APPLE
PROGRAMMER'S

AND DEVELOPER S
ASSOCIATION

APPLE llcs
Programméfs
Workshop

Version 1.0
APDA# K2SAW1

Apple IIGs Programmer’s Workshop
Reference

APDA Draft
July 27, 1987

Apple Technical Publications

_ This document does not include:

o final editorial corrections
« final art work
e an.index

Copyright © 1987 Apple Computer, Inc. All rights reserved.

APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple’s suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in part, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased may be sold, given, or lent to another person. Under the law, copying includes translating into
another language.)

© Apple Computer, Inc., 1987
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010 -

Apple, the Apple logo, and Macintosh are registered trademarks of Apple Compulter, Inc.
Apple IIGS, Apple DeskTop Bus, and SANE are trademarks of Apple Computer, Inc.

Simultancously published in the United States and Canada.

Apple IIGS Programmer’s Workshop

-
i
xiv
XV
xvi
xvii
Xvii
xvii
Xvii
Xvii
Xvii
xvii
Xvii
Xix
Xix
xix

Contents

Preface
Roadmap to the Apple IIGS Technical Manual Suite
How to Use This Book
What This Manual Contains
What to Read When
Visual Cues
Other Materials You’ll Need
Introductory Manuals
The Technical Introduction
The Programmer’s Introduction
Machine Reference Manuals
The Hardware Reference Manual
The Firmware Reference Manual
The Toolbox Manuals
The Apple IIGS Programming Language Manuals
The Operating System Manuals
All-Apple Manuals

Part I: Getting Started

VOIS WWWWER N =

ot ok
oW

[el el el
OO \O 0 oo~

(28]
ot

Chapter 1. About the Programmer's Workshop
Program Descriptions
Shell
Editor
Assembler
C Compiler
Linker
Utility Pro
Apple IIGS Debugger
ProDOS 16
System Loader
Memory Manager
Apple IIGS Concepts
Source, Object, and Load Files
Symbolic References and Relocatable Code
Relocatable Load Files
The Three Steps to Program Development
Program Segmentation
Dynamic Segments
Library Files
Emulation and Native Modes

Chapter 2. How to Use the Shell and Editor
What You Need
Backing Up Your APW Disk
The Emergency Exit: Control-Reset
Installing APW on a Hard Disk
First-Time Installation
Making Your Hard Disk Self-Booting

APDA Draft i

Table of Contents

7127187

Table of Contents Apple IIGS Programmer’s Workshop

21
21
22
23
24
24
25
25

Copying the Apple IIGS System Disk
Copying the System From the APW Disk
Updating APW
Adding Languages to APW
Booting Directly Into APW
Hard Disk
Floppy Disk
Running APW on Floppy Disks
Running APW on a Hard Disk
Shell Commands
Entering Commands
File Not Found and Other Errors
Suspending Execution and Cancelling Commands
Scrolling Through Commands
Entering Multiple Commands
Responding to Parameter Prompts
Pathnames
Using Partial Pathnames
Using Prefix Numbers
Using Device Names
Using Wildcard Characters
Using Help Files
Listing a Directory
The Editor
Calling the Editor
Language Types
Opening and Saving a File
Using the Editor
Using a Printer
Default Printer Settings
Including Printer-Setup Commands in the LOGIN File
Using Exec Files
Compiling (or Assembling) and Linking a Program
A Sample Assembly and Link
Specifying Names for Qutput Files
Specifying the Object Filename on a Shell Command Line
Specifying a Default Object Filename with the KeepName Variable
Specifying the Object Filename in the Source File
Specifying the Load Filename on a Shell Command Line
Specifying a Default Load Filename With a Shell Variable
Specifying the Load Filename in a LinkEd File
Using the Object-File Root Filename for the Load Filename
Specifying the File Type of Your Load File
Shell Commands for Assembling, Compiling, and Linking
The ASSEMBLE and COMPILE Commands
Diagnostic Output: the L and S Options
Error Handling: the E, T, and W Options
Specifying Source Files
The KEEP Parameter
The NAMES Parameter
Language-Specific Parameters
Linking Your Program: the LINK and ALINK Commands
Compiling and Linking: ASML, ASMLG, CMPL, CMPLG, and RUN
Compacting Your Load File

APDA Draft i 7127187

Apple 1IGS Programmer’s Workshop

70 Launching Programs

71 Using the Apple IIGS Debugger

71 Using the Utilities

72 Summing It All Up: Developing and Runmng a Program
76 Advanced Features

Part II: Reference

79 Chapter 3. Shell

80 Standard Prefixes

82 Redirecting Input and Output

84 Pipelining Programs

85 Partial Assemblies or Compiles

90 Command Types and the Command Table
95 Command Descriptions

96 ALIAS
08 ALINK

100 ASM65816
100 ASML

107 ASMLG
107 ASSEMBLE
108 BREAK

108 CANON
110 CAT

110 CATALOG
111 cC

111 CHANGE
111 CMPL

112 CMPLG
112 COMMANDS
112 COMMENT
112 COMPACT
113 COMPILE
114 CONTINUE
114 COPY

116 CREATE
116 CRUNCH
117 DEBUG
117 DELETE
118 DISABLE
118 DUMPOB]
124 ECHO

124 EDIT

124 ELSE

124 ENABLE
125 END

125 EQUAL

126 EXEC

126 EXECUTE
127 EXIT

127 EXPORT
127 FILES

128 FILETYPE

AFPDA Draft iii

Table of Contents

7127187

Table of Contents

129 FOR

129 HELP

129 HISTORY

129 IF

130 INIT

130 INSTALL

131 LINK

132 LINKED

132 LOOP

133 MACGEN

134 MAKEBIN

134 MAKELIB

137 MOVE

137 MU

138 PREFIX

138 PRODOS

139 QUIT

139 RENAME

139 RUN

139 SEARCH

140 SET

141 SHOW

141 TEXT

142 TYPE

142 UMU

143 UNALIAS

143 UNSET

143 VERSION

143 Exec Files

144 Passing Parameters Into Exec Files
145 Programming Exec Files
145 Variables

149 Logic Operators
149 Entering Comments
149 LOGIN Files

150 Exec File Command Descriptions
150 BREAK

151 COMMENT
151 CONTINUE
151 ECHO

152 EXECUTE
155 EXIT

155 EXPORT

156 FOR-END
157 IF-END

158 LOOP-END
158 SET

158 UNSET

159 Example

161 Chapter 4. Editor
161 Modes

162 Insert

162 Escape

APDA Draft iv

Apple 1IGS Programmer's Workshop |

7127187

Apple 1IGS Programmer’s Workshop

163
163
164
165
165
165
166
166
166
166
166
167
167
167
167
167
168
168
168
168
168
168
169
169
169
169
169
170
170
170
170
170
171
173
173
173
173
173
174
174
174
174
174
175
175
177
177
177
177
178
178
178
178
178

Auto Indent
Select
Automatic Wrap

Command Descriptions

Beep the Speaker
Begin Macro Definitions
Beginning of Line
Bottom of Screen / Page Down
Change

Clear

Copy

Cursor Down

Cursor Left

Cursor Right

Cursor Up

Cut

Define Macros

Delete

Delete Character

Delete Character Left
Delete Line

Delete to EOL

Delete Waord

End Macro Definition
End of Line

Enter Escape Mode
Execute Macro

Find

Help

Insert Line

Insert Space

Paste

Quit

Quit Macro Definitions
Remove Blanks
Repeat Count

Return

Screen Moves

Scroll Down One Line
Scroll Down One Page
Scroll Up One Line
Scroll Up One Page
Search Down

Search Up

Search and Replace Down
Search and Replace Up
Set and Clear Tabs
Start of Line

Tab

Tab Left

Toggle Auto Indent Mode
Toggle Escape Mode
Toggle Insert Mode
Toggle Select Mode

APDA Draft

Table of Contents

7127187

Table of Contents Apple IIGS Programmer's Workshop

179 Toggle Wrap Mode

179 Top of Screen / Page Up
179 Turn On Escape Mode
179 Undo Delete

180 Word Left

180 Word Right

180 Macros

184 Setting Editor Defaults

187 Chapter 5. Linker
188 Operation of the Linker

188 Object Files: Input to the Linker

188 Library Files

189 Partial Assemblies and Filename Conventions
190 Load Files: Output From the Linker

191 Diagnostic Output

192 Error Messages

192 Link Map and Source Listing

192 Symbol Table

193 Summary Table

193 Using the Standard Linker
194 Using the Advanced Linker

195 The Structure of a LinkEd File
195 LinkEd Command Descriptions
196 APPEND

196 COPY

199 EJECT

197 KEEP

197 KEEPTYPE

198 LIBRARY

200 LINK

200 LIST

201 LOADSELECT

202 OBJ

203 OBJEND

203 ORG

203 PRINTER

204 SEGMENT

206 SELECT

207 SOURCE

207 SYMBOL

207 Sample LinkEd Files

Part III: Inside the Apple IIGS Programmer’s Workshop

211 Chapter 6. Adding a Program to APW
211 Types of APW Programs
212 APW Udlities

213 Requirements

214 Conventions

216 Compilers and Assemblers

216 Source File Format

217 Identifying the Language Type
217 Entry and Exit

APDA Draft vi 7127187

Apple 1IGS Programmer’s Workshop

219
220
221
223
223

225
225
225
226
226
226
226
226
226
227
227
228
229
230
232
238
249
252
253
253
299
256
256
257
257
257
258
259
260
260

263
264
264
265
265
265
266
266
267
267
269
270
272
213
278
279
281

APDA Draft vil

Command Precedence

Output Files

Partial Compiles

Help Files
Interpreters

Chapter 7. File Formats
Text File Format
Text File Specifications
HT ($09): Horizontal Tab
LF ($0A): Line Feed
CR ($0D): Carriage Return
FF ($12): Form Feed
SP ($20): Space
High ASCII ($80-$FF)
Other Characters
Examples
Object Module Format
General Format for OMF Files
Segment Types and Attributes
Segment Header
Segment Body
Expressions
Example
Object Files
Library Files
Load Files

Memory Image and Relocation Dictionary

Jump Table Segment
Unloaded State
Loaded State
Pathname Segment
Initialization Segment
Direct-Page/Stack Segments
Run-Time Library Files
Shell Load Files

Chapter 8. Shell Calls
Making a Shell Call
The Call Block
Shell-Call Macros
The Parameter Block
Types of Parameters

Setting up a Parameter Block in Memory

Register Values

Call Descriptions
DIRECTION ($010F)
ERROR ($0105)
EXECUTE ($010D)
GET_LANG ($0103)
GET_LINFO ($0101)
GET_VAR ($010B)
INIT_WILDCARD ($0109)
NEXT_WILDCARD ($010A)

Table of Contents

7127187

Table of Contents

282

READ_INDEXED ($0108)

284 REDIRECT ($0110)
286 SET_LANG (3$0104)
287 SET_LINFO ($0102)
293 SET_VAR ($0106)
294 STOP ($0113)
295 VERSION ($0107)
296 WRITE_CONSOLE ($011A)
Appendixes
297 Appendix A: Contents of the APW Disks
297 /APW Disk
298 /APWU Disk
299 Appendix B: Command Summary
300 Language Types
300 Shell
305 Exec Files
307 Editor
310 Defining Macros
311 Keystroke Summary
312 LinkEd
315 Appendix C: Error Messages
315 Shell Errors
315 File Not Found
316 Volume Not Found
316 Unable to Open File
316 Linker Errors
317 Nonfatal Errors
321 Fatal Errors
327 Glossary
List of Figures
Preface
xiii ~ P-1. Roadmap to the Technical Manuals

