by the System 
Loader and is never removed from memory. It is usually the first segment in the 
file. Segments may directly access data in themselves and in any static segment, 
but they cannot directly access data in dynamic segments. 

APDADraft 205 7127187 



Chapter 5: linker Apple lIes Programmer's Workshop 

If a segment calls a subroutine in a dynamic segment. and that segment is not in 
memory. then the System Loader loads that segment. If there is Iiot enough 
memory to hold the segment, the Memory Manager attempts to free memory by 
unloading dynamic segments that an application has made purgeable (if this attempt 
fails, a system error is returned). Note that this means that the values of variables 
in dynamic segments may not be preserved between calls. Intersegment calls must 
be made with a long subroutine jump (JSL), which uses a 3-byte address, rather 
than the "regular" subroutine jump (JSR), which uses a 2-byte address; because the 
loader may put a segment into any bank of memory, the JSR instruction would be 
useless because it can access only the current bank. For more information on 
segment loading and dynamic segment referencing, see the Apple lIes ProD OS 16 
Reference manual. 

Both static and dynamic segments are automatically considered by the linker to be 
relocatable, unless they contain an ORG assembler directive or are preceded by an ORG 
LinkEd command 

SELECT 

SELECT[!SCANj objname (seg1 [, seg2 [, ... 11 ) 

This command causes the named segment(s) (seg1 . seg2 •... ) from the object file specified 
by objname to be included in the output file. The segments are added in the order listed in 
the command. If the SELECT command follows a SEGMENT command, the object 
segments specified in objname are placed in the load segment defined by the SEGMENT 
command. If the SELECT command does not follow a SEGMENT command, all object 
segments are placed in a load segment whose name consists of ten space characters. The 
SELECT command ignores source-code load-segment names, such as those specified by 
the operand of an APW Assembler START directive. 

Use the LINK command to link all the segments in a file. 

/ SCAN If you include the / SCAN parameter, all files with the root filename of the 
file specified by objname and . ROOT or alphabetic filename extensions are 
searched to make sure the most recently assembled version of each file 
segment is included (see the section "Partial Assemblies and Filename 
Conventions" in this chapter). There cannot be any spaces between the 
SELECT command and the / SCAN parameter. 

objname The full or partial pathname of the object me you want to search. If you do 
not include the / SCAN parameter in the command, you must use the 
complete filename, including the filename extension. If you do include the 
/ SCAN parameter, do not include the filename extension in objname. 

seg1, seg2, . .. The names of the object segments that you want to extract. To extract 
all the object segments from an object file, use the LINK command. In 
case-sensitive languages, segment names must be entered exactly as they 
appear in the source code. Segment names in case-insensitive languages 
must be entered as all uppercase characters. 

For example. suppose you use the following command: 

SELECT/SCAN MYFILE (ma i n,g lobal s ) 

APDADraft 206 7127187 



' ---

Apple lIGS Programmer's Workshop Chapter 5: Linker 

Iffiles MYFILE. ROOT, MYFILE .A, and MYFILE. B are in the current directory, the 
linker first searches MYF ILE . ROOT, then MYF ILE • B, and finally MYF ILE. A. It extracts 
only the most recent versions of the object segments main and globals from these files. 

SOURCE 

SOURCE ONIQIT 

This conunand conttols the output of LinkEd source code. 

ON I OFF SOURCE ON causes all subsequent lines of LinkEd source code to be sent 
to standard output. SOURCE OFF suppresses output, unless an error is 
encountered. 

This command is overridden by the L option in the shell's ASSEMBLE and COMP ILE 
conunand lines and by the LIST assembler directive. 

SYMBOL 

SYMBOL ONIQIT 

The SYMBOL command controls output of the symbol table. 

ON I OFF SYMBOL ON causes the symbol table to be sent to standard output; 
SYMBOL OFF suppresses output. 

The symbol table is an alphabetical listing of all symbolic references (labels). All segments 
share the same symbol table. This command is overridden by the S option in the shell's 
ASSEMBLE and COMP ILE conunand lines. 

Sample LinkEd Files 

The listings below are all valid LinkEd files. Here all commands are written in uppercase 
to follow the convention used in this book. Note, however, that segment names for 
languages (such as C) that are case sensitive must be entered exactly as they are listed in the 
source code. For case-insensitive languages, segment names must be entered in uppercase. 

1. The following routine opens an output me called OUTF ILE, includes all files within 
the current subdirectory that have the root mename MYF ILE, and performs a library 
search on the current system library. It is equivalent to calling the linker with the 
APW Shell command LINK MYFILE KEEP=OUTFILE, except that any source­
code load-segment names are ignored. 

KEEP OUTFILE 
LINK/ALL MYFILE 
LIBRARY • 

2. This routine creates an object file with three segments, one of which is dynamic. 
The first load segment is created by the LINK statement that precedes the first 
SEGMENT statement and has a load segment name consisting of ten space characters. 

APDADraft 207 7/27/87 



Chapter 5: linker Apple IIGS Programmer's Workshop 

The second static load segment is created by the frrst SEGMENT command. The 
dynamic load segment is created by the SEGMENT /DYNAMIC command. 

KEEP MYFROG 
LINK/ALL MAINSUBS 
LIBRARY • 
SEGMENT SEGI 

LINK/ALL SUBSI 
LIBRARY • 

SEGMENT/DYNAMIC SEG2 
LINK/ALL SUBS2 
LIBRARY' 

3. In this routine, both the library ftle MYFILE2 and the system libraries are searched 
for needed subroutines. 

KEEP MYPROG 
LINK MYFILE 
LIBRARY MYFILE2 
LIBRARY • 

4. In this example we assume we have written a program in two parts, one part in C 
called DEMO. C, and one in assembly language called DEMO . ASM. The object file 
START. ROOT. which is located in the library prefix (prefix 2), must be linked frrst. 
as it contains initialization routines that we use for all our C programs. We want to 
include routines from the standard C libraries in the library prefix, but we have 
created two additional library ftles. called NEWLIBI and NEWLIB2, that modify 
some of the standard library routines. If we link those libraries before the standard 
C libraries, the linker will have already resolved any references to the routines in 
NEWL IBI and NEWLIB2 and will ignore any routines with the same names in the 
standard C libraries. NEWLIBI and NEWLIB2 are in the current prefix. 

Each of the object segments in the C libraries has one of the following load-segment 
names in its segment header: 

main 
-globals 
-arrays 

(all space characters) 

In addition, the file START. ROOT contains object segments with the load-segment 
name main. and the ftles DEMO. C . ROOT. DEMO .ASM. ROOT, and DEMO .ASM.A 
contain object segments with the load-segment names LSegl, LSeg2. and LSeg3 . 

Before looking at a LinkEd file to link this program. frrst consider the effect of using 
the following command: 

LINK 2/START DEMO.C DEMO.ASM NEWLIBI NEWLIB2 KEEP=SAMPLE 

When this LINK command is executed. the file START. ROOT is linked frrst, 
followed by DEMO. C . ROOT. DEMO. ASM. ROOT, and DEMO. ASM. A. Next. the 
library files NEWLIBI and NEWLIB2 are searched for any unresolved references. 
Finally. if any unresolved references remain, the library files in prefix 2 are 

APDADraft 208 7127187 

--, 



Apple JIGS Programmer's Workshop Choprer 5: Linker 

sean:hed. The resulting load ftle (named SAMPLE) contains the following segments 
(in the sequence in which segments with these load-segment names were fIrst found 
in the object ftles). All these segments are static. 

main 
(all space characters) 

-globals 
-arrays 
LSegl 
LSeg2 
LSeg3 

Now, consider what happens when we link the program with the following LinkEd 
file: 

KEEP SAMPLE 
* The following command starts the first load segment, named LSEGl. 
* This is a static load segment. 

SEGMENT LSEGl 
* The following commands extract object segments with the load­
* segment names main and LSegl from the object files: 

LOADSELECT/SCAN 2/START main 
LOADSELECT/SCAN DEMO.C LSegl 
LOADSELECT/SCAN DEMO.ASM LSegl 

* The following commands extract object segments , with the load­
* segment name main from the library files: 

LIBRARY/LOADSELECT NEWLIBl main 
LIBRARY/LOADSELECT NEWLIB2 main 
LIBRARY/LOADSELECT * main 

* The following command extracts object segments with blank load­
* segment names from the standard library files: 

LIBRARY/LOADSELECT * * 
* The following command starts the second load segment, named LSEG2. 
* This is a dynamic load segment. 

SEGMENT/DYNAMIC LSEG2 
* The following commands extract object segments with the load­
* segment name LSeg2 from the object files: 

LOADSELECT/SCAN DEMO . C LSeg2 
LOADSELECT/SCAN DEMO.ASM LSeg2 

* The following command starts the third load segment, named LSEG3. 
* This is a dynamic load segment . 

SEGMENT/DYNAMIC LSEG3 
* The following commands extract object segments with the load­
* segment name LSeg3 from the object files: 

LOADSELECT/SCAN DEMO.C LSeg3 
LOADSELECT/SCAN DEMO.ASM LSeg3 

* The following command starts the fourth load segment, named GLOBALS. 
* This is a static load segment. 

SEGMENT GLOBALS 
* The following commands extract object segments with the load-
* segment name -globals from the object files. These object segments 
* contain global variables called with short addresses in C routines: 

APDADraft 

LOADSELECT/SCAN 2/START -globals 
LOADSELECT/SCAN DEMO.C -globals 
LIBRARY/LOADSELECT NEWLIBl -globals 
LIBRARY/LOADSELECT NEWLIB2 -globals 

209 7127187 



Chapter 5: linker Apple lias Programmer's Workshop 

LIBRARY/LOADSELECT * -globals 
* The following command starts the fifth load segment, named ARRAYS. 
* This is a static load segment. 

SEGMENT ARRAYS 
* The following commands extract object segments with the load-
* segment name -arrays from the object fil~s. These object segments 
• contain global arrays called with long addresses in C routines: 

LOADSELECT/SCAN 2/START -arrays 
LOADSELECT/SCAN DEMO.C -arrays 
LIBRARY/LOADSELECT NEWLIBl -arrays 
LIBRARY/LOADS ELECT NEWLIB2 -arrays 
LIBRARY/LOADSELECT * -arrays 

When this LinkEd routine is executed, the object and library ftles are searched in the 
sequence specified by the commands in the file, as indicated by the comments in the 
ftle. The ftle DEMO. C, for example, is opened and searched five separate times: first 
for object segments with the load-segment name LSegl, then for object segments 
with the load-segment name LSeg2, then LSeg3, -glohals, and finally 
-arrays. The final load ftle (also named SAMPLE) includes the following 
segments: 

LSEGI 
LSEG2 
LSEG3 
GLOBALS 
ARRAYS 

Segments LSEG2 and LSEG3 are dynamic. Unlike the segments created by the 
standard linker, these segments are placed in the load segment in the sequence you 
specified. The object segments with load-segment names main and blank (all space 
characters) are incorporated into segment LSEGl. ' 

In contrast to the standard linker, LinkEd ftles let you control the order in which object and 
library fIles are searched for each object segment and the sequence in which load segments 
are placed in the load file. LinkEd files let you specify whether a segment is static or 
dynamic, regardless of any segment-type specifications in the source fIle. LinkEd lets you 
extract only the object segments you want, so you can exclude segments you don't need for 
a particular application. It lets you specify object segments by object-segment name or by 
load-segment name, whether those segments are in object ftles or load files. 

The price you pay for this additional control and flexibility is that you must specify every 
file to be searched and every segment to be included. You must be familiar with the 
contents, not only of the source ftles you write, but also of any other object files and library 
ftles you wish to link. If you need the power provided by LinkEd, however, you will fmd 
the time spent in learning how to use it and in writing the command ftles well worth the 
effort. 

APDADraft 210 7/27/87 



Part III 

Inside the Apple IIGS Programmer's Workshop 





Apple lIGS Programmer's Workshop Chapter 6: Adding a Program 

Chapter 6 

Adding a Program to APW 

This chapter describes how to add a utility program or compiler to the Apple nGS 
Programmer's Workshop. None of the information in this chapter is essential for writing 
programs that are independent of APW. . 

Note that when you add a utility or language to APW, you should update the APW 
command table to include it APW will execute a program that is not listed in the command 
table, but it does not automatically search the utility or language prefix for the .program if it 
is not listed in the command table. The command table is described in the sectIon 
"Command Types and the Command Table" in Chapter 3, and a list of language numbers 
currently assigned is given in Appendix B. 

To get started as an Apple developer, write to 

Developer Relations 
Mail Stop 27 S 
Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, CA 95014 

Types of APW Programs 
ProDOS 16 supports two principal kinds of executable load files: ProDOS 16 file types 
$B3 and $B5. These two file types have the following characteristics: 

• Programs of file type $B3 take over complete control of the computer; they do not 
operate under a shell program. APW itself is an example of such a program. When a 
program of file type $B3 is called, the calling program executes a ProDOS 16 QUIT 
call, shutting itself down. When the called program fmishes and executes a QUIT 
call, ProDOS 16 reboots the calling program (assuming the calling program instructed 
ProDOS 16 to do so). The ProDOS 16 QUIT call is described in the Apple lIGS 
ProDOS 16 Reference. 

• Programs of file type $B5 run under a shell program; they do not remove the shell 
from memory. The shell caIls a program of file type $B5 in full native mode via a 
JSL instruction. When the program terminates, it returns control to the sheIl via an 
RTL instruction (or, if the sheIl supports it, through a ProDOS 16 QUIT call). 

APW utility programs are programs of file type $B5 designed to be run under the APW 
SheIl program. They perform operations too complex to be performed by the sheIl itself, 
but appear to the user to be shell commands. APW compilers and assemblers are also 
programs of file type $B5, but they make use of special APW Shell calls (described in 
Chapter 8) to pass parameters to and from the shell, and they are distinguished from 

APDADraft 211 7127187 



Chapter 6: Adding a Program Apple lIGS Programmer' s Workshop 

utilities in the colIlIl1lind table (see the section "Command Types and the Command Table" 
in Chapter 3). Since the requirements for compilers and assemblers are different from 
those for utility programs, they are discussed separately in this chapter. 

You can write a program of file type $B3 and use it with APW; APW launches any 
executable load file it finds on disk when you type in the program' s pathname. Since APW 
quits and ProDOS 16 clears the desktop when a type $B3 program is called, however, 
there are no special requirements for the program (other than those required by the Apple 
IIGS system in general), and so these programs are not discussed in this chapter. 

Note: Any $B5 fIle that runs under the APW Shell can be made into a $B3 me, 
provided that it makes no calls to the APW Shell and that it terminates with a 
ProDOS 16 QUIT call. Use the Shell's FILETYPE command to change the fIle 
type of a $B5 fIle to $B3. 

See the Programmer's Guide to the Apple lIGS for guidance in writing an event-driven 
program for the Apple IIGS computer. 

Important: Before writing any programs to run under the APW Shell, you should 
become familiar with the shell calls described in Chapter 8. These calls help you to 
implement a variety of APW features, such as wildcard expansion and early 
termination of the program in response to an Apple-Period (0-.) key press. 

APW Utilities 
APW utilities are applications designed to run under the APW Shell. They must be 
ProDOS 16 ftle type $B5. By following the guidelines described in this section, you can 
write a utility that can be executed from the APW Shell with APW remaining resident in 
memory. 

Note: Although many of the rules listed in this section for APW utilities apply to 
any utility written to run under any shell, the purpose of this section is to describe 
how to add a utility to APW only. To write a utility to run under another shell, you 
will have to know the specific requirements of that shell. 

APW Exec files can be installed as utility programs by placing the file in the utility 
subdirectory (prefix 6) and adding the name of the fIle to the command table. This 
section describes $B5 load files only, /Wt Exec ftles. Exec fIles are discussed in the 
Section "Exec Files" in Chapter 3. 

When you enter an APW command, the APW Shell looks for the conunand name in the 
command table (see the section "Command Types and the Command Table" in Chapter 3). 
If the command is listed in the command table as a utility, the shell loads it from the utility 
prefIx (prefIx 6); if the command is not in the command table, then the shell looks for a fIle 
with that name in the current prefix. In either case, the shell strips any I/O redirection 
information from the command line and places the command line (together with the shell 
identifIer string) in a buffer in memory. The shell then places the address of the command­
line buffer in the X and Y registers. The shell requests a user ID for the program from the 
User ID Manager and places this ID in the accumulator. 

If the utility program does not have a direct-page/stack segment, then when the APW Shell 
calls the program, it provides a 1024-byte memory block in bank 00 for the utility to use 

APDADraft 212 7/27/87 



Apple lles Programmer's Workshop Chapter 6: Adding a Program 

for its direct page and stack. The shell places the address of the start of the memory block 
in the direct-page (D) register and sets the stack pointer (S register) to point to the last byte 
of the block. If it fmds a direct-page/stack segment, the shell sets the D register to point to 
its flrst byte and the stack pointer to its last. 

Requirements 

Any utility must obey the following rules in order to execute successfully under the APW 
Shell. 

Warning: If a program with ProDOS 16 fIle type $BS does not obey the 
following rules, you must quit APW before calling it. Executing such a program 
from the APW Shell can cause the system to crash. In fact, such a program should 
not be given the fIle type $BS. 

• The utility must be designed to be called in full native mode via a JSL instruction. 

• As soon as the utility is called, it should check the X and Y registers for the address 
of the coounand-line buffer, which contains the following information: 

1. An 8-byte ASCII string containing the APW Shell identifler string BYTEWRKS. 
The utility should check this identifler to make sure that it has been launched by 
the APW Shell, so that the environment it needs is in place. If the shell 
identifler is not correct, the shell load fIle should write an error message to 
standard error output (normally the screen) and exit with an R TL instruction or 
a ProDOS 16 QUIT call. 

2 A null-terminated ASCII string containing the input line for the utility. The 
APW Shell strips any I/O redirection or pipeline commands from the input line, 
since those commands are intended for the shell itself, but passes on the 
command name and all input parameters intended for the utility. 

• All input must corne from standard input, which provides a sequential character 
stream. Standard input is discussed in the section "Redirecting Input and Output" in 
Chapter 3. You can use Apple IIGS Text Tool Set calls to read the next input 
character. Tool calls are described in the Apple lles Toolbox Reference manual. 

Important: Your utility should not read the keyboard directly, because in that case 
the shell input redirection command would not work, contrary to the expectations of 
the user. For the same reason, your utility should not initialize or reset the Text 
Tool Set. 

• All output must go to standard output, which appears to the program as a sequential, . 
write-only ASCII output device. Standard output is discussed in the section 
"Redirecting Input and Output" in Chapter 3. You can use Apple IIGS Text Tool Set 
calls to send output to standard output. 

• The utility must handle its own errors. You can use standard output or standard error 
output as you prefer. The utility should place an error-condition code in the 
accumulator before returning control to the shell. If no error has occurred, the error 
code should be $0000; otherwise, the code should be $FFFF. When the program 
returns control to an Exec file, the error code is placed in the {S tat us } variable. If 
{Exi t} is non-null, the Exec file tenninates. Exec fIles are discussed in the section 
"Exec Files" in Chapter 3. 

APDADraft 213 7/27/87 



Chapter 6: Adding a Program Apple JIGS Programmer's Workshop 

• The utility must use the Memory Manager to request memory; since several programs 
can be resident in memory at one time, there is no way to predict what areas of 
memory will be free for the utility to use. 

• The utility should use the APW Shell calls described in Chapter 8 whenever possible 
to perfonn a necessary operation. For elCample, use the Exec ute call to pass a 
command on to the shell command interpreter rather than duplicating the function in 
your program. 

• If appropriate, the utility should use the APW Shell STOP call described in Chapter 8 
to detect a request for an early termination of the program. Note that it should call 
STOP frequently in order for this function to be effective. 

Important: If your utility uses APW Shell calls, it will not run if called by 
ProDOS 16 or by another shell. 

• If the utility launches another program, it must request a User ID from the User ID 
Manager. The utility is then responsible for intercepting ProDOS 16 QUIT calls and 
system resets, so that it can remove from memory all memory buffers with that user 
ID before passing control back to the APW Shell. 

• A utility should use the following procedure to quit: 

1 . If the utility has requested any User IDs, it must release all memory buffers 
with those User IDs. 

2. The utility must place an error code in the accumulator. If no error occurred, 
the error code should be $0000; otherwise, the code should be $FFFF. 

3. The utility should execute an RTL instruction or a ProDOS 16 QUIT call. If 
the utility is not restartable, the APW Shell releases all memory buffers 
associated with it 

Important: Do not add any utility to APW that writes to or modifies 
directory fIles, as such a utility would interfere with any fIle servers added in 
the future and may be incompatible with new operating systems. 

Conventions 

The following features are not required for an APW utility to work, but they are 
recommended in order to provide a consistent appearance and manner of operation of all 
utilities. 

• Utilities should take any input as command-line parameters, rather than prompting for 
input, although the utility should prompt for any required parameter that is omitted by 
the user. There are two kinds of parameters: pathnames and options. Options begin 
with a minus sign (-) to distinguish them from pathnames. Each option is a single 
letter or a single word, but some options may require additional parameters, which are 
separated from the option name with a space. If more than one parameter is required 
following the option name, the usual separators between them are commas and equal 
signs; for e1Caffiple 

COMMAND -DEFINE TURN='ON' -PAGE 8 4,110 

Options and pathnames may appear in any order. All of the options apply to the 
processing of all of the files, regardless of the order in which the options and 
pathnames appear on the command line. 

APDADraft 214 7127187 

-~ 



Apple IIGS Programmer's Workshop Chaprer 6: Adding a Program 

Notice that a somewhat different convention is used for options for APW compilers 
and linkers. See the description of the ASML command in Chapter 3 for a discussion 
of compiler options. 

• If your utility can generate more output than can fit on a single screen, the user will 
expect to be able to pause the output by pressing any character key on the keyboard. 
To implement this feature, call the following procedure frequently; for example, after 
every line of output. This procedure returns a 1 in the accumulator if Apple-Period 
was pressed; therefore, for languages that pass parameters in the accumulator, you 
can also use this procedure to replace the Shell's STOP call. 

STOP PAUSE: Handle·s key press pause and resume. Returns TRUE for 
open~Apple/period, FALSE otherwise. 

; To use, assemble, and add object file name to linker command line. 

Example of use from C: if(STOP_PAUSE(» exit(O); 

PAUSE 

; 

START 
LOA 

LONGA 

main 
1$0000 

OFF 
LONG I OFF 
SEP #$30 

key 
loop 

PHB 
PHA 
PLB 

BIT 
BPL 
BIT 
BPL 
LOA 
CMP 
BEQ 

LOA 
BIT 
BIT 
BPL 

BIT 
. BPL 

LDA 
CMF 
BEQ 

LDA 
BRA 

stopset LDA 
out BIT 
done PLB 

REP 
LONGI 
LONGA 

APDADraft 

$COOO 
done 
$C025 
key 
#$AE 
$COOO 
stopset 

t$OO 
$C010 
$COOO 
loop 

$C025 
out 
t$AE 
$COOO 
stopset 

t$OO 
out 
t$Ol 
$C010 

t$30 
ON 
ON 

preset default result in all 16 bits 

change to 8 bit mode 

save data bank on stack 
set data bank to 0 
so we can read the key-board strobe and data 

test strobe 
done if strobe not set 
test for open apple modifier 

test for period (high bit still set) 

restore default result 
reset strobe 
test strobe 
until next key press 

test for open apple modifier 

test for period (high bit still set) 

restore default result 

se.t return value for stop 
reset strobe 
restore data bank 

back to 16 bit mode 

215 7/27187 



Chapter 6: Adding a Program 

RTL 
END 

AppiellGS Programmer's Workslwp 

• When you add a utility program to APW, you should provide a help file to go with it. 
Help files are ASCn text files (APW language type PRODOS) that have the same 
name as the command and that are kept in the !APW! UTILTIES!HELP ! 
subdirectory. To see an example of a help file for an APW utility, enter the following 
command: 

HELP MAKELIB 

Notice that the user cannot scroll through a help file; the text should fit on one screen. 

• If you wish, you can make your utility program restartable, so that it does not have to 
be reloaded from disk each time it is run. For a program to be restartable, it must 
reinitialize all variables and arrays each time it starts. OMF Version 2.0 provides the 
following special segment types that support restartable programs: inin'a/ization 
segments, which are reloaded from disk and executed each time a program is restarted 
from memory; and reload segments, which are reloaded from disk each time a 
program is restarted. 

The APW Linker creates OMF Version 1.0 files. You can use the Compact utility to 
convert an OMF Version 1.0 load file to OMF Version 2.0. See the description of the 
COMP ACT command in Chapter 3 and the description of the SEGMENT command in 
Chapter 5 for ways to create reload and initialization segments. Versions 1.0 and 2.0 
of the OMF are defmed in Chapter 7. 

To indicate to the APW Shell that the program is restartable, put an asterisk (*) in the 
command table in front of the command type (the U). If you precede the command 
type with an asterisk. the shell assumes that the program can be restarted and does not 
remove static segments from memory as long as that memory is not needed for other 
purposes. 

Compilers and Assemblers 
Compilers, assemblers, and interpreters are implemented in nearly identical ways in APW. 
In this section, the term compiler is used generically to include compilers, assemblers, and 
interpreters, unless an explicit distinction is made. 

Source File Format 

Your compiler must be capable of accepting files that conform to the Apple IIGS text-file 
format, as specified in Chapter 7. In this format, lines are separated by carriage return 
characters ($OD). The form-feed character ($OC) should be accepted, and used to generate 
a form feed in printed output. Your compiler should handle tabs as discussed in Chapter 7. 

All lines in APW source fIles are assumed to be no more than 255 characters long. 

APDADraft 216 7127187 



. ~ . 

Apple IlGS Programmer's Wor/cslwp Chapter6: Adding a Program 

Identifying the Language Type 

Each language used by the Apple IIos Programmer's Workshop has a unique language 
number. Language numbers are discussed in the section "Command Types and the 
Command Table" in Chapter 3, and a list of the language numbers currently assigned is 
given in Appendix B. If you are a certified Apple developer and you need a new language 
number for your compiler, write to 

Developer Technical Support 
Mail Stop 27 T 
Apple Computer, Inc. 
20525 Mariani A venue 
Cupertino, CA 95014 

Each source file must have one of these language numbers as the first byte of the 
aux _type field in the file entry of the subdirectory. The APW Editor automatically 
includes this language number when it writes a file to disk; if the program is written with a 
different editor, the user must use the APW Shell's CHANGE command to assign the 
appropriate language type to the file. The format of directory entries is described in the 
Apple flGSProDOS 16 Reference manual. 

Your compiler should include a command that conesponds to the APW Assembler 
APPEND directive, which transfers control from the file being processed to a new file. 
When this command is used, your compiler must check the language type of the new file; if 
the language type does not match that of your compiler, the compiler must close the object 
file it is generating and transfer control back to the shell by executing a SET _LINFO call 
(described in Chapter 8) . 

Entry and Exit 

Compilers and assemblers that operate under APW should have ProDOS 16 file type $B5. 
When a user enters the COMPILE command (or one of its aliases), the shell checks the 
language type of the source file and uses a JSL instruction to pass control to the 
appropriate compiler. The first thing the compiler should do is to execute a GET _ LINFO 
call (described in Chapter 8) to read the input parameters. Upon completion, the compiler 
should execute a SET LINFO call and return control to the APW Shell via an RTL or a 
ProDOS 16 QUIT calL The system is in full native mode when it calls the compiler, and it 
should be in full native mode when control is returned to the shell. 

The compiler should use the APW Shell STOP call described in Chapter 8 to detect a 
request for an early termination of the program. If it receives such a request, the compiler 
should treat it like a fatal error (see the following discussion of the SET _ LINFO call). 

The compiler is responsible for reading and using the parameters passed to it via the 
GET _ L INFO call, updating any values that have changes, and returning them via the 
SET _ LINFO call when the compile is complete. These parameters are all described in 
Chapter 8. In order to make your compiler fully consistent with other APW compilers, you 
should keep the following points about these parameters in mind: 

APDADraft 217 7/27/87 



Chapter 6: Adding a Program Apple IIt;JS Programmer's Workshop 

• If the compile completes with a nonfatal error, the compiler should return the error 
level in the merrf field of the SET _LINFO call. If merrf is greater than merr, the 
shell stops processing the program, even ifCMPL, CMPLG, or an equivalent 
command was used. Use the following e)Tor levels for nonfatal errors: 

Error 
Level Meaning 
$02 Warning. An anomaly has been found in the code. It may execute 

successfully. 