Part I: Getting Started

10

13
15

Chapter 1. About the Programmer's Workshop

. The Relationship of APW Programs to the Apple IIgs System
Creating an Executable Program on the Apple Ilgs

Assigning Object Segments in Your Source Code

Assigning Load Segments in Your Source Code

Relationship Between Object Segments and Load Segments
Relationship Between Object Files and Library Files

[s gy ey
kL=

APDA Draft viii

Apple IIGS Programmer's Workshop

7127187

Apple IIGS Programmer’s Workshop

30
Vi)

Chapter 2. How to Use the Shell and Editor
2.1. Directory Example '
2.2. Program Interactions

Part II: Reference

191

Chapter 3. Shell
.1. Pipelining Programs
.2. An example of the Use of Partial Compiles
.3. Sample of a Command Table
4. Sample DumpOBJ Segment Header
.5. DumpOBJ OMF-Format Segment Body
.6. DumpOBJ Disassembly-Format Segment Body
.7. DumpOBJ Hexadecimal-Format Segment Body
8. Creation of a Library File ‘
9. Effect of the EXECUTE Command
10. Variable Definitions and EXECUTE commands

3
3
3
3
3
3
3
.
3.
3.
Chapter 4. Editor

4.1. Output of an Editor Macro
4.2, Macro Definitions

Chapter 5. Linker
5.1. Sample Output of a LinkEd Command File

Part III: Inside the Apple IIGS Programmer’s Workshop

Chapter 6. Adding a Program to APW
Chapter 7. File Formats

230 7.1. The Structure of an OMF File

233 7.2. The Format of a Version 2.0 Segment Header

234 7.3. The Format of a Version 1.0 Segment Header

254 7.4. The Format of a Library Dictionary Segment
Chapter 8. Shell Calls

Appendixes

Appendix A: Contents of the APW Disks
Appendix B: Command Summary
Appendix C: Error Messages

Glossary

APDA Draft ix

Table of Contents

- 7127187

Table of Contents Apple IIGS Programmer’s Workshop

- List of Tables

Preface
xii P-1. The Apple Igs Technical Manuals

Part I: Getting Started
Chapter 1. About the Programmer's Workshop
Chapter 2. How to Use the Shell and Editor
28 2.1. Line-Editing Commands
40 2.2. Fields in a Directory
42 2.3. Commonly Used APW Language Types

44 2.4. Basic Editor Commands
60 2.5. Load File Types

Part II: Reference
Chapter 3. Shell
80 3.1. Standard Prefixes
91 3.2. APW Language Types
93 3.3. APW Commands
128 3.4. ProDOS File Types
Chapter 4. Editor
181 4.1. Conventions for Displaying Keystrokes in Editor Macros
182 4.2. Commands Used for Definining Editor Macros

Chapter 5. Linker
198 5.1, File Types of ProDOS Load Files

Part III: Inside the Apple IIGS Prbgrammer’s Workshop
Chapter 6. Adding a Program to APW

Chapter 7. File Formats
238 7.1. Segment-Body Record Types

Chapter 8. Shell Calls
263 8.1. Summary of Shell Calls

Appendixes
Appendix A: Contents of the APW Disks
Appendix B: Command Summary
Appendix C: Error Messages

Glossary

APDA Draft X 7127187

Apple lIGS Programmer’s Workshop Preface

Preface

The Apple® IIGS Programmer’s Workshop (APW) is Apple Computer’s development
environment for the Apple IIGS™ computer. APW is a set of programs that enable
developers to create application programs on the Apple IIGS. This manual includes
information about the APW Shell, Editor, Linker, and utility programs; these are the parts
of the workshop that all developers need, regardless of which programming language they
use. It also provides the information necessary to write an APW utility or a language
compiler or assembler for APW.

In addition to the APW programs described in this book, the Apple IIGS Programmer’s
Workshop includes several programming languages, such as 65816 assembly language and
APW C. Each compiler or assembler is described in a separate manual since each language
can be added to your system independently.

This manual is intended for experienced programmers and developers; that is, it assumes
that you are familiar with either assembly language or a high-level programming language
such as C or Pascal. It assumes that you are familiar with the Apple IIGS computer and the
Apple IIGS operating system. See the following section, “Roadmap to the Apple IIGS
Technical Manual Suite,” for a guide to other technical reference books on the Apple I1GS
computer.

This Preface is your guide to the use of this book and the Apple IIGS technical manual
suite. The contents of the Preface are as follows:

+ A roadmap to the Apple IIGS technical manual suite. The roadmap includes a table
that shows the other books in the suite and a figure that shows their interrelationships.

+ A guide to the use of this manual, including a brief summary of the contents of each
chapter and a suggested sequence in which to use the book.

+ An explanation of the typographical conventions used in this book to delineate
different kinds of information or to direct your attention to important facts.

+ A guide to the other books in the technical manual suite, including brief descriptions
of the other books in the suite and an indication of the circumstances under which
each book would be helpful to you.

Roadmap to the Apple IIGS Technical Manual Suite

The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple II. To describe it fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple IIGS, you may need
to refer only to a select few of these manuals, or you may need to refer to most of them.

The technical manuals are listed in Table P-1. Figure P-1 is a diagram showing the
relationships among the different manuals. To help you decide which of these manuals you
will need to develop a particular program for the Apple IIGS, the contents of each of these
manuals is briefly described in the section “Other Materials You’ll Need” in this preface.

APDA Draft xi 7127187

Preface

Table P-1. The Apple IIGS Technical Manuals
Title " |
Technical Introduction to the Apple 1IGS
Apple IIGS Hardware Reference
Apple IIGS Firmware Reference
Programmer’s Introduction to the 'Applé 1IGs
Apple IIGS Toolbox Refefence: Volume 1

Apple 1IGS Toolbox Reference: Volume 2

Apple IIGS Programmer’s Workshop
Reference

Apple IIGS Programmer’s Workshop
Assembler Reference

Apple IIGS Programmer’'s Workshop
C Reference

ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference

Human Imarfdcé Guidelines
Apple Numerics Manual

APDA Draft xii

Apple I11GS Programmer’s Workshop

Subject

What the Apple IIGS is
Machine internals—hardware
Machine internals—firmware
Concepts and a sample program

How the tools work and some
toolbox specifications

More toolbox specifications

“This book: the development

environment
Using the APW assembler

Using C on the Apple IIGS

“Standard Apple II operating system

Apple 1IGS operating system and
loader -

Guidelines for the desktop interface
Numerics for all Apple computers

7127187

Apple IIGS Programmer’'s Workshop Preface

To start finding out
about the Apple il ’

To learn how
the Apple IGS works

Technlcal Introduction
to the Apple IIGS

Apple IIGS Hardware Apple lIGS Firmware
Reference Reference
To start learning
to program the Apple IIGS Programmer's Infroduction to
: the Apple IIGS

vol. 1

VOI'z

Apple IGS Toolbox Reference

To use the Toolbeox

Rr

Apple IIGS ProDCS 16 ProDOS 8 Technical
Reference Reference Manual

To operate on files

Apple IIGS Programmer’s
Workshop C Reference

To program in C

APW C Toolbox
Quick Reference

To program in) . Apple IGS Programmer’s Workshop

assembly language Assembier Reference

: APW Assembler Toolbox
: Quick Reference

SHR SRR SRR

Figure P-1. Roadmap to the Technical Manuals

How to Use This Book

This section describes the contents of the Apple IIGS Programmer’s Workshop Reference
manual. Following a brief chapter-by-chapter description of this book’s contents, the

section “What to Read When” gives guidelines as to which sections you should read for a
specific purpose. Finally, a section entitled “Visual Cues” describes the cues used in this

APDA Draft Xiii 7127187

Preface Apple IIGS Programmer's Workshop

book to alert you to important material or to words that have special significance (for
example, APW commands). _ —

What This Manual Contains

This manual is divided into three parts: an introduction to APW containing three chapters; a
four-chapter reference section describing APW programs and commands; and a three-
chapter reference section to the internal workings of APW for those who want to add a
program to APW. In addition, the book contains three appendixes, a glossary, and an
index. Here is a brief description of each of these components:

Part I, “Getting Started,” gives you the minimum information you need to get started using
the Apple IIGS Programmer’s Workshop.

Chapter 1, “About the Apple IIGS Programmer’s Workshop,” provides a general
overview of APW. It defines concepts that are essential to an understanding
of the APW environment and gives brief descriptions of the programs that
comprise APW.

Chapter 2, “How to Use the Shell and Editor,” introduces you to the abilities of APW.
This chapter briefly describes how you use APW to write, compile or
assemble, link, and run a program.

Part II, “Reference,” provides full descriptions of APW commands, the editor, the linker,
and the utility programs that are supplied with the APW system.

Chapter 3, “Shell,” includes complete descriptions of every APW Shell command,
along with descriptions of some APW features too advanced to be covered in
Chapter 2.

Chapter 4, “Editor,” includes complete descriptions of every APW Editor feature and
command.

Chapter 5, “Linker,” is a complete reference to the APW Linker, This chapter
includes descriptions of every linker feature and function.

Part I, “Inside the Apple IIGS Programmer’s Workshop,” contains reference material of
use to those programmers who wish to add a utility program or language compiler,
assembler, or interpreter to APW. This part includes descriptions of Apple IIGS file
formats and calls to internal APW functions.

Chapter 6, “Adding a Program to APW,” describes the requirements that a utility or
language compiler must satisfy to run under APW.

Chapter 7, “File Formats,” defines and describes the standard formats for text files
and object files for the Apple 1IGS computer.

Chapter 8, “Shell Calls,” describes several internal APW functions that utilities and
compﬂcrs can (or must, in some cases) call when operating under APW,
including the procedure for calling these functions from assembly language.

The appendixes summarize material for quick reference.

APDA Draft xiv 7127187

Apple IIGS Programmer’s Workshop Preface

Appendix A, “Contents of the APW Disks,” contains a list of all the files delivered on
a set of APW disks.

Appendix B, “Command Summary” is a complete list, with brief descriptions, of all
the shell, editor, and linker commands. This appendix also lists all the
language numbers assigned so far for APW languages.

Appendix C, “Error Messages,“ discusses errors you can get while running the APW
Shell, lists all of the error messages you can get while running the APW
Linker, and briefly describes the probable cause of each type of linker error.

The Glossary defines many of the technical terms used in this book.

What to Read When

This manual provides a complete reference to the Apple IIGS Programmer’s Workshop. It
is not necessary for you to read the entire manual before you start using APW; in fact,
depending on the kind of programming you’re doing, there may be chapters or sections of
chapters that you’ll never have to read at all. This section makes some suggestions on how
to get the most out of this manual based on your experience and needs.

First, some suggestions for everyone using APW:

» Whatever your background and experience, start with the “Other Materials You'll
Need” section of this preface and all of Chapter 1. The Apple IIGS is not quite like
any other computer, so even if you had helped design the Apple Ile and Macintosh,
you would still have to become familiar with the peculiarities of the Apple IIGS before
proceeding.

» Next, read Chapter 2. The first few sections tell you how to set up APW to run on
your Apple IIGS and describe the use of the APW Shell command interpreter. The
last few sections of Chapter 2 give you enough commands and instructions to get
started using APW,

+ Look through Appendix A to get an idea of what commands and features are available
in the shell and editor.

Note: Although some APW commands are the same as Macintosh Programmer’s
Workshop (MPW) commands, many are entirely different. Not all MPW
commands have APW equivalents.

You are now ready to begin using APW. Keep in mind that APW has many features, so
even if you have used a command before, it might have options with which you are not
familiar. Read the relevant sections of Chapters 4 and 5 to learn about shell and editor
commands when you need to use them.

The following suggestions apply only to those with special needs:

» If you are writing large or complex programs, you will probably want to take
advantage of some of the linker’s advanced features. Look through Chapter 5 to get
an idea of what the linker can do before writing your program; you can then read
about the commands and options you need when you need them. For short or simple
programs, you will never need this material.

APDA Draft xv 7127187

Preface Apple IIGS Programmer’s Workshop

+ If you are writing a program to run under APW (a utility program or a compiler, for
exmple), read Part IIl. You might find the section on the object module format
interesting if you just want to find out more about how the Apple IIGS works. Unless
you are actually adding programs to APW, however, these three chapters are not
required reading.

Visual Cues
Look for these visual cues throughout the manual:

Note: Notes like this contain sidelights or information that you will probably find
useful.

Important: “Important boxes” like this contain information that you should read
before proceding.

Warning: A warning directs your attention to something that could cause loss of
data or damage to the software.

Boldfaced terms are defined in the Glossary.

A special typeface is used for characters that you type or that can appear on the screen, such
as commands, assembly-language instructions and directives, filenames, or system
prompts:

It looks like this.

Icons are used in tables and command-input lines to indicate the arrow keys and the Apple
key. If you must press two keys simultaneously, they are shown with a hyphen (-)
between them. For example, the following sequence indicates you must press the Control
and Y keys simultaneously, followed by the Up Amrow key:

Control-Y T

Apple ITe Upgrade: The Apple IIGS Apple key, indicated with the apple icon
(), corresponds to the Open Apple key on the Apple Ile keyboard. The Apple
[IGS Option key corresponds to the Closed Apple key (#) on the Apple Ile
keyboard. The Clear and Enter keys on the Apple IIGS keyboard have no Apple Ile
equivalents,

Important: On the Apple IIGS keyboard, the Reset key has a triangle on it rather
than the word reser.

Italics are used in commands to indicate parameters that must be replaced with a value. For
example, the word pathname in the following command refers to any valid ProDOS
pathname:

DELETE pathname

If the file you want to delete is /APW/MYPROGS/DONOTHING, this command would be
as follows:

APDA Draft xvi 7127187

Apple IIGS Programmer’s Workshop Preface

DELETE /APW/MYPROGS/DONOTHING

Other Materials You’ll Need

The manuals and software you need in order to develop applications that run on the Apple
IIGS depend on the type of programming you are doing. For starters, you must be familiar
with use of the Apple IIGS computer, including the control panel. The Apple IlIGS Owner’s
Guide that came with your Apple IIGS describes routine operation of the computer.

The following sections describe the manuals in the Apple IIGS technical manual suite
(other than this manual) and make recommendations about which manuals you may need
based on the type of programming you are doing.

Introductory Manuals

These books are introductory manuals for developers, computer enthusiasts, and other
Apple IIGS owners who need technical information. As introductory manuals, their
purpose is to help you understand the features of the Apple IIGS, particularly the features
that are different from other Apple computers. Having read the introductory manuals, you
should refer to specific reference manuals for details about a particular aspect of the

Apple IIGS.

The Technical Introduction

The Technical Introduction to the Apple IIGS is the first book in the suite of technical
manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the Toolbox, and the development
environment.

You should read this book no matter what kind of programming you intend to do, because
it will help you understand the powers and limitations of the machine. If you are going to
be doing assembly-language or system programming, this book is essential.

The Programmer’s Introduction

When you start writing programs that use the Apple IIGS user interface (with windows,
menus, and the mouse), the Programmer’s Introduction to the Apple IIGS provides the
concepts and guidelines you need. It is not a complete course in programming; rather, it is
a starting point for programmers writing applications that use the Apple Desktop Interface
(with windows, menus, and the mouse). It introduces the routines in the Apple IIGS
Toolbox and the program environment they run under. It includes a simple event-driven
program that demonstrates how a program uses the Toolbox and the operating system.

If you are already familiar with writing event-driven programs on the Macintosh, you can
probably skim large portions of this manual. If you have never written an event-driven
program, or never used the Macintosh tool sets, this manual could save you hours or days
of struggling to get started.

APDA Draft xvii 7127187

Preface ‘ Apple IIGS Programmer’s Workshop

Machine Reference Manuals

There are two reference manuals for the machine itself: the Apple IIGS Hardware
Reference and the Apple IIGS Firmware Reference . These books contain detailed
specifications for people who want to know exactly what’s inside the machine. You don’t
need to read these manuals to be able to develop applications for the Apple IIGS, especially
if you are using a high-level programming language such as C. These books are essential
reading if you are doing system programming or writing programs that are designed to
recognize whether they are running on the Apple IIGS or on an older Apple II computer. In
any case, these books will give you a better understanding of the machine’s features. They
also explain the reasons why some of those features work the way they do.

The Hardware Reference Manual

The Apple IIGS Hardware Reference is required reading for hardware developers, and it
will also be of interest to anyone who wants to know how the machine works. It includes
the mechanical and electrical specifications of all connectors, both external and internal, and
descriptions of the internal hardware.

The Firmware Reference Manual

The Apple 1IGS Firmware Reference describes the programs and subroutines that are stored
in the machine’s read-only memory (ROM), with two significant exceptions: Applesoft
BASIC and the Toolbox, which have their own manuals. The Apple IIGS Firmware
Reference includes information about interrupt routines and low-level I/O subroutines for
the serial ports, the disk port, and for the Apple DeskTop Bus™, which controls the
keyboard and the mouse. The Apple IIGS Firmware Reference also describes the Monitor,
a low-level programming and debugging aid for assembly-language programs.

The Toolbox Manuals

Like the Macintosh, the Apple IIGS has a set of built-in routines, known as the Apple IIGS
Toolbox, that can be called by applications to perform many commonly needed functions.
For example, there are Apple IIGS tools that you can use to draw things on the screen and
tools for controlling desktop windows and menus. The toolbox serves two purposes: it
makes developing new applications easier, and it supports the desktop user interface.
Tools can be called from any of the Apple IIGS Programmer’s Workshop languages.

The Apple IIGS Toolbox Reference, Volume 1, introduces concepts and terminology and
tells how to use some of the tools. It also tells how to write and install your own tool set.
The Apple IIGS Toolbox Reference, Volume 2, contains information about the rest of the
tools.

You do not need to use the toolbox to write simple programs that do not use the mouse,
windows, menus, or other parts of the Apple IIGS desktop user interface. For example, if
all the programming you intend to do is to write short routines in C to solve mathematical
problems, then you don’t need the toolbox at all. If you want to use the Apple IIGS Super
Hi-Res graphics display, however, or to develop an application that uses the Apple 1IGS
desktop and mouse, you’ll find the Apple IIGS Toolbox to be indispensable.

APDA Draft xviii 7127187

Apple IIGS Programmer’s Workshop Preface

The Apple IIGS Programming Language Manuals

The Apple IIGS does not restrict developers to a single programming language. Apple is
currently providing a 65816 assembler and a C compiler. Other compilers can be used with
the workshop, provided that they observe the standards defined in Chapter 6 of this book,
“Adding a Program to APW.” You can write different parts of a program in different APW
languages and link them into a single load file using the Apple IIGS Progammer’s
Workshop.

There is a separate reference manual for each programming language that can be used on
the Apple IIGS. Each manual includes the specifications of the language, the Apple IIGS
libraries for the language, and any special compiler options for that language. The manuals
for the languages Apple provides are the Apple 1IGS Programmer’ s Workshop Assembler
Reference and the Apple 1IGS Programmer’s Workshop C Reference.

The Operating System Manuals

There are two operating systems that run on the Apple IIGS: ProDOS® 16 and ProDOS 8.
Each operating system is described in its own manual: Apple IIGS ProDOS 16 Reference
and ProDOS 8 Technical Reference Manual. ProDOS 16 uses the full power of the Apple
IIGS and is not compatible with earlier models of the Apple 1. The ProDOS 16 Reference
manual describes the features of ProDOS 16 and also includes information about the
System Loader, which works closely with ProDOS 16 to load programs into memory. If
you are writing a program that does any file manipulation or that writes to or reads from
disk, you must have the ProDOS 16 Reference manual. It is a rare applications
programmer who will not need this book at some time; for system programmers, it is
essential.

ProDOS 8, previously called ProDOS, is the standard operating system for most Apple II
computers with 8-bit CPUs, ProDOS 8 also runs on the Apple IIGS, but it cannot access
certain advanced Apple IIGS features. You need the ProDOS 8 Technical Reference only if
you are writing programs that will be able to run on 8-bit Apple II’s.

All-Apple Manuals

In addition to the Apple IIGS manuals mentioned above, there are two manuals that apply to
all Apple computers: Human Interface Guidelines: The Apple Desktop Interface and Apple
Numerics Manual. The Human Interface Guidelines manual describes Apple’s standards
for the desktop interface of any program that runs on Apple computers. If you are writing
a commercial application for the Apple IIGS, you should be familiar with the contents of
this manual. The people who buy your program will expect it to work like the other
programs on their computer; they will be upset if it doesn’t.

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment
(SANE™), a full implementation of the IEEE Standard for Binary Floating-Point
Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE tool set match
those of the Macintosh SANE package and of the 6502 assembly language SANE
software. If your application requires accurate arithmetic, you’ll probably want to use the
SANE routines in the Apple IIGS. Whereas the Apple IIGS Toolbox Reference, Volume II,
tells how to use the SANE routines in your programs, the Apple Numerics Manual is the
comprehensive reference for the SANE numerics routines. A description of the version of

APDA Draqft xix 7127187 .

Preface : ‘ Apple II1GS Programmer’s Workshop

the SANE routines for the 65C816 is available through the Apple Programmer’s and

Developer’s Association (APDA), administered by the A.P.P.L.E. cooperative in Renton,
Washington.

Note: The address of the Apple Programmer’s and Developer’s Association is 290
SW 43rd Street, Renton, WA 98055, and the telephone number is (206) 251-6548.

APDA Draft xx 7127187

Part I
Getting Started

Apple 1IGS Programmer’s Workshop Chapter 1: About APW

Chapter 1

About the Programmer’s Workshop

The Apple IIGS Programmer’s Workshop (APW) is a development environment for the
Apple IIGS computer. It includes the following components:

« shell

e editor

+ linker

* utility programs
» 65816 assembler
» C compiler

In order to understand the operation of these programs, you should be familiar with three
other programs: ,

» ProDOS 16
» Apple IIGS System Loader
» Apple IIGS Memory Manager

Further support for developers is provided by the Apple IIGS Toolbox. The Apple IIGS
tools consist of a variety of routines in ROM and RAM that your program can call to
perform such functions as I/O control, console control, graphics generation, and
mathematical computation. These tools can be used by programs written in the APW
environment, but they are not considered to be part of the Apple IIGS Programmer’s
Workshop.

The Apple IIGS Programmer’s Workshop, then, consists of 1) several programs that can
be used by developers working with any of a variety of programming languages and

2) several programming languages. This manual describes the APW Shell, Editor, Linker,
and utility programs; these are the parts of the workshop that all developers need,
regardless of which programming language they use. The APW programming languages
are described in separate manuals.

This chapter begins with a description of each of the programs in APW, plus ProDOS 16,
the System Loader, and the Memory Manager. The next several sections briefly describe a
variety of concepts that you must understand in order to program for the Apple IIGS
computer.