$04 Error. The compiler may be able to correct this error. Examples include 
misspellings or omitted keywords. 

$08 Error. The compiler cannot correct the error but knows how much space to 
leave. This error level is usually restricted to assemblers. 

$10 Error. The compiler cannot correct the error, but only the segment 
containing the error is affected. An example would be an .undeclared local 
variable. . 

$20 Syntax error. The entire result of the compile is suspect. This error would 
occur, for example, when a syntax checker had to skip symbols in an 
attempt to resynchronize with the code stream. In some languages, such as 
FORlRAN, the syntax checker can resynchronize with the beginning of the 
next line, in which case this type of syntax error should never occur. In 
free-format languages such as Pascal, on the other hand, an entire 
subroutine could be discarded before the compiler resynchronizes; in this 
case, a syntax error should be flagged. 

• If the compile terminates prematurely due to a fatal error,the compiler should return 
an $FF in the merrf field of the SET_LINFO call. 

• All memory buffers pointed to by parameters in the SET LINFO call should be in 
static segments loaded when your program was launchea. The APW Shell does not 
unload your program's static segments until after it has processed the SET LINFO 
~ -

• Your compiler can read any special parameters passed to it in the buffer pointed to by 
the istring field of the GET LINFO call. There is no need to pass those 
parameters back to the shell when your compiler eJcits via a SET _ LINFO call. 

• If the compile terminates prematurely and the +E flag is set, the compiler should place 
the pathname of the source file in which the error occurred into a buffer and set the 
sf ile parameter of the SET LINFO call to point to that buffer. 

• If the compile terminates prematurely and the + E flag is set, the compiler should place 
the text of the error message into a buffer and set the parms parameter of the 
SET _L INFO call to point to that buffer. 

• If the compile terminates prematurely and the +E flag is set, the compiler should place 
in the org field of the SET LINFO call the displacement into the source file of the 
last line processed. When ilie APW Shell receives control, it calls the APW Editor, 
which displays the source file indicated by the sfile parameter; the line containing 
the error as indicated by the displacement in the org field is placed at the fifth line on 
the screen and the error message pointed to by the parms parameter is displayed at 
the bottom of the screen. 

APDADrajt 218 7/27/87 



Apple JIGS Programmer's Workshop Chapter 6: Adding a Program 

• The least significant bit (bit 0) of the operations-flags (lops) field in the 
GET L INFO call is always set (1) when a compiler is called; this bit indicates that a 
compile is to be performed. If the next bit (bit 1) is set, it indicates that a link should 
be perfonned after a successful compile; if bit 2 is also set, it indicates that the 
finished program is to be executed immediately after the link. 

• If the compile completes normally, the compiler should clear the least significant bit of 
the lops field of the SET_LINFO call. 

• If a compile completes with merrf>merr, or terminates prematurely with a fatal 
error, then no further processing is done regardless of the setting of the operations 
flags. 

• If the compile stops because a file was appended that had a language type different 
from the language type of the compiler, the compiler should not clear the least 
significant bit of the lops field of the SET LINFO call. This indicates to the shell 
that the compile is not complete so that it can then call the compiler appropriate to the 
new file. 

, 
• The kflag parameter of the GET_LINFO call is used by the compiler to detennine 

the names and number of output files to generate. The kf lag parameter is discussed 
in detail in the section "Ouput Files" in this chapter. 

• If any segment names are listed in the buffer pointed to by the parms parameter of 
the GET L INFO call, a panial compile is to be performed. Partial compiles are 
discussed in detail in the section "Panial Compiles" later in this chapter. 

• There is a set of standard options that are passed by the mflags and pflags 
parameters of the GET _ LINFO call. The purpose of each of these options is 
described in the section on the ASML command in Chapter 3 and in the section 
"Compiling (or Assembling) and Linking a Program" in Chapter 2. If your compiler 
does not support any of these options, or responds in a manner differently from that 
described in this manual, your manual should clearly state so. 

If you wish, you can make your compiler restartable so that it does not have to be reloaded 
from disk: each time it is run. For a program to be restartable, it must reinitialize all 
variables and arrays each time it starts. To indicate to the APW Shell that the program is 
restartable, put an asterisk (*) in the command table in front of the command type (the L). 
If you precede the command type with an asterisk, the shell assumes that the program can 
be restarted and does not remove static segments from memory as long as that memory is 
not needed for other purposes. 

Command Precedence 

If your compiler includes source-file commands that control functions that can also be 
controlled from the command line, the colIUIland-line input should take precedence. For 
example, if the source code includes a command that suppresses a listing of the source file, 
but the user requests a listing by specifying + L on the colIUIland line, then a listing should 
be generated. 

APDADraft 219 7/27/87 



Chapter 6: Adding a Program Apple lIGS Programmer's Workshop 

Output Files 

Every compiler under APW must be capable of producing one or more object files that 
conform to APW object module fonnat (described in Chapter 7). These files are then 
processed by the APW Linker to produce an executable load ftIe. 

Both object ftIes and load ftIes are segmented. but a load segment can contain more than 
one object segment. In assembly language, the object-segment name is in the label field of 
a START or DATA directive, and the name of the load segment to which that object segment 
is to be assigued is specified in the operand field of the directive. 

In order to make it easier for users to link together object ftIes made with your compiler, 
you can assign one default load-segment name (such as a string of spaces) to all code 
segments and another (-globals) to all global variables. You might want to place all 
global variables that are called with shon addresses in one segment (-globals) and all 
global variables called with long addresses in another segment (-arrays), as is done by 
APW C (notice that these segment names are all lowercase characters). In order to aid 
users in linking together routines written in different languages, your manual should state 
clearly what segment-naming conventions you have adopted and how to use these segment 
names to gain access to global variables. 

The APW Linker nonnaIIy assigns all object segments with the same load-segment name to 
the same load segment. The user has the option of using a LinkEd ftIe to instruct the linker 
to place any object segment in any load segment. 

See the section "Object Module Format" in Chapter 7 for a description of segments, 
segment types, and segment headers. 

When the CMPL, CMPLG, or COMP ILE command (or an alias) is executed, the user can 
specify the name of the output file with the KEEP parameter. 

Important: Normally in APW, parameters listed on the command line take 
precedence over those set in the source file. Therefore, your compiler should use 
the name given in the KEEP parameter in preference to any output filename given in 
the source ftIe. If for some reason your compiler does not support the KEEP 

. parameter, or an output ftIename in the source file takes precedence, your manual 
should clearly explain that this is the case. 

The shell checks the directory for filenames that match the KEEP filename, excluding 
extensions, and sets the kflag parameter in the GET_ LINFO call accordingly. The shell 
places the object ftIename in a buffer and puts the address of the buffer in the dfile 
parameter of the GET _ LINFO call. The kflag parameter can be equal to 0, 1,2, or 3, as 
follows. 

Note: An object ftIename assigned by the shell from a KeepName shell variable is 
passed to the compiler in exactly the same way as one specified with the KEEP 
parameter. There is no way for your compiler to tell whether the name was 
specified with a KEEP parameter or with a KeepName variable. 

• If kflag = 0, no KEEP parameter was used in the command line. If a KEEP 
directive (or the equivalent) was used in the source code, the compiler must perform 

APDADrafr 220 7/271B7 

--. 



Apple lIes Programmer's Workshop Chapter 6: Adding a Program 

its own check for fIlenames that match the KEEP filename. If no KEEP directive was 
used, do not save the output. 

• Ifkflag = I, no output files have been previously generated with this filename. The 
compiler should place the first segment to be executed in a file with the ftIename 
specified with the KEEP parameter and with the extension. ROOT. For example, if 
kf lag= 1 and if the COMP ILE command included the parameter KEEP=MYF ILE, 
then the compiler should place the first segment to be executed in a file named 
MYF I LE . ROOT. If there are additional segments in the source file, they may be put 
in a file named MYF I LE . A. 

• If kf lag = 2, a file with the KEEP fIlename and the extension . ROOT alteady exists. 
In this case, the compiler should start by creating a file with the extension . A. If the 
main program segment was written in assembly language and a subroutine was 
written in C, for example, then the assembler would create the . ROOT file, and the C 
compiler would create the . A file. 

• If kflag = 3, at least two files with the KEEP fIlename a!teady exist: one with the 
extension . ROOT and one with the extension . A. In this case, files with other 
alphabetic extensions might also exist; these files are created by partial compiles, as 
discussed in the following section. The compiler should start by searching the 
directory of the KEEP filename to determine the highest alphabetic suffix on the disk, 
and then use the next higher suffix. For example, if the files MYF ILE . ROOT, 
MYF ILE . A, and MYF I LE • B all exist, the compiler should start with the filename 
MYFILE. C. Multiple output files can be created by a multilanguage compile (the first 
language creates the . ROOT and . A files, the second language the . B flie, and so on) 
or by partial assemblies. 

The paradigm followed by the APW Assembler is to first look for the . ROOT file, then the 
. A flie, then the . B file, and so on. The search is terminated as soon as one file in the 
sequence is not found. Therefore, if the flies MYFILE .A, MYFILE. B, and MYFILE. D 
were in the subdirectory, but MYFILE . C was not, the assembler would never find 
MYF ILE. D. The next file created by the assembler, then, would be MYF ILE . C. 

Notice that in this example, the linker would start the link with the me MYF ILE . D. 
Because MYF ILE . C was the last file created, it is unlikely that this is what the user 
expected. 

Your compiler must follow certain conventions when writing names to object flIes: 

• If the source language is case-insensitive, always use uppercase letters in identifiers. 
If the source language is case-sensitive, retain the case of all characters. The linker 
retains the case oflabels. 

• For fixed-length names (as specified by the LABLEN field in the OMF segment 
header), use space characters ($20) to pad names to the required length. 

Partial Compiles 

The Apple IIGS object module format, the System Loader, and the Memory Manager are all 
designed to support program code that is organized in segments that can be loaded 
independently. If your compiler is going to work well in the Apple IIGS Programmer's 
Workshop environment, it should be capable of creating segments that can be linked to 

APDADrajt 221 7127187 



Chapter 6: Adding a Program Apple IIGS Programmer's Workshop 

segments output by other compilers and also of using segments created by other compilers. 
The use of segmented code provides two additional benefits: first, it facilitates the use of 
libraries, since the entire library fIle need not be linked to each program, and second, it 
allows for partial compiles. 

In a partial compile, a list of segments to be compiled is passed to the compiler by the 
GET _ L INFO call; the compiler searches through the source code for the named segments 
and compiles them. Other segments need not be compiled. Any segments compiled (other 
than the first segment to be executed when the program is run) are placed in a fIle with the 
next available alphabetic sufftx, as discussed in the previous section, "Output Files." If 
one of the segments compiled is the first code segment that will be executed when the 
program is run, the compiler deletes the old . ROOT fIle and creates a new one. 

When the linker links the program, it uses the following procedure: 

I. It starts with the . ROOT fIle, and links that segment 

2. It looks for a . A file: If it finds one, the linker looks for a . B fIle, and so on. 

3. It links the fIle with the highest alphabetic suffix it has found. 

4. It works its way back through the alphabet to the . A fIle, ignoring any segments 
with names identical to those it has already found, and linking the rest. 

For example, suppose you have compiled a program that has four segments, SEGl, SEG2, 
SEG3, and SEG4. SEGI is the first segment that will be executed when the program is 
run. The compiler places SEGI in the fIle MYPROG. ROOT, and the remaining three 
segments in the fIle MYPROG • A. Now suppose that, in testing the program, you have to 
make changes to segments SEG2 and SEG4, so you perform a partial compile. In this 
case, the compiler places segments SEG2 and SEG4 in the fIle MYPROG. B. Finally, to fix 
the one remaining bug in the program, you do another partial compile on SEG2. The 
compiler places the latest version of SEG2 in the fIle MYPROG . C. Now when you link the 
program, the linker operates as follows: 

1. It fmds MYPROG . ROOT and links it. 

2. It finds MYPROG. A, then finds MYPROG. B, and then MYPROG. C. It does not find 
MYPROG. D, so it links MYPROG . C. 

3. It searches MYPROG . B and finds that it has already linked SEG2, so it ignores the 
SEG2 in MYPROG. B and links SEG4. 

4 . It searches MYPROG. A and finds that it has already linked SEG2 and SEG4; it 
ignores those two segments and links SEG3. 

Important: Keep in mind that for partial compiles to work, the order in which 
segments are linked must not be significant. 

Note: You can use the CRUNCH command, described in Chapter 3, to combine all 
of the alphabetic-extension fIles for a program into a single . A file. The CRUNCH 
command scans the fIles for the latest version of each segment and restores the 
segmen ts to their original order. 

APDADraft 222 7/27/87 



Apple lles Programmer's Workshop Chapter 6: Adding a Program 

Help Files 

When you add a new language to APW, you should provide a help fIle to go with it Help 
fIles are ASCn text files (APW language-type PRODOS) that have the same name as the 
command, and that are kept in the APW!UTILTIES!HELP! subdirectory. To see an 
example of a help file for an APW language, enter the following command: 

HELP ASM65816 

If your language includes language-specific parameters for the COMP ILE, CMPL, and 
CMPLG commands, you should provide replacement help files for those commands (and 
their aliases) as well. 

Notice that the user cannot scroll through a help file; the text should fit on one screen. 

Interpreters 
Instal1ing an interpreter under APW is almost identical to installing a compiler, with the 
following exceptions: 

• Interpreted code is not linked. An interpreter cannot make calls to code compiled by a 
compiler, because the linker cannot be used to combine interpreted and compiled 
code. 

• An inteIpreter should clear all three operations flags of the lops parameter in the 
SET L INFO call when returning control to the shell. Since the interpreter executes 
the program, linking and separate execution are not needed. 

APDADraft 223 7(27(87 



Chapter 6: Adding a Program . Apple IIGS Programmer's WorksJwp 

APDADraft 224 7/27/87 



Apple lIes Programmer's Workshop Chapter 7: File Formats 

Chapter 7 

File Formats 

This chapter describes and defines two standard file formats used on the Apple IIGs: the 
text-file fonnat, which is used for standard ASCII text ftles and program source ftles by all 
APW programs; and the object module format, which is used for all APW object ftles, 
library ftles, and load ftles. The Apple IIGS System Loader requires that a load file 
conform to object module format 

Text-File Format 
Under ProOOS 8, each application defmes its own format for text and data mes. On the 
Apple IIGS, there is a standard format for text flies, so that any program that conforms to 
the standard can read text files written by any other standard program. This format does 
not preclude the use of ftles in other formats by these programs; however, to be considered 
a standard application on the Apple IIGS, it is required that a program be capable of reading 
and writing flies in the standard text-file format 

An Apple IIGS text file contains ASCII codes representing printable characters, plus a few 
specific control characters. When displayed on a screen or printed ou t, a text file can be 
read by humans; that is, there are no binary codes that specify printing formats, printer 
controls, graphics patterns, and so forth. Related file types, such as word processor ftles 
that contain representations of ASCII text but include formatting information, should be 
assigned unique file types. 

Text-File Specifications 

An Apple IIGS text file has the following attributes: 

• It consists of zero or more lines. 

• Each line consists of zero or more ASCII character codes in the range $00 to $FF. 

• Each line ends with the ASCII code $00 (carriage return); every time the character 
code $00 appears, it indicates the end of a line. Even the last line of the ftle must end 
with $00. 

• There are no gaps in the file; that is, every character code is part of a line. 

• The end of a text file is determined by the ProOOS 16 end-of-file (EOF) pointer. 
EOF is part of the ftle descriptor maintained by ProOOS 16, not part of the ftle itself. 

A line with zero characters contains only the end-of-line code, $00. A text file of length 
zero contains no lines, characters, carriage returns, or anything else. 

APDADrajr 225 7127187 



Chapter 7: File Fonnats Apple IIGS Programmer's Workshop 

This file fonnat includes no provision for file . compression or for including descriptive 
information about the file. Information about the file can be encoded in publicly available 
file descriptor fields or in another file associated with the given file. For example, a text 
editor might store the tab stop values for the file TEXTFILE in the associated file 
TEXTF ILE . TABS. Such fIle associations must be defmed by the individual application. 

The following characters require special handling: 

HT ($09): Horizontal Tab 

A program reading the file should interpret fIT as a field delimiter, where the definition 
of field delimiter is left to the individual application. A field delimiter usually denotes a 
definite separation between characters, whether or not there are space characters between 
the characters or white space when the line is printed out. A program writing out a line that 
contains an fIT character should insert enough spaces to get to the next tab stop before 
writing out subsequent characters. The definition of tab stop is left to the individual 
application. 

LF ($OA): Line Feed 

A program writing out a line that contains a line-feed character should move the cursor to 
the next line without changing its horizontal position. A carriage-returnlline-feed sequence 
should be handled on the screen like a carriage return: the cursor should be moved to the 
beginning of the next line. 

CR ($OD): Carriage Return 

The carriage-return character indicates the end of a line. A program writing out a line that 
contains a CR character should move the cursor to the beginning of the next line. When a 
CR character is sent to a printer, it mayor may not also cause a line feed, depending on the 
printer and the settings of dip switches and printer options. 

FF ($12): Form Feed 

The form-feed character usually causes a printer to scroll to the beginning of the next page. 
When writing a line to the screen, your program can treat an FF like a carriage return, or it 
can add blank lines to fill out the page of text. If your program has a convention to indicate 
page breaks, the FF character should be interpreted as a page break. 

SP ($20): Space 

A character that prints as a blank space. 

High ASCII ($80-$FF) 

These codes are used by some programs on Apple IIGS for special characters, such as 
Greek letters and block graphics (depending on the character font in use). Your program 

APDADraft 226 7127187 



Apple IIGS Programmer's Workshop Chapter 7: File Formats 

can display these characters on the screen in any way you choose. If you elect to strip the 
high bit, be sure to handle characters $80 through $9F and $FF carefully, because the low­
ASCII equivalents of these codes ($00 through $IF and $7F) represent special codes to 
&Orne programs and printers. 

Other Characters 

Other characters have no specific interpretation in this specification. It is recommended that 
you limit text files to printable characters ($21 through $7E and $80 through $FF) plus CR. 
LF. FF. HT. and SP. 

Examples 

Let the symbols [ and ] represent the beginning and end of the file. respectively. Then the 
following text files store the specified text: 

Text consisting of no characters: 

[ ] 

Text consisting of one line with no characters: 

[$00] 

Text consisting of two lines with no characters in either line: 

[$00 $00] 

Text consisting of the line Hi there!: 

[$48 $69 $20 $74 $68 $65 $72 $65 $21 $00] 

Text consisting of the two lines 

Hi 
there! 

[$48 $69 $00 $20 $74 $68 $65 $72 $65 $21 $00] 

APDADraft 227 7/27/87 



Chapter 7: File Formats Apple llGS Programmer's WorksJwp 

Object Module Format 
Important: This section describes Version 2.0 of the Apple nGS object module 
format (OMF). The System Loader supports files written in either Version 2.0 or 
Version 1.0 of the OMF. The APW Linker, however, creates load files that 
conform to Version 1.0 of the OMF. Notes in this section describe the differences 
between Version 1.0 and Version 2.0 of the OMF. The Compact utility program, 
described in Chapter 3, cO!lvertsloadfiles from Version 1.0 to Version 2.0. 

Under ProDOS 8 on the Apple ne and Apple lIc, there is only one loadable ftle format, 
called the binary file format, which consists of one absolute memory image along with 
its destination address. ProDOS 8 does not have a relocating loader, so that even if you 
write relocatable code, you must specify the memory location at which the file is to be 
loaded. The Apple nGS uses a more general format that allows dynamic loading and . 
unloading of ftle segments while a program is running and that supports the various needs 
of many languages and assemblers. The APW Linker and System Loader fully support 
relocatable code; in general, you do not specify a load address for an Apple nGS program, 
but let the loader and Memory Manager determine where to load the program. 

The Apple nGS object module format (OMF) supports language, APW Linker, library, and 
System Loader requirements, and it is extremely flexible, easy to generate, and fast to load. 

There are four kinds of files that use object module format: object files, library files, load 
files, and run-time library files. 

• Object files are the output from an assembler or compiler and the input to a linker. 
Object files must be fast to process, easy to create, independent of the source 
language, and able to support libraries in a convenient way. In APW, object files also 
support segmentation of code and partial assemblies and compiles. They support 
both absolute and relocatable program segments. 

Apple nGS object ftles contain both machine-language code and relocation 
information for use by the linker. Object files cannot be loaded directly into memory; 
they must first be processed by the linker to create load files. 

• Library files contain general object segments that a linker can find and extract to 
resolve references unresolved in the object fIles. Only the code needed during the link 
process is extracted from the library file. 

• Loadfiles, which are the output of a linker, contain memory images that a loader 
loads into memory. Load files must be very fast to process. Apple nGS load fIles 
contain load segments that can be relocatable, movable, dynamically loadable, or have 
any combination of these attributes. Shell load files are load files that can be run from 
a shell program without requiring the shell to shut down. Startup load files are load 
ftles that ProDOS 16 loads during its startup. 

Load files are created by the linker from object files and library files. Load files can 
be loaded into memory by the System Loader; they cannot be used as input to the 
linker. 

• Run-time library files are load files containing general routines that can be shared 
between applications. The routines are contained in file segments that can be loaded 
as needed by the System Loader and then purged from memory when they are no 
longer needed. Run-time library files are not currently supported by the APW Linker 
but are defined in the OMF to allow for future enhancements to the system. 

APDADraft 228 7127187 



Apple IIGS Programmer's Workslwp Chapter 7: File FormalS 

All four types of files consist of individual components called segments. Each file type 
uses a subset of the full object module format. Each compiler or assembler uses a subset of 
the format depending on the requirements and complexity of the language. 

The ProDOS 16 file types used by APW are as follows: 

File Type 
$BO 
$BI 
$B2 
$B3 
$B4 
$B5 
$B6 
$B7-$BE 

Name 
source 
object 
library 
load 
run-time library 
shel1load 
startup load 
other load file types 

Mnemonic 
SRC 
OBJ 
LIB 
S16 
RTL 
EXE 
STR 

An APW source file has an auxiliary type that represents the programming language for 
which it is to be used. 

The rest of this chapter defines object module format. First. the general format 
specification for all OMP ftIes is described. Then. the unique characteristics of each of the 
following file types are discussed: 

• object flies 

• library files 

• load ftIes 

• run-time library files 

• shell load files 

General Format for OMF Files 

Each object-module-format (OMP) file contains one or more segments. Figure 7.1 
represents the structure of an OMP file. Each segment in an object file is a separate entity 
that contains all the information needed to link it with other segments (and to relocate it if it 
is relocatable code). Each segment in a load file is a separate entity that contains all the 
information needed to load it into memory. Load file segments on the Apple IIoS are 
usually relocatable. 

APDADrafr 229 7127187 



Chapter 7: Eile Fo7m4JS Apple I/GSPmgrammer' s Workshop 

• 
• 
• 

. 

Seg~e-nt 1 Headef 
" , 

Segment· 1. 

Segment 2 Header 

Segment 

• 
• 
• 

2 

Segment n · Header 

Segment n 

, 

• 
• 
• 

Figure 7.l. The Structure of an OMF File 

Each segment in an OMF file contains a set of records that indicate relocation infonnation 
or contain code or data. If the file is an object file, the linker processes each record and 
generates a load file containing load segments. Object code includes the infonnation the 
linker needs to generate a relocatable load segment. Load ftles consist of a memory image 
followed by a relocation dictionary; the System Loader loads the memory image and then 
processes the infonnation in the relocation dictionary. Relocation dictionaries are discussed 
in the section "Load Fues"later in this chapter. 

Segments in object fues can be combined by the linker into one or more segmerits in the 
load ftle (see the.disc,ussion,o(the LOADNAME field in the seC,tion "Segment Header" later 
in this chapter). f,or jnstance, eacil,su\?routine in a program can bepJaced in ,a separate . 
eo<k; segment and compil¢ indepen4ently;. thenlhe lin1I:er can be told to,place all the code 
segments into. one 10<14 segment. .' ' . . " '.., . '. . . . . . 

Segment Types and Attributes 

Each OMF segment has a segment type and can have several attributes. The following 
segment types are defined by the object module fonnat: 

APDADraji 230 , 7/27/87 



'--

Apple lIeS Progranuner's WorksJwp Chapter 7: File Formats 

• code 

• data 
• jwnp table segment 

• pathname segment 

• library dictionary segment 

• initialization segment 

• c:tirect-page/staek segment 

The following segment attributes are defined by the object module format: 

• reloadable or not reloadable 

• absolute-bank or not restricted to a particular bank 
• loadable in special memory or not loadable in special memory 

• position-independent or position-dependent 

• private or nonprivate 

• static or dynamic 

Code and data segments are object segments provided to support languages that 
distinguish program code from data. A segment specified by using a START assembler 
directive is flagged as a code segment; if you use a DATA directive instead. the segment is a 
data segment. 

Jump table segments and patbname segments are load segments that facilitate the 
dynamic loading of segments; they are described in the section "Load Files"later in this 
chapter. 

Library dictionary segments allow the linker to quickly scan library files for needed 
segments; they are described in the section "Library Files" later in this chapter. 

Initialization segments are optional parts of load files that are used to perform any 
initialization required by the application during an initial load. IT used. they are loaded and 
executed immediately when they are found by the System Loader and are reloaded any time 
the program is restarted from memory. Initialization segments are described in the section 
"Load Files" later in this chapter. 

Direct-page/stack segments are load segments used to preset the direct-page and stack 
registers for an application. See the section "Direct-Page/Staek Segments"later in this 
chapter for more information. 

Reload segments are load segments that the loader must reload even if the program is 
restartable and is restarted from memory. 

Version 1.0: Reload segments do not exist in Version 1.0 of the OMP. 

Absolute-bank segments are load segments that are restricted to a specified bank but 
that can be relocated within that bank. The ORG field in the segment header specifies the 
bank to which the segment is restricted. 

APDADraft 231 7127187 



Chapter 7: File Fonnats Apple lies Programmer's Workshop 

Loadable in special memory means that a segment can be loaded in banks $00, $01, 
$EO, and $E I . Because these are the banks used by programs running under ProD OS 8 in 
standard-Apple n emulation mode, you may wish to prevent your program from being 
loaded in these banks so that it can remain in memory while programs are run under 
ProDOS 8. 

Version 1.0: The loadable-in-special-memory attribute for segments does not 
exist in Version 1.0 of the OMP. 

Position-independent segments can be moved during program execution. 

A private code segment is a segment in an object file whose name is available only to 
other object-code segments within the same object file. (The labels within a code segment 
are local to that segment.) 

A private data segment is a segment in an object file whose labels are available only to 
object-code segments in the same object file. 

Static segments are load segments that are loaded at program execution tiine and are not 
unloaded during execution; dynamic segments are loaded and unloaded during program 
execution as needed. A segment can be designated as dynamic with the / DYNAMIC 
qualifier to the SEGMENT command in a LinkEd file. If you do not use a LinkEd file , all 
segments in your program are static 

A segment can have only one segment type but can have any combination of attributes. 
The segment types and attributes are specified in the segment header by the KIND segment­
header field, described in the next section. 

Segment Header 

Each segment in ;m OMP file has a header that contains general information about the 
segment, such as its name and length. Segment headers make it easy for the linker to scan 
an object file for the desired segments, and they allow the System Loader to load individual 
load segments. The format of the segment header is illustrated in Figure 7.2. 

Version 1.0: Figure 7.3 illustrates the format of the segment header in Version 
1.0 of the OMF. 

Following the figures is a detailed description of each of the fields in the segment header. 

Important: In future versions of the OMP, additional fields may be added to the 
segment header between the DISPDATA and LOADNAME fields . In order to assure 
that future expansion of the segment header does not affect your program. always 
use DISPNAME and DI SPDATA instead of absolute offsets when referencing 
LOAD NAME, SEGNAME, and the start of the segment body. 

APDADraft 232 7/27/87 



Apple IIGS Programmer's Workshop Chapter 7: File Fonnats 

$00 

BYTECNT 

$04 
RESSPC 

$00 
LENGTH 

soc 

$10 
BANKSIZE 

$14 

518 
ORG 

$lC 
AUGN 

520 

$24 
ENTRY 

528 

DISPNAME''1------------.::j 

LOADNAME 

DlSPNAME + $OA 

SEGNAME 

~ ~ 
DISPDATA ..... ---------..... 

Figure 7.2. The Fonnat of a Version 2.0 Segment Header 

Version 1: In version 1 of the OMF, the segment header is as shown in Figure 
7.3. 

APDADraft 233 7127187 



Chapter 7: File Formats Apple IIGS Programmer's Workshop 

$00 

~ BLKCNT/BYTECNT = f- -
~ RESSPC : 
f- -

$04 

~ LENGTH : 
r- -

$08 

soc 

r-
BANKSIZE -

t : 
S10 

t undefined : S14 

... -
S18 = ORG : - -
SlC = ALIGN : - -

, $20 

- -

t= ENTRY -
= r-

S24 

.$28 f- -
r- vlorvATA -

• , 
~~AME,1r------------------~ 

LOADNAME 

DI~AME T SOA t-------------------I 

SEGNAME 

1L.....-- _----.&4 
DISPOATA -

Figure 7.3. The Format of a Version 1.0 Segment Header 

BYTECNT: A 4-byte field containing the number of bytes in the file that the segment 
requires, This number includes the segment header, so you can calculate the starting Mark 
of the next segment from the starting Mark of this segment plus BYTECNT, Segments need 
not be aligned to block boundaries. 

APDADraft 234 7/27/87 

--, 



Apple lIes Programmer's Workshop Chapter 7: File FormalS 

Version 1.0 In Version 1.0, this field is described as follows. For object files 
and load files, BLKCNT is a 4-byte field containing the number of blocks in the file 
that the segment requires. Each block is 512 bytes. The segment header is part of 
the first block of the segment. Segments in an object flle or load flle start on block 
boundaries. For library files (ProDOS 16 file type $B2), this field is B YTECNT, 
indicating the number of bytes in the segment. Library-file segments are not 
aligned to block boundaries. 

RESSPC: A 4-byte field containing the number of bytes of zeros to add to the end of the 
segment. 1bis field can be used in an object segment instead of a large block of zeros at the 
end of the segment. Using this field can thus significantly reduce the block size of an 
object segment when the source code ends with a os directive that reserves a large block of 
memory. 

LENGTH: A 4-byte field containing the memory size that the segment will require when 
loaded. It includes the extra memory specified by RESSP C. 

LENGTH is followed by one undefined byte, reserved for future changes to the segment 
header specification. 

LABI.EN: A I-byte field indicating how long each name or label record in the segment 
body is in bytes. If LAB LEN is 0, it indicates that the length of each name or iabel is 
specified in the first byte of the record (that is, the fIrst byte of the record specifies how 
many bytes follow). LABLEN also specifies the length of the SEGNAME field of the 
segment header. (The LOADNAME field always has a length of 10 bytes.) Fixed-length 
labels are always left-justified and padded with spaces. 

NUMLEN: A I-byte field indicating how long each number field in the segment body is in 
bytes. This field is 4 for the Apple nGs. 

VERSl:ON: A I-byte field indicating the version number of the object module format with 
which the segment is compatible. 1bis field is 2 for the current specification of the object 
module format. 

BANKSl:Z!:: A 4-byte binary number indicating the maximum memory-bank size for the 
segment. If the segment is in an object flle, the linker assures that the segment is not larger 
than this value (the linker returns an error if the segment is too large). If the segment is in a 
load file, the loader ensures that the segment is loaded into a memory block that does not 
cross this boundary. For Apple nGS code segments. this field must be $00010000. 
indicating a 64K bank size. A value of 0 in this field indicates that the segment can cross 
bank boundaries. Apple nGS data segments can use any number from $00 to $00010000 
for BANKSIZE. 

Kl:ND: A 2-byte field specif ying the type and attributes of the segment. The bits are 
defined as follows. The column labeled Where Described indicates the section in this 
chapter where the particular segment type or attribute is discussed: 

APDADra/t 235 7/27/87 



Chapter 7: File Formats 

Bit 
0--4 

10-15 

10 
11 
12 
13 
14 
15 

Meaning 

Segment Type 

$00 code 
$01 data 
$02 jump table segment 
$04 pathname segment 
$08 library dictionary segment 
$10 initialization segment 
$12 direct-page/stack segment 

Segment Attribute 

1 = reload segment 
1 = absolute-bank segment 
o = can be loaded in special memory 
1 = position-independent 
1 = private 
o = static; 1 = dynamic 

Apple Ilcs Programmer's Workshop 

Where Described 

Segment Types and Attributes 
Segment Types and Attributes 
Load Files 
Segment Types and Attributes 
Library Files 
Load Files 
Direct-Page!Stack Segments 

Segment Types and Attributes 
Segment Types and Attributes 
Segment Types and Attributes 
Segment Types and Attributes 
Segment Types and Attributes 
Segment Types and Attributes 

A segment can have only one type but any combination of attributes. For example, a 
position-independent dynamic data segment has KIND = ($AOOl). 

Important: If segment KINDS are specified in the source file and the KINDs of 
the object segments placed in a given load segment are not all the same, the segment 
KIND of the resulting load segment is unpredictable. 

KIND is followed by two undefmed bytes, reserved for future changes to the segment 
header specification. 

Version 1.0 In Version 1.0 of the OMP, the KIND field is 1 byte long, defined 
as follows: 

Bit Meaning 

0-4 Segment Type 

$00 axle 
$01 daIa 
$02 jump table segment 
$04 pathname segment 
$08 library dictionary segment 
$10 initialization segment 
$11 absolute:bank segment 
$12 direct-pagt'/SlaCk segment 

5-7 Segment Auribute 

5 l=posilion-independent 
6 l=private 
7 O=sratic; l=dynamic 

ORG: A 4-byle field indicating the absolute address at which this segment is to be loaded 
in memory, or, for an absolute-bank segment, the bank number. A value of 0 indicates that 
this segment is relocatable and can be loaded anywhere in memory. A value of 0 is normal 
for the Apple lIGS. 

APDADrafr 236 7127187 



Apple IIGS Programmer's Workshop Chapter 7: File Formats 

ALIGN: A 4-byte binary number indicating the boundary on which this segment must be 
aligned. For example, if the segment is to be aligned on a page boundaIy, this field is 
$00000100; if the segment is to be aligned on a bank boundary, this field is $00010000. A 
value of ° indicates that no alignment is needed. For the Apple IIGS, this field must be a 
power of2, less than or equal to $00010000. Currently, the loader suppons only values of 
0, $00000100, and $00010000; for any other value, the loader uses the next higher 
supponed value. 

NUMSEX: A I-byte field indicating the order of the bytes in a number field. If this field is 
0, the least significant byte is first. If this field is I, the most significant byte is first. This 
field is ° for the Apple IIGS. 

NUMSEX is followed by one undefmed byte, reserved for future changes to the segment 
header specification. 

Version 1.0: In Version 1.0 of the OMF, the NUMSEX field is followed by the 
LCBANK field. The LCBANK field is described as follows. A I-byte field 
indicating the bank of the language card into which the segment is to be loaded: if 0, 
bank I; if I, bank 2. LCBANK is meaningful only if the ORG field contains an 
address in the language card area ($DOOO through $EOOO) of banks 0, I, EO, or E I. 
The System Loader does not suppon the loading of segments into alternate banks of 
the language card. 

SEGNUM: A 2-byte field specifying the segment number. The segment number 
corresponds to the relative position of the segment in the file (starting with I). This field is 
used by the System Loader as a check while searching for a specific segment in a load file. 

ENTRY: A 4-byte field indicating the offset into the segment that corresponds to the entry 
point of the segment. 

DISPNAME: A 2-byte field indicating the displacement of the LOADNAME field within 
the segment header. Currently, DISPNAME = 44. DISPNAME is provided to allow for 
future additions to the segment header; any new fields will be added between DISPDATA 
and LOADNAME. DISPNAME allows you to reference LOADNAME and SEGNAME no 
matter what the actual size of the header. 

DISPDATA: A 2-byte field indicating the displacement from the stan of the segment 
headerto the stan of the segment body. Currently. DISPDATA = 54 + LAB LEN. 
D ISPDATA is provided to allow for future addtions to the segment header; any new fields 
will be added between DISPDATA and LOADNAME. DISPDATA allows you to reference 
the stan of the segment body no matter what the actual size of the header. 

LOADNAME: A lO-byte field specifying the name of the load segment that will contain the 
code generated by the linker for this segment. More than one segment in an object file can 
be merged by the linker into a single segment in the load file. This field is unused in a load 
segment The position of LOADNAME may change in future revisions of the OMF; 
therefore. you should always use DISPNAME to reference LOADNAME. 

SEGNAME: A field LABLEN bytes long, specifying the name of the segment. The 
position of SEGNAME may change in future revisions of the OMF; therefore, you should 
always use DISPNAME to reference SEGNAME. 

APDADraft 237 7/27/87 



Chapter 7: File Formats Apple lICS Programmer's Workshop 

Segment Body 

The body of each segment is composed of sequential records, each of which starts with a 
I-byte operation code. Each record contains either program code or infonnation for the 
linker or System Loader. All names and labels included in these records are LABLEN bytes 
long, while all numbers and addresses are NUMLEN bytes long (unless otherwise specified 
in the following defmitions). For the Apple IIGS, the least significant byte of each number 
field is first, as specified by NUMSEX. 

Several of the OMF records contain expressions that have to be evaluated by the linker. 
The operation and syntax of expressions are described in the next section, "Expressions." 
If the description of the record type does not explicitly state that the opcode is followed by 
an expression, then an expression cannot be used. Expressions are never used in load 
segments. 

The operation codes and segment records are described in this section, listed in order of the 
opcodes. Table 7.1 provides an alphabetical cross-reference between segment record types 
and opcodes. Library files consist of object segments, and so can use any record type that 
can be used in an object segment. Table 7.1 also lists the segment types in which each 
record type can be used. 

Table 7.1. Segment-Body Record Types 

Record Opcode Segment Types 
Type 

ALIGN $EO object 
BEXPR $ED object 
cINTERSEG $F6 load 
CONST $OI-$DF object 
cRELOC $F5 load 
DS $FI all 
END $00 all 
ENTRY $F4 run-time library 
EQU $FO object 
EXPR $EB object 
GEQU $E7 object 
GLOBAL $E6 object 
INTERSEG $E3 load 
LCONST $F2 load 
LEXPR $F3 object 
LOCAL $EF object 
MEM $E8 object 
ORG $EI object 
RELEXPR $EE object 
RELOC $E2 load 
STRONG $E5 object 
SUPER $F7 load 
USING $E4 object 
ZEXPR $EC object 

APDADraft 238 7/27/87 



Apple IIGS Programmer's Workshop Chapter 7: File FormalS 

The rest of this section defines each of these record types. The record types are listed in 
order of their opcodes. 

Record Opcode 
Type 

END $00 

CONST $OI-$DF 

ALIGN $EO 

ORG $El 

RELOC $E2 

APDADraft 

Description 

This record indicates the end of the segment. 

This record contains absolute data that needs no relocation. The 
operation code specifies how many bytes of data follow. 

This record contains a number that indicates an alignment factor. 
The linker inserts as many zero bytes as necessary to move to 
the memory boundary indicated by this factor. The value of this 
factor is in the same format as the ALIGN field in the segment 
header and cannot have a value greater than that in the ALIGN 
field. AL I GN must equal a power of 2. 

This record contains a number that is used to increment or 
decrement the location counter. IT the location counter is 
incremented (ORG is positive), zeros are insened to get to the 
new address. IT the location counter is decremented (ORG is a 
twos complement negative number), the location counter is 
decremented and subsequent code overwrites the old code. 

This is a relocation record, which is used in the relocation 
dictionary of a load segment. It is used to patch an address in a 
load segment with a reference to another address in the same 
load segment. It contains two I-byte counts followed by two 
offsets. The first count is the number of bytes to be relocated, 
and the second count is a bit-shift operator, telling how many 
times to shift the relocated address before inserting the result into 
memory. IT the bit-shift operator is positive, the number is 
shifted to the left, filling vacated bit positions with zeros (logical 
shift left). If the bit-shift operator is (two's complement) 
negative, the number is shifted right (logical shift right). 

The fust offset gives the location (relative to the stan of the 
segment) of the (fust byte of the) number that. is to be patched 
(relocated). The second offset is the location of the reference 
relative to the start of the segment; that is, it is the value that the 
number would have if the segment it's in staned at address 
$000000. For example, suppose the segment includes the 
following lines: 

239 7127187 



Chapter 7: File Formats Apple IlGSProgrammer's Workshop 

35 LABEL ••• 

400 LDA LABEL+4 

LABEL is a local reference to a location 53 ($35) bytes after the 
start of the segment. When this segment is loaded into memory, 
the value of LABEL+ 4 depends on the starting location of the 
segment, so the linker creates a RELOC record in the relocation 
dictionary for this value. LABEL+4 is two bytes long; that is, 
the number of bytes to be relocated is 2. No bit-shift operation 
is needed. The number to be calculated during relocation is 
1025 ($401) bytes after the start of the segment (immediately 
after the LDA, which is one byte). The value of LABEL+4 
would be $39 if the segment started at address $000000. 

The RELOC record for the number to be loaded into the A 
register by this statement would therefore look like this (note that 
the values are stored low-byte fIrst, as specifIed by NUMSEX): 

E2020001 04000039 000000 

This sequence corresponds to the following values: 

$E2 
$02 
$00 
$00000401 
$00000039 

operation code 
number of bytes to be relocated 
bit-shift operator 
offset of value from start of segment 
value if segment started at $000000 

Note: Certain types of arithmetic expressions are illegal in a relocatable segment; 
specifIcally, any expression that cannot be evaluated (relative to the start of the 
segment) by the assembler cannot be used. The expression LAB I 4 can be 
evaluated, for example, since the RELOC record includes a bit-shift operator. The 
expression LAB 14+4 cannot be used, however, because the assembler would have 
to know the absolute value of LAB in order to perform the bit-shift operation before 
adding 4 to it. Similarly, the value of LAB * 4 depends on the absolute value of 
LAB, and cannot be evaluated relative to the start of the segment, so multiplication 
is illegal in expressions in relocatable segments. 

APDADraft 240 7/27/87 



Apple IIGS Programmer's Workshop Chapter 7: File Formats 

INTERSEG $E3 

APDADraft 

This record is used in the·relocation dictionary of a load segment 
and contains a patch to a long call to an external reference. The 
INTERSEG record is used to patch an address in a load segment 
with a reference to another address in a different load segment. 
It contains two I-byte counts followed by an offset, a 2-byte file 
number, a 2-byte segment number, and a second offset. The 
first count is the number of bytes to be relocated, and the second 
count is a bit-shift operator, telling how many times to shift the 
relocated address before inserting the result into memory. If the 
bit-shift operator is positive, the number is shifted to the left, 
filling vacated bit positions with zeros (logical shift left). If the 
bit-shift operator is (two's complement) negative, the number is 
shifted right (logical shift right). 

The first offset is the location (relative to the start of the 
segment) of the (first byte of the) number that is to be relocated. 
If the reference is to a static segment, the file number, 
segment number, and second offset correspond to the 
subroutine referenced. (The!inker assigns a file number to each 
load me in a program. This feature is provided primarily to 
support run-time libraries. In the normal case of a program 
having one load file, the file number is 1. The load segments in 
a load file are numbered by their relative location in the load file, 
where the first load segment is number 1.) If the reference is to 
a dynamic segment, the file and segment numbers correspond to 
the jump table segment, and the second offset corresponds to the 
call to the System Loader for that reference. 

For example, suppose the segment includes an instruction like 

JSL EXT 

The label EXT is an external reference to a location in a static 
segment. 

If this instruction is at relative address $720 within its segment 
and EXT is at relative address $345 in segment $OOOA in file 
$0001, the linker creates an INTERSEG record in the relocation 
dictionary that looks like this (note that the values are stored 
low-byte first, as specified by NUMSEX): 

E3030021 07000001 000A0045 030000 

This sequence corresponds to the following values: 

$E3 
$03 
$00 
$00000721 
$0001 
$OOOA 
$00000345 

operation code 
number of bytes to be relocated 
bit-s/,rift operator 
offset of instruction's operand 
file number 
segment number 
offset of subroutine referenced 

241 7/27/87 



Chapter 7: File Formats 

USING $E4 

STRONG $E5 

APDADraft 

Apple /las Programmer's Workshop 

When the loader processes the relocation dictionary, it uses the 
first offset to find the JSL and patches in the address 
corresponding to the fIle number, segment number, and offset of 
the referenced subroutine. 

If the JSL is to an external reference in a dynamic segment, the 
INTERSEG records refer to the fIle number, segment number, 
and offset of the call to the System Loader in the jump table 
segment. 

If the jump table segment is in segment 6 of flle 1, and the call to 
the System Loader is at relative location $2A45 in the jump table 
segment, then the INTERSEG record looks like this (note that 
the values are stored low-byte first, as specified by NUMSEX): 

E3030021 07000001 00060045 2AOOOO 

This sequence corresponds to the following values: 

$E3 
$03 

operation code 
number of bytes to be relocated 
bit-shift operator 
offset of instruction's operand 

$00 
$00000721 
$0001 
$0006 
$OOOO2A45 

fIle number of jump table segment 
segment number of jump table segment 
offset of call to System Loader 

The jump table segment entry that corresponds to the external 
reference EXT contains the following values: 

UserID 
$0001 flle number 
$0005 segment number 
$00000200 offset of instruction 
call to System 

Loader 

INTERSEG records are used for any long-address reference to a 
static segment. . , ' 

See the section "Jump Table Segment" in this chapter for a 
discussion of the function of the jump table segment. 

This record contains the name of a data segment. Mter this 
record is encountered, local labels from that data segment can be 
used in the current segment. 

This record contains the name of a segment that must be 
included during linking even if no external references have been 
made to it. 

242 7127187 



Apple IIGS Programmer's Workshop Chapter 7: File Formats 

GLOBAL $E6 This record contains the name of a global label followed by three 
attribute fields. The label is assigned the current value of the 
location counter. The first attribute field is 2 bytes long and 
gives the nwnber of bytes generated by the line that defmed the 
label. If this field is $FFFF, it indicates that the actual length is 
unknowrt but that it is greater than or equal to $FFFF. The 
second attribute field is 1 byte long and specifies the type of 
operation in the line that defined the label. The following type 
attributes are defined: 

A address-type DC statement 
B Boolean-type DC statement 
C character-type DC statement 
D double-precision floating-point-type DC statement 
F floating-point-type DC statement 
G EQU or GEQU statement 
H hexadecimal-type DC statement 
I integer-type DC statement 
K reference-address-type DC statement 
L soft-reference-type DC statement 
M instruction 
N assembler directive 
0 ORG statement 
p ALIGN statement 
S DS statement 
X arithmetic symbolic parameter 
y Boolean symbolic parameter 
z character symbolic parameter 

The third attribute field is 1 byte long and is the pri vate flag 
(1 = private). This flag is used to designate a code or data 
segment as private (see the section "Segment Types and 
Attributes" in this chapter for a definition of private segments). 

GEQU $E7 This record contains the name of a global label followed by three 
attribute fields and an expression. The label is given the value of 
the expression. The first attribute field is 2 bytes long and gives 
the number of bytes generated by the line that defmed the label. 
The second attribute field is 1 byte long and specifies the type of 
operation in the line that defined the label, as listed in the 
discussion of the GLOBAL record. The third attribute field is I 
byte long and is the private flag (1 = private). This flag is 
used to designate a code or data segment as private (see the 
section "Segment Types and Attributes" earlier in this chapter for 
a defmition of private segments). 

MEM $E8 This record contains two numbers that represent the starting and 
ending addresses of a range of memory that must be reserved. 

APDADrajt 243 7127187 



Chaprer 7: File F OT1rUlrs 

EXPR $EB 

ZEXPR $EC 

BEXPR $00 

RELEXPR $EE 

LOCAL $EF 

APDADrafr 

Apple lIes Programmer's Workshop 

This record contains a I-byte count followed by an expression. 
The expression is evaluated, and its value is truncated to the 
number of bytes specified in the count. The order of the 
truncation is from most significant to least significant. 

This record contains a I-byte count followed by an expression. 
ZEXPR is identical to EXPR, except that any bytes truncated 
must be all zeros. If the bytes are not zeros, the record is 
flagged as an error. 

This record contains a I-byte count followed by an expression. 
BEXPR is identical to EXPR, except that any bytes truncated 
must match the corresponding bytes of the location counter. If 
the bytes don't match, the record is flagged as an error. This 
record allows the linker to make sure that an expression 
evaluates to an address in the current memory bank. 

This record contains a I-byte length followed by an offset and 
an expression. The offset is NUMLEN bytes long. RELEXPR is 
used to generate a relative branch value that involves an external 
location. The length indicates how many bytes to generate for 
the instruction, the offset indicates where the origin of the 
branch is relative to the current location counter, and the 
expression is evaluated to yield the destination of the branch. 
For example, a BNE LOC instruction, where LOC is external, 
generates this record. For the 6502 and 65816 microprocessors, 
the offset is I . 

This record contains the name of a local label followed by three 
I-byte attribute fields. The label is assigned the value of the 
current location counter. The first attribute byte gives the 
number of bytes generated by the line that defined the label. The 
second attribute byte specifies the type of operation in the line 
that defmed the label, as listed in the discussion of the GLOBAL 
record. The third attribute byte is the pr i va t e flag (1 = 
private). This flag is used to designate a code or data segment as 
private (see the section "Segment Types and Attributes" earlier in 
this chapter for a definition of private segments). Note that the 
linker ignores local labels from code segments and that it 
recognizes local labels from other data segments only if a 
USING record was processed (see the discussion of the us ING 
statement). 

244 7127187 



Apple lIas Programmer's Workshop Chapter 7: File Formats 

EQU $FO 

DS $FI 

LCONST $F2 

LEXPR $F3 

ENTRY $F4 

APDADrajr 

This record contains the name of a local label followed by three 
I-byte attribute fields and an expression. The label is given the 
value of the expression. 1be first attribute byte gives the 
number of bytes generated by the line that defined the label. The 
second attribute byte specifies the type of operation in the line 
that defmed the label. as listed in the discussion of the GLOBAL 
record. The third attribute byte is the private flag (I = 
private). This flag is used to designate a code or data segment as 
private (see the section "Segment Types and Attributes" earlier in 
this chapter for a defmition of private segments). 

This record contains a number indicating how many bytes of 
zeros to insert at the current location counter. 

This record contains a 4-byte count followed by absolute code or 
data. The count indicates the number of bytes of data. The 
LCONST record is similar to CONST except that it allows for a 
much greater number of data bytes. Each reiocatable load 
segment consists of LCONST records. DS records. and a 
relocation dictionary. See the discussions on INTERSEG 
records. RELOC records. and the relocation dictionary for more 
information. 

This record contains a I-byte count followed by an expression. 
The expression is evaluated. and its value is truncated to the 
number of bytes specified in the count. The order of the 
truncation is from most significant to least significant. If the 
expression evaluates to a single label with a fixed. constant 
offset, and if the label is in another segment and that segment is 
a dynamic code segment, then the linker is allowed to create an 
entry for that label in the jump table segment. (The jump table 
segment provides a methanism to allow dynamic loading of 
segments as they are needed-see the section "Load Files"later 
in this chapter.) Only a JSL instruction should generate an 
LEXPR record. 

This record is used in the run-time-library entry dictionary; it 
contains a 2-byte number and an offset followed by a label. The 
number is the segment number. 1be label is a code-segment 
name or entry and the offset is the relative location within the 
load segment of the label. Run-time library entry dictionaries are 
described in the section "Run-Time Library Files" in this 
chapter. 

245 7127187 



Chapter 7: File F Orma/s 

cRELOC $F5 

cINTERSEG $F6 

SUPER $F7 

APDADraft 

Apple JIG:> Programnzer's Workshop 

This record is the compressed versio!lof the RELO(": record. It 
is identical to the RELOC record, except that the offsets are 2 
bytes long rather than 4 bytes. The cRELOC record can be used 
only if both offsets are less than $1000(} (65536). The 
following example compares a RELOC record and a cRELOC 
record for the same reference (for an explanation of each line of 
these records, see the discussion of the RELOC record): 

RELOC cRELOC 
$E2 $F5 
$02 $02 
$00 $00 
$00000401 $0401 
$00000039 $0039 

(11 bytes) (J bytes) 

This record is the compressed version of the INTERSEG record. 
It is identical to the INTERSEG record, except that the offsets 
are 2 bytes long rather than 4 bytes, the segment number is 1 
byte rather than 2 bytes, and it does not include the 2-byte me 
number. The cINTERSEG record can be used only if both 
offsets are less than $10000 (65536), the segment nwnber is 
less than 256, and the file number associated with the reference 
is 1 (that is, the initial load file). References to segments in run­
time library mes must use INTERSEG records rather than 
cINTERSEG records. 

The following example compares an INTERSEG record and a 
c INTERSEG record for the same reference (for an explanation 
of each line of these records, see the discussion of the 
INTERSEG record): 

INTERSEG cINTERSEG 
$E3 $F6 
$03 $03 
$00 $00 
$00000720 $0720 
$0001 
$OOOA 
$00000345 

(15 bytes) 

$OA 
$0345 

(8 bytes) 

This is a supetcompressed relocation-dictionary record. Each 
SUPER record is the equivalent of many cRELOC, 
c INTERSEG, and INTERSEG records. It contains a 4-byte 
length, a I-byte record type, and one or more subrecords of 
variable size, as follows: 

246 7/27/87 



Apple JIGS Programmer's Workshop Chapter 7: File Formats 

opcode $F7 

length number of bytes in the rest of the record (4 
bytes) 

type 0--37 (l byte) 

subrecords (variable size) 

Version 1.0: SUPER records do not exist in Version 1.0 of the OMF. 

APDADraft 

When SUPER records are used. some of the relocation 
information is stored in the LCONST record at the address to be 
patched. 

The length field indicates the number of bytes in the rest of the 
SUPER record (that is, the number of bytes exclusive of the 
opcode and the length field). 

The type byte indicates the type of SUPER record. There are 38 
types of SUPER record, as follows: 

Type SUPER record 
o RELOC2 
1 RELOC3 
2-37 INTERSEGI-INTERSEG36 

SUPER RELOC2: This record can be used instead of 
cRELOC records that have a bit-shift count of 0 and that 
relocate 2 bytes. 

SUPER RELOC3: This record can be used instead of 
cRELOC records that have a bit-shift count of 0 and that 
relocate 3 bytes. 

SUPER INTERSEG1: This record can be used instead of 
cINTERSEG records that have a bit-shift count of 0 and that 
relocate 3 bytes. 

SUPER INTERSEG2 through SUPER INTERSEG12: The 
number in the name of the record refers to the file number of 
the fIle in which the record is used. For example, to relocate 
an address in file number 6, use a SUPER INTERSEG6 
record. These records can be used instead of INTERSEG 
records that meet the following criteria: 

247 7/27/87 



Chapter 7: File F ormars Apple II GS Programmer's · Workshop 

APDADraft 

• Both offsets are less than :$10000. 

• The segment number is less than 256. 

• The bit-shift count is O. 

• The record relocates 3 bytes. 

• The file number is from 2 through 12. 

SUPER INTERSEG13 through SUPER INTERSEG24: 
These records can be used instead of cINTERSEG records 
that have a bit-shift .count of 0, that relocate 2 bytes, and that 
have a segment number of n-12, where n can be from 13 to 
24. For example, to replace a cINTERSEG record in 
segment number 6, use a SUPER INTERSEG18 record. 

SUPER INTERSEG25 through SUPER INTERSEG36: 
These records can be used instead of c INTERSEG records 
that have a bit-shift count of$FO (-16), that relocate 2 bytes, 
and that have a segment number of n - 24, where n can be 
from 25 to 36. For example, to replace a cINTERSEG 
record in segment number 6, use a SUPER INTERSEG30 
record. 

Each subrecord consists either of either a I-byte offset count 
followed by a list of I-byte offsets, or a I-byte skip count. 

Each offset count indicates how many offsets are listed in this 
subrecord. The offsets are I byte each. Each offset 
corresponds to the low byte of the fIrSt (2-byte) offset in the 
equivalent INTERSEG, cRELOC or cINTERSEG record. The 
high byte of the offset is indicated by the location of this offset 
count in the SUPER record: each subsequent offset count 
indicates the next 256 bytes of the load segment Each skip 
count indicates the number of 256-byte pages to skip; that is. a 
skip count indicates that there are no offsets within a certain 
number of 256-byte pages of the load segment. 