Specific examples of programs written using APW are given in Chapters 2 and 3. See the
Programmer’s Guide to the Apple IIGS for a more thorough discussion of Apple IIGS
concepts and for more extensive programming examples.

APDA Draft 1 7127187

Chapter 1: About APW Apple 1IGS Programmer’s Workshop

Program Descriptions

This section describes each of the programs that make up the Apple IIGS Programmer’s
Workshop, plus ProDOS 16, the System Loader, and the Memory Manager. Some of the
terms used in this section may not be familiar to you; these terms are explained more fully
in the next section, “Apple 1IGS Concepts,” and in the glossary at the end of this book.

Figure 1.1 illustrates the relationships between the Apple TIGS hardware and firmware, the
Apple 1IGS operating system, and APW. The operating system, including ProDOS, the
System Loader, and the Memory Manager, provides the interface between APW and
Apple [1GS hardware and firmware. The APW Shell allows you to call the other programs
that constitute the Apple IIGS Programmer’s Workshop and serves as the link between the
APW programs and the Apple IIGS operating system. The APW Shell’s command
interpreter serves as the interface between you and the rest of the Apple IIGS system.

_usens X2

Apple llIes Hardware & Firmware

ProDOS

APW Shell

Command Interpreter

v v T

Edltor 4 Compllers . Utllities

Debugger l-Inker Intfernal
Commands

Figure 1.1, The Relationship of APW Programs to the Apple IIGS System

Shell

The shell program provides the interface that allows you to execute the desired APW
command or program. It allows you to perform a variety of housekeeping functions, such
as copying and deleting files, or listing a directory. The shell supports input and output
redirection, as well as pipelining of Programmer’s Workshop programs.

APDA Draft 2 7127187

Apple 1IGS Programmer’s Workshop : Chapter 1: About APW

The shell also acts as an interface and extension to ProDOS 16, providing several
functions, called shell calls, that can be called by programs running under the shell.
Shell calls can be used by utility programs, compilers, linkers, or assemblers to perform
such functions as passing parameters and operations flags between the shell and other
Programmer’s Workshop programs. The format for making these calls is exactly like that
for making a ProDOS 16 call.

Editor

This full-screen text editor is designed for use with APW assemblers and compilers. The
editor lets you enter text or source code and provides a large number of editing features,
including the ability to copy, move, and delete blocks of text, search for text strings,
automatically replace text strings with other text, and move quickly from one part of the file
to another. Use the shell EDIT command to call the APW Editor.

Assembler

This full-featured assembler allows you to write 65816 assembly-language programs for
the Apple IIGS computer. The Apple IIGS Programmer’s Workshop Assembler includes
macros to facilitate assembly-langnage programming and allows you to write your own
macros and library files.

The APW Shell commands for assembling a 65816 assembly-language program are
described in Chapters 2 and 4 of this manual. The APW Assembler is described in the
Apple IIGS Programmer’s Workshop Assembler Reference manual.

C Compiler

The Apple TIGS Programmer’s Workshop C compiler is a complete implementation of the C
programming language. It consists of a C compiler, the Standard C Library, the

Apple IIGS Interface Libraries, and the C SANE Library. The object files output by the C
compiler consist of relocatable code and are fully compatible with those output by the APW
Assembler,

The APW Shell commands for compiling a C program are described in Chapters 2 and 4 of
this manual. APW C and C compiler options are described in the Apple IIGS
Programmer’s Workshop C Reference manual.

Linker

The APW Linker takes the files (called object files) that have been created by the APW
Assembler or any of the APW compilers and generates files that the System Loader can

load into memory (load files). The linker resolves external references and creates
relocation dictionaries, which allow the System Loader to relocate code at load time.

Although the APW Linker is a single program, conceptually there are two APW linkers:

1. Normally, the linker is called directly by a shell command (such as the ASML
command, which assembles and links a program, or the LINK command, which

APDA Draft 3 7127187

Chapter 1: About APW Apple IIGS Programmer’s Workshop

links object files). These commands provide a limited number of linker options on
the command line; most linker options are set to default values. In this manual, this
aspect of the linker is referred to as the standard linker.

2. Alternatively, all functions of the APW Linker can be controlled by compiling a file

of linker commands. The linker command language, called LinkEd, aliows you to
do such things as place specific object-file segments in specific load-file
segments, create dynamic load segments, set load addresses for nonrelocatable
code, search libraries, and control the output printed by the linker. (Object-file
segments, load-file segments, and dynamic and static segments are discussed in the
section “Apple IIGS Concepts™ later in this chapter.) You can append the LinkEd
commands to the last file of your source code, or you can compile and execute them
separately by using the ASSEMBLE, COMP ILE, or ALINK commands of the Apple
TIGS shell. In this manual, the aspect of the linker controlled by LinkEd files is
referred to as the advanced linker.

The advanced linker is provided for programmers who require maximum flexibility from

the

system; for most purposes, the standard linker is completely adequate. When a

statement in this book applies equally to the standard and advanced aspects of the APW
Linker, the terms APW Linker or linker are used.

Since all Apple IIGS Programmer’s Workshop assemblers and compilers create object code
that conforms to the same format, called object module format (OMF), the APW Linker

can

link together object files written in any combination of the development-environment

languages. Object module format is defined in Chapter 7, “File Formats.”

Note: There are currently two versions of the OMF in use for load files: Version
1.0 load files are created by the APW Linker. Version 2.0 load files are created

from Version 1.0 load files by the Compact utility program. Both Version 1.0 and

Version 2.0 load files can be loaded by the System Loader. See the description of
the COMPACT command in Chapter 3 for more information on the Compact utility.

Utility Programs

The Apple IIGS Programmer’s Workshop includes several programs, called APW
Utilities, that perform functions not built in to the shell. Utilities include

Canon, which replaces character strings in a file with other strings as specified in a
dictionary file.
Compact, which converts a load file to a more compact form.

Crunch, which combines multiple object files created by partial assemblies or
compiles into a single object file.

DumpObj, which lists an object-module-format file to standard output (usually the
screen).

Equal, which compares two files or directories for equality of their contents, dates,
and file types.

Files, which lists the contents of a directory, including subdirectories. Files can also
search for a file whose name contains a string you specify.

Init, which initializes (formats) a disk.
MacGen, which generates a custom macro file for your program.

APDA Draft 4 7127187

Apple IIGS Programmer’s Workshop Chapter 1 : About APW

« MakeBin, which creates a ProDOS 8 binary file from a ProDOS 16 load file.

« MakeLib, which creates a library file from object files.

« Search, which searches a text or source file for a string that you specify.

+ Version, which displays the version number of the APW Shell that you are using.

Most utilities, referred to as external commands, are executed like built-in (internal) shell
commands. A few utility programs might require more complex command sequences. All
of the utility programs supplied with APW are described in Chapter 3. If you add a utility
to your system, refer to the documentation that came with it for instructions.

Apple IIGS Debugger

To facilitate the debugging of assembly-language programs, Apple provides the Apple IIGS
Debugger, which works with 65816 machine code. The Apple IIGS Debugger allows you
to trace or step through a program one instruction at a time or to execute the program at full
speed; in either case, you can insert breakpoints at which the debugger halts execution so
that you can inspect the contents of the registers, memory, direct page, and stack. The
debugger can display a variety of types of information on the screen, including a
disassembly of the code being traced, the contents of memory, the normal display of the
program being tested, the contents of the program’s direct page, the contents of Apple IIGS
registers, and the contents of the program’s stack.

The debugger allows you to switch between your test program’s screen display and the
debugger’s displays. If you switch to the debugger’s display, the debugger remembers
which display mode the test program was in and changes back to that mode when you
switch back to the program’s display.

The Apple IIGS Debugger is available from A.P.D.A. as a separate product and is
described in the Apple IIGS Debugger Reference.

ProDOS 16

ProDOS 16 is the central part of the Apple IIGS operating system. Although other software
components, such as the System Loader, may be thought of as parts of the overall
operating system, ProDOS 16 is the key component. It manages the creation and
modification of files, accesses the disk devices on which the files are stored, dispatches
interrupt signals to interrupt handlers, and controls certain aspects of the Apple IIGS
operating environment, such as pathname prefixes. Your program can call ProDOS 16 to
open and close files, read data from disks, write data to disks, and perform a variety of
other system functions. Most programs use the ProDOS 16 QUIT call to quit and pass
control to another program.

ProDOS 16 is described in the Apple IIGS ProDOS 16 Reference.

System Loader

The System Loader is an Apple IIGS tool set that reads the files generated by the APW
Linker, relocates them (if necessary), and loads them into memory. The System Loader

APDA Draft 3 7127187

Chapter 1: About APW Apple 1IGS Programmer’s Workshop

calls the Memory Manager as necessary to allocate blocks of memory for segments it wants
to load.

Each load segment consists of two parts: a set of records that contain all of the code and
data in the segment that is not location dependent (with spaces reserved for location-
dependent addresses), and a relocation dictionary that provides the information necessary to
patch addresses into the first part of the segment at load time. When the segment is loaded
into memory, the first part is loaded very quickly; then the relocation dictionary is
processed. This structure permits extremely fast loading of relocatable segments.

The System Loader is described in the Apple IIGS ProDOS 16 Reference.

Memory Manager

This Apple IIGS program allocates and frees blocks of memory as they are needed. It does
the bookkeeping to keep track of which blocks of memory are being used and which
program owns each block of memory. The System Loader calls the Memory Manager to
reserve or release memory when loading segments; your application should also call the
Memory Manager whenever it needs a block of memory. Use of the Memory Manager and
the System Loader makes it possible for your application to be loaded at the same time as
shell programs, memory-resident utilities, character-font data files, and so on.

The Memory Manager is described in the Apple IIGS Toolbox Reference: Volume I.

Apple IIGS Concepts

This section introduces a variety of features and concepts that you must understand in order
to write application programs for the Apple IIGS computer. While some of these concepts
may be familiar to you from work with other computers, you must still be familiar with the
way in which they are implemented on the Apple IIGS to get the most out of the Apple 1IGS
Programmer’s Workshop and to use the operating system and the memory of the

Apple 1IGS efficiently.

Source, Object, and Load Files

There are three main steps to developing a program in the APW environment, and each step
corresponds to one of three fundamental types of files: 1) writing the program creates
source files; 2) compiling or assembling the program creates object files; and

3) linking the program creates load files. Source files are ASCII files consisting of code
and data; each source file follows the conventions of a particular programming language.
Object files are binary files containing machine-language instructions rather than the
directives and instructions of a higher-level programming language. There can be several
object files for one program, each file containing part of the program. Object files do not
contain the information needed by the System Loader to load the program into memory.
Load files, on the other hand, can be loaded by the System Loader. The linker combines
(“links™) the object files into a single load file and adds the information needed by the
loader to load the program into memory.

APDA Draft 6 7127187

Apple IIGS Programmer’s Workshop Chapter 1: About APW

Symbolic References and Relocatable Code

A source file consists of programming-language instructions, directives, functions, and so
forth, together with data needed by the program. In the source code, specific instructions,
subroutines, or blocks of data are often labelled with a name. You can refer to the name in
another part of the program; for example, when you want to execute a subroutine, you
generally refer to the subroutine by name. A name or label of code or data used in this way
is referred to as a symbolic reference (that is, a symbol that can be referenced or
referred to). In high-level programming languages, symbolic references are often the only
means available to jump from one place in a program to another; a few languages, such as
BASIC, may also use source-code line numbers, which are relative to the start of the
program. These line numbers also serve as symbolic references, since they are not part of
the programming language, but only serve to label locations in the program.