For example, if patches must be made at offsets 0020, 0030. 
0140. and 0550 in the load segment, the subrecords would 
include the following fields: 

2 20 30 the first 256-byte page of the load segment has two 
patches: one at offset 20 and one at offset 30 

140 

skip-3 

150 

the second 256-byte page has one patch at offset 40 

skip the next three 256-byte pages 

the sixth 256-byte page has one patch at offset 50 

In the actual SUPER record, the patch count byte is the number 
of offsets -I and the skip count byte has the high bit set. A 
SUPER INTERSEGl record with the offsets in the above 
example would look like this: 

248 7/27/87 



Apple lies Programmer's Workshop Chapter 7: File Formats 

$F7 opcode 
$00000009 number of bytes in the rest of the record 
$02 INTERSEG1-type SUPER record 
$0 I the fIrst 256-byte page has two patches 
$20 patch the load segment at offset $0020 
$30 patch the segment at $0030 
$00 the second page has one patch 
$40 patch the segment at $0140 
$83 skip the next three 256-byte pages 
$00 the sixth page has one patch 
$50 patch the segment at $0550 

A comparison with the RELOC record shows that a SUPER 
RELOC record is missing the offset of the reference. Similarly, 
the SUPER INTERSEG1 through SUPER INTERSEG12 
records are missing the segment number and offset of the 
subroutine referenced. The offsets (which are 2 bytes long) are 
stored in the LCONST record at the "to be patched" location. For 
the SUPER INTERSEG1 through 12 records, the segment 
number is stored in the third byte of the "to be patched" location. 

For example, if the example given in the discussion of the 
INTERSEG record were instead referenced through a SUPER 
INTERSEG 1 record, the value $0345 (the offset of the 
subroutine referenced) would be stored at offset $0721 in the 
load segment (the offset of the instruction's operand) and the 
segment number ($OA) would be stored at offset $0723, as 
follows: 

4503 OA 

Experimental $FB-$FF These record types are reserved for use in system development 
by Apple. 

Expressions 

Several of the OMF records contain expressions. Expressions form an extremely flexible 
reverse-Polish stack language that can be evaluated by the linker to yield numeric values 
such as addresses and labels. Each expression consists of a series of operators and 
operands together with the values on which they act 

An operator takes one or two values from the evaluation stack, performs some 
mathematical or logical operation on them, and places a new value onto the evaluation 
stack. The fInal value on the evaluation stack is used as if it were a single value in the 
record. Note that this evaluation stack is purely a programming concept and does not relate 
to any hardware stack in the computer. Each operation is stored in the object module fIle in 
postfix form; that is, the value or values come fIrst, followed by the operator. For 
example, since a binary operation is stored as Value} Value2 Operator, the operation 
Num1 - Num2 is stored as 

Num1Num2-

APDADraft 249 7127187 



Chapter 7: File FOmults Apple llGS Programmer's Workshop 

The operators are as follows: 

Binary Math Operators: These operators take two numbers as two's-complement 
signed integers from the top -of the evaluation stack, perform the specified operation, and 
place the single-integer result back on the evaluation stack. The binary math operators 
include 

$01 addition (+) 
$02 subtraction (-) 
$03 multiplication (*) 
$04 division (I) 
$05 integer remainder (MOD) 
$07 bit shift (I) 

The subtraction operator subtracts the second number from the first number. The division 
operator divides the first number by the second number. The integer-remainder operator 
divides the fl!st number by the second number and remms the unsigned integer remainder 
to the stack. The bit-shift operator shifts the first number by the number of bit positions 
specified by the second number. If the second number is positive, the fl!st number is 
shifted to the left, filling vacated bit positions with zeros (logical shift left). If the second 
number is negative, the fl!st number is shifted right, preserving the sign bit (arithmetic shift 
right) . 

Unary Math Operator: A unary math operator takes a number as a two's-complement 
signed integer from the top of the evaluation stack, performs the operation on it, and places 
the integer result back on the evaluation stack. The only unary math operator currently 
available is 

$06 negation (-) 

Comparison Operators: These operators take two numbers as two's-complement 
_ signed integers from the top of the evaluation stack, perform the comparison, and place the 
single-integer result back on the evaluation stack. Each operator compares the second 
number in the stack ([OS - 1) with the number at the top of the stack ([OS). If the 
comparison is true, a 1 is placed on the stack; if false, a 0 is placed on the stack. The 
comparison operators include 

$OC less than or equal to 
$OD greater than or equal to 
$OE not equal 
$OF less than 
$10 greater than 
$11 equal to 

«=) 
(>=) 
«>or!=) 
«) 
(» 
(= or ==) 

Binary Logical Operators: These operators take two numbers as Boolean values from 
the top of the evaluation stack, perform the operation, and place the single Boolean result 
back on the stack. Booiean values are defmed as being FALSE for the number 0 and TRUE 

APDADraft 250 7127187 

'-" 



Apple IlGS Programmer's Workshop Chapter 7: File Formats 

. for any other number. Logical operators always return a I for true. The binary logical 
oper'dtors include 

$08 AND 
$09 OR 
$OA EOR 

(logical AND) 
(inclusive OR) 
(exclusive OR) 

Unary Logical Operator: A unary logical operator takes a number as a Boolean value 
from the top of the evaluation stack, perfonns the operation on it, and places the Boolean 
result back on the stack. The only unary logical operator currently available is 

$OB NOf (complement) 

Binary Bit Operators: These operators take two numbers as binary values from the top 
of the evaluation stack, perfonn the operation, and place the single binary result back on the 
stack. The operations are performed on a bit-by-bit basis. The binary bit operators include 

$12 BitAND 
$13 Bit OR 
$14 BitEOR 

(logical AND) 
(inclusive OR) 
(exclusive OR) 

Unary Bit Operator: This operator takes a number as a binary value from the top of the 
evaluation stack, performs the operation on it, and places the binary result back on the 
stack. The unary bit operator is 

$15 BitNOf (complement) 

Termination Operator: All expressions end with the termination operator $00. 

An operand causes some value, such as a constant or a label, to be loaded onto the 
evaluation stacie. The operands are as follows: 

Location Counter Operand ($80): This operand loads the value of the current 
location counter onto the top of the stack. Because the location counter is loaded before the 
bytes from the expression are placed into the code stream, the value loaded is the value of 
the location counter before the expression is evaluated. 

Constant Operand ($81): This operand is followed by a number that is loaded on the 
top of the stack. 

Label Reference Operands ($82-$86): Each of these operand codes is followed by 
the name of a label, and is acted on as follows: 

APDADraft 251 7127187 



Chapter 7: File Formats Apple IIGS Programmer's Workshop 

$82 Weak: reference (see the note below). 

$83 The value assigned to the label is placed on the top of the stack. 

$84 The length attribute of the labeJis placed on the top of the stack. 

$85 The type attribute of the label is placed on the top of the stac\c. (Type atnibutes 
are listed in the discussion of the GLOBAL record in the section "Segment 
Body" earlier in this chapter). 

$86 The count attribute is placed on the top of the stack. The count attribute is 1 if 
the label is defmed and 0 if it is not. 

Note: The operand code $82 is referred to as the weak reference. The weak: reference 
is an instruction to the linker that asks for the value of a label if it exists. It is not an 
error if the linker cannot fmd the label. However, the linker does not load a segment 
from a library if only weak: references to it exist. If a label does not exist, a 0 is loaded 
onto the top of the stack. nus operand is generally used for creating jump tables to 
library routines that mayor may not be needed in a particular program. 

Relative Offset Operand ($87): This operand is followed by a number that is treated 
as a displacement from the start of the segment. Its value is added to the value that the 
location counter had when the segment started, and the result is loaded on the top of the 
stack. 

Example 

Assume your assembly-language program contains the following line where MSG4 and 
MSG3 are global labels: 

LDX #MSG4-MSG3 

This line would be assembled into two OMF records: 

CONST ($01) 
EXPR ($EB) 

A2 
02 : MSG4MSG3-

In hex.adecimal format, these records appear as follows: 

01 A2 
EB 02 83 04 4D 53 47 34 83 04 4D 53 47 33 02 00 

" 
k ••• MSG4 •• MSG3 •• 

The initial $01 is the OMF opcode for a I-byte constant. The $A2 is the 65816 opcode for 
the LDX instruction. The $EB is the OMF opcode for an EXPR record, which is followed 
by a I-byte count indicating the number of bytes to which the expression is to be truncated 
($02 in this case). The next number, $83, is a label-reference operand for the first label in 
the expression, indicating that the value assigned to the label (MSG4) is to be placed on top 
of the evaluation stack. Next is a length byte ($04), followed by MSG4 spelled out in 
ASCII codes. 

The next sequence of codes, starting with $83, places the value of MSG3 on the evaluation 
stack. Finally, the expression-operntor code $02 indicates that a subtraction is to be 
performed, and the tennination operator ($00) indicates the end of the expression. 

APDADraft 252 7127187 

'-- . 



Apple IIGS Programmer's Workshop Chapter 7: File Formats 

Note: Y 011 can use the DumpOBJ utility program to examine the contents of any 
OMF file . DumpOBJ can list the header contents. of each segment, and can list the 
body of each segment in OMP format, 65816 disassembly format, or as 
hexademical codes. DumpOBJ is described in the section "Command Descriptions" 
in Chapter 3. 

Object Files 

Object files (ProDOS 16 file type $B I) are created from source files by a compiler or 
assembler. Object files can contain any of the OMP record types except INTERSEG, 
cINTERSEG, RELOC, cRELOC, SUPER, and ENTRY. Object files can contain unresolved 
references, because all references are resolved by the linker. If you are writing a compiler 
for the Apple IIGS, you can use the DUMPOBJ utility to examine the contents of a variety of 
object files in order to get an idea of their content and structure. 

Library Files 

Library files (ProDOS 16 file type $B2) contain object segments that the linker can search 
for external references. Usually, these files contain general routines that can be used by 
more than one application. Any object segment that contains a global defInition that was 
referenced during the link process is extraCted from the library file; this segment is then 
added to the load segment that the linker is currently creating . 

. Library files differ from object files in that each library file includes a segment called the 
library dictionary segment (segment-type KIND'" $08). The library dictionary segment 
contains the names and locations of all segments in the library file. This infonnation allows 
the linker to scan the file quickly for needed segments. Library files are created from object 
files by the MakeLib utility program (described in Chapter 3). The format of the libmry 
dictionary segment is illustrated in Figure 7.4. 

APDADrafr 253 7127187 



Chapter!: File Formats Apple lIGS Programmer's Workshop 

• 
• 

BYTECNT 

SEGNAME 

COUNT 

Rlename 1 

• 

Filenomen 

Key: 

Y Indeterminate number of 
,( bytes omitted from diagram 

: Sequence repeated 
• indeterminate number of times 

Header 

File Names 

Symbol 
Table 

Symbol 
Names 

Figure 7.4. The Fonnat of a Library Dictionary Segment 

COUNT 

arne 
Displacement 
1 

bject UeNumber 1 

PRIVATE 1 

Segment 
Displacement 1 

• 
• 

. ome 
Displacemenfn 

Object FileNumber n 

PRIVATEn 
Segmen 
Displacement n 

COUNT 

m me en 

Symbol Name 1 

• 
• • 

SYmbOl Name ten§tnii 

SymbOl Name n 

The library dictionary segment begins with a segment header, which is identical in fonn to 
other segment headers. The BYTECNT field indicates the number of bytes in the library 
dictionary segment, including the header. The body of the library dictionary segment 
consists of three LCONST records, as follows: 

I. Filenames 

2. Symbol Table 

3 . Symbol Names 

The Filenames record consists of one or more subrecords, each consisting of a 2-byte file 
number followed by a fIlename. The filename is in Pascal-string fonnat: that is, a length 
byte indicating the number of characters, followed by an ASCII string. The fIlenames are 
the full pathnames of the object files from which the segments in this library file were 
extracted. The file numbers are assigned by the MAKELlB program and used only within 

APDADrajr 254 7127187 

• 

I 

4' 
• 
• • 



Apple IIes Programmer's Workshop Chapter 7: File Formats 

the library file. These file numbers are not related to the load-file numbers in the pathname 
table. 

The Symbol Table record consists of a cross-reference between the symbol names in the 
symbol-names record and the object segments in which the symbol names occur. For each 
global symbol in the library file, the Symbol Table record contains the following: 

1. A 4-byte displacement into the Symbol Names record indicating the start of the 
symbol name. 

2 . The 2-byte fIle number of the file that the name occurred in. This is the fIle number 
assigned by the MakeLib utility and used in the Filenames record of this library 
dictionary segment. 

3 . A 2-byte flag, the private flag. If this flag equals 1, the symbol name is valid 
only in the object file in which it occurred (that is, it was in a private segment). If 
this flag equals 0, the symbol name is not private. 

4. A 4-byte displacement into the library file indicating the beginning of the object 
segment in which the symbol occurs. The displacement is to the beginning of the 
segment even if the symbol occurs inside the segment; the location within the 
segment is resolved by the linker. 

The Symbol Names record consists of a series of symbol names; each symbol name 
consists of a length byte followed by up to 255 ASCII characters. All global symbols that 
appear in an object segment, including entry points and global equates, are placed in the 
library dictionary segment. Duplicate symbols are not allowed. 

Library dictionary segments are created by the MakeLib utility program, which also changes 
the file type of the fIle from $B 1 to $B2 (see Chapter 3 for a discussion of the MakeLib 
utility). 

Load Files 

Load fIles (ProDOS 16 file types $B3 through $BE) contain the load segments that are 
moved inio memory by the System Loader. They are created by the APW Linker from 
object files and library fIles. Load fIles conform to the object module format but are 
restricted to a small subset of that formal Because the segments must be quickly relocated 
and loaded, they cannot contain any unresolved symbolic information. This section 
discusses the following components of load mes: 

• The format of each load segment is a loadable binary memory image that is followed 
by a relocation dictionary. The memory image consists of long-constant (LCONST) 
records and define-storage (DS) records that can be located anywhere in memory. 
The relocation dictionary contains relocation (RELOC, cRELOC, or SUPER RELOC) 
records and intersegment (INTERSEG, cINTERSEG, or SUPER INTERSEG) 
records only. These records provide the information needed to modify the memory 
image according to its location in memory. 

• The jump table segment, when used, is the segment of a load me that contains the 
calls to the System Loader to load dynamic segments. Each time the linker comes 
across a statement that references a label in a dynamic segment, it generates an entry 
in the jump table segment for that label (it also creates an entry in the relocation 
dictionary). The entry in the jump table segment contains the fIle number, segment 
number, and offset of the reference in the dynamic segment, plus a call to the System 

APDADraft 255 7127187 



Chapter 7: File Formats Apple lleS Programmer's Workshop 

Loader to load the segment. The relocation dictionary entry provides the information 
the loader needs to paoch a call to the jump table segment into the memory image. 

• The pathname segment, when used, is the segment of a load file that contains a CTOSS­

reference between file numbers and path names that the System Loader needs in order 
to reference load segments. 

• An initialization segment, when used, is executed by the System Loader to perform 
any initialization required by the application. 

The load segments in a load file are numbered by their relative location in the load me, 
where the rust load segment is number 1. The segment number is used by the System 
Loader to find a specific segment in a load me. 

Memory Image and Relocation Dictionary 

Each load segment consists of two parts: 

1. A memory image consisting of LCONST records and DS records containing all of the 
code and data that do not change with load address (with space reserved for location­
dependent addresses). The DS records are inserted by the linker (in response to DS 
records in the object file) to reserve large blocks of space, rather than putting large 
blocks of zeros in the load file. 

2. A relocation dictionary that provides the information necessary to patch the LCONST 
records at load time. 

When the segment is loaded into memory, each LCONST record or DS record is loaded in 
one piece, and then the relocation dictionary is processed. The relocation dictionary 
includes RELOC (or cRELOC or SUPER RELOC) and INTERSEG (or cINTERSEG or 
SUPER INTERSEG) records only: the RELOC records provide the information necessary 
to recalculate the values of location-dependent local references, and the INTERSEG records 
provide the information necessary to transfer control to external references. See the 
discussions of the RELOC and INTERSEG records in the section "Segment Body" earlier in 
this chapter for more information. The sequence of events that occurs when a JSL to an 
external dynamic segment is executed is described in detail in the "System Loader" chapter 
of the Apple lleS ProDOS 16 Reference manual. 

Jump Table Segment 

The jump table segment is a segment in a load fIle that is created by the linker to allow 
dynamic loading of code segments as they are needed during program execution. The 
segment type of the jump table segment is KIND = $02. There is one jump table segment 
per load fIle; it is a static segment, and it is loaded into memory at program boot time at a 
location determined by the Memory Manager at that time. The System Loader maintains a 
list, called the jump table list (or just the jump table), of the jump table segments in 
memory. 

Each entry in the jump table segment corresponds to a call to an external (intersegment) 
routine in a dynamic segment. The jump table segment initially contains entries in the 
unloaded state. When the external call is encountered during program execution, a jump to 
the jump table segment occurs. The code in the jump table segment entry, in tum, jumps to 
the System Loader. The System Loader figures out which segment is referenced and loads 

APDADraft 256 7/27/87 

.. -....... 



Apple lIes Programmer's Workshop Chapter 7: File Formats 

it. Next, the System Loader changes the entry in the jump table segment to the loaded 
state. The entry stays in the loaded state as long as the corresponding segment is in 
memory. If the application tells the System Loader to unload a segment. all jump table 
segment entries that reference that segment are changed to their unloaded states. 

Unloaded State 

The unloaded state of a jump table segment entry contains the code that calls the System 
Loader to load the needed segment An entry contains the following fields: 

User ID (2 bytes) 
load-file number (2 bytes) 
load-segment number (2 bytes) 
load-segment offset (4 bytes) 
JSL to jump-table load function (4 bytes) 

The User ID field is reserved for the identification number assigned to the program by the 
UserID Manager; until initial load time. this field is O. The load-file number, load-segment 
number, and load-segment offset refer to the location of the external reference. The rest of 
the entry is a call to the System Loader jump-table load function. The User ID and the 
address of the load function are patched by the System Loader during initial load. See the 
Apple lIeS ProDOS 16 Reference manual for information on the jump-table load function. 
A load-file number of 0 indicates that there are no more entries in this jump table segment 
(there may be other jump table segments for this program, however-each load file that is 
part of a program has its own jump table segment). 

Loaded State 

The loaded state of a jump-table segment entry is identical to the unloaded state except that 
the JSL to the System Loader jump-table load function is replaced by a JML to the external 
reference. A loaded entry contains the following fields: 

User ID (2 bytes) 
load-file number (2 bytes) 
load-segment number (2 bytes) 
load-segment offset (4 bytes) 
JML to external reference (4 bytes) 

Note: In Versions 1.0 and 2.0 of the OMF. the jump table segment starts with 
eight bytes of zeros. In future versions of the OMF, these zeros may be eliminated. 

Pathname Segment 

The pathname segment is a segment in a load file that is created by the linker to help the 
System Loader find the load segments of run-time library files that must be loaded 
dynamically. It provides a cross-reference between file numbers and file pathnames. The 
segment type of the pathname segment is KIND = $04. When the loader processes the load 
file, it adds the information in the pathname segment to the pathname table that it maintains 
in memory. Path name tables are described in the Apple lles ProDOS 16 Reference 
manual. 

APDADraft 257 7/27187 



Chapter 7: File Formats Apple lIes Prograrruner's Workshop 

The pathname segment contains one entry for each load file and run-time library file 
referenced in the load file. The format of each entry is as follows: 

file number (2 bytes) 
file date (2 bytes) 
file time (2 bytes) 
file pathname (length byte and ASCII string) 

File number: A number assigned by the linker to a specific load file. File number I is 
reserved for the load file in which the pathname segment resides (usually the load file of the 
application program). A file number of 0 indicates that thete are no more entries in this 
pathname segment. 

File date and file time: ProDOS 16 directory items retrieved by the linker during the 
link process. The System Loader compares these values with the ProDOS 16 directory of 
the run-time library fJ.1e at run time. If they are not the same, the System Loader does not 
load the requested load segment, thus ensuring that the run-time library file used at link 
time is the same as the one loaded at execution time. 

File pathname: The pathname of the load file. The pathname is listed as a Pascal-type 
string: that is, a length byte followed by an ASCn string. A pathname segment created by 
the linker may contain partial pathnames. A partial pathname begins with one of the eight 
prefixes supported by ProDOS 16; these prefixes have the form n/. where n is a number 
from 0 to 7. The first three prefixes have fixed defmitions, as follows: 

0/ system prefix (initially the volume from which ProDOS 16 was booted) 

1/ application subdirectory (the subdirectory out of which the application is 
running) 

2/ system library subdirectory (initially / boot_volwne/ SYSTEM/ LIBS/ ) 

ProDOS 16 prefIxes are described in the Apple lles ProDOS 16 Reference manual . 

Important: Currently, run-time library files and multiple load fJ.1es are not 
supported by the linker. The pathname table is created, but it contains only one 
pathname-that of the single load file. 

Initialization Segment 

The initialization segment is an optional segment in a load fIle. When the System Loader 
encounters an initialization segment during the initial loading of segments, it transfers 
control to the initialization segment. After the initialization segment returns control to the 
System Loader, the loader continues the normal initial load of the remaining segments in 
the load file. The segment type of the initialization segment is KIND = $10. 

One way in which the initialization segment might be used is to initialize the graphics 
environment of an application and to display a "splash screen" (such as a copyright 
message and company logo) for the duration of the program load. 

The initialization segment must obey the following rules: 

• It must not reference any segments not yet loaded. 

APDADraft 258 7127187 



Apple IIGS Programmer's WorksJwp Chapter 7: File Formats 

• It must exit with an RTL instruction. 

• It must not change the stack pointer. 

• It must not use the current direct page. To avoid writing over a portion of the direct 
page being used by the loader, the initialization segment must allocate its own direct 
page if it needs direct-page space. 

Note: Initialization segments are reexecuted during a restart of an application from 
memory. 

Direct-Page/Stack Segments 

The Apple IIas stack can be located anywhere in the lower 48K of bank $00 and can be 
any size up to 48K. The direct page is the Apple IIGS equivalent of the zero page of 8-bit 
Apple Irs; the direct page can also be located anywhere in the lower 48K of bank $00. 
Like the zero page, the direct page occupies 256 bytes of memory; on the Apple IIas, 
however, a program can move its direct page while it is running. Consequently, a given 
program can use more than 256 bytes of memory for direct-page functions. 

Each program running on the Apple IIas reserves a portion of bank $00 as a combined 
direct-page/stack space. Since more than one application can be loaded in memory at one 
time on the Apple IIas, there may be more than one stack and one direct page in bank $00 
at a given time. Furthermore, some applications may place some of their code in bank $00. 
A given program should therefore probably not use more than about 4K for its direct­
page/stack space. 

When an instruction uses one of the direct-page addressing modes, the effective address is 
calculated by adding the value of the operand of the instruction to the value in the direct­
page register. The stack pointer, on the other hand, is decremented each time a stack-push 
instruction is executed. The convention used on the Apple lIas, therefore, is for the direct 
page to occupy the lower part of the direct-page/stack space, while the stack grows 
downward from the top of the space. 

Important: ProDOS 16 provides no mechanism for detecting stack overflow or 
underflow, or collision of the stack with the direct page. Your program must be 
carefully designed to make sure those conditions cannot occur. 

If you do not define a direct-page/stack segment in your program, ProDOS 16 assigns a 
1024-byte direct page/stack when the System Loader INITIAL LOAD or RESTART call is 
executed. To specify the size and contents of the direct-page/stack space, use the following 
procedure: 

I. Create a data segment in your source file with the size and contents you want for 
your initial direct page and stack. Start the segment with a DATA directive, use DS 
and DC directives to define the contents of the segment, and end it with an END 
statement. 

2. Assemble the program. 

3. Use a LinkEd file to link the program. Place the direct-page/stack segment in a load 
segment by itself, and specify the segment-type KIND=$12 for the segment. For 
example, suppose you have created the data segment DEFPAGE, and assembled it so 
that it is now in the object file MYOBJ . A. To make that segment a direct page/stack 

APDADraft 259 7127187 



Chapter 7: File Formals Apple llGS Programmer's Workshop 

segment with the load-segment name DIRSTACK in the load fIle MYPROG, use the 
following LinkEd commands: 

KEEP MYPROG 
SEGMENT/$12 DIRSTACK 

SELECT MYOBJ.A (DEFPAGE) 
• 
• 
• 

LinkEd is described in Chapter 5. 

Run-Time Library Files 

Run-time library files (ProDOS 16 fIle type $B4) contain dynamic load segments that the 
System Loader can load when these segments are referenced through the jump table. 
Usually, run-time library files contain general routines that can be used by more than one 
application. 

Run-time library fIles are scanned by the linker during the link process. When the linker 
finds a referenced segment in the run-time library file, it generates an INTERSEG reference 
to the segment in the relocation dictionary and adds an entry to the jump table segment for 
that fJ.!e. It does not extract the segment from the fIle and place it in the fIle that referenced 
it, as it does for ordinary library files. In other words, references to segments in run-time 
library fJ.!es are treated by the linker like references to any other dynamic segments. 

The last load segment of the run-time library fIle contains all the information the linker 
needs in order io fmd referenced segments; it is not necessary for the linker to scan through 
every subroutine in every segment each time a subroutine is referenced. The last segment 
contains a table of ENTRY records, each one corresponding to a segment name or global 
reference in the run-time library fIle. 

Run-time library fIles are created from corresponding object files. When you create a run­
time library file, you specify the location of the source fIle and the pathname at which the 
run-time library file will be located at load time. The location of the run-time library file is 
stored in the pathname segment in the load fIle of the application program. At load time, 
the run-time library fIle must reside in the specified subdirectory. 

Currently, run-time library files are not supported by the linker. This specification is . 
provided to allow for future enhancements to the system. 

Shell Load Files 

Shell load files (ProDOS 16 file type $B5) are executable load files that are run under a 
shell program, such as the APW SheIl. The shell calls the System Loader's Initial Load 
function and transfers control to the shell load file by means of a JSL instruction, rather 
than launching the program through the ProDOS 16 QUIT function. Therefore, the shell 
does not shut down, and the program can use shell facilities during execution. The 
program returns control to the shell with an RTL, or with a ProJ?OS 16 QUIT call if the 
shell intercepts and acts on ProDOS 16 calls. (The APW Shell IS an example of a shell that 

APDADraft 260 7/27/87 

--, 



Apple IlGS Programmer's Workshop Chapter 7: File Fomuus 

intercepts ProDOS QUIT calls.) Shell load flies should use standard Text Tool Set calls for 
all nongraphics I/O. The shell program is responsible for initializing the Text Tool Set 
routines. 

Note: A load file of file type $B5 can be launched by ProDOS 16 via the QUIT 
call if it requires no support other than standard input from the keyboard and output 
to the screen. ProOOS 16 initializes the Text Tool Set to use the Pascal I/O drivers 
(see the Apple JIGS Toolbox Reference) for the keyboard and 80-column screen. 
Only $B5 files that end in a ProOOS 16 QUIT call can be run in this way. 

As soon as a shell load flIe is launched, it should check the X and Y registers for a pointer 
to the shell-identifier string and input line. The X register holds the high word and the Y 
register holds the low word of this pointer. The shell program is responsible for loading 
this pointer into the index registers and for placing the following information in the area 
pointed to: 

I. An 8-byte ASCII string containing an identifier for the shell (the identifier for the 
APW Shell, for example, is BYTEWRKS). The shell load file should check this 
identifier to make sure that it has been launched by the correct shell, so that the 
environment it needs is in place. If the shell identifier is not correct, the shell load 
file should write an error message to standard error output (normally the screen) and 
then exit with an RTL instruction (or a ProDOS QUIT call if the shell intercepts 
ProDOS calls). 

2 A null-terminated ASCII string containing the input line for the shell load file. The 
shell program can strip any I/O redirection or pipeline commands from the input line, 
since those commands are intended for the shell itself, but must pass on all input 
parameters intended for the shell load file. 

The shell program must request a User ID for the shell load me; the User ID is passed in 
the accumulator. The shell must set up a direct-page and stack area for the shell load file . 
The shell places the address of the start of the direct-page/stack space in the direct-page (D) 
register and sets the stack pointer (S register) to point to the last byte of the block. If the 
shell application does not have a direct-page/stack segment, the shell should follow the 
same conventions used by ProDOS 16 for default direct-page/stack allocation. See the 
section "Direct-Page/Stack Segments" in this chapter and the Apple JIGS ProD OS 16 
Reference manual for more information on direct-page and stack allocation. 

Note: ProDOS 16 does not support the identifier string or input line. If the shell 
load file is launched by ProDOS 16, the X and Y registers contain zeros. 

Some shell load mes may launch other programs; for example, a shell nested within 
another shell would be a shell load file. When a shell load file requests a User ID for a 
program, the calling program is responsible for intercepting ProDOS QUIT calls and 
system resets, so that it can remove from memory all memory buffers with that User ID 
before passing control to the shell. 

A shell load file should use the following procedure to quit: 

1. If the shell load file has launched any programs, it must call the System Loader's 
User Shutdown function to shut down those programs. 

2. The shell load file should release any memory buffers that it has requested and 
dispose of their handles. 

APDADraft 261 7/27/87 



CluJpter 7: File Formats Apple JIGS Programmer's Workshop 

3. The shell load file must place an error code in the accumulator. If no error occurrW, 
the error code should be $0000. The error code $FFFF is used as a general 
(nonspecific) error code. You can define any other error codes you want to use for a 
shell program you write and can handle them in any way you wish. 

4. The shell load file should execute an RTL or a ProDOS 16 QUIT call. If the 
program ends in a QUIT call, the shell program that launched the shell load ftle is 
responsible for intercepting the QUIT call, releasing all memory buffers associated 
with that shell load file, and performing any other system tasks normally done by 
ProDOS 16 in response to a QUIT. 

Important: When a shell launches a sbellioad ftle, the address of the shell 
program is not pushed onto the ProDOS 16 QUIT stack; therefore the shell must 
handle the shell load ftle's QUIT call itself, or control is not returned to the shell. 
In order to do this, the shell program must intercept all ProDOS 16 calls. The shell 
may pass any other ProDOS 16 calls on to ProDOS, but it must handle QUIT calls 
itself. If the shell you are using does not handle ProDOS 16 QUIT calls in this 
fashion, the shell load file must end in an RTL. 

APDADraft 262 7/27/87 



Apple /lGS Programmer's Workshop Chapter 8: Shell Calls 

Chapter 8 

Shell Calls 

The Apple IIGS Proganuner's Workshop Shell acts as an interface and extension to 
ProDOS 16. The shell provides several functions not provided by ProD OS 16; these 
functions are called exactly like ProDOS 16 functions. Every time a program running 
under the APW Shell issues a ProDOS-l6-like call, the shell intercepts the call; if it is a 
shell call, the shell interprets it and acts on it. If it is a ProDOS 16 call, the shell passes it 
on to ProDOS 16. This chapter describes all of the shell's ProDOS-l6-like calls, here 
referred to as shell calls. 

The shell calls that are provided are listed in Table 8.1 in the order of their call nwnbers. 
The calls are described in alphabetical order in the section "Call Descriptions" later in this 
chapter. 

Table 8.1. Summary of Shell Calls 

Call Name 

GET LINFO 

SET LINFO 

GET LANG 

SET LANG 

ERROR 

SET VAR 

VERSION 

READ INDEXED 
INIT WILDCARD 

NEXT WILDCARD 

GET VAR 
EXECUTE 

DIRECTION 

REDIRECT 

STOP 

WRITE CONSOLE 

APDADraft 

Call 
Number 

($0101) 

($0102) 
($0103) 
($0104) 

($0105) 

($0106) 
($0107) 
($0108) 
($0109) 

($0 lOA) 

($0 lOB) 
($0100) 

($01OF) 
($0110) 
($0113) 

($OUA) 

Use 

Passes parameterS from the shell to a program 

Passes parameters from a program to the shell 

Reads the current language nwnber 

Sets the current language number 

Prints error message for an Apple IIGS tool call 

Sets the value of a shell variable 

Returns the version nwnber of the APW Shell 
Reads variable table 

Provides a filename that includes a wildcard character 
to the shell 

Causes the shell to find the next filename that matches 
the wildcard filename 

Reads the value of a shell variable 
Sends a command or list of commands to the shell 
command interpreter 

Indicates whether JJO redirection has occurred 

Sets device and file for JJO redirection 
Detects a request for an early termination of the 
program 

Sends output to the console 

263 7127187 



Chapter 8: Shell Calls Apple II GS Programmer' s Workshop 

Warning: Call numbers $0100 through $OIFF are reserved. Be careful to use 
only the call numbers documented here. Making calls to other, undocumented call 
numbers may have unpredicatable results. 

Making a SheJI Call 

An assembly-language calling program makes a shell call by executing a set of instructions 
and directives referred to as a shell-call block. The shell-call block contains a pointer to 
a parameter block. The parameter block is used for passing information between the 
calling program and the shell. Each APW language provides an easy way to execute shell 
calls; in APW Assembly Language, for example, the shell-call block is normally executed 
by an assembler macro . . The following sections discuss these aspects of shell calls. 

Note: Although shell calls are made exactly like ProDOS 16 calls, this section 
does not provide all of the information relevant to making ProDOS 16 calls. 
ProDOS 16 calls are described in the Apple lIGS ProD OS 16 Reference manual. 

This chapter assumes that you are using the APW Assembler to make shell calls. See the 
Apple IIGS Programmer's Workshop Assembler Reference for more information on the 
APW Assembler. To access shell calls from a program written in another language, see the 
manual that came with the language. 

The Call Block 

A shell-call block consists of a JSL to the ProDOS 16 entry point, followed by a 2-byte 
system call number and a 4-byte parameter block pointer. The APW Shell intercepts the 
call and determines whether it is an APW Shell call or ProOOS 16 call. If a shell call, it 
performs the requested function, if possible, and returns execution to the instruction 
immediately following the call block. If a ProDOS 16 call, the shell passes it on to 
ProD OS 16. 

When making the call, the the processor should be in full native mode. The call block 
looks like this: 

JSL P ROCOS 
DC 12 ' CALLNUM' 
DC 1 4 'PARMBLOCK' 
BCS ERROR 

ERROR 

PARMBLOCK 

Disp at c h cal l t o PraCOS 1 6 entry 
2 - b y te cal l numbe r 
4-byte paramete r b locx p o i n t er 
I f car r y s et, go to erro r hand ler 
other .... ise . conti nue. . . 

er ro r hand ler 

; pa rameter b l ock 

The call block itself consists of only the JSL instruction and the DC assembler directives. 
The BCS instruction in this example is a conditional branch to an error handler called 
ERROR. 

APDADraft 264 712 7187 



Apple lIGS Programmer's Workshop Chapter 8: Shell Calls 

Shell-Call Macros 

For each call listed in Table 9-1, there is an APW Assembler macro thaI you can use to 
make the call. The macro call consists of the name of the call (as shown in Table 9-1), with 
the address of the parameter block in lhe operand field. For example, to call the 
GET_LINFO function, use the following sequence: 

MCOPY 2/AINCLUDE / M16. SHELL; Make t he macro file available 

GET_ LI NFO PARMBLOCK 
BCS ERROR 

ERROR 

PARMBLOCK 

The Parameter Block 

The macro cal l 
If car r y s et, go t o er r o r handler 
o t he rwise , continue ... 

error handler 

p arameter b lock 

A parameter block is a specifically formatted table that occupies a set of contiguous bytes in 
memory. It consists of a number of fields that hold information that the calling program 
supplies to the shell, as well as information returned by the shell to the caller. 

Every shell call requires a valid parameter block (p ARMBLOCK in the above examples), 
referenced by a 4-byte pointer in the call block or by the operand of the macro call. You are 
responsible for constructing the parameter block for each call you make; the block may be 
anywhere in memory. Formats for individual parameter blocks accompany the detailed 
system call descriptions in this chapter. 

Types of Parameters 

Each field in a parameter block contains a single parameter. There are three types of 
parameters used by the shell: values, reSUlts, and pointers. Each is either an input to the 
shell from the caller or an output from the shell to the caller. 

• A value is a numeric quantity, one or more bytes long, thaI the caller passes to the 
shell through the parameter block. It is an input parameter. 

• A result is a numeric quantity, one or more bytes long, that the shell places into the 
parameter block for the caller to use. It is an output parameter. 

• A pointer is the 4-byte address of a location containing data, code, an address, or 
buffer space in which the shell can receive or place data The pointer itself is an 
input; that is, you always provide the pointer and reserve space for the data The data 
pointed to may be either input by your program, returned by the shell, or both. 

A given parameter may be both a value and a result. 

APDADraft 265 7127187 



Chapter 8: Shell Calls Apple II GS Programmer's Workshop 

Important: Unless noted otherwise, each string in a parameter block or pointed to 
by a parameter block consists of a length byte, which is a binary number indicating 
the number of characters in the string, followed by ASCn characters. 

Setting Up a Parameter Block in Memory 

Each APW Shell call references a parameter block, which may be anywhere in memory. 
Because all applications must obtain needed memory from the Memory Manager, an 
application cannot know in advance where the memory segment holding such a parameter 
block will be. 

There are two ways to set up a parameter block in memory. Either 

1. Code the block directly into the program, referencing it with a labeL The parameter 
block will always have the same relative location in the program code. 

or 

2. Use Memory Manager and System Loader calls to place the block in memory. 

The first method is by far the simplest and most typical way to do it. For instructions on 
using the second method, see the Apple IIGS ProDOS 16 Reference manual. 

Register Values 

There are no register requirements on entry to a shell call. The APW Shell saves and 
restores all registers except the accumulator (A) and the processor status register (P); those 
two registers store information on the success or failure of the calL On exit, the registers 
have the following values: 

A zero if the call is successful; if nonzero, the number is the error code 
X unchanged 
Y unchanged 
S unchanged 
D unchanged 
P (see below) 
DB unchanged 
PB unchanged 
PC address of location following the parameter block pointer 

Unchanged means that APW initially saves, and then restores when finished, the value the 
register had just before the shell call. 

APDADraft 266 7127187 



Apple IIGS Programmer's Workshop Chapter 8: Shell Calls 

On exit, the processor status register (P) bits are 

n undefined 
v undefined 
m unchanged 
x unchanged 
d zero 
1 unchanged 
z undefined 
c zero if the call is successfull, 1 if not 
e zero 

Call Descriptions 
This section describes each call, including its use and the contents of its parameter block. 
The possible errors returned by a call are listed at the end of each call description. The calls 
are listed here in alphabetical oIlier. Table 8.1 lists all the calls in oIlier of their call 
numbers. 

DIRECTION ($OlOF) 

A program can use this function to find out whether command-line I/O redirection has 
occurred. This information can be used by a program, for example, to determine whether 
to send fonn feeds to standard output. . 

Parameter Block: 

0 - . device 
1 

2 
3- direct 

Offset Label 

$00--$01 device 

$02-$03 direct 

APDADraft 

-

-
Description 

parameter name: device number 
size and type: 2-byte value 
range of values: $0000-$0002 

This parameter indicates which type of input or output you are 
inquiring about, as follows: 

$0000 
$0001 
$0002 

standard input 
standard output 
error output 

parameter name: direction 
size and type: 2-byte result 
range of values: $0000-$0002 

267 7127187 



Chapter 8: Shell Calls 

Possible Errors 

Apple Il GS Programmer's Workrhop 

This parameter indicates the type of redirection that has occurred, 
as follows: 

$0000 
$0001 
$()()()2 

console (default) 
printer 
disk file 

$53 Parameter out of range 

APDADraft 268 7/27/87 



'-

Apple llGS Programmer's Workshop Chapter 8: Shell Calls 

ERROR ($0105) 

When an Apple llGS tool call returns an error, your program can use this function to print 
out the name of the tool and the appropriate error message. This function makes it 
unneccessary for your program to store a complete table of error messages for tool calls. 
The error number is placed in the accumulator by the tool; you need only store the 
accumulator value in the parameter block and execute this call to print the error message to 
standard error output. 

Parameter Block: 

Offset Label 

$00-$01 error 

Possible Errors 

None 

APDADraft 

error 

Description 

parameter name: error number 
size and type: 2-byte value 
range of values: $OOOO-$FFFF 

This parameter specifies the error number returned by the tool 
call. 

269 7127187 



Chapter 8: Shell Calls Apple II GS Programmer's Workshop 

EXECUTE ($OlOD) 

This function sends a command or list of commands to the APW Shell command 
intetpreter. 

Parameter Block: 

Offset Label 

$00--$01 flag 

$02-$05 corom 

APDADraft 

0 
'- flog -

1 

2 
J- -
4- comm -
5- -

Description 

parameter name: echo command flag 
size and type: 2-byte value 
range of values: $0000 or $8000 

If you set the most significant bit of this flag to 1 (binary), a new 
variable table is not defined when the commands are executed. 
Setting this flag is similar to executing an Exec fIle with an 
EXECUTE command: if no new variable table is defmed, the 
variables defmed by the list of commands modify the current 
variable table. If this flag is set to $0000, a new variable table is 
defined for the list of commands being executed; the current 
variable table is not modified. Exec files, variables, and the 
EXECUTE command are described in the section "Exec Files" in 
Chapter 3. 

parameter name: address of command string 
size and type: 4-byte pointer 
range of values: $0000 OOOO-$ooFF FFFF 

The address of the buffer in which you place the commands. If 
you include more than one command, separate the commands 
with semicolons (;) or carriage return characters ($OD). The last 
ASCII character in the command string must be a carriage return. 
The command string has no length byte; terminate the command 
string with a null character ($00). Any output is sent to standard 
output. 

If the shell variable {Ex it} is not null and any command returns 
a nonzero error code, any remaining commands are ignored. 
Error codes and variables are described in the section "Exec 
Files" in Chapter 3. 

270 7127187 



Apple IIes Programmer's Workshop Chapter 8: Shell Calls 

Possible Errors 

Any error returned from the last command or program executed by the list 
of commands executed. 

APDADraft 271 7127187 



Chapter 8: Shell CaJ/s Apple JJ GS Programmer's Workshop 

GET LANG ($0103) 

This function reads the current language number. Language numbers are described in the 
section "Command Types and the Command Table" in Chapter 3 and are listed in 
AppendixB. 

Parameter Block: 

Offset Label 

$00-$01 lang 

Possible Errors 

None 

APDADraft 

long 3 
Description 

parameter name: language number 
size and type: 2-byte result 
range of values: $OOOO-$7FFF 

This parameter specifies the current APW language number. The 
current language number is set by the APW Editor when it opens 
an existing file or by the user with an APW Shell command. 

272 7127187 

-~ 



Apple JJCS Programmer's Workshop Chapter 8: Shell Calls 

GET LINFO ($0101) 

This function is used by an assembler, compiler, linker, or editor to read the parameters 
that are passed to it. When you make this calI, you reserve the specified amount of space 
for each parameter in the parameter block; then when the APW Shell returns control to your 
program, you can read the parameter block to obtain the information you need. 

Use the SET LINFO call when your program fmishes before executing an RTL to return 
control [0 theshell. 

Parameter Block: 

APDADraft 

0 
11-

21-
3-

4 
5-

6f-

7~ 

8 
9-

~-

B-

c_ 
c_ 
E 
F-

10 

1 

12 

13 

14 

15 

16 

17 

18 

19 

1A 

1B 

1C 

1D 

1E 

1F 

I-
I-
I-

I---
r-

r-

-

-
.file -

-
-

dfile -
-
-

perms -
-

-
Istrlng -

-
merr 

merrf 

lops 

knag 

-
mflags -

-

-
pflags -

-

-
org -

-

273 7/27/87 



Chapter 8: Shell Calls 

Offset Label 

$00-$03 sfile 

$04--$07 dfile 

$08-OB parms 

Apple II GS Programmer's Workshop 

Description 

parameter name: address of source filename 
size and type: 4-byte pointer 
range of values: $0000 OOOO--$ooFF FFFF 

The address of a 65-byte buffer into which the shell will put the 
filename of the source fIle: that is, the fIle that the compiler or 
assembler is to process. The filename can be any valid ProDOS 
16 fIlename and can be either a partial or full pathname. 

If the + E flag is set and the compiler exits due to an error, the 
compiler places the pathname of the source file in which the error 
occurred into a buffer and sets the sfile parameter in the 
SET _ LINFO call to point to that buffer. An editor can then use 
this pathname to open the source file and display it on the screen. 

parameter name: address of output filename 
size and type: 4-byte pointer 
range of values: $0000 OOOO-$OOFF FFFF 

The address of a 65-byte buffer into which the shell puts the 
filename of the output fUe (if any): that is, the file that the 
compiler or assembler writes to. The filename can be any valid 
ProDOS 16 fUename and can be either a partial or full pathname. 

parameter name: address of parameter list 
size and type: 4-byte pointer 
range of values: $0000 OOOO-$OOFF FFFF 

The address of a 256-byte buffer into which the shell puts the list 
of names from the NAMES parameter list in the APW Shell 
command that called the assembler or compiler. If there was no 
NAMES parameter list, the buffer pointed to by parms begins 
with the length byte $00. 

If the +E flag is set and the compiler exits due to an error, the 
compiler places the text of the error message into a buffer and set 
the parms parameter in the SET _ L INFO call to point to that 
buffer. An editor can then display the error message at the 
bottom of the screen. 

$OC-$OF i st ring parameter name: address of input strings 
size and type: 4-byte result 

APDADraft 

range of values: $0000 OOOO-$OOFF FFFF 

The address of a 256-byte buffer into which the shell puts the 
string of commands to be passed on to a specific language 
compiler. For example, if the COMPILE command includes the 
parameter CC= (- I!CINCLUDES ! l , the string enclosed in 
parentheses is found in that buffer when the C compiler is called. 

274 7127187 

.,~ 



Apple lies Programmer's Workshop Chapter 8: Shell Calls 

$10 rnerr 

$11 merrf 

$12 lOps 

$13 kflag 

APDADraft 

parameter name: maximum error level allowed 
size and type: I-byte result 
range or values: $00-$10 

If the maximum error level found by the assembler, compiler, or 
linker (merrf) is greater than merr, the APW Shell does not 
call the next program in the processing sequence. For example, if 
you use the ASML command to assemble and link a program, but 
the assembler finds an error level of 8 when merr equals 2, then 
the linker is not called when the assembly is complete. 

parameter name: maximum error level found 
size and type: I-byte result 
range or values: $OO--$FF 

This field is used by the SET LINFO call to retum the maximum 
error level found. In the case-of a multilanguage compile, this 
field contains the error level returned by the last compiler. The 
shell sets this field to $00 before the first compile. 

parameter name: operations flags 
size and type: I-byte result 
range or values: $00--$10 

This field is used to keep track of the operations that are to be 
performed by the system The format of this byte is 

Bit: 17 
Value: 0 

where C=Compile 
L=Link 
E=Execute 

When a bit is set (to I), the indicated operation is to be done. For 
example, the COMP ILE command sets bit 0, while the CMPLG 
command sets bits 0, I, and 2. When a compiler finishes its 
operation and returns control to the APW Shell, it clears bit 0 
unless a file with another language is appended to the source. 

parameter name: keep flag 
size and type: I-byte result 
range of values: $00-$03 

This flag indicates what shOUld be done with the output of a 
compiler, assembler, or linker, as follows: 

275 7127187 



Chapter 8: Shell Calls 

$14-$17 mflags 

$18-$IB pflags 

APDADraft 

Kflag 
Value 

$()(} 

$01 

$02 

$03 

Apple II GS Programmer's Workshop 

Meaning 

Do not save output. 

Save to an object file with the root fIlename 
pointed to by dfile. For example, ifthe output 
filename pointed to by df i Ie is PROG, the first 
segment to be executed should be put in PROG or 
PROG. ROOT and the remaining segments should 
be put in PROG . A. For linkers, save to a load 
fIle with the name pointed to by dfile (for 
example, PROG). 

The . ROOT file has already been created (by 
another language compiler, for example). In this 
case, the first fIle created by the compiler or 
assembler should end in the . A extension. 

At least one alphabetic suffix has already been 
used. In this case, the compiler or assembler 
must search the directory for the highest 
alphabetic sufftx that has been used, and then use 
the next one. For example, if PROG. ROOT, 
PROG . A, and PROG . B already exist, the 
compiler should put its output in PROG . C. 

See the section "Compilers and Assemblers" in Chapter 6 for 
more information on object-fIle naming conventions. 

parameter name: flags with a minus sign 
size and type: 4-byte result 
range of values: binary string 

This parameter passes command-line-option flags such as -Lor 
-c. The first 26 bits of these four bytes represent the letters A 
through Z, arranged with A as the most significant bit of the most 
significant byte. The bytes are ordered least significant byte first. 
The bit map is as follows: 

11000000 11111111 11111111 11111111 
YZ QRSTUVWX IJKLMNOP ABCDEFGH 

For each flag set with a minus sign in the command, the 
corresponding bit in this parameter is set to I. See the 
discussions of the AL INK and ASML commands in Chapter 3 for 
descriptions of these option flags. 

parameter name: flags with a plus sign 
size and type: 4-byte result 
range of values: binary string 

276 7/27/87 



Apple IIes Programmer's Workshop Chapter 8: Shell Calls 

$IC-$IF org 

Possible Errors 

None 

APDADrajt 

This parameter passes connnand-line-option flags such as + L or 
+C. The first 26 bits of these four bytes represent the letters A 
through Z; the bit map for this parameter is the same as for the 
mflags parameter. See the discussions of the ALINK and 
ASML commands in Chapter 3 for descriptions of these option 
flags . 

parameter name: origin 
size and type: 4-byte result 
range of values: $0000 (J()()()...$FFFF FFFF 

This parameter specifies the absolute start address of a 
nonrelocatable load file, if one has been specified. The origin is 
used only by a linker. If the + E flag is set and the compiler exits 
due to an error, the compiler puts the offset of the line containing 
the error into the org field of the SET LINFO call. An editor 
can then place that line on the fifth line-of the screen. 

277 7127187 



Chapter 8: Shell Calls Apple II GS Programmer's Workshop 

GET V AR ($010B) 

This function reads the string associated with a variable (that is, the value of the variable). 
The value returned is the one valid for the currently executing Exec file, or for the 
interactive command interpreter (if that is the command level in use). Variables and Exec 
fIles are described in the section "Exec Files" in Chapter 3. Use the SET VAR call to set 
the value of a variable. 

Parameter Block: 

0 
1- -
2- varname -
3- -
4 

51- -
61- value -
71- -

Offset Label Description 

$00-$03 varname parameter name: pointer to name of variable 
size and type: 4-byte pointer 

$04-$07 value 

Possible Errors 

None 

APDADraft 

range of values: $0000 OOOO--$OOFF FFFF 

This is a pointer to a buffer that contains the name of the variable 
whose value you wish to read. The variable name consists of a 
length byte and a string of up to 255 ASCII characters. 

parameter name: pointer to value of variable 
size and type: 4-byte pointer 
range of values: $0000 OOOO--$OOFF FFFF 

This is a pointer to a 256-byte buffer into which the shell places 
the value of the variable. The value consists of a length byte and 
a string of ASCII characters. For an undefined variable, the 
value consists of a null string (that is, the length byte is $(0). 

278 7127187 



...... _. 

Apple IIGS Programmer's Workshop Chilpter 8: Shell Calls 

IN IT WILDCARD ($0109) 

This function provides to the APW Shell a fIlename that can include a wildcard character. 
The shell can then search for fIlenames matching the fIlename you specified when it 
receives a NEXT WILDCARD command. This function accepts any filename, whether it 
includes a wildcard or not, and expands device names (such as .D 1), prefix numbers, and 
the double-period ( .. ) before the filename is passed on to ProDOS 16. Therefore, you 
should call this function every time you want to search for a filename. Doing so will 
ensure that your routine supports all of the conventions for partial pathnames that the user 
expects from APW. 

Parameter Block: 

Offset Label 

$00-$03 fi 1 e 

$04-$05 flags 

APDADraft 

0 
1- -
2- "Ie -
3- -

4 
5- flags -

Description 

parameter name: address of path name 
size and type: 4-byte pointer 
range of values: $0000 OOOO-$OOFF FFFF 

This parameter specifies the address of a buffer containing a 
pathname or partial pathname that can include a wildcard 
character. Examples of such pathnames are 

A= 
/APW/MYPROGS/?ROOT 
.D2/HELLO 

When you execute a NEXT WILDCARD call, the shell finds the 
next filename that matches the filename pointed to by file. If 
the wildcard character you specified was a question mark (?), the 
filename is written to standard output and you are prompted for 
confmnation before the fIle is acted on or the next fIlename is 
found. The use of wildcard characters is described in the section 
"U sing Wildcard Characters" in Chapter 2. 

parameter name: prompting flags 
size and type: 2-byte value 
range of values: $0000, $4000, $8000 or $Cooo 

If the most significant bit is set, prompting is not allowed; that is 
a question mark (?) is treated as ifit were an equal sign (=). If 
the next-most significant bit is set and prompting is being used, 
only the first choice accepted by the user (that is, the first choice 

279 7127187 



Chapter 8: Shell Calls 

Possible Errors 

Apple IT GS Programmer's Workshop 

for which the user types a Y in response to the prompt) is acted 
on. The second flag is for use with commands that can act on 
only one file, such as RENAME or EDIT. 

Errors for the following ProDOS 16 and Memory Manager calls. See the Apple 
ITGS ProDOS 16 Reference manual and the Apple lIGS Toolbox Reference manual 
for descriptions of these errors. 

Open 
Read 
Close 
Dispose 
Get info 
Get end of file 
Lock 
Allocate new memory 

APDADraft 280 7/27/87 



Apple IIGS Programmer's Workshop Chapter 8: Shell Calls 

NEXT WILDCARD ($OlOA) 

Once a filename that includes a wildcard has been suppled to the shell with an 
INIT WILDCARD call, the NEXT WILDCARD call causes the shell to find the next 
filenaiiie in the directory that matches the wildcard pathname. For example, if the wildcard 
pathname specified in INIT_WILDCARD were / APW/LIBRARIES/ AINCLUDE/M16.?, 
then the first pathname returned by the shell in response to a NEXT_WILDCARD call might 
be / APW/ LIBRARIES/AINCLUDE / M16. UTIL. 

Parameter Block: 

o 
1~ -
2 ,... next1lle -

3- -

Offset Label Description 

$00-$03 next file parameter name: address of next filename 
size and type: 4-byte pointer 

Possible Errors 

None 

APDADraft 

range of values: $0000 OOOO-$OOFF FFFF 

This parameter specifies the address of the buffer to which the 
shell has returned the next filename that matches a wildcard 
ftIename. The wildcard filename is the last one specified with an 
IN IT _WILDCARD call. If there are no more matching fllenames, 
or if INIT WILDCARD has not been called, then the shell returns 
a null string (that is, a string with a length of zero). See also the 
description of INIT _WILDCARD. 

281 7/27/87 



Chapter 8: Shell Calls Apple II as Programmer's Workshop 

READ INDEXED ($0108) 

You can use this function to read the contents of the variable table for the command level at 
which the call is made. To read the entire contents of the variable table. you must repeat 
this call, incrementing the index number by 1 each time. until the entire contents have been 
returned. 

Parameter Block: 

o 

2 

3 

4 

5 

6 

7 

8 

9 

... 
-
-

r 

-
-
-

-
varnome -

-, 

-
value -

-

Index -

Offset Label Description 

$00-$03 varname parameter name: pointer to name of variable 
size and type: 4-byte pointer 

$04-$07 value 

$08-$09 index 

Possible Errors 

APDADraft 

range of values: $0000 OOOO-$OOFF FFFF 

This is a pointer to a 256-byte buffer into which the shell is to 
place the name of the next variable in the variable table. The 
variable name consists of a length byte and a string of ASCII 
characters. A null string is returned when the index number 
exceeds the number of variables in the variable table. 

parameter name: pointer to value of variable 
size and type: 4-byte pointer 
range of values: $0000 OOOO-$OOFF FFFF 

This is a pointer to a 256-byte buffer into which the shell is to 
place the value of the variable. The value consists of a length 
byte and a string of ASCII characters. For an undefined variable, 
the value consists of a null string (that is, the length byte is $00). 

parameter name: index number 
size and type: 2-byte value 
range of values: $OOOO-$FFFF 

This is an index number that you provide. Stan with $01 and 
increment the number by 1 with each successive 
READ INDEXED call until there are no more values in the 
variable table. 