In assembly language, in contrast, it is possible to specify actual locations in the
computer’s memory to which you want the program to jump. For such a program to run,
the correct information—that is, the machine instruction that you want to be executed next
or the data you want to use—must be present at that location in memory when the jump is
made. Code whose location in memory is specified when the program is written or linked
is called absolute, since the loader must load it at that location or not at all.

Alternatively, it is possible to write a program in which every reference to a location in the
program is either relative to another location or is made through a symbolic reference.
Such a program need not be loaded into a specific location in memory to run and is thus
referred to as relocatable. Note that this term is somewhat misleading: a relocatable
program can be loaded into any location in memory, but it cannot necessarily be moved
once it has been loaded. (A program or block of code that can be moved from one location
in memory to another while the program is running is called movable.) The term
relocate in this context means the process of inserting (or patching) into the program in
memory the actual memory addresses to which jumps must be made. Relocation on the
Apple HGS is done during program load by the System Loader.

Relocatable Load Files

The advantages of using relocatable code for the Apple IIGS are considerable. Relocatable
code can be placed in memory at whatever location the Memory Manager chooses. Since
desk accessories, shell programs, R AM-based tools, and so forth are placed in memory by
the System Loader and Memory Manager, absolute code is likely to conflict with other code
already in memory. The Apple IIGS System Loader, object module format, and Memory
Manager are designed to support relocatable code. Apple IIGS Programmer’s Workshop
compilers generate relocatable code, and the APW Assembler is designed to work with
relocatable code. Do not write absolute code unless you want to cause untold grief to
yourself and the people who use your program.

When relocatable code is assembled or compiled, the assembler or compiler converts the
source code into 65816 machine-language instructions, data, and symbolic references.
Before the program is actually run, the symbolic references must be resolved; that is, the
routine being referenced must be found, and the reference must be replaced with code that
the loader can use to relocate the code at load time, The program that resolves the symbolic
references is called the APW Linker. (The linker gets its name from the fact that it can
fombi?e, or link together, several object files and library files to create a single executable
oad file.)

APDA Draft 7 7127187

Chapter 1: About APW Apple IIGS Programmer’s Workshop

The Three Steps to Program Development

As mentioned above, the conversion of a source file into data that is resident in memory is
done in three main steps. Figure 1.2 illustrates these steps. The following is a more
detailed account of this sequence:

1. The source code is assembled or compiled. Depending on the programming
language used in the source file, the APW Assembler, C Compiler, or some other
assembler or compiler processes the source file to create an object file. The object
file contains 65816 machine-language instructions, data, and symbolic references to
program routines. Object files, then, consist of machine-language instructions plus
unresolved symbolic references.

Your program can consist of several source files, and each source file can be in any
of the APW programming languages. Each source file is converted into one or more
object files by the APW Assembler and compilers.

2. The object files are input to the APW Linker, which combines all of the object files
into a single load file and resolves symbolic references. The linker verifies that
every routine referenced is included in the load file. If there are any routines that the
linker has not found when it has finished processing all of the object files, it searches
through any available library files for the missing routines. The linker removes
symbolic references and replaces them with entries in special tables it creates called
relocation dictionaries. The load file consists of blocks of machine-language
code that can be loaded directly into memory (called memory images), plus
relocation dictionaries that contain the information necessary to patch addresses into
the memory images when the program is loaded into memory.

3. Atprogram execution time, the load file is loaded into memory by the System
Loader. The loader calls the Apple IIGS Memory Manager to request blocks of
memory for the load file, loads the memory images, and uses the relocation
dictionaries to patch the actual memory addresses into the machine-language code in
memory. Because a load file can contain more than one segment, and because each
segment can be processed independently, only part of the load file may be loaded
into memory initially. OMF-file segmentation, a fundamental Apple IIGS concept, is
discussed in the next section.

The Memory Manager is the Apple IIGS tool set that allocates blocks of memory as
needed and keeps track of which blocks of memory are available.

APDA Draft 8 7127187

Apple 1IGS Programmer’s Workshop

/

IMJ_ Source Flle

Chapter 1: About APW

Assembler

Compller

Assembler Assembler
or or
Compller Compller
l
Object Flle ” Object Flle
e ————

\

Object File

E————

Linker

l

Load File

:

Loader

Executable Code
in Memory

Figure 1.2, Creating an Executable Program on the Apple 1IGS

Program Segmentation

In general, any computer program that consists of more than a few lines of code contains
one or more subroutines; in addition, you may choose to segregate large blocks of data into

APDA Draft

7127187

Chapter 1: About APW Apple IIGS Programmer’s Workshop

separate parts of the program. In APW, subroutines or blocks of data are given names that
can be recognized by the linker; these named blocks of code are referred to as segments.
In APW assembly-language programs, for example, you can assign labels to subroutines
or blocks of data with the START—END and DATA—END directive pairs. The code
between the START or DATA directive and the next END directive composes a segment. As
illustrated in Figure 1.3, when you assemble or compile the program, each source-code
segment becomes one object segment.

Source File Object File

Segment name: Main

object segment Main

e m W W WM WM W W WM R M OW™ W™ WM OWM W m m m

object segment Dave

Segment name: Marek o T
—_— object segment Marek

b = = = w w w e m m m w w W w w om me e w M

object segment Jason

. * A = w m om m o oEm e e eomemeomomomomom

Segment name: Last

object segment Last

Figure 1.3. Assigning Object Segments in Your Source Code

The segmentation of source files and object files increases the flexibility and efficiency of
the program development process. For example, it is not necessary to recompile an entire
program each time you make a change, since each source-file segment can be compiled or
assembled independently by APW compilers and assemblers in a process referred to as a
partial compile or partial assembly. Object segments that are part of one program can
be easily extracted for use in another program, since each object-file segment can be chosen
independently for linking with a LinkEd command.

Apple IIGS load files are also segmented. The segmentation of load files allows a program
to be loaded into memory in pieces rather than in one block, so that large programs can be
loaded even when one large contiguous block of memory is not available. Under certain
circumstances, load segments also allow parts of a program to be loaded and unloaded
while the program is running so that memory can be used more efficiently; see the section
“Dynamic Segments” later in this chapter for details.

It is important to understand the difference between object segments and load segments.
Object segments generally correspond on a one-to-one basis with subroutines in the source
file. Each load segment, on the other hand, can incorporate any number of object
segments. Object segments are used by the linker to resolve references and to extract
subroutines from library files. Load segments are used by the loader when loading a

program into memory.

APDA Draft 10 7127187

Apple 1IGS Programmer’s Workshop Chaprer 1: About APW

Object-segment names correspond to subroutine names; they are assigned in the source file.
Some APW languages, such as 65816 assembly language and APW C, let you specify
load-segment names in the source code as well; such load-segment names are optional,
however. Each object segment must have a unique object-segment name, but any number
of object segments can share the same load-segment name. You can also use LinkEd
commands to assign names to load segments and to specify which object segments go in
each load segment.

Source-file load segment names allow you to segment a load file without using the
advanced linker. If you do not use a LinkEd file, all object segments with the same load-
segment name are placed by the standard linker into the same load segment. The object-
segment names are discarded by the linker; there is no record in a load segment of the
object segments that went into it.

Source-file load-segment names are illustrated in Figure 1.4. The relationship of object
segments to load segments is illustrated in Figure 1.5.

Source File Object File
Segment name: Main object segment Main
Loadsegment name: First load segment naome: First
Segment name: Dave object segment B e

load segment name

Loadsegment name:
:D object segment Marek
““““ load segment name First

Segment name: Marek
Loadsegment name: First

T— object segment Jason
.................... load segment name Second

Segment name: Jason
Loadsegment name: Second object segment Last

load segment name

b & = m e m v e e e ese e . -m--=n

Segment name: Last
Loadsegment name:

Figure 1.4. Assigning Load Segments in Your Source Code

The relationship between object segments and load segments can be made clearer if we first
take a brief look at the structure of a segment in an OMF file. Each segment consists of a
segment header and the segment body. The segment header is divided into fields
containing the following information:

» The size of the segment.
» The type of segment (including code, data, static, and dynamic).
+ The version number of the OMF with which this segment is compatible.

APDA Draft 11 7127187

Chapter 1: About APW Apple IIGS Programmer’'s Workshop

*» The address in memory at which this segment is to be loaded. Normally, this field is
0, indicating that the segment is relocatable.

* The name of the segment.

» For object segments, the name of the load segment into which the standard linker
should place this segment. For load segments, this header field is not used.

» Several other fields that need not concern us here (see the section “Segment Header”
in Chapter 7 for a full description).

A load segment has only one name, the name of the segment (the name of the load segment
field in the segment header is not used in a load segment). For object segments, however,
these names are distinct; that is, both the object-segment name and the load-segment name
fields are used. The object-segment name is used by a compiler when performing partial
compiles (described in the section “Partial Assemblies or Compiles” in Chapter 3) and by
the linker in resolving references and in extracting specific segments for linking (see the
section “Linking with a LinkEd Command File” in Chapter 5). Load segment names are
used by the loader when loading, unloading, and relocating segments.

Each object-segment name in an object file must be unique. In addition to the object-
segment name, each object segment is also assigned a load-segment name; any number of
object segments can have the same load-segment name. The standard linker places all
object segments that share the same load-segment name into the same load segment. As
illustrated in Figure 1.4, some programming languages (such as 65816 assembly language
and APW C) let you assign your own load-segment name to an object segment; on the
other hand, some compilers assign a load-segment name to the object segment for you. If
no load-segment name was assigned in the source file or in a LinkEd file, the load-segment
name can consist of a string of space characters. -

For example, suppose your object file contains the object segments Peter, Paul, and Mary,
and each of these object segments is assigned either to the load segment White or the load
segment Black, as follows:

0. Object-segment name: Peter
Load-segment name: White

1. Object-segment name: Paul
Load-segment name: Black

2. Object-segment name: Mary
Load-segment name: White

When the standard linker processes this file, the object-segment names Peter, Paul, and
Mary are treated as references that must be resolved. Object segments Peter and Mary are
placed in the same load segment, named White, and object segment Paul is placed in a
separate load segment, named Black. Another example of the relationship between object
segments, load-segment names, and load segments is illustrated in Figure 1.5. Note that
the segments that have no load-segment name assigned in the source file are put by the
standard linker into a load segment with a blank name (that is, the name consists of a string
of space characters).

APDA Draft 12 7127187

Apple IIGS Programmer’s Workshop Chapter 1: About APW

Object File Load File

object segment Main »| Segment First
load segment name: First

object segment Dave
I ment nam

oad segment name T
object segment Marek

load segment name First

object segment Jason
load segment name Second

Segment Second

object segment Last
load segment name

Figure 1.5. Relationship Between Object Segments and Load Segments

On the Apple IIGS computer, no single block of code can occupy more than 64K of
contiguous memory. (In this manual, K is used to mean 1024 bytes.) To load a larger
program than that, you must split it up into two or more load segments. When much of
memory is already in use, it may be possible to load a program that is divided into several
small load segments even if the same program in one or two load segments wouldn’t fit.
The Apple IIGS Memory Manager takes care of assigning each segment to a block of
memory; the System Loader keeps track of where in memory the segment has been loaded
and patches intersegment calls in each segment as it is loaded.

Note: Although no single block of code can occupy more than 64K of contiguous
memory, data can occupy more than 64K. The restriction is due to a limitation of
the 65C816 microprocessor, which cannot execute code across a memory bank
boundary.

Dynamic Segments

On the Apple IIGS computer, the combination of load segments together with the System
Loader and Memory Manager makes possible the creation of dynamic segments. A
dynamic segment can be loaded and unloaded automatically by the System Loader and
Memory Manager during program execution. Dynamic segments can be used to fulfill the
same function as overlays; that is, a dynamic segment that is not needed at a given time can
be removed from memory to provide room in which to load another dynamic segment.

Dynamic segments are much more versatile than overlays, however: whereas overlays must
always be loaded into the same location of memary, and that block of memory cannot be
used by more than one program, dynamic segments (which, to be used effectively, should
also be relocatable) can be loaded at any location in memory when needed. In addition, the
System Loader and Memory Manager remove from memory a dynamic segment that is not

APDA Draft 13 7127187

Chapter 1: About APW Apple 1IGS Programmer’s Workshop

being used only if the memory is needed for something else; otherwise, the segment
remains in memory and need not be reloaded the next time it is called.

Before the segment can be removed from memory, the application program must make the
segment purgeable by using the System Loader’s Unload Segment call or the Unload
Segment by Number call. The System Loader is described in the Apple IIGS ProDOS
Reference.

A segment that is not dynamic is referred to as static. A static segment is loaded at
program boot time and is not unloaded or moved during execution. The first segment of
any program that is loaded is static. Any other segments may be static, but (especially for
large programs) the initial load of the program will be faster and the system will make more
efficient use of memory if all infrequently used segments are dynamic. You can use a
LinkEd command to make a segment dynamic; refer to the manual that came with the APW
language you are using to see if there is also a way to assign dynamic segments in the
source code.

Library Files

Library files contain routines that are useful to many different programs. On the Apple
IIGS, all library files are in object module format, regardless of the language of the source
file. An Apple IIGS library file (ProDOS file type $B2) can therefore be used by a program
written in any source language. Some languages, such as APW C, come with a set of
library files used by that language.

When the linker processes one or more object files and cannot resolve a symbolic
reference, it assumes that it is a reference to a segment in a library file. If you use the
standard linker, it searches any library files you name on the command line and then
automatically searches all of the library files in the APW library prefix
(/APW/LIBRARIES/ on your original APW disk, for example). If you use a LinkEd
command file, the advanced linker searches only the library files that you specify. Unless
you are using the advanced linker, you do not even need to know the names of the library
files in order to use them; the standard linker automatically finds the files and extracts the
segments it needs.

You can create your own library files from one or more object files by using the MakeLib
APW utility program. Figure 1.6 illustrates the process by which a library file is created.
You specify one or more object files to be included in the library file. MakeLib
concatenates the files and creates a special segment at the beginning of the file called the
library dictionary segment. The library dictionary segment is the first segment of a
library file; it contains the names and locations of all the global symbols in the file. (A
global symbol is a label in one segment that can be referenced in another segment, as
opposed to a local symbol, which can be used only within the segment in which it is
defined.) The linker uses the library dictionary segment to find the segments it needs.

The library dictionary segment makes it possible for the linker to search a library file for
global symbols much more rapidly than it can search an object file. Consequently, the
linker will search a library dictionary segment multiple times if necessary to find segments
referenced by other segments in the library file. The sequential order of the segments in a
library file is therefore not important. If you were to use several library files, on the other
hand, the order in which the files were searched would be important: if the linker first
searched file A and then file B, for example, it could resolve a reference made in file Ato a

APDA Draft 14 7127/87

Apple 1IGS Programmer’s Workshop Chapter 1: About APW

global symbol in file B, but could not resolve a reference made in file B to a symbol in file
A. Itis for that reason that MakeLib allows you to include several object files in a single

library file.

Libflle

Objectl] Library

segl Dictionary
seg’

: - j| Segment
segJ f \ Cross reference
4
._.ﬁ‘ﬂ 569 between filenames,
. ez segments, and
2 o symbol names
- - (]

[-
segn.

Ust of object files

List of symbol names

Object2
EizIe R
el
Esegg

MakelLib

Object3

e

5952
seq

- g \ J

Figure 1.6. Relationship Between Object Files and Library Files

Emulation and Native Modes

The 65C816 processor of the Apple IIGS computer can run in emulation mode or native
mode. In emulation mode, it behaves exactly like a 6502 processor and can run code
written for the 6502 without modification. The Apple IIGS computer fully supports
emulation mode by including ROM code and a memory structure that allows you to run
programs written for 8-bit Apple computers, such as the Apple Ile and Apple Ilc. When
running in emulation mode, however, your program can use only the first 128K of Apple
IIGS memory and cannot take advantage of the System Loader or Memory Manager.

Native and emulation modes are discussed in the Technical Introduction to the Apple IIGS
and described in detail in the Apple IIGS Hardware Reference manual.

APDA Draft 15 ' 7127187

C. haﬁter :1 - About APW | Apple IIGS Programmer’s Workshop

Note: The ProDOS 8 loadable file format (called the binary file format), consisting
of one absolute memory image along with its destination address, cannot be loaded
by the Apple IIGS System Loader. You must use ProDOS 8 to load such a file.

See the description of the MakeBin utility in Chapter 3 for a way to create a ProDOS 8
binary load file with APW. Except for the section on MakeBin, this book assumes that you
are writing programs to be run under ProDOS 16 in native mode on the the Apple IIGS
computer.

APDA Draft 16 7127187

Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor

Chapter 2

How to Use the Shell and Editor

The Apple IIGS Programmer’s Workshop Shell provides your interface with APW. The
shell provides a command interpreter to perform such functions as copying, moving, and
deleting files, and running programs. You can assemble, compile, link, and run your
programs with shell commands. In the Apple IIGS Programmer’s Workshop, a single set
of commands operates identically for all assemblers and compilers; you do not need to learn
a new set of commands or operating sequence for each language you add to the system.
APW also provides a full-featured text editor that you can use to write source code. Files
written with the APW Editor are recognized by APW as language source files; the APW
Shell can automatically select the correct compiler, assembler, or linker to process each
source file.

This chapter introduces you to the use of the shell and editor. The following topics are
covered in this chapter:

« the hardware and software needed to run APW

* how to install APW on a hard disk

» how to make your hard disk self-booting

* how to run APW on floppy disks

* how to run APW on a hard disk

» how to enter and execute APW Shell commands, including how to use wildcard
characters, partial pathnames, and device names

» how to list the disk directory and read the directory listing
* how to set up and use a printer with APW
~+ how to launch Apple IIGS programs using APW
The following topics are too complex to be covered in this chapter in detail, but they are

introduced here. For more information on each topic, see the chapters referred to in
parentheses:

* how to use the editor (Chapter 4)
» how to use shell-command files, called Exec files (Chapter 3)

* how to compile (or assemble) and link a program (Chapter 3 and the manual that came
with your compiler or assembler)

» how to use the Apple 1IGS Debugger (Apple IIGS Debugger Reference)
* how to use APW utility programs (Chapter 3)

Only the most commonly used shell commands and features are described in this chapter;
all APW Shell commands are described in detail in Chapter 3.

APDA Draft 17 7127187

Chapter 2: Using the Shell and Editor Apple 1IGS Programmer’s Workshop

Important: Some commands, such as the COPY command, are used in examples
and instructions given in this chapter. These examples do not show all of the ways
in which the commands can be used. If you have trouble using any command, see
the complete description of that command in Chapter 3.

What You Need

In order to use the Apple IIGS Programmer’s Workshop, you must have the following
hardware and software. A list of Apple IIGS manuals that you will find useful is given in
the Preface.

« An Apple Gs computer or an Applc Ile computer with an msta]led Apple IIGS
upgrade, with 256K of RAM. .

« Aninstalled Apple IIGS mcmory-cxpansmn board with one megabyte (1024K) of
RAM, for a total of 1280K of RAM.

+ Two 3.5 inch disks containing the files shown in Appendix A.
+ Two 800K disk drives or one 800K disk drive and one hard disk.

* Disks containing any other APW languages you intend to use with this system. The
files on these disks must be installed on the Apple IIGS disk as described in the
manuals that came with the APW language disks.

Important: APW requires one megabyte of available memory. That means that if
you have 1280K of RAM in your Apple IIGS, you cannot assign more than 256K
to a RAM disk.

A hard disk is highly recommended, especially if you intend to do multilanguage
development or to develop large programs:

In addition, many developers find that an Apple II memory-expansion board is very useful
in the Apple IIGS. You can use the board for a large RAM disk on which you can place
library files, compilers and assemblers, the linker, and utility programs. Since many of
these programs are loaded into memory from disk each time they are used, placing them on
a RAM disk can speed up operation of the system during program development.

Note: See the Preface of this book for a list of the manuals you’ll need to develop
programs for the Apple IIGS, an explanation of the layout of this book, a
description of the interrelationships of the books in the Apple IIGS technical
reference suite, and a description of the typographical conventions used to describe
commands in this book.

The files on the APW disks are listed in Appendix A.

Backing Up Your APW Disks

It is important to make a copy of your APW disks and to run APW from the copies only.
Keep the original disks in a safe place so you can make new copies if something happens to
the ones you have been using.

APDA Draft 18 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

Important: You must make copies of your APW disks even if you intend to copy
APW onto a hard disk, in case something goes wrong during the installation
procedure. '

You can use any disk-copy utility you prefer to back up your APW disks. Remember that,
if the new disk is not already formatted, you must format it before you copy APW onto it.
The Apple IIGS System Disk that came with your computer includes formatting and disk-
copy utilities. ,

Warning: Formatting a disk erases all information on the disk you are formatting.
Most disk duplication programs also destroy any information on the new disk (the
disk being copied to). To be safe, be sure your APW disks are write-protected
before you begin to copy them. ‘

If you already have an older version of APW, you can launch your old APW and use the
INIT and COPY -D commands to duplicate your new APW disks.

To run APW from the disk copies you just made, see the section “Running APW on
Floppy Disks” in this chapter. To install APW on a hard disk, see the following section,
“Installing APW on a Hard Disk.”

Important: You must give your copy of the /APW disk the volume name /APW,
or the hard-disk installation procedure will not work correctly.

The Emergency Exit: Control-Reset

On occasion when you are testing a new program that runs under the APW Shell, the
computer “hangs” (that is, you can neither quit the program nor get it to respond to any
commands), or the program enters an infinitely repeating loop. In either case, you may be
able to quit the program and return to the shell by pressing Control-Reset.

Warning: Never press Control-Reset during a disk-write operation, as this can
cause loss of data on the disk.

Use Control-Reset as a last resort only. Never use it instead of Apple-Period (which you
can use to cancel most APW commands), as it does not cause the routine to terminate
normally. If your program has written over portions of memory needed by APW, then
APW may not be able to function normally after quitting the program and you might have
to reboot the computer. If any files are open when you press Control-Reset, they may not
be properly closed and the shell will not be able to resume operation,

If you do press Control-Reset, even if APW appears to be functioning normally, it is best
to quit APW and restart it as soon as it is practical to do so.

Installing APW on a Hard Disk

If you want to install APW on a hard disk for the first time, follow the procedure in the
next section, “First-Time Installation.” If you want to update an already-installed APW,
see the section “Updating APW,” later in this chapter.

APDA Draft 19 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Important: Before you do anything else, you must make copies of your APW
disks. If you have not already done so, use the procedure in the earlier section,
“Backing Up Your APW Disks,” to make copies of the disks.

First-Time Installation

Before you can install APW on your hard disk, you must have a properly formatted hard
disk. If you have not already done so, follow the instructions that came with your hard
disk to format it.

Use the following procedure to install APW on your hard disk.