282 7/27/87 



Apple IIGS Programmer's Workshop Chapter 8: Shell Calls 

Errors for the following Memory Manager calls. See the Apple //GS Toolbox 
Reference manual for descriptions of these errors. 

Lock 
Unlock 

APDA Draft 283 7127187 



Chapter 8: Shell Calls Apple II GS Programmer's Workshop 

REDIRECT ($0110) 

This function instructs the shell to redirect input or output to the printer, console, or a disk 
file. 

Parameter Block: 

Offset Label 

$00-$01 device 

$02-$03 append 

$04-$07 fi 1 e 

Possible Errors 

o 
1 

2 

3 

4 

5 

6 

7 

-
-
r-
r-
r-

Description 

device -

append -

-
file -

-

parameter name: device number 
size and type: 2-byte value 
range of values: $0000-$0002 

This parameter indicates which type of input or output you wish 
to redirect, as follows: 

$0000 
$0001 
$0002 

standard input 
standard output 
error output 

parameter name: append flag 
size and type: 2-byte value 
range of values: $OOOO-$FFFF 

This flag indicates whether redirected output should be appended 
to an existing file with the same filename, or the existing file 
should be deleted frrst. If append is 0, the file is deleted; if it is 
any other value, the output is appended to the file. 

parameter name: address of filename 
size and type: 4-byte pointer 
range of values: $0000 ()()()()-$OOFF FFFF 

This parameter specifies the address of a 65-byte-long buffer 
containing the filename of the file to or from which output is to be 
redirected. The filename can be any valid ProDOS 16 filename, a 
partial or full pathname, or the device names .PRINTER or 
.CONSOLE. 

$53 Parameter out of range 

APDADraft 284 7127187 



Apple llGS Programmer's Workshop Chapter 8: Shell Calls 

Errors for the following ProDOS 16 calls. See the Apple llGS ProD OS 16 
Reference manual and the Apple llGS Toolbox Reference manual for descriptions 
of these errors. 

Open 
Close 
Read 
Write 
Get end of file 

APDADraft 285 7/27/87 



Chapter 8: Shell Calls Apple 1/ GS Programmer's Workshop 

SET LANG ($0104) 

This function sets the current language number. Language numbers are described in the 
section "Command Types and the Command Table" in Chapter 3 and are listed in 
Appendix B. 

Parameter Block: 

Offset Label 

$00-$01 lang 

Possible Errors 

lang 

Description 

parameter name: language number 
size and type: 2-byte value 
range of values: $OOOO-$7FFF 

This parameter specifies the APW language number to which the 
current APW language should be set. If the language specified is 
not installed (that is, not listed in the command table), the 
"Language not available" error is returned. 

$80 Language not available 

APDADraft 286 7/27/87 

-- -... 



'~ --

Apple llGS Programmer's Workshop Chapter 8: Shell Calls 

SET LINFO ($0102) 

This function is used by an assembler, compiler, linker, or editor to pass parameters to the 
APW Shell before returning control to the shell. It can also be used by a shell program 
under which you are rulUling APW to pass parameters to the APW Shell. 

Use the GET LINFO calI to read parameters passed to your assembler, compiler, linker, or 
editor. -

Important: Memory buffers pointed to by parameters in the SET LINFO 
parameter block must be in static segments that are loaded when your program is 
launched. The APW Shell does not unload your program's static segments until 
after it has processed the SET LINFO call. 

Parameter Block: 

APDADraj't 287 7/27/87 



Chapter 8: Shell Calls 

Offset Label 

$00-$03 sfile 

APDADrafl 

Apple II GS Programmer's Workshop 

a 
1-

2-

3-

4 
5-

6 r 
71-

8 

9"" 
A"" 
B"" 
C

r 
C,.. 
E 
f-

1 

10 

1 

12 

13 

14 

15 

16 

17 

18 

19 

lA 

lB 

IC 

lD 

IE 

If 

-
-
-
r 
r 

"" 
"" 
"" 
"" 

Description 

-
sflle -

-

-
dnle -

-

-
perms -

-
-

istrlng -
-

merr 

merrf 

lops 

knog 

-
mflogs -

-

-
pnogs -

-
-

org -
-

parameter name: address of source filename 
size and type: 4-byre pointer 
range of values: $0000 OOOO-$OOFF FFFF 

This parameter specifies the address of a buffer into which the 
compiler has placed the pathname of the next source file, if any: 
that is, the next file that a compiler or assembler is to process. 
Your compiler may have obtained this pathname from an 
APPEND directive, for example. The flIename can be any valid 
ProDOS 16 flIename and either a panial or full pathname. 

288 7127187 



Apple IIGS Programmer's Workshop Chapter 8: Shell Calls 

$04-$07 df ile 

$08-{)B parms 

If the +E flag is set and the compiler exits due to an error, the 
compiler should place the pathname of the source file in which the 
error OCCUlTed into a buffer and set the sfile parameter to point 
to that buffer. The editor uses this pathname to open the source 
file and display it on the screen. 

parameter name: address of output filename 
size and type: 4-byte pointer 
range or values: $0000 {)()()()-$OOFF FFFF 

This parameter specifies the address of a buffer into which your 
program has placed the pathname of the output file (if any): that 
is, the fIle that the compiler or assembler writes to. The fIlename 
can be any valid ProDOS 16 fIlename and either a partial or full 
pathname. 

parameter name: address of parameter list 
size and type: 4-byte pointer 
range or values: $0000 OOOO--$OOFF FFFF 

This parameter specifies the address of a buffer containing the list 
of names from the NAMES= parameter list in the APW Shell 
command that called the assembler or compiler. Because the 
compiler can remove or modify these names as it processes them, 
this list can be different from the one received through the 
GET LINFO call. 

If the + E flag is set and the compiler exits due to an error, the 
compiler should place the text of the error message into a buffer 
and set the pa rms parameter to point to that buffer. The editor 
can then display the error message at the bottom of the screen. 

$OC-$OF istring parameter name: address of input strings 
size and type: 4-byte pointer 

$10 merr 

APDADraft 

range or values: $0000 OOOO--$OOFF FFFF 

This parameter is a placeholder for the address of a buffer 
containing the string of commands passed to the compiler. 
Because this command string is not reused by the shell, it is not 
necessary to pass it back to the shell with the SET LINFO call. 

parameter name: maximum error level allowed 
size and type: I-byte value 
range or values: $@-$10 

If the maximum error level found by the assembler, compiler, or 
linker (merrf) is greater than merr, the shell does not call the 
next program in the processing sequence. For example, if you 
use the ASML command to assemble and link a program, but the 
assembler fmds an error level of g when me rr equals 2, then the 
linker is not called when the assembly is complete. 

289 7127187 



Chapter 8: Shell Calls 

$11 merrf 

$12 lops 

$13 kflag 

APDADraft 

Apple II GS Programmer's Workshop 

parameter name: maximum error level found 
size and type: I-byte value 
range of values: $OO--$FF 

This field is used by the SET LINFO call to return the maximum 
error level found. If merrf Is greater than merr, no further 
processing is done by the shell. If the high bit of merrf is set, 
merrf is considered to be negative; a negative value of me rrf 
indicates a fatal error (normally, all fatal errors are flagged as 
merrf = $FF). In this case, processing terminates 
immediately. See also the discussion of the org parameter. 

parameter name: operations flags 
size and type: I-byte value 
range of values: $00--$10 

This field is·used to keep track of the operations that have been 
performed by the system The format of this byte is 

Bit : 17 
Value: 0 

where C=Compile 
L=Link 
E=Execute 

When a bit is set (to 1), the indicated operation is to be done. 
When a compiler finishes its operation and returns control to the 
shell, it clears bit 0 unless a file with another language is 
appended to the source. When a linker returns control to the 
shell, it clears bit 1. When you execute the APW Linker by 
compiling a LinkEd file, the linker clears bits 0 and 1. 

parameter name: keep flag 
size and type: I-byte value 
range of values: $00--$03 

This flag indicates what should be done with the output of a 
compiler, assembler, or linker, as follows: 

290 7127187 



Apple llGS Programmer's Work.slwp Chapter 8: Shell Calls 

$14-$17 mflags 

APDADraft 

Kflaq 
Value 

$00 

$01 

$02 

$03 

Meaning 

Do not save output. 

Save to an object file with the root filename 
pointed to by dfile. For example, if the output 
filename pointed to by df ile is PROG, the first 
segment to be executed should be put in PROG or 
PROG. ROOT and the remaining segments should 
be put in PROG. A. For linkers, save to a load 
file with the name pointed to by dfile (for 
example, PROG). A compiler or assembler will 
never set kf1ag to $01, but a shell program 
calling APW might use this value. 

The . ROOT fIle has already been created. In this 
case, the first file created by the next compiler or 
assembler should end in the . A extension. 

At least one alphabetic suffix has been used. In 
this case, the compiler or assembler must search 
the directory for the highest alphabetic suffix that 
has been used, and then use the next one. For 
example, if PROG . ROOT, PROG . A, and 
PROG. B already exist, the compiler should put 
its output in PROG . C. 

When the compiler or assembler passes control back to the shell, 
it should reset kflag to indicate which object flies it has written; 
for example, if it found only one segment and created a . ROOT 
flIe but no . A flIe, then kflag should be $02 in the 
SET _ LINFO call. See the section "Compilers and Assemblers" 
in Chapter 6 for more infonnation on object-flIe naming 
conventions . . 

parameter name: flags with a minus sign 
size and type: 4-byte value 
range of values: binary string 

This parameter passes command-line-option flags such as - L or 
-c. The first 26 bits of these four bytes represent the letters A 
through Z. arranged with A as the most significant bit of the most 
significant byte. The bytes are ordered least significant byte first. 
The bit map is as follows: 

11000000 11111111 11111111 11111111 
YZ QRSTUVWX IJKLMNOP ABCDEFGH 

For each flag set with a minus sign in the command, the 
corresponding bit in this parameter is set to 1. See the 
discussions of the AL INK and ASML commands in Chapter 3 for 
descriptions of these option flags. 

291 7/27/87 



Chapter 8: Shell Calls Apple Il GS Programmer's Workshop 

$18- $IB pflags parameter name: flags with a plus sign 
size and type: -4-byte value 

$IC-$IF o rg 

Possible Errors 

None 

APDADraft 

range of values: binary string 

This parameter passes command-line-option flags such as + L or 
+C. The first 26 bits of these four bytes represent the letters A 
through Z; the bit map for this parameter is the same as for the 
mfl a gs parameter. See the discussions of the ALINK and 
ASML commands in Chapter 3 for descriptions of these option 
flags. 

parameter name: origin 
size and type: 4-byte value 
range of values: $0000 OOOO-$FFFF FFFF 

This parameter specifies the absolute start address of a 
nonrelocatable load file, if one has been specified. The origin is 
used only by the linker. If the +E flag is set and the compiler 
exits due to an error, the compiler should put the offset of the line 
containing the error into the org field. The editor can then place 
that line on the fifth line of the screen. 

292 7/27/87 



Apple lieS Programmer's Workshop Chapter 8: Shell Calls 

SET V AR ($0106) 

This function sets the value of a variable. If the variable has not been previously defined, 
this function defines it. Variables are described in the section "Exec Files" in Chapter 3. 
Use the GET VAR call to read the current value of a variable and the READ INDEXED call 
10 read a variable table. -

Parameter Block: 

0 
1- -
2- vanome -
3- -
4 
5- -
6- value -
7~ -

Offset Label Description 

$00-$03 varname parameter name: pointer to name of variable 
size and type: 4-byte pointer 
range of values: $0000 OOOO-$OOFF FFFF 

This is a pointer to a buffer in which you place the name of the 
variable whose value you wish to change. The name is an ASCII 
string. 

$04-$07 value 

Possible Errors 

parameter name: pointer to value of variable 
size and type: 4-byte pointer 
range of values: $0000 ~$OOFF FFFF 

This is a pointer to a buffer in which you place the value to which 
the variable is to be set. The value is an ASCII string. 

Errors for the following Memory Manager calls. See the Apple lieS Toolbox 
Reference manual for descriptions of these errors. 

Lock 
Unlock 
Grow 
New 

APDADraft 293 7127187 



Chopter 8: Shell Calls Apple II GS Programmer's Workshop 

STOP ($0113) 

This function lets your application detect a request for an early tennination of the program. 
The stop flag is set when the keyboard buffer is read after the user presses Apple-Period 
(0-.). 

Parameter Block: 

Offset Label 

$00-$01 stop 

Possible Errors 

None 

APDADraft 

stop 3 
Description 

parameter name: stop flag ' 
size and type: 2-byte result 
range of values: $0000-$0001 

This flag is set ($0001) by the shell when it finds an 
Apple-Period in the keyboard buffer. When an APW utility 
reads from the keyboard as standard input, the shell reads the 
keyboard buffer and passes the keys on to the utility. When 
standard input is not from the keyboard, the shell still checks the 
keyboard buffer for Apple-Period whenever a STOP call is 
executed. The flag is cleared ($0000) when the STOP call is 
executed, when the utility program is terminated, or when 
windows are switched so that the utility program is no longer 
active. . 

See the section "Conventions" in Chapter 6 for a routine that both 
checks for Apple-Period and pauses output to the screen when a 
key is pressed. 

294 7/27/87 



Apple IIGS Programmer's Workshop Chapter 8: Shell Calls 

VERSION ($0107) 

This function returns the version of the APW Shell that you are using. 

Parameter Block: 

o 
11- -
2 - version -

3- -

Offset Label Description 

$00-$03 version parameter name: version number 
size and type: 4-byte result 
range of values: $0000 ()()()()....$3939 3939 

A four-byte ASCn string specifying the version number of the 
APW Shell that you are using. The initial release returns 10 
followed by two space characters ($3130 2020), to indicate 
Version number 1.0. 

Possible Errors 

None 

APDADraft 295 7127187 



Chapter 8: Shell Calls Apple II OS Programmer's Workshop 

WRITE_CONSOLE ($OllA) 

This function writes a character to the Pascal console driver. The resulting output is not 
redirectable, so you can use this function to echo keyboard input and to send messages that 
must appear on the screen. 

Parameter Block: 

Offset Label 

$00-$01 ochar 

Possible Errors 

None 

APDADraft 

ochar 

Description 

parameter name: output character 
size and type: 2-byte value 
range of values: $OOOG-$OOFF 

A two-byte value specifying a character to write on the screen. 
The low byte of the value is sent to the Pascal console driver. 

296 7/27/87 



Appendixes 





Apple IIGS Programmer's Workshop Appendix A: Contents of an APW Disk 

Appendix A 

Contents of the APW Disks 
The following files should all be present on your APW system disks. 

/APW Disk 
Directory or File 
/APW/ 

PRODOS 
SYSTEM/ 

P8 . 
P16 
START 
SYSTEM. SETUP / 

TooLS/ 

DESK.ACCS/ 
DRIVERS/ 
FONTS/ 

APW/ 
SYSTEM/ 

LOGIN 
SYSHELP 
EDITOR 
SYSCMND 

SYSTABS 

SYSEMAC 
LANGUAGES/ 

LINKED 
ASM65816 

WORK/ 
LIBRARIES/ 

AINCLUDE/ 
APW.SYS16 
UTILITIES/ 

INIT 
INSTALL 
CRUNCH 
DO 
MACGEN 
XOo 

INSTALL2 
INSTALLHD 

APDADraft 

Description 
APW directory. 
ProDOS system startup. 
Operating system subdirectory. 
ProDOS 8 operating system 
ProDOS 16 operating system and System Loader. 
The Program Launcher. 
A subdirectory containing system programs to be executed at 

system startup time. 
A subdirectory containing all the RAM-based Apple IIOS tool 

sets. 
A subdirectory containing Apple IIOS desk accessories. 
A subdirectory containing device drivers. 
A subdirectory containing fonts. 
A subdirectory containing APW files. 
A subdirectory containing APW system files. 
APW command file executed on startup. 
Help screen for the editor. 
APWEditor. 
List of APW command names and command numbers. You can 

edit Ihis file to add or delete commands. 
Editor defaults file. You can edit this file to set editor defaults 

for any APW language. 
Editor macro file. 
APW languages subdirectory. All compilers must be installed 

in this subdirectory. 
APWLinker. 
APW Assembler. 
Subdirectory for APW temporary work files. 
Subdirectory for library files . Linker libraries made with the 

MakeLib program should go in here. 
Subdirectory of assembler macro files and global equates files. 
The APW Shell program. 
APW utilities subdirectory. 
Formats disks. 
Installs APW on a hard disk. 
Combines object files into a single file. 
Used during APW installation. 
Makes custom macro files. 
Used during APW installation. 
Installation routine. 
Installation routine. 

297 7/27/87 



Appendix A: Contents of an APW Disk Apple [[GS Programmer's Workshop 

/APWU Disk 
/APWU 

/UTILITIES 
HELP/ 

DO 
XDO 
MAKEBIN 
INIT 
DUMPOBJ 
MAKE LIB 
CRUNCH 
MACGEN 
COMPACT 
CANON 
EQUAL 
FILES 
SEARCH 
CANON.DICT 
INSTALL 
DEBUG 
VERSION 

INSTALLHD 
INSTALL2 

APDADraft 

APW utilities volume. 
APW utilities subdirectory. 
Help-file subdirectory. This directory contains one help file for 

each APW command. 
Installation routine. 
InstaIlation routine. 
Creates BIN files from load flies. 
Fonnats disks. 
APW object-module-fonnat file dump routine. 
Creates library files. 
Combines object files into a single flIe. 
Makes custom macro files. 
Makes load files more compact. 
Canonical spelling checker. 
Compares files and directories. 
Lists directories. 
Searches for specified character sDiog. 
Dictionary for Canon utility. 
Installation routine. 
Message about debugger. 
Displays version number of APW. 
InstaIlation routine. 
Installation routine. 

298 7/27/87 



Apple lICS Programmer's Workshop Appendix B: Command Swnmary 

Appendix B 

Command Summary 
This appendix lists the currently defmed APW language types and summarizes the 
commands used in the APW Shell, Exec files, APW Editor, and LinkEd fIles. 

The following notation is used to describe commands: 

The following notation is used to describe commands: 

UPPERCASE Uppercase letters indicate a command name or an option that must 
be spelled exactly as shown. The shelI is not case sensitive; that is. 
you can enter commands in any combination of uppercase and 
lowercase letters. Segment names are case-sensitive. In case­
sensitive languages, segment names must be entered exactly as they 
appear in the source code. Segment names in case-insensitive 
languages must be entered in uppercase. 

italics 

directory 

filename 

pathname 

AlB. 

[ J 

APDADraft 

Italics indicate a variable. such as a filename or address. 

lbis parameter indicates any valid directory patbname or partial 
pathname. It does fWt include a fIlename. If the volume name is 
included, directory must start with a slash (I); if directory does not 
start with a slash. the current prefix is assumed. 

The device names. 01 •. 02, ... ,. Dn can be used for volume 
names. ProDOS 16 prefix numbers can be used for directory 
prefixes. If you use a device name or prefix number, do not precede 
it with a slash. 

This parameter indicates a fIlename, fWt including the prefix. The 
unit names. CONSOLE and. PRINTER can be used as filenames. 

lbis parameter indicates a full pathname. including the prefix and 
filename, or a partial patbname, in which the current prefix is 
assumed. A full pathname (including the volume name) must begin 
with a slash (I); do fWt precede pathname with a slash if you are 
using a partial pathname. 

The device names . CONSOLE and . PRINTER can be used as 
fIlenames, the device names. 01, .02, .... On can be used for 
volume names, and ProDOS 16 prefix numbers can be used for 
prefixes. 

A vertical bar indicates a choice. For example, + L I - L indicates 
that the command can be entered as either + L or as - L. 

An underlined choice is the default value. 

Parameters enclosed in square brackets are optional. 

Ellipses indicate that a parameter or sequence of parameters can be 
repeated as many times as you wish. 

299 7/27/87 



Appendix B: Command Summary Apple IleS Programmer's Workshop 

Vertical ellipses indicate that any number of commands can be 
insened between the two commands shown. 

Language Types 
The following language types are currently assigned. The inclusion of a language on this 
list does not necessarily imply that the language compiler exists or ever will exist for APW. 
For a complete list of currently-assigned language types, see Apple llGS Technical Note 
#20. 

Language Number Use 

ASM65 02 2 6502 Assembler 
ASM65 8 1 6 3 65816 Assembler 
BASIC 4 APWBASIC 
BWBASIC 9 Byte Works BASIC 
BWC 8 Byte Works C 
BWPASCAL 5 Byte Works Pascal 
CC 10 APWC 
COMMAND 12 APW command-processor window 
EXEC 6 conunand file 
LINKED 9 APW Linker command language 
PASCAL 11 APWPascal 
PRODOS 0 ProDOS 16 text file (ProDOS 16 file type $04) 
SMALLC 7 Byte Works small C 
TEXT 1 APW text file 
TMLPASCAL 30 TMLPascal 

If you are a certified Apple developer and you need a new language number for your 
compiler, write to 

Developer Technical Support 
Mail Stop 27 T 
Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, CA 95014 

Shell 

* 
Null command, used to add comments to Exec files. 

ALIAS [alias [command]] 
Create an alias for a conunand. 

APDADra!t 300 7/27/87 

---



Apple IIGS Programmer's Workshop Appendix B: Command Summary 

ALINK [+EI-E] [+LI.::.LJ [+SI.=.5.J [+T I=.TJ [+WI::NJ filel [file2 ... J 
[ KEEP =ouifjle J 

Compile a linker command file. 

ASM65816 
Change default language to 65816 assembly language. 

ASML [+EI-EJ [+LI=LJ [+SI.=.5.J [+TI=.TJ [+wl::NJ 
filel [file2 J [ ••• ] [KEEP=ouifjle] 
[NAMES= (segl [seg2J [ ... ]) J [Ianguagel= (option ... ) 
[/anguage2= (option ... )] [ .. . J] 

Assemble and link the program. 

ASMLG [+EI-EJ [+LI.::.L] [+SI.=.5.] [+TI=.TJ [+wl::NJ 
filel [file2] [ ... J [KEEP~ouifileJ 
[NAMES= (segl [seg2J [ ... J)] [languagel= (option ... ) 
[Ianguage2= (option ... ) J [ ••• JJ 

Assemble, link, and go (run the program). 

ASSEMBLE [+EI-EJ [+LI.::.LJ [+SI.=.5.J I+TI=.T] [+WI::N] 
filel rJile2] I ... J IKEEP=ou(fjleJ 
[NAMES= (segl [seg2] [ ... ])] [Ianguagel= (option ... ) 
[Ianguage2= (option ... )] [ ... J] 

Assemble the program. 

BREAK 

Tenninate the innermost FOR, LOOP, or IF statement currently executing. 

CANON [+A I.=A] [+C n] [+S I.=.5.J dictionary [inpuifjle] 
Compare the spelling of words in the input me with words in the dictionary file and replace 
with canonical spelling in the dictionary file. 

CAT [pathnameJ 
List the specified directory. 

CATALOG Ipathname] 
List the specified directory. 

CC 
Change default language to APW C. 

CHANGE pathname language 
Change the language type of an existing source file. 

CMPL [+EI-E] [+LI=LJ [+SI.=.5.] [+TI=.TJ [+WI::N] 
filel [file2] [ ... J [KEEP=ou(fjleJ 
[NAMES= (segl [seg2J [ ... ])] [language1= (option ... ) 
[/anguage2= (option ... ) J [ ... J J 

Compile and link the program. 

APDADraft 301 7127187 



AppendixB: Command Swnmary Apple IIGS Programmer's Workshop 

CMPLG [+EI-E] [+LI.::L] [+SI=.S.] [+TI=I] [+WI.::N] 
filel [file2] [ ... ] [KEEP=ouifjle] 
[NAMES= (segl [seg2] [ ... ])] [Ianguagel= (option ... ) 
[/anguage2= (option ... )] [ ... ]] 

Compile, link, and go (run the program). 

COMMANDS pathname 
Read the command table. 

COMMENT 

Null command, used to add comments to Exec files. 

COMPACT infile [-0 ouifile] [-P] [-R] [-S] 

Convert a load file to the most compact fonn provided for by the object module format. 

COMPILE [+EI-E] [+LI.::L] [+SI=.S.] [+T I=I] [+WI.::N] 
filel [file2 J [ .•• ] [KEEP=ouifjle] 
[NAMES= (segl [seg2] [ ... ])] [languagel= (option ... ) 
[/anguage2= (option ... )] [ ... ]] 

Compile the program. 

CONTINUE 

Cause control to skip over following statements to the next END statement. 

COpy [-C] pathnamel [pathname2] 
COpy [-D] volwnel volwne2 
Copy a file to a fIle, a file to a directory, a directory to a directory, or do a block copy of a 
disk. 

CREATE directoryl [directory2 ... ] 
Create one or more new subdirectories. 

CRUNCH rootname 
Combine object modules fonned by partial compiles or assemblies into a single file. 

DEBUG 

Execute the Apple nos Debugger program, if available. 

DELETE [-C] pathnamel [pathname2 ... ] 
Delete a file or files. 

DISABLE DINIWIRpathnamel [pathname2 ... ] 
Disable file atuibutes. 

DUMPOBJ [+X] [+D] [-H] [-0] [-F] [-M] [-I] [-A] [-L] [-S] 
pathame [NAMES= (segl seg2 ... )] 

List the contents of an OMF file to standard output. 

APDADraft 302 7127187 



Apple I/GS Programmer's Workshop Appendix B: Command Summary 

ECHO string 
Write a message to the screen. 

EDIT palhname 
Edit an existing file or open a new file. 

ELSE 

Pan of an IF-END command sequence. 

ELSE IF 

Pan of an IF-END command sequence. 

ENABLE DIN I B I W I R palhnameJ [palhname2 ... J 
Enable file attributes. 

END 

Terminate a FOR, IF, or LOOP command sequence. 

EQUAL L±D.I-D J L±M I-M] [+N n J [+P 1.::£] [±I.I-T] palhameJ parhname2 
Compare two ftIes or directories for data equality and show differences in file dates or 
types. 

EXEC 

Change default language to EXEC command language. 

EXECUTE parhname [param/isl] 

Execute an Exec file at present command level. 

EXIT [number] 
Terminate execution of an Exec file. 

EXPORT [variable] 

Make the specified variable available to Exec ftles called by the current Exec file. 

FILES [+C n] [+F siring] [+LI=L] [+P 1.::£] [+RI.::B] directory 
List the contents of a directory. 

FILETYPE palhnamejilerype 
Change ftle type to the type specified. 

FOR variable [IN valueJ value2 ... 

Together with END, create a loop that is executed once for each parameter value listed. 

HELP [cominandname] 
Provide on-screen help for commands or list all available commands. 

HISTORY 
List the last 20 APW commands entered on the command line. 

APDADrafl 303 7/27/87 



Appendix B: Command Summary Apple llGS Programmer's Workshop 

IF expression 
Provide conditional branching in an Exec file. 

INSTALL volume 
INSTALL IAPW direcrory 
Install an APW distribution disk or install the I APW disk. 

IN IT [-C] device [name] 
Initialize a disk. 

LINK [+L I=L.] [+S I =.S.] [+W I-W] filel [jile2] [ ... ] [KEEP=ou!file] 
Link an object module. 

LINKED 

Change default language to the LinkEd command language, LINKED. 

LOOP 

Together with END, define a loop that repeats continuously until a BREAK or EXIT 
command is encountered. 

MACGEN [K I -C] infile ourjile macrofilel [macrofile2 ... ] 
Generate a macro library for a specific program. 

MAKEBIN loadfile [binfile] [ORG=va/] 

Convert a ProDOS 16 load file (file type $B5 only) to a ProDOS 8 binary load file (file type 
$06). 

MAKELIB [-F] [-D] libfile [+objecrjile ... ] [-objecrjile ... ] [Aobjecrjile ... ] 
Generate or edit a library file. 

MOVE [-C] parhnamel [parhname2] 
Move a fIle and rename it. 

MOVE [-C] pathname [directory] 
Move a file without renaming it. 

MU 
An alias for PREFIX 6 IAPWU/UTILITIES; defmed in the LOGIN file for running 
APW on floppy disks. 

PREFIX [n] directory [I] 
Change the default prefixes. 

PRODOS 
Change default language to ProDOS 16 text (file type $04). 

QUIT 

Quit APW. 

APDADraft 304 7/27/87 

"--, 



Apple lies Programmer's Workshop Appendix B: Command Summary 

RENAME pathnamel pathname2 
Change a filename. 