Note: If want to make your hard disk boot directly into APW rather than into a
program launcher, you must use a slightly different procedure. See the section
“Booting Directly Into APW,” later in this chapter, for a way to make your hard
disk boot directly into APW .

1. Tum on the computer and hard disk and use the Control Panel to set the startup slot

to your floppy disk drive. See the section on the Control Panel in the Apple IIGS
Owner’s Guide for instructions on setting the startup slot.

2. Insert the copy you made of the /APW disk in the startup disk drive and press Apple-
Control-Reset to reboot the computer. The Apple IIGS Program Launcher should
load from the disk.

3. Press Return twice to launch APW. Wait until the APW command-line prompt—a
number sign (#)—appears at the left edge of the screen.

4. Enter the following command (substitute the volume name of your hard disk
wherever you see hardisk). Remember to press Return after each command that you
type.

INSTALL /APW /hardisk/APW

This command creates a subdirectory on your hard disk named APW/ and copies the
APW files from your /APW disk into the APW/ subdirectory on the hard disk. This
will take several minutes.

5. Remove the /APW disk from your disk drive and insert the /APWU disk.
6. Enter the following command:
INSTALL /APWU /hardisk/BPW
This command copies the files from your /APWU disk into the APW/ subdirectory on
the hard disk. This will take several minutes.

You now have APW installed on your hard disk. If your hard disk is already self-booting,
and if you have ProDOS 16 and the System Loader Version 1.2 or later, you can remove
the /APWU disk from the disk drive, reset the Control Panel to boot from the hard disk, and
begin using APW immediately. ¥ you have never installed an Apple IIGS system on your
hard disk, or if the version of ProDOS 16 or the System Loader are earlier than version

1.2, then follow the instructions in the next section to make your hard disk self-booting.

APDA Draft 20 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

Important: You must have ProDOS 16 and the System Loader Version 1.2 or
later to run APW. To find out what version of ProDOS 16 and the System Loader
you have on your hard disk, boot the disk. The version numbers are displayed on
the screen while the load process is taking place.

Making Your Hard Disk Self-Booting

The easiest way to set up your hard disk to be self-booting is to copy the Apple IIGS
System Disk onto the hard disk, as described in the next section, “Copying the Apple IIGS
System Disk.” You must have Version 2.0 or later of this disk. If you do not have a
recent version of the system disk, you can copy the system from your /APW disk instead.
To do so, use the procedure in the section “Copying the System From the APW Disk.” To
make your hard disk boot directly into APW, follow the procedure in the section “Booting
Directly Into APW.”

Copying the Apple IIGS System Disk

To make your hard disk self-booting by copying the Apple IIGS System Disk onto your
hard disk, use the following procedure:

1. Tum on the computer and hard disk and use the Control Panel to set the startup slot
to your floppy disk drive. See the section on the Control Panel in the Apple IIGS
Owner’s Guide for instructions on setting the startup slot.

2. Insert the copy you made of the /APW disk in the startup disk drive and press Apple-
Control-Reset to reboot the computer. The Apple IIGS Program Launcher should
load from the disk.

3. Press Return twice to launch APW. Wait until the APW command-line prompt—a
number sign (#)—appears at the left edge of the screen.

4. Remove the /APW disk from the disk drive and insert the Apple IIGS system disk in
the drive.

5. Execute the following command to copy the files on the system disk onto your hard
disk (substitute the volume name of your hard disk wherever you see hardisk):

COPY ~-C /SYSTEM.DISK/= /hardisk

6. Use the Control Panel desk accessory to set the startup slot so that the computer will
boot from your hard disk.

7. Remove the system disk from the disk drive and press Apple-Control-Reset to cause
the machine to reboot from the hard disk. When you boot from the hard disk, you
will get a program launcher. Select and open the APW folder, and then select and

open the file APW. SYS16 to launch APW,
Copying the System From the APW Disk

To make your hard disk self-booting by copying the system files from the /APW disk onto
your hard disk, use the following procedure:

APDA Draft 21 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

1. Tum on the computer and hard disk and use the Control Panel to set the startup-slot
to your floppy disk drive. See the section on the Control Panel in the Apple IIGS
Owner’s Guide for instructions on setting the startup slot.

2. Insert the copy you made of the /APW disk in the startup disk drive and press Apple-
Control-Reset to reboot the computer. The Apple IIGS Program Launcher should
load from the disk.

3. Press Return twice to launch APW. Wait until the APW command-line prompt—a
number sign (#)—appears at the left edge of the screen.

4. Execute the following commands to copy the system files on the /APW disk onto
zgur hard disk (substitute the volume name of your hard disk wherever you see
rdisk):

COPY -C /APW/PRODOS /hardisk
COPY -C /APW/SYSTEM /hardisk

None of the APW files are copied from the /APW disk to your hard disk in response
to these commands, but all of the system files that you need to make your hard disk
self-booting, including the Apple IIGS Program Launcher program, are copied.

5. Use the Control Panel desk accessory to set the startup slot so that the computer will
boot from your hard disk.

6. Remove the /APW disk from the disk drive and press Apple-Control-Reset to cause
the machine to reboot from the hard disk. When you boot from the hard disk, you
will get the Apple IIGS Program Launcher. Select and open the APW folder, and

then select and open the file APW.SYS16 to launch APW.

Updating APW

If you have previously installed a version of APW on your hard disk, you can use the
procedure described earlier in this chapter in the section “First-Time Installation,” to replace
it with the latest version of APW. Before you do so, however, consider the following
points:

» The installation routine assumes that you have a directory on your hard disk named
/ hardisk/APW. If not, it creates one and copies APW into that subdirectory. If APW
on your hard disk is in a subdirectory named something ozher than /hardisk/APW,
substitute that name in the installation procedure.

« The installation procedure replaces the files SYSCMND, LOGIN, and SYSTARBS in the
APW/SYSTEM subdirectory. If you have customized any of these files, you should
rename them before installing the new APW, and then either edit or replace the new
versions of the files as appropriate.

* You must have ProDOS 16 and System Loader Version 1.2 or later to run APW. To
find out what version of ProDOS 16 and the System Loader you have on your hard
disk, boot the disk. The version numbers are displayed on the screen while the load
process is taking place. To replace the system files on your hard disk with more
recent versions, follow either of the two procedures described earlier in the section
“Making Your Hard Disk Self-Booting.”

APDA Draft 22 7127/87

Apple IIGS Programmer’'s Workshop Chapter 2: Using the Shell and Editor

Adding Languages to APW

When you obtain a new language compiler for your APW system, follow the procedure
described in the manual that came with that language to install it. Before you do so,
however, consider the following points:

» There are several files that may be replaced by the installation procedure. However,
the versions of these files on your disk might contain information that you do not
want to lose. For example, the SYSCMND file might contain APW commands that are
not included in the SYSCMND file of the new language. Before installing the new
language, rename the following files so that they won’t be overwritten during
installation:

APW/SYSTEM/SYSCMND
APW/SYSTEM/SYSTARBRS
APW/SYSTEM/LOGIN

All of these files can be edited with the APW Editor. The structure and use of the
SYSCMND file is discussed in the section “Command Types and the Command Table”
in Chapter 3. The SYSTABS file is described in the section “Setting Editor Defaults”
in Chapter 4. The LOGIN file is discussed in the section “LOGIN Files” in Chapter
3.

« If the disks that come with the language do not include a complete APW system and
you want to run APW from floppy disks, you will have to prepare an APW system
disk for that language. The easiest way to prepare such a disk is to copy the /APW
disk, and then delete the file LANGUAGES /ASM6581 6 and the subdirectory
LIBRARIES/AINCLUDE using the following commands:

DELETE 5/ASM65816
DELETE -C 2/AINCLUDE/=
DELETE 2/AINCLUDE

Place the new compiler in the subdirectory APW/LANGUAGES/ in place of
ASM65816. Place any library files that came with the compiler in the subdirectory
APW/LIBRARIES.

* You must have ProDOS 16 and System Loader Version 1.2 or later to run APW. To
find out what version of ProDOS 16 and the System Loader you have on your disk,
start up the computer using that disk. The version numbers are displayed on the
screen while the load process is taking place. If the installation procedure replaces
your system files with older versions, you have to reinstall more recent versions.

To replace the system files on your hard disk with more recent versions, follow either
of the two procedures described in the section “Making Your Hard Disk Self-
Booting,” earlier in this chapter. To replace the system files on a floppy disk with the
ones on your /APW disk, use the following commands (substitute the volume name
of your new disk wherever you see disk):

COPY -C /APW/PRODOS /disk
COPY -C /APW/SYSTEM /disk

APDA Draft 23 7127187

Chapter 2.: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Booting Directly Into APW

For your disk to boot directly into APW, the file APW. SYS16 must be the first system
program in the root directory of your disk and there must be no file named START in the
SYSTEM/ subdirectory. In this case there should be only one SYSTEM/ subdirectory on
the disk, immediately under the volume directory. Both hard disks and floppy disks can be
configured to boot directly into APW. You can launch any other program you wish from
APW by typing in its pathname and pressing Return.

Important: For the procedures in this section to work, APW. SYS16 must be the
first system program (that is, program that ends in the extension . SYS16 or

. SYSTEM) in the root directory of your disk. If there is another such file before
APW.SYS16, you must remove it or the disk will boot into that program instead.

Hard Disk

To make your hard disk boot directly into APW, use the following procedure:

1. Turn on the computer and hard disk and use the Control Panel to set the startup slot
to your floppy disk drive. See the section on the Control Panel in the Apple IIGS
Owner’s Guide for instructions on setting the startup slot.

2. Insert the copy you made of the /APW disk in the startup disk drive and press Apple-
Control-Reset to reboot the computer. The Apple IIGS Program Launcher should
load from the disk. ‘ ‘

3. Press Return twice to launch APW. Wait until the APW command-line prompt—a
number sign (#)—appears at the left edge of the screen.

4. Enter the following command (substitute the volume name of your hard disk
wherever you see hardisk). Remember to press Return after each command that you

type.
INSTALL /APW /hardisk

This command copies the APW files from your /APW disk into the volume
directory on the hard disk. This will take several minutes.

5. Remove the /APW disk from your disk drive and insert the /APWU disk.
6. Enter the following command.
INSTALL /APWU /hardisk

This command copies the files from your /APWU disk into the volume directory
on the hard disk. This will take several minutes.

7. If you have not already done so, make the hard disk self-booting by using either
procedure described in the earlier section “Making Your Hard Disk Self-Booting.”

8. Use the following command to remove the START file:

DELETE /hardisk/SYSTEM/START
9. Use the Control Panel to set the startup slot to your hard disk drive.

Your hard disk should now boot directly into APW.

APDA Draft 24 7127187

Apple 1IGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

Floppy Disk

To configure a floppy disk to boot directly into APW, use the following procedure:

1. Make a backup copy of your /APW disk as described in the earlier section “Backing
Up Your APW Disks.”

2. Format a second floppy disk and name it /APW.BOOT.

3. Insert the copy you made of the /APW disk in the startup disk drive and turn on the
computer. The Apple IIGS Program Launcher should load from the disk. If it does
not, make sure your Apple IIGS is set to boot from the disk drive you used (see the
section on the Control Panel in the Apple IIGS Owner’s Guide).

4. Press Return twice to launch APW. Wait until the APW command-line prompt—a
number sign (#)—appears at the left edge of the screen.

5. Place the /APW . BOOT disk in the second disk drive and enter the following
commands. Remember to press Retum after each command that you type.