RUN [+EI-EI [+LI=LI [+SI~I [+TI~I [+WI=H) 
filel [jile2 I [ ... 1 [KEEP=outjile) 
[NAMES= (segl [seg21 [ ... 1») [lallguagel- (optioll ... ) 
[/anguage2= (option ... ) I [ ... 11 

Compile, link, and run a program; same as ASMLG or CMPLG • 

SEARCH [+c I.=.C.I [+L I.=LI [+P I~) string palhname 
Search a file or files for the string you specify. 

SET [variable [value I I 
Assign a value to a variable name. 

SHOW [LANGUAGE) [LANGUAGES I [PREFIXI [TIMEI [UNITS) 

Show languages, system default language, prefixes, time, volumes on line. 

TEXT 

Change default language to TEXT. 

TYPE [+N I=NI pathnamel [startlinel (endlinelJJ 
[pathname2 [stanline2 [endline21) ( ... JJ 

Type a file to standard output 

UMU 
An alias for PREFIX 6 4/ .. /UTILITIES, defmed in the LOGIN file for running APW 
on floppy disks. 

UNALIAS aliasl [alias2 ... ) 
Delete aliases for commands. 

UNSET variable1 [variable2 ... J 
Delete the definition of a variable. 

VERSION 
Display the version number of the copy of APW that you am using. 

Exec Files 

BREAK 

Terminate the innennost FOR or LOOP statement currendy execudng. . 

CONTINUE 

Cause control to skip over following statements 10 the next END statement. 

APDADraft 305 7127187 



Appendix B: Command Summary Apple IIGS Programmer's Workshop 

ECHO string 
Write messages to the screen. 

EXECUTE 'pathname [paramlist] 
Execute an Exec file at present command level. 

EXIT [number] 
Terminate execution of the Exec file. 

EXPORT [variable] 
Make the specified variable available to Exec files called by the current Exec file. 

FOR variable [IN valuel valueZ ... ] 

END 
Create a loop that is executed once for each parameter value listed. 

IF expression 

[ELSE I F expression] 

[ELSE] 
• 
• 

END 
Provide conditional branching in Exec files. 

LOOP 
• 
• 

END 
Define a loop thaI repeals continuously until a BREAK or EXIT command is encountered. 
The loop is also lerminated if any command in the loop returns a nonzero error status while 
the variable {EXIT} has a non-null value. 

SET [variable (value] 1 

Assign a value to a variable name. 

UNSET variablel [variable2 .. . j 
Delele Ihe definition of a variable. 

APDADraft 306 7/27187 



Apple IIes Programmer's Workshop 

Editor 
Beep the Speaker Control-G 

Beginning of Line LI-, 
LI-< 

Bouom of Screen / Page Down Conttol-Ll-I 

LI-.l. 

Appendix B: Command Summary 

Change See Search and Replace. 

Oear (j.. Delete 

Copy Control-C 
LI-C 

Cursor Down Control-I 
.l. 

Cursor Left Control-H 

Cursor Right 

Cursor Up 

Cut 

Defme Macros 

Delete Block 

Delete Character 

Delete Character Left 

Delete Line 

Delete to EOL 

APDADraft 

~ 

Control-U 
-7 

Control-K 

i 

Control-X 
LI-X 

LI-Esc 

See Clear 

Control-F 
LI-F 

Delete 
Control-D 

Control-T 
LI-T 

Control-Y 
(j..Y 

307 7127187 



Appendix B: Command Summary Apple lICS Programmer's Workshnp 

Delete Word 

End of Line 

End Macro DefInition 

Enter Escape Mode 

Execute Macro 

Find 

Help 

Insert Line 

Insert Space 

Paste 

Quit 

Quit Macro Definitions 

Remove Blanks 

Repeat Count 

Return 

Screen Moves 

Scroll Down One Line 

Scroll Down One Page 

Scroll Up One Line 

Scroll Up One Page 

Search Down 

APDADraft 

Control-W 
rJ-W 

0 -. 
0 -> 

Option-Esc 

See Tum On Escape Mode 

Option-letter 

See Search. 

0-/ 
rJ-? 

Control-B 
o -B 

O-Space bar 

Control-V 
rJ-V 

Control-Q 
rJ-Q 

Option 

Control-R 
o-R 

Ito 32767 

Return 
Control-M 

0 -1 to 0 -9 

Control-P 
O-P 

See Bottom of Screen/Page Down 

Control-O 
0 -0 

See Top of Screen/Page Up 

o-L 

308 7/27/87 



Apple lIes Programmer's Workshop 

Search Up 

Search and Replace Down 

Search and Replace Up 

Set and Clear Tabs 

Stan of Line 

Tab 

Tab Left 

Toggle Auto Indent Mode 

Toggle Escape Mode 

Toggle Insert Mode 

Toggle Select Mode 

Toggle Wrap Mode 

Top of Screen I Page Up 

Tum Off Escape Mode 

Tum On Escape Mode 

Undo Delete 

Word Left 

Word Right 

APDADraft 

Ll-K 

Ll-J 

Ll-H 

G-Tab 
Control-Ll-I 

Ll-, 
Ll-< 

Tab 
Control-I 

Control-A 
G-A 

G-Retum 
Ll-Enter 
Control-D-M 

Esc 

Control-E 
Ll-E 

Control-G-X 

Control-Ll-W 

Control-Ll-K 

Ll-i 

Control-G-_ 

Control-_ 

Control-Z 
Ll-Z 

Ll+­
Control-Ll-H 

Ll-~ 

Control-Ll-U 

309 

Appendix B: Command Summary 

7127/87 



Appendix B: Command Swnmary Apple IIGS Programmer's Workshop 

Defining Macros 
a-Esc 

~ 

letter 

Option-Delete 

Option-Esc 

Option 

APDA Draft 

Begin macro definitions. 

Display the next screen of macro definitions. 

Display the previous screen of macro definitions. 

Begin defining the macro corresponding to the letter-key letter. 
Note that letter must be displayed on the screen before you begin to 
define it. 

Delete the character to the left of the cursor. 

Terminate the macro defmition. 

Stop defining macros and return to editing the file. If you are 
currently defming a macro, press Option-Esc first to terminate the 
macro definition, and then press Option to return to the file. 

310 7/27/87 



Apple fIGS Programmers Worlc.shtJp Appendix B: Command Summary 

Keystroke Summary 

IC8y CcriaI tl CcriI:If. tl 

A lab left lab left 
8 Insert line Insert Ine 
C copy copy 
D del char left 
E toggle INert t~1nsert 
F del char del char 
G beep speaker 
H cursor left replace ~ wordlelt 
I lab eet labs 
J cursor down replace down bot scm/pg down 
K cursor~ aearch ~ top scm/page ~ 
L aearch down 
M Return toggle auto Indent 
N 
0 ~onellne ~onellne 
p down one line down one line 
Q qlJt q.it 
R remove bk:InIca remow blank, 
5 
T det Ina del line 
U CU'SOr r1ght wordr1ght 
V patte patte 
W del word del word toggle wrap 
X cut cut toggle eelect 
y del toe04 deltoeol 
Z l.I'ldo dele1e l.I'ldo delete 
? help 
DeIe1e clear 
Esc denne macros 
0 
1 J 2 
3 

~ 4 
5 

I, 6 
7 
8 
9 
< s1artoflna 
> endoflne 

turn on eecape turn off escape 

J. bot acm/pg down 
l' top acm/page ~ 

+- word left .... wordr1ght 
Tab set labs 
Return toggle auto Indent 
Enter toggle auto Indent 
Space bor Insert a scace 

APDADraft 311 7127/87 



Appendix B: Command Summary 

LinkEd 

APPEND linkedname 
Append a LinkEd source ftle. 

COP,:( linkedname 
Copy a LinkEd source ftle. 

EJECT 

Skip to a new page if printer is on. 

KEEP loadname 
Open a file for output. 

KEEPTYPEjiletype 
Set the ftle type of the load ftle produced by the linker. 

LIBRARY libname 
Search a library by object-segment naines. 

LIBRARY / LOADSELECT libname lseg 
Search a library by load-segment names. 

LINK[/ALL] objname 
Link an object ftle. 

LIST ONIQLE 
Control link-map listing. 

LOADSELECT [ / SCAN] objname lseg 

Apple lIGS Programmer's Workshop 

Include object segments with a specific load-segment name in the object file. 

OBJ vai 
Set phantom program counter. 

OBJEND 

Tum off previous OBJ. 

ORG val 
Set program counter. 

PRINTER ONlmI 
Control printed output. 

SEGMENT [ / D YNAMIC] [/ kind] segname 
Start load segment. 

SELECT [/SCAN] objname (seg/[,seg2[, ... ]]) 
Choose specific object segments. 

APDADraft 312 7/27/87 



Apple llGS Programmer's Workshop Appendix B: Command Summary 

SOURCE ON IOIT 
Control LinkEd source program listing. 

SYMBOL ONlmI 
Control symbol table OUtpUL 

APDADraft 313 7127187 



Appendix B: Command Swnmary Apple IIes Programmer's Workshop 

APDADraft 314 7127187 



'-

Apple llGS Programmer's Workshop Appendix C Error Messages 

Appendix C 

Error Messages 

Shell Errors 
When you are using the APW Shell, you can m;eive two types of errors: errors generated 
by the shell itself, and errors returned to the shell by another program. In the latter case, 
the error is preceded by the name of the program that ~ed it. For example, if the shell 
calls ProDOS 16 to open a file and ProOOS cannot find the file, the following error is 
printed on the screen: 

ProDOS: File not found 

Since the APW Shell interacts with both the user and with a variety of other programs, both 
outside of APW (such as ProOOS and the Memory Manager) and within APW (such as the 
editor), the variety and possible causeS of errors are too great to allow all possibilities to be 
listed here. If the message itself does not provide you with sufficient information to solve 
the problem, read the section of this manual that describes the operation you were trying to 
perfonn. A few hints are given here, however, for specific errors for which the cause may 
not at first be clear. 

File Not Found 

When you type a command and press Return, APW first checks the command table to see 
if it is a standard command. If the command is not in the command table, APW assumes it 
is the narne of an executable file and asks ProDOS 16 to open a file by that name in the 
current prefix. If ProDOS 16 does not find a file by that name, the message 
ProDOS: File not found is printed on the screen. This message indicates that 
ProDOS 16 could not find a file with the name of the command you typed. Check the 
prefix and spelling of your command and try again. 

The File not found error can be confusing when you have also typed a patbname as a 
parameter for the command. For example, suppose you want to edit the file MYF I LE, so 
you enter the following command: 

ED MYFILE 

Unfortunately, ED is not a valid APW command (unless you have added it 10 the command 
table yourself). APW looks in the command table for ED, doesn't find it, and calls 
ProDOS 16 to try 10 open a file named ED. ProOOS can't find the file, and the message 
File not found is printed on the screen. When you see this message, it is imponant 
to realize that the me that ProDOS 16 couldn't find is ED, 1IOt MIT I LE. 

APDA Draft 315 7127187 



Appendix C: Error Messages Apple lIes Programmer:s Workshop 

The File not found message is also printea when. you anempt to execute the Paste 
command in the editor without first executing a Copy or Cut command. When you execute 
the Paste command, the Editor looks for the flle SYSTEMP in the work prefix; this file does 
not exist unless a Copy or Paste command has been executed first. 

The ALIAS command can disable ariy ~oinInimd in 'thecommand table, resulting in a 
File not found message when you try to execute the command. See the discussion 
of the AL lAS command in Chapter 3 for details. 

Volume Not Found 

A similar problem can occur if you remove your APW disk from the disk drive or change a 
APW prefix (such as the utility prefix, prefix 6) and then try \0 execute an external 
command (such as ;lNIT) or to read a help file. In this case,ProDOS 16 cannotfind the 
directory containing the utility program or help flle,and the message 
Volume not found orpath ' not found is printed to the screen. Again, it is 
important to realize that the volume or path that could not be found is the one containing the 
utility or help file, not one used in a parameter to the command. 

For example, if you remove the APW disk from the disk drive and then enter the command 
EDIT MYFILE, ProDOS 16 cannot find the volume/APw in order to load the editor 
(I APW/ SYSTEM/EDITOR),SO it prints die message'volume not found. 

Unable to Open File 

ProDOS may be unable to open a file for a variety of reasons: the disk may be write­
protected, you may have specified a name for the file that exceeds the maximum allowed 
length (15 characters), the disk may be full, or the directory may be full (too many 
filenames in the directory), for example. 

When you name an output file using the KEEP parameter on a comrtJand line or a KEEP 
directive in the source file, you must restrict the filename to ten characters so that APW can 
append the extension ' . ROOT to the fllename. Using more than ten chl\l'acters in such a 
filename will result in a fatal assembler or compiler error (Unable to open output 
file). 

Linker. Errors 

In producing object modules, compilers and assemblers are incapable of detecting certain 
programming errors, particularly those involving conflicts among global labels, missing 
global labels, and incorrect memory allocation. It is the responsibility of the linker to fmd 
and reP'?rt those errors. 

This section lists arid describes the .error messages returned by the APW Linker. They are 
divided into two groups: nonfatal (the linker continues processing), andJatal (the linker 
stops). For nonfatal errors, the linker ;llso returns an error~level number as an indication of 
the severity of the problem that caused the error. 

APDADraft 316 7/27/87 



Apple IIGS Programmer's Workslwp Appendix C Error Messages 

When the linker finds an error in a LinkEd source fIle, it continues to check the entire 
LinkEd source fIle for errors, reports the errors, and then stops. In this case, none of the 
LinkEd commands are executed. 

Nonfatal Errors 

When the linker detects a nonfatal error, it prints 

1. the number of bytes from the beginning of the segment to the error 

2. the name of the segment that contained the error 

3. the value of the program counter where the error was detected 

4. an error message 

At the end of the link an error summary is printed, listing the number of nonfatal errors and 
the highest error level found. 

The following error levels are recognized. Refer to individual error message listings for 
further illustration of the significance of error levels. 

Level Meaning 

2 

4 

8 

General warning. There may be a problem, but no corrective action has 
been taken. 

Corrected error. The linker detected an error and has corrected it according 
to its own interpretation (Check the results o/this correction carefully!) 

Uncorrected error. The linker detected an error that it could not correct, but 
it understood enough about it to leave the proper space for correction. 

16 Uncorrected error. The linker detected an error and could not even tell how 
much space to leave. Relinking will be required when the problem is 
corrected. 

The following errors are nonfatal. The error message as it appears on the screen is printed 
in boldface, followed by the error level; an explanation and advice for correcting the error 
follow in normal text. The listing is in alphabetical order by the first word of the message. 

Addressing error [16]: 
A label could not be placed at the same location on pass two as it was on pass one. 

This error is almost always accompanied by another error, which caused this one to 
occur, correcting the other error will correct this one. If there is no accompanying 
error, check for disk errors by doing a full assembly and link. If the error still occurs, 
report the problem as a bug. 

APDADraft 317 7127187 



Appendix C: Error Messages Apple IIGS Programmer's Workshop 

Address is not in current bank [8] 
The (most-significant-truncated) bytes of an expression did not evaluate to the value of 
the current location counter. 

For short-address forms (6502-compatible), the truncated address bytes must match the 
current location counter. This restriction does not apply to long-form addresses (65816 
native-mode addressing). 

This error occurs when you use a JSR or JMP instruction to jump to a label that is not 
in the current load segment. Because in general the linker cannot know in which bank 
the target load segment will be loaded, it assumes that it will be loaded in a different 
bank from the current segment and that therefore a long address is needed. If you 
know that the two segments will be loaded into the same bank, you can prevent the 
linker from flagging this error by using the CODECHK OFF directive. 

Similarly, references to labels in a data segment named in a US ING directive cause this 
error unless: a) the data segment is linked into the same load segment as the code 
segment containing the reference, b) a long address is used to reference the label, or 
c) you use a DATACHK OFF directive. 

The CODECHK, US lNG, and DATACHK directives are described in the Apple IIGS 
Assembler Reference. 

Address is not zero page [8] 
The most significant bytes of the evaluated expression were not zero, but they were 
required to be zero by the particular statement in which the expression was used. 

This error occurs only when the statement requires a zero-page address operand (range 
= 0 to 255). 

Alignment factor must be a power of two [8] 
An alignment factor that was not a power of 2 was used in the source code. In APW 
Assembly Language, the ALIGN directive is used to set an alignment factor. 

Alignment factor must not exceed segment align factor [8] 
An aligrunent factor specified inside the body of an object segment is greater than the 
alignment factor specified before the stan of the segment. For example, if the segment 
is aligned to a page boundary (ALIGN = 256), you cannot align a portion of the 
segment to a larger boundary (such as ALIGN = 1024). 

Code exceeds code bank size [4] 
The load segment is larger than one memory bank (64K). You have to divide your 
program into smaller load segments. 

Data area not found [2] 
A US ING directive was issued in a segment, and the linker could not frod a DATA 
segment with the given name. 

Ensure that the proper libraries are included, or change the US ING directive. 

APDADraft 318 7/27/87 



Apple IIGS Programmer's Workshop Appendix C Error Messages 

Duplicate label [8] 
A label was defmed twice in the program. 

Remove one of the defInitions. 

Expression operand is not in same segment [8) 
An expression in the operand of an instruction or directive includes labels that are 
defmed in two different relocatable segments. The linker cannot resolve the value of 
such an expression. 

Evaluation stack overnow [8] 
(a) There may be a syntax error in the expression being evaluated. 

Check to see if a syntax error has also occurred; if so, correct the problem that caused 
that error. 

(b) The expression may be too complex for the linker to evaluate. 

Simplify the expression. An expression would have to be extremely complex to 
overflow the linker's evaluation stack, particularly if the expression passed the 
assembler without error. 

Expression syntax error [16] 
The format of an expression in the object module being linked was incorrect. 

This error should occur only in company with another error; correct that error and this 
one should be fIxed automatically. If there are no accompanying errors, check for disk 
errors by doing a full assembly and link. If the error still occurs, report the problem as 
a bug. 

Invalid operation on relocatable expression [8) 
The APW Linker can resolve only certain expressions that contain labels that refer to 
relocatable segments. The following types of expressions cannot be used in an 
assembly-language operand involving one or more relocatable labels: 

• a bit-by-bit NOT 
• a bit-by-bit OR 
• a bit-by-bit EOR 
• a bit-by-bit AND 
• a logical NOT, OR, EOR, or AND 
• any comparison «, >, <>, <=, >=, ==) 
• mulitplication 
• division 
• integer remainder (MOD) 

The following types of expressions involving a bit-shift operation camwt be used: 

• The number of bytes by which to shift a value is a relocatable label. 
• A relocatable label is shifted more than once. 
• A relocatable label is shifted and then added to another value. 

• You cannot use addition where both values being added are relocatable (you can 
add a constant to a relocatable value). 

APDA Draft 319 7127187 



Appendix C: Error Messages Apple lIes Programmer's Workshop 

• You cannot subtract a relocatable value from a constant (you can subtract a constant 
from a relocatable value). 

• You cannot subtract one relocatable value from another defmed in a different 
segment (you can subtract two relocatable values defined in the same segment). 

Only JSL can reference dynamic segment [8] 
You referenced a dynamic segment in an instruction other than a JSL. Only a JSL can 
be used to reference a dynamic segment. 

You can suppress this error by using the DYNCHK OFF directive, as described in the 
Apple lIeS Assembler Reference. 

ORG Location has been passed [16] 
The linker encountered an ORG directive for a location it had already passed. 

Move the segment to an earlier position in the program. This error applies only to 
absolute code, and should therefore be rarely encountered when writing for the 
Apple IIGs. 

Relative address out of range [8] 
The given destination address is too far from the current location. 

Change the addressing mode or move the destination code closer. 

Segment header MEM directive not allowed [16] 
The MEM directive cannot be used in a relocatable segment. , . 

Segment header ORG not allowed [16] 
If there is no ORG specified in the LinkEd file or at the beginrung of the source code, 
you cannot include an ORG within the program. The linker generates relocatable code 
unless it finds an ORG before the start of the flist segment. Once some relocatabie code 
has been generated, the linker cannot accept an ORG. 

Shift operator is not allowed on JSL to dynamic segment [8] 
The operand to a JSL includes the label of a dynamic segment that is acted on by a bit­
shift operator. You probably typed the wrong character, or used the wrong label by 
mistake. 

Undefined opcode [16] 
The linker encountered an instruction that it does not understand. There are four 
possible reasons: 

1. The linker is an older version than that required by the assembler or compiler, in 
this case, a Linker Vers ion Mismatch error should have occurred also. Update 
the linker. 

2. An assembly or compilation error caused the generation of a bad object module. 
Check and remove all assembly/compilation errrors. 

3 . The object module file has been physically damaged. Recompile to a fresh disk. 

APDADraft 320 7127187 



Apple IIQS Programmer's Workshop Appendix C Error Messages 

4. There is a bug in the assembler, compiler, or linker. Please repon the problem for 
correction. 

Unresolved reference [8] 
The linker could not find a segment referenced by a label in the program. 

If the label is listed in the global symbol table after the link, make sure the segment that 
references the label has issued a US ING directive for the segment that contains the 
label. Otherwise, correct the problem by (I) removing the label reference, (2) defining 
it as a global label, or (3) defming it in a data segment. 

Fatal Errors 

There are two kinds of fatal errors: for many fatal errors, the linker continues processing. 
It prints the error message, waits for a keypress, and then quits. For some others, the 
linker prints the error message, continues to process the file to search for other errors, and 
then quits without writing a load file. 

The following errors are fatal. The error message as it appears on the screen is printed in 
boldface; an explanation follows in normal tex!. The listing is in alphabetical order by the 
first word of the message. 

Cannot change languages. 
An AP PEND or COP Y command in a LinkEd file has called a file that is not a LinkEd 
file . 

LinkEd has to be the last language processed in an assembly or compile; you cannot 
append a source file to a LinkEd file. 

Could not open file filename. 
ProDOS 16 could not open the filejilename, which you specified in the command line 
or LinkEd command. 

Check the prefix and the spelling of the filename you specified. Make sure the file is 
present on the disk and that the disk is not write-protected. 

Could not overwrite existing file filename. 
The linker is only allowed to replace an existing output file if the file type of the output 
file is one of the executable types. It is not allowed to overwrite a TXT, SRC, or OBJ 
file. 

Could not write the Keep file filename. 
A ProDOS error occurred while the linker was trying to write the output file jilename. 

This error is usually caused by a full disk. Otherwise, there may be a bad disk or disk 
drive. 

APDADrq[t 321 7127187 



Appendix C: E"or Messages Apple IIGS Programmer's Workshop 

Dictionary file could not be opened. 
The dictionary file is a temporary file on the work prefix that holds information destined 
for the load fIle's relocation dictionary. For some reason, this file could not be opened. 

Use the SHOW PREFIX command to Imd out what the work prefix is. Perhaps you 
have assigned the work prefix to a RAM disk, but do not have a RAM disk on-line. 
Have you removed the volume containing the work prefix from the disk drive? Is the 
disk write-protected? 

Expected 'e. 
The left parenthesis is missing from the list of segments in the LinkEd SELECT 
command. 

Expression recursion level exceeded. 
It is possible for an expression to be an expression itself; therefore, the expression 
evaluator in the linker is recursive. Generally, this error occurs when the recursion nest 
level exceeds ten. This should not happen very frequently. If it does, check for 
expressions with circular definitions, or reduce the nesting of expressions. 

File name expected. 
A fIlename is missing from a parameter or command that requires one, such as the 
KEEP parameter in the ASML command or the LINK command in a LinkEd file. 

File read error. 
An I/O error occurred when the linker tried to read a file that was already open. 

This error should never occur. There may be a problem with the disk drive or with the 
file. You might have removed the disk before the link was complete. 

File not found filename. 
The file filename could not be found. 

Check the prefix and spelling of the filename in both the KEEP directive and the LINK 
command. Make sure the . ROOT or . A file has the same prefix as the file specified in 
those commands. 

Illegal command. 
The linker does not recognize a command in your LinkEd fIle. 

The offending LinkEd source line is printed out with an arrow pointing to the command 
in question. Check the spelling and syntax of the commands in your LinkEd file. 

Illegal header value. 
The linker checks the segment headers in object files to make sure they make sense. 
This error means that the linker has found a problem with a segment header. 

This error should not occur. Your file may have been corrupted, or the assembler or 
compiler may have made an error. 

APDADrajt 322 7127187 



Apple lIes Programmer's Workshop Appendix C Error Messages 

Illegal segment structure. 
There is something wrong with an object segment. 

This error should not occur. Your file may have been corrupted, or the assembler or 
compiler may have made an error. 

Invalid file name filename. 
There is an illegal character in a filename, or you have used a filename that is longer 
than 15 characters. 

Check the shell command or LinkEd file you used to call the linker and any KEEP 
directive in the source file to find the bad filename. 

Invalid file type filename. 
The file filename is not an object file or library file. 

Check the shell command line or LinkEd file to make sure you dido 't list any files that 
are not object fIles or library files. Check your disk directory to make sure there isn't a 
nonobject file with the same root filename as a file you are linking. For example, if you 
are linking object ftles named MYFILE • ROOT and MYFILE. A, make sure there is no 
(unrelated) file on the disk with the name MYFILE. B. 

Invalid keep type. 
The linker can generate several kinds of output ftles. The type of the output ftle must 
be one of the executable types. Since it is possible to set the keep type with a shell 
variable, this error can occur from a command-line call as well as from a LinkEd 
command. 

Invalid segment name. 
A segment name in your source file or named in a LinkEd SELECT command is not 
valid. 

Object-segment names can be up to 255 characters long and must start with a letter. an 
underscore U, or a tilde (-). The remaining characters must be alphanumeric or an 
underscore or tilde. Load-segment names follow the same rules as object-segment 
names, but they cannot be longer than ten characters. 

Linker version mismatch. 
The object-module-format version of the object segment is more recent than the version 
of the linker you are using. 

Get the latest version of APW from the AP.D.A. 

Must be an object file filename. 
The file filename is not an object me or a library me. 

Multiple KEEP's not allowed. 
Only one KEEP directive or parameter is allowed per link. 

Make sure there is only one KEEP in your linkEd file, and that there is not a KEEP 
both in your shell command line and the linkEd fIle. 

APDA Draft 323 7/27/87 



Appendix C: E"or Messages Apple IIGS Programmer's Workshop 

Must be an object file. 
A fIle you specified for linking is not an object file. 

Check the LINK corrunands in your LinkEd file to make sure that every file named is an 
object file (ProDOS 16 type $B 1). 

Number expected. 
A number was missing for a parameter in your shell command or linkEd file. 

Object module read error. 
A ProDOS error occurred while the linker was trying to read from the currently opened 
object module. 

This error may occur after a nonfatal error; correcting the nonfatal errors may correct 
this one. Otherwise, it may be caused by a bad disk or disk drive. 

OBJ not currently active. 
You used an OBJEND command without first using an OBJ command. 

'ON' or 'OFF' expected. 
A command you used takes an ON or OFF as a parameter. This paramter is missing. 

ORG location has been passed. 
You specified a location in an ORG command that is before the beginning of the file. 

Out of memory. 
All free memory has been used; the memory needed by the linker is not available. 

Output error. 
A ProDOS error occurred while the linker was trying to write to the (output) load file. 

This error is usually caused by a full disk. Otherwise, there may be a bad disk or disk 
drive. 

Output file could not be opened. 
A ProDOS error occurred while the linker was trying to open the (output) load file. 

This error may be caused by trying to write to a full disk, a write-protected disk, or an 
unformatted disk. Otherwise, there may be a bad disk or disk drive. 

Segment is not in module. 
A segment you named in a SELECT command is not in the file you are linking. 

Segment name expected. 
A command you used takes a segment name as a parameter. TIlls parameter is missing. 

Segment name is too long. 
A segment name you used is too long. Object-segment names must be 255 characters 
or less in length. Load-segment names must be ten characters or less in length. 

Selected segment is already defined. 
The segment you named in a SELECT command has already been linked. You cannot 
insert the same segment twice in the same load file. 

APDADraft 324 7/27/87 



Apple IIGS Programmer's Workshop Appendix C Error Messages 

Symbol table overnow 
The symbol table could not hold all of the symbols needed by the program. 

This error should occur only very rarely. !fit does occur, decrease the number of 
global labels in the program. The START, DATA, ENTRY, and GEQU directives all 
create and pass global symbols to the linker. Labels inside data areas are also passed to 
the linker. 

Value is out of range. 
A number specified as a parameter is bigger than is permitted. For example, you may 
have specified a segment KIND larger than 255. 

APDADraft 325 7127187 



Appendix C: Error Messages Apple llGS Programmer's Workshop 

APDADraft 326 7/27/87 



Apple lies Programmer's Workshop Glossary 

Glossary 
a bsolute-bank segment: A load segment that is resbicted to a specified bank but that 
can be relocated within that bank .. 

absolute code: Program code that must be loaded at a specific address in memory and 
never moved. 

absolute segment: A segment that can be loaded only at one specific location in 
memory. Compare with relocatable segment. 

access byte: An attribute of a ProDOS 16 file that determines what types of operations, 
such as reading or writing, may be performed on the file. 

a·ccumulator: The register in the 65C816 microprocessor of the Apple DGS used for 
most computations. 

address: A number that specifies the location of a single byte of memory. Addresses 
can be given as decimal or hexadecimal integers. The Apple DGS has addresses ranging 
from 0 to 16,777,215 (in decimal) or from $00 00 00 to $FF FF FF (in hexadecimal). A 
complete address consists of a 4-bit bank number ($00 to $FF) followed by a 16-bit 
address within that bank ($00 00 to $FF FF). 

Apple key: A modifier key on the Apple DGS keyboard, marked with an Apple icon. It 
performs the same functions as the Open Apple key on standard Apple D machines. 

Apple II: A family of computers, including the original Apple n, the Apple II Plus, the 
Apple IIe, the Apple Dc, and the Apple JIGS. 

a pplication prefix: The prefix of the last application launched. 

APW Linker: The linker supplied with APW. 

APW Shell: The shell program of APW. The APW Shell provides the interface between 
APW programs and ProDOS and between the user and APW. 

assembler: A program that produces object files from source files written in assembly 
language. 

bank: A 64K (65,536-byte) portion of the Apple DGS internal memory. An individual 
bank is specified by the value of one of the 65C816 microprocessor's bank registers. 

BIN file: A file in binary file format. 

binary file format: The ProDOS 8 loadable file format, consisting of one absolute 
memory image along with its destination address. A file in binary file format has ProDOS 
file type $06 and is referred to as a BIN file. The System Loader cannot load BIN files. 

block: (1) A unit of data storage or transfer, typically 512 bytes; (2) a contiguous, page­
aligned region of computer memory of arbitrary size, allocated by the Memory Manager. 
Also called a memory block. 

boot prefix: The volume name of the disk from which the computer was started up. 

APDADra/t 327 7127187 



Glossary Apple lies Programmer's Workshop 

catalog: See directory. 

character: Any symbol that has a widely understood meaning and thus can convey 
information. Some characters-such as letters, numbers, and punctuatio~an be 
displayed on the monitor screen and printed on a printer. Most characters are represented 
in the computer as I-byte values. 

code segment: An object segment that contains program code. Code segments are 
provided for programs that differentiate between code and data segments. 

command line: See shell command line. 

command table: A text file containing a list of command names, c'ommand types 
(internal or command, external or utility, and language), and command or language 
numbers. The APW Shell checks the command table each time you execute a command. If 
it fmds the command in the command table, it executes that command; if it doesn't fmd the 
command in the command table, the shell looks for a program with that name and attempts 
to run that program. 

compiler: A program that produces object fIles from source files written in a high-level 
language such as C. 

conditional assembly: A feature of an assembler that allows the programmer to define 
macros or other pieces of code such that the assembler assembles them differently under 
different conditions. 

conditional compile: In a high-level language such as C, the use of preprocessor 
commands to vary the output depending on compile-time conditions. 

controlling program: A program that loads and runs other programs, without itself 
relinquishing control. A controlling program is responsible for shutting down its 
subprograms and freeing their memory space when they are finished. A shell, for 
example, is a controlling program. 

Control Panel: A desk accessory that lets you change certain system parameters, 
such as speaker volume, display colors, and configuration of slots and ports. 

current application: The application program currently loaded and running. Every 
application program is identified by a User ID number; the current application is defined 
as that application whose User ID is the present value of the USERID global variable. 

current language: The APW language type that is assigned to a file opened by the APW 
Editor. If an existing fIle is opened, the current language changes to match that of the ftle. 

current prefix: The prefix that is used by the APW Shell if a partial pathname is used. 

data segment: An object segment that consists primarily of data. Data segments are 
provided for programs that differentiate between code and data segments. 

default prefix: See current prefix. 

APDADraft 328 7/27/87 



Apple IIGS Programmer's Workshop 
j 

Glossary 

desk accessory: A small, special-purpose pro'if.un that is available to the user 
regardless of which application is running. The Control Panel is an example of a desk 
accessory. 

dispose: To permanently deallocate a memqry block. The Memory Manager disposes of 
a memory block by removing its master pointer. Any handle to that pointer will then be 
invalid. Compare purge 

directory: A file that contains a list of the names and locations of other fIles stored on a 
disk. Directories are either volume directories or subdirectories. A directory is 
sometimes called a catalog. 

direct page: A page (256 bytes) of bank $00 of Apple llGS memory, any part of which 
can be addressed with a short (I-byte) address because its high-address byte is always $00 
and its middle-address byte is the value of the 65C8I6 processor's direct register. 
Coresident programs or routines can have their own direct pages at different locations. The 
direct page corresponds to the 6502 processor's zero page. The term direct page is often 
used informally to refer to the lower portion of the direct-page/stack space. 

direct-page/stack segment: A load segment used to preset the direct-page and stack 
registers and to set the initial contents of the direct-page/staCk space for an application. 

direct-page/stack space: A portion of bank $00 of Apple llGS memory reserved for a 
program's direct page and stack. Initially, the 65C8I6 processor's direct register 
contains the base address of the space, and its stack register contains the highest 
address. In use, the stack grows downward from the top of the direct-page/stack space, 
and the lower part of the space contains direct-page data 

direct register: A hardware register in the 65C8l6 processor that specifies the start of 
the direct page. 

dormant: Said of a program that is not being executed, but whose essential parts are all in 
the computer's memory. A dormant program may be quickly restarted because it need 
not be reloaded from disk. 

dynamic segment: A segment that can be loaded and unloaded during execution as 
needed. Compare with static segment. 

emulation mode: For the Apple IIGS's 65C8I6 processor, the state in which it 
functions like a 6502 processor in all respects except clock speed. For the Apple llGS 
computer, the state in which the computer functions like an 8-bit Apple II. 

Exec file: A file of APW Shell commands that when executed, executes each command 
in turn as if it had been entered from the keyboard. You can pass parameters into Exec files 
and can include them in the command table as utilities. 

external command: An APW utility program that functions like an APW Shell 
command. 

external reference: A reference to a symbol that is defined in another segment. 
External references must be to global symbols. 

fatal error: an error serious enough that the computer must halt execution. 

APDADrajt 329 7127187 



Glossary Apple lIes Programmer's Workshop 

field: A string of ASCII characters or a value that has a specific meaning to some 
program. Fields may be of fixed length, or they may be separated from other fields by 
field delimiters. For example, each parameter in a segment header constitutes a field. 

field delimiter: A character or value that designates the start or end of a field. For 
example, in a BASIC file each field begins and ends with a Return character. 

filename: The string of characters that identifies a particular file within a disk directory. 
ProDOS 16 filenames can be up to 15 characters long and can specify directory files, 
subdirectory files, text fIles, source files, object fIles,load files, or any other ProDOS 16 
file type. Compare with pathname. · . 

file number: A reference number assigned to a specific fIle. The loader assigns a file 
number to each load file in a program; the MakeLib utility program assigns a flle number to 
each object flle incorporated into a library flle. 

file number cross-reference: The part of the pathname table that contains load-fIle 
numbers and pointers to their corresponding pathnames. 

file type: An attribute in a ProDOS 16 fIle 's directory entry that characterizes the contents 
of the fIle and indicates how the file may be used. On disk, file types are stored as 
numbers; in a directory listing, they are often displayed as three-character mnemonic codes. 

finder: A program that performs me and disk utilities (formatting, copying, renaming, 
and so on) and also starts applications at the request of the user. 

full pathname: The complete name by which a flle is specified. A full pathname 
always begins with a slash (I), because a volume directory name always begins with a 
slash. See pathname. 

global symbol: A label in a code segment that is either the name of the segment or an 
entry point to it. Global symbols may be referenced by other segments. Compare with 
local symbol. 

handle: See memory handle. 

hexadecimal: The base-16 system of numbers, using the ten digits 0 through 9 and the 
six letters A through F. Hexadecimal numbers can be convened easily and directly to 
binary fonn, because each hexadecimal digit corresponds to a sequence of 4 bits. In Apple 
manuals hexadecimal numbers are usually preceded by a dollar sign ($). 

high-level language: A programming language that is relatively easy for people to 
understand. A single statement in a high-level language typically corresponds to several 
instructions of machine language. Compare low-level language. 

image: A representation of the contents of memory. A code image consists of machine­
language instructions or data that may be loaded unchanged into memory. 

index register: A register in a computer processor that holds an index for use in indexed 
addressing. The 6502 and 65C816 microprocessors used in the Apple II family of 
computers have two index registers, called the X register and the Y register. 

APDADraft 330 7/27/87 



Apple lIeS Programmer's Workshop Glossary 

initial load file: The first file of a program to be loaded into memory. It contains the 
program's main segment and the load file tables (jwnp table segment and pathname 
segment) needed to load dynamic segments and run-time libraries. 

initialization segment: A segment in an initial load file that performs any initialization 
that the program may require 

internal command: An APW Shell command that is executed by the shell program 
itself, rather than by a utility program. 

INTERSEG record: A part of a relocation dictionary. It contains relocation 
infonnation for external (intersegment) references. 

jump table: A table contructed in memory by the System Loader from all Jump Table 
segments encountered during a load. The jump table contains all references to dynamic 
segments that may be called during execution of the program 

jump table directory: A master list in memory, containing pointers to all segments that 
make up the jump table. 

jump table segment: A segment in a load file. created by the linker, that provides the 
information the loader needs to locate dynamic segments as they are needed during program 
execution. The loader creates a linked list in memory. called the jump table. that indicates 
the location of all jwnp table segments in memory. 

K: 1024 bytes 

kind: See segment kind. 

language card: Memory with addresses between $DOOO and $FFFF on any Apple n­
family computer. It includes two RAM banks in the $D= space, called bank-switched 
memory. The language card was originally a peripheral card for the 48K Apple II or 
Apple n Plus that expanded its memory capacity to 64K and provided space for an 
additional dialect of BASIC. 

language command: A command that changes the APW current language. 

launch: To cause a program to be loaded into memory and to begin execution. 

library dictionary segment: The first segment of a library file. It contains a list of all 
the symbols in the file together with their locations in the file. The linker uses the library 
dictionary segment to find the segments it needs. 

library file: An object file containing object segments, each of which can be used in any 
number of programs. The linker can search through the library file for segments that have 
been referenced in the program source file. A library contains a library dictionary 
segment. 

LinkEd: A command language that can be used to control the APW Linker. 

linker: A program that combines files generated by compilers and assemblers. resolves 
all symbolic references. and generates a file that can be loaded into memory and executed. 

APDADraft 331 7127187 



Glossary Apple lIGS Programmer's Workshop 

link map: A listing, produced by the linker, that gives the name, length, and starting 
location of each segment in a load file. 

load file: The output of the linker. Load files contain memory images that the system 
loader can load into memory, together with relocation dictionaries that the loader uses 
to relocate references. . . 

load segment: A segment in a load file. Any number of object segments can go into the 
same load segment. 

local symbol: A label defined only within an individual segment. Other segments 
cannot access the label. Compare with global symbol. 

loop: A section of a program that is executed repeatedly until a limit or condition is met, 
such as an index variable's reaching a specified ending value. 

low-level language: A programming language, such as assembly language, that is 
relatively close to the form the computer's processor can execute directly. One statement in 
a low-level language corresponds to a single machine-language instruction. Compare 
high-level language. 

main segment: The first segment in the initial load file of a program. It is loaded first 
and never removed from memory until the program tenninates. 

macro: A single keystroke or command that a program replaces with several keystrokes 
or command. For example, the APW Editor allows you to define macros that execute 
several editor keystroke commands; the APW Assembler allows you to define macros that 
execute instructions and directives. APW also provides a library of predefined assembler 
macros. 

macro assembler: A type of assembler that allows the programmer to define sequences 
of several assembly-language instructions as single pseudo-instructions called macros. 

main segment: The first static segment (other than initialization segments) in the initial 
load rue ofa program It is loaded fIrst and never removed from memory until the program 
tenninates. 

MakeLib utility: A program that creates library files from object files. 

Mark: The current position in an open ftle. It is the point in the file at which the next read 
or write operation will occur. 

memory block: See block. 

memory handle: The identifying number of a particular block of memory. A memory 
handle is a pointer to a master pointer to the memory block 

memory image: A portion of a disk file or segment that can be read directly into 
memory. 

Memory Manager: A program in the Apple llGS Toolbox that manages memory use. 
The Memory Manager keeps track of how much memory is available and allocates memory 
blocks to hold program segments or data. 

APDADrafl 332 7/27/87 



Apple llGS Programmer's Workshop Glossary 

memory-resident: (1) Stored permanently in memory as fmnware (ROM). (2) Held 
continually in memory even while not in use. For example, ProDOS is a memory-resident 
program. 

memory segment table: A linked list in memory, created by the loader, that allows the 
loader to keep track of the segments that have been loaded into memory. 

Monitor: A program built into the firmware of Apple II computers, used for directly 
inspecting or changing the contents of main memory and for operating the computer at the 
machine-language level. 

movable: A memory block attribute. indicating that the Memory Manager is free to move 
the block. Opposite ofjUed. Only position-Independent program segments may be in 
movable memory blocks. A block is made movable or fixed through Memory Manager 
calls. 

native mode: The 16-bit operating state of the 65C816 processor. 

object file: The output from an assembler or compiler, and the input to the linker. In 
APW an object [tIe contains both machine-language instructions and instructions for the 
linker. Compare with load file. 

object module format (OMP): The general format used in object flies. library files, and 
load flies. 

object segment: A segment in an object file or in a library file. 

OMF: Object module format. 

OMF file: Any file in object module format. 

op code: See operation code. 

open: To allow access to a me. A file may not be read from or written to until it is open. 

operand: In assembly language, a value used by an instruction or directive as an address 
or to calculate an address. In object module format, an operation code that is followed by a 
single value that constitutes part of an expression. The value following the operand opcode 
is acted on by an operator. 

operation code: The part of an instruction or command that specifies the operation to be 
performed. Often called op code. In machine language. the operation code precedes the 
value to be acted on by the processor. In OMP, operation codes are used to Identify types 
of records and types of operations in instructions. 

operator: In object module format, an operation code that specifies an arithmetic or 
logical operation in an expression to be performed on one or two variables that precede it. 
The variables acted on by an operator are identified by operand opcodes that precede 
them. 

page: (l)A portion of Apple IIGS memory that is 256 bytes long and that begins at an 
address that is an even multiple of 256. A memory block whose starting address is an even 
multiple of 256 is said to be page aligned. (2) An area of main memory containing text or 
graphical information being displayed on the screen. 

APDA Drafr 333 7127187 



Glossary Apple IIGS Programmer's Workshop 

parameter: A value passed to or from a command, function, or other routine. 

parameter block: A set of contiguous memory locations, set up by a calling program to 
pass parameters to and receive results from an operating system or shell function that the 
program calls. Every ProDOS 16 and APW Shell call must include a pointer to a properly 
constructed parameter block. 

partial assembly: A procedure whereby only specific segments of a program are 
assembled. · If you have performed one full assembly followed by one or more partial 
assemblies on a program, the linker extracts only the latest version of each object segment 
to be included in the load file. 

partial compile: A procedure whereby only specific segments of a program are 
compiled. If you have performed one full assembly followed by one or more partial 
compiles on a program, the linker extracts only the latest version of each object segment to 
be included in the load file. 

partial pathname: A path name that includes the filename of the desired file but 
excludes the volume directory name (and possibly one or more of the subdirectories in the 
path). It is the part of a path name following a prefix; a prefix and a partial pathname 
together constitute a full pathname. A partial pathname does not begin with a slash 
because it has no volume directory name. 

patch: To replace one or more bytes in memory or in a file with other values. The 
address to which the program must jump to execute a subroutine is patched into memory at 
load time when a file is relocated. 

pathname: The complete name by which a file is specified. A pathname is a sequence of . 
filenames separated by slashes, starting with the fIlename of the volume directory fIle and 
including every subdirectory fIle that the operating system must search to locate the file, in 
descending sequence of the subdirectory hierarchy .. A full pathname always begins with a 
slash (j) to indicate that the first name is a volume directory. See also full pathname, 
partial pathname, prefix. 

pathname list: The part of the pathname table that contains the file path names. 

pathname segment: A segment in a load fIle that contains the cross-references between 
load fIles referenced by number (in the jump table segment) and their pathnames (listed in 
the fIle directory). The pathname segment is created by the linker. 

pathname table: A table constructed in memory by the loader from all individual 
pathname segments encountered during loads. It contains the cross-references between 
load files referenced by number (in the jump table) and their pathnames (listed in the fIle 
directory) . 

pc: See program counter. 

pipeline: (l)To automatically execute two or more programs in sequence, where the 
output of the ftrSt file is the input to the next file and so on. (2)The entire sequential set of 
programs executed in this way; a program or fIle being processed by this sequence of 
programs is said to be in lhe pipeline or in the pipe. ' 

APDADraft 334 7127187 



Apple lIGS Programmer's Workshop Glossary 

pointer: A memory address at which a particular item of infonnation is located. For 
example, the 65C8l6 stack register contains a pointer to the next available location on the 
stack. 

position-independent: Code that is written specifically so that its execution is 
unaffected by its position in memory. It can be moved without needing to be relocated. 

position-independent segment: A load segment that is movable when loaded in 
memory. 

prefix: A portion of a patbname starting with a volume name and ending with a 
subdirectory name. It is the part of a full pathname that precedes a partial pathname; a 
prefix and a partial pathname together constitute a full pathname. A prefix. always starts 
with a slash (I) because a volume directory name always starts with a slash. 

prefix number: A code used to represent a particular prefix. Under ProDOS 16. there 
are eight prefix numbers, each consisting of a numeral followed by a slash: 0/. 1/, ... ,7/. 

private code segment: A segment in an object file whose name is available only to 
other object-code segments within the same object file. The labels within a private code 
segment are local to that segment 

private data segment: A segment in an object file whose labels are available only to 
object -code segments in the same object file. 

ProDOS: A family of disk operating systems developed for the Apple II family of 
computers. ProDOS stands for Professional Disk Operating System and includes both 
ProDOS 8 and ProDOS 16. 

ProDOS 8: A disk operating system developed for standard Apple II computers. It 
runs on 6502-series microprocessors. It also runs on the Apple IIGS when the 65C816 
processor is in 6502 emulation mode. 

ProDOS 16: A disk operating system developed for 65C816 native mode 
operation on the Apple IIGs. It is functionally similar to ProDOS 8 but more powerful. 

program counter: A number, usually expressed in hexadecimal, that indicates the 
position of a byte in a machine-language program, counting sequentially from the 
beginning of the program. 

purge: To temporarily deallocate a memory block. The Memory Manager purges a block 
by setting its master pointeUo O. All handles to the pointer are still valid, so the block can 
be reconstructed quickly. Compare dispose. 

purge level: An attribute of a memory block that sets its priority for purging. A purge 
level of 0 means that the block is unpurgeable. 

purgeable: A memory block attribute, indicating that the Memory Manager may purge the 
block if it needs additional memory space. Purgeable blocks have different purge levels, 
or priorities for purging; these levels are set by Memory Manager calls. 

APDADraft 335 7127187 



Glossary Apple fIGS Programmer's Workshop 

RAM disk: A portion of memory (RAM) that appears to the operating system to be a 
disk volume. Files in a RAM disk can be accessed much faster than the same ftles on a 
floppy disk or hard disk. 

record: A component of an object module segment. All OMF file segments are composed 
of records, some of which are program code and some of which contain cross-reference or 
relocation information. Each record begins with an operation code that indicates the type of 
information to follow. . 

RELOC record: A part of a relocation dictionary that contains relocation information for 
local (within-segment) references. 

relocate: To modify a file or segment at load time so that it will execute correctly at the 
location in memory at which it is loaded. Relocation consists of patching the proper 
values into address operands. The loader relocates load segments when it loads them into 
memory. See also relocatable code. 

relocatable code: Program code that includes no absolute addresses, and that can 
therefore be relocated at load time. 

relocatable segment: A segment that can be loaded at any location in memory. A 
relocatable segment can be static, dynamic, or position independent. A load segment 
contains a relocation dictionary that is used to recalculate the values of location­
dependent addresses and operands when the segment is loaded into memory. Compare 
with absolute segment. 

relocation dictionary: A portion of a load segment that contains relocation information 
necessary to modify the memory image immediately preceding it. When the memory image 
part of the segment is loaded into memory, the relocation dictionary is processed by the 
loader to calculate the values of location-dependent addresses and operands. Relocation 
dictionaries also contain the information necessary to transfer control to external references. 

reference: (l)The name of a segment or entry point to a segment!; same as symbolic 
reference. (2)To refer to a symbolic reference or to use one in an expression or as an 
address. 

resolve: To find the segment and offset in a segment at which a symbolic reference is 
defined. When the linker resolves a reference, it creates an entry in a relocation 
dictionary that allows the loader to relocate the reference at load time. 

restart: To reactivate a dormant program in the computer's memory. The System 
Loader can restart dormant programs if all their static segments are still in memory. If any 
critical part of a dormant program has been purged by the Memory Manager, the program 
must be reloaded from disk instead of restarted. 

restartable: Said of a program that reinitializes its variables and makes no assumptions 
about machine state each time it gains control. Only restartable programs can be resurrected 
from a dormant state in memory. 

root filename: The ftlename of an object file minus any ftlename extensions added by 
the assembler or compiler. For example, a program that consists of the object files 
MYPROG • ROOT, MYPROG. A, and MYPROG. B has the root filename MYPROG. 

APDADrajr 336 7127187 



Apple llGS Programmer's Workslwp Glossary 

run-time library file: A load file containing program segments---each of which can be 
used in any number of programs--that the system loader loads dynamically when they are 
needed. 

segment: A component of an OMF fIle, consisting of a header and a body. In object 
fIles, each segment incorporates one or more subroutines. In load files, each segment 
incorporates one or more object segments. 

segment body: That part of a segment that follows the segment header and that 
contains the program code, data, and relocation information for the segment. 

segment header: The first part of a program segment, containing such infonnation as 
the segment name and the length of the segment 

segment kind: See segment type. 

segment number: A number corresponding to the relative position of the segment in a 
fIle, starting with 1. 

segment type: A classification of a segment based on its purpose, contents, and internal 
structure, as defined in the object module fonnat The segment type is specified by the 
KIND field in the segment header. 

shell: A program that provides an operating environment for other programs and that is 
not removed from memory when the those programs are running. For example, the APW 
Shell provides a command processor interface between the user and the other components 
of APW, and it remains in memory when APW utility programs are running. 

shell call: A request from a program to the APW Shell to perform a specific function. 

shell-call block: A set of instructions and directives used to make a shell call from an 
assembly-language program. 

shell command line: The line on the screen where the number-sign (#) prompt appears 
when you are in the APW Shell. When you enter a command, the characters you type 
appear to the right of the prompt on the command line. 

shell load file: A load file designed to be run under a shell program. Shell load files are 
ProDOS 16 file type $B5. 

65C816: The microprocessor used in the Apple IIGS. 

source file: An ASCII file consisting of instructions written in a particular language, 
such as C or assembly language. An assembler or compiler converts source fIles into 
object files. 

stack: A list in whlch entries are added (pushed) and removed (pulled) at one end only 
(the top of the stack), causing them to be removed in last-in, first-out (LIFO) order. The 
term the stack usually refers to the top portion of the direct-page/stack space; the top of 
this stack is pointed to by the 65C816's stack register. 

stack pointer: The contents of the 65C816's stack register, consisting of a memory 
address pointing to the next available location on the 65C816's stack. 

APDA Draft 337 7127187 



Glossary Apple.TIGS Programmer's Workshop 

standard Apple II: Any computer in the Apple II family except the Apple IIGs. That 
includes the Apple ll, the Apple II Plus, the Apple lle, and the Apple llc. 

standard input: The default file or device (such as the keyboard) from which input is 
taken. If your program uses Text Tool Set calls or APW macros and libraries to get input, 
standard input is used. . 

standard output: The default file or device (such as the screen) to which output is sent. 
If your program uses Text Tool Set calls or APW macros and libraries to control output, 
standard output is used. 

static segment: A segment that is loaded at program boot time and is not unloaded or 
moved during execution. Compare with dynamic segment. 

string: An item of information consisting of a sequence of text characters (a character 
string) or a sequence of bits or bytes. 

subdirectory: A directory within a directory; a file (other than the volume directory) that 
contains the names and locations of other files. Every ProDOS 16 directory file is either a 
volume directory or a subdirectory. 

symbol: A character or string of characters that represents an address or numeric value; a 
symbolic reference or a variable. 

symbolic reference: A name or label that is used to refer to a location in a program, 
such as the name of a subroutine. When a program is linked, all symbolic references are 
resolved; when the program is loaded, actual memory addresses are patched into the 
program to replace the symbolic references. 

symbol table: A table of symbolic references created by the linker when it links a 
program. The linker uses the symbol table to keep track of which symbols have been 
resolved. At the conclusion of a link, you can have the linker print out the symbol table. 

System Loader: The program that relocates load segments and loads them into Apple 
llGS memory. The System Loader works closely with ProDOS 16 and the Memory 
Manager. 

System Monitor: See Monitor. 

system program: (I) A software component of a computer system that supports 
application programs by managing system resources such as memory and I/O devices. 
Also called system software. (2) Under ProDOS 8, a stand-alone and potentially self­
booting application. A ProDOS 8 system program is of file type $FF; if it is self-booting, 
its filename has the extension . SYSTEM. 

text·file format: The Apple llGS standard format for text files and program source files. 

token: The smallest unit of information processed by a compiler or assembler. In C, for 
example, a function name and a left bracket «() are tokens. 

Toolbox: A collection of built-in routines on the Apple IIGS that programs can call to 
perform many commonly-needed functions. Functions within the toolbox are grouped into 
tool sets. 

APDADraft 338 7/27/87 



Apple IIGS Programmer's Workshop Glossary 
tool set: a related group of (usually fmnware) routines, available to applications and 
system software, that perform necessary functions or provide programming convenience. 
The Memory Manager, the System Loader, and QuickDraw II are tool sets. 

top of form: The position on the paper in the printer to which the printer scrolls when it 
receives a form feed (Control-L) command. 

unload: To remove a load segment from memory. To unload a segment, the System 
Loader does not actually "unload" anything; it calls the Memory Manager to either purge 
or dispose of the memory block in which the code segment resides. The loader then 
modifies the memory segment table to reflect the fact that the segment is no longer in 
memory. 

User ID: An identification number that specifies the owner of every memory block 
allocated by the Memory Manager. User IDs are assigned by the User ID Manager. 

utility: In general, an application program that performs a relatively simple function or set 
of functions such as copying or deleting fIles. An APW utility is a program that runs under 
the APW Shell and that performs a function not handled by the shell itself. MakeLib is an 
example of an APW utility. 

volume: An entity that stores data; the source or destination of information. A volume 
has a name and a volume directory with the same name. Volumes typically reside in 
devices; a device such as a floppy disk drive may contain one of any number of volumes 
(on disks). 

volume directory: The main directory fIle of a volume. It contains the names and 
locations of other files on the volume, any of which may themselves be directory fIles 
(called subdirectories). The name of the volume directory is the name of the volume. 
The patbname of every file on the volume starts with the volume directory name. 

wildcard character: A character that may be used as shorthand to represent a sequence 
of characters in a patbname. In APW, the equal sign (=) and the question mark (?) can be 
used as wildcard characters. 

word: A group of bits that is treated as a unit. For the Apple ITGS, a word is 16 bits (2 
bytes) long. 

zero page: The first page (256 bytes) of memory in a standard Apple IT computer (or in 
the Apple ITGS computer when running a standard Apple IT program). Because the high­
order byte of any address in this part of memory is zero, only a single byte is needed to 
specify a zero-page address. Compare direct page. 

APDADraft 339 7127187 