COPY -C /APW/PRODOS /APW.BOOT
COPY ~C /APW/SYSTEM /APW.BOOT
COPY -C /APW/APW/= /APW.BOOT
DELETE /APW.BOOT/SYSTEM/START

The /APW.BOOT disk should now boot directly into APW. It will operate exactly as
described for the /APW disk in the next section, “Running APW on Floppy Disks,” except
that the Program Launcher is not on the disk.

Running APW on Floppy Disks

You need at least two 800K disk drives to use APW: one to hold the /APW (or
/BAPW . BOOT) disk, and one to hold either the /APWU disk or a disk containing only the
files you are working on.

Important: Do not run APW from the original product disks. Make copies of
your APW disks for everyday use, and put the original disks in a safe place.

The /APW disk contains the Apple IIGS Program Launcher and a fully functional APW
system, including the APW Assembler. This disk lacks only the help files and some of the
APW utility programs. See Appendix A for a list of all the files on the /APW disk. The
/APWU disk contains a full set of utility programs plus the help files for all the APW
commands.

There are two ways to run APW on two 800K disk drives, as follows:

+ If you need an entire 800K disk for your program files, place /APW in the startup
disk drive and the disk containing your files in the second drive, and then start up the
computer. The Apple IIGS Program Launcher should load from the disk. Press the
Return key twice to launch APW. You can now do anything described in this manual
except consult the on-line help files for APW commands or execute some of the utility

programs.

APDA Draft 25 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Note: To prepare an APW disk that boots directly into APW, follow the procedure
in the section “Booting Directly Into APW,” earlier in this chapter.

« If your program files will fit on the /APWU disk, or if you need to use the help files or
utility programs on that disk, then launch APW as before and place the /APWU disk in
the second disk drive. To cause APW to look on the /APWU disk for the help files
and utility programs, enter the following command

MU

If at any time you want to remove the /APWU disk and run APW exclusively from the
/ APW disk, enter the following command:

UMU

The directory that is assumed when you do not specify a prefix in a pathname is called the
current prefix, If the /APW disk is in your first disk drive and all your program files are
on the disk in the second disk drive, you may wish to set the system to use a directory on
your program-file disk as the current prefix. Use the APW Shell’s PREFIX command to
change the current prefix. For example, if your programs are in a subdirectory called
/APWU/MYPROGS/ in the second disk drive, type the following command and press
Return:

PREFIX /APWU/MYPROGS

Once you have set the current prefix to that of your program disk, you need not include the
prefix in pathnames when executing commands. For example, if the current prefix is
/BAPWU/MYPROGS/, you could use the following command to obtain a directory listing of
the subdirectory /APWU/MYPROGS/CSOURCE/:

CATALOG CSOURCE

Note: Do nor include a slash (/) before the pathname when you omit the current
prefix from a pathname, or APW will look for a volume by that name. For
example, if you typed CATALOG /CSOURCE in the preceding example, you would
get the mcssagc Volume not found.

Prefixes used by APW are discussed in detail in the section “Usin g Prefix Numbers” later
in this chapter.

Keep the /APW disk in the first disk drive while you are running APW so that the system
can have access to the APW programs on that disk.

Each time you start APW, it looks for a file named LOGIN in the APW system prefix
(/APW/APW/SYSTEM/LOGIN on the /APW disk, for example). The LOGIN file should
have an APW language type of EXEC (see the section “Listing a Directory” later in this
chapter). You can include any valid APW command in thlS file. If it finds a LOGIN file,
APW executes it before doing anything else.

You can use a LOGIN file to set systern defaults (such as the printer slot), to set the current
prefix, to read a command table containing command-name aliases, or even to execute
commands or utility programs. Examples of LOGIN files (and the procedures for creating
them) are shown in the sections “Using Prefix Numbers” and “Using a Printer” later in this
chapter.

APDA Draft 26 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

You need not have a LOGIN file in your system; if there is no LOGIN file, APW uses
default settings for system parameters.

Running APW on a Hard ”D‘isk |

Once you have launched APW by selecting APW.SYS16 in the APW/ subdirectory on your
hard disk, all of the APW commands work exactly as they do on a floppy disk. The
current directory is the APW/ subdirectory on the hard disk.

Your hard disk should have enough room on it to allow you to keep all of your APW files
and your program files on the same disk. To avoid confusion with APW system files, you
should create one or more new subdirectories to hold your program files. Use the CREATE
command to create a new subdirectory. To create the subdirectory MYFILES/ in the
current prefix, for example, use the following command:

CREATE MYFILES/
Now to change the current directory to MYFILES/, you can use the following command:
PREFIX MYFILES/

As discussed in the previous section, once you have set the current prefix to that of your
program subdirectory, you need not include the preﬁx in pathnames when executing
commands.

The LOGIN file works on the hard disk just as it does on a floppy disk. Each time you
select APW from the chooser or finder program, LOGIN is executed before the APW Shell
prompt (#) appears on the screen.

Shell Commands

There are two main methods of sending commands to the APW Shell command interpreter.
Either
¢ Type in any APW command on a shell command line and press the Retum key.

The shell is ready to accept a command when a number-sign (#) prompt appears at the
screen’s left edge followed by a solid-block cursor.,

or

» Create a file of APW commands with the language type EXEC. When you enter the
name of an Exec file as a command, APW executes the commands in the file as if they
were typed from the keyboard.

This section describes how to enter commands on a command line, but the rules presented
here also apply to commands in Exec files. Exec files are described briefly in the section
“Using Exec Files” later in this chapter and in detail in the section “Exec Files” in Chapter
3:

APDA Draft 27 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Entering Commands

APW requires every command to be entered in full, exactly as it appears in the list of
commands you get when you type HELP and press Return (except that the command
interpreter is not case sensitive). It is not necessary for you to type in the entire command,
however; instead, ﬁrou can type in the first letter or first few letters of the comrmand and
then press the Right Arrow key (). The shell consults the command table and prints out

the full command name of the first command it finds that matches the letters you typed.
For example, suppose you type the following command:

Co—

The shell finds the first command name that bcgms with CO in the command table, and
prints the full command name: ‘

COMMANDS

‘When you press Return, the entire command line is sent to the command interpreter
regardless of the location of the cursor on the command line.

If you like, you can add command aliases to the command table. For example, to make the
shell recognize the command CMP as an alias for COMPILE, add CMP to the command table
with the same command number-as COMPILE. See the section “Command Types and the
Command Table” in Chapter 3 for instructions on modifying the command table. You can

also create temporary aliases for commands with the shell’s ALTAS command.

You can use the line-editing commands in Table 2.1 when you are entering a command or
modifying a previously entered command.

Note: The APW Shell command interpreter is not case sensitive; that is, you can
enter commands and filenames in any combination of uppercase and lowercase
letters. Command examples are shown in uppercase letters in this book to help
distinguish them from other text and because they are listed that way in the
command table and help files.

Table 2.1. Line-Editing Commands

Command
«—

Y
G-> or G-.

G-< or G-,

Delete

&-Y or Control-Y

G-E or Control-E

-Z or Control-Z _
Esc, Clear, or Control-X
Return or Enter

APDA Draft

Meaning
cursor left

cursor right

end of line

beginning of line

delete character left

delete to end of line

toggle insert mode

clear line and cancel command without saving changes
clear line and cancel command without saving changes
save changes and execute command

28 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

File Not Found and Other Errors

When you type a command and press Return, APW first checks the command table to see
if it is a standard command. If the command is not in the command table, APW assumes it
is the name of an executable file and asks ProDOS 16 to open a file by that name in the
current prefix. If ProDOS 16 does not find a file by that name, the message

ProDOS: File not found is printed on the screen. This message indicates that
ProDOS 16 could not find a file with the name of the command you typed. Check the
prefix and spelling of your command and try again.

The File not found error can be confusing when you have also typed a pathname as a
parameter for the command. For example, suppose that you want to edit the file MYFILE,
and that you therefore enter the following command:

ED MYFILE

Unfortunately, ED is not a valid APW command (unless you have added it to the command
table yourself or made it an alias for EDIT). APW looks in the command table for ED,
doesn’t find it, and calls ProDOS 16 to try to open a file named ED. ProDOS can’t find the
file, and the message File not found is printed on the screen. When you see this
message, it is m]portant to realize that the file that ProDOS 16 couldn’t find is ED, not
MYFILE.

The Flle not found message also appears when you attempt to execute the Paste
command in the editor without first executing a Copy or Cut command. When you execute
the Paste command, the Editor looks for the file SYSTEMP in the work prefix; this file does
not exist, however, unless a Copy or Paste command has been executed first.

A similar problem can occur if you remove your APW disk from the disk drive or change a
prefix used by APW (see the section “Using Prefix Numbers” in this chapter) and then try
to execute an external command (such as INIT) or to read a help file. In this case,
ProDOS 16 cannot find the directory containing the utility program or help file, and the
message Volume not foundorPath not found is printed to the screen. Again, it
is important to realize that the volume or path that could not be found is the one containing
the utility or help file, not one used in a parameter to the command.

For example, if you execute the MU command to use the utility files on the /APWU file, and
then remove the /APWU disk from the disk drive and enter the command DUMPOBJ
MYFILE, ProDOS 16 cannot find the volume /APWU in order to load the DumpObj utility.
In this case, the message Volume not found appears on the screen.

Suspending Execution and Cancelling Commands

In most cases when the shell lists text on the screen, you can cause the listing to pause by
pressing any key: the Spacebar key is often convenient. You can use this feature, for
example, to stop long catalog listings before they scroll off the screen or to read text files
that you list on the screen with the TYPE command. To continue the listing, press any key.

APDA Draft 29 7127187

Chapter 2: Using the Shell and Editor - . Apple HGS Programmer's Workshop

Most APW Shell commands can be cancelled by pressing Apple-Period (G-,). Whena
command prompts you for a filename, you can cancel the command by pressing Return
instead of entering a filename. .

Some prompts for shell commands require you to enter Y, N, or Q in response (see, for
example, the section “Using Wildcard Characters” later in this chapter). In this case, you

can type Q and press Return to act on the files already selected and then terminate the
command, or press Esc to cancel the command immediately without acting on any files.

t§ef: the section “Using Wildcard Characters” later in this chapter for an example of this
eature.

Scrolling Through Commands

You can press the Up Arrow (T) and Down Arrow ({) keys to scroll through the last 20
commands that you have entered. You can then modify a previous command and press
Return to reenter it. Each time you enter or reenter a command, that command is appended
to the 20-command list.

To try out this feature, boot APW and enter the command CATALOG to get a directory
listing of the current directory (APW/). The directory listing includes the subdirectory
UTILITIES/. To obtain a listing of this subdirectory, first press the Up Arrow key. The
command CATALOG reappears on the screen with the cursor at the end of the command
line. Type a space and the word UTILITIES. The command line now reads

CATALOG UTILITIES. Press Return to get the directory listing. The command
sequence is as follows (the commands you type are shown in boldface):

#CATALOG
[press Return]
[directory listing printed]

T
#CATALOG UTILITIES

[press Return]
[directory listing printed]

The UTILITIES/ subdirectory includes the subdirectory HELP /. Press the Up Arrow
key again so that the command CATALOG UTILITIES reappears. Type /HELP (so that
the command line reads CATALOG UTILITIES/HELP)and press Return. The HELP/
subdirectory is listed.

Now press the Up Arrow key again. The command CATALOG UTILITIES/HELP
reappears. Press the Up-Arrow key another time. The-cornmand CATALOG UTILITIES
reappears. Press the Up-Arrow key once more to get the command CATALOG again. The
command sequence is as follows:

#CATALOG

APDA Draft 30 7127187

Apple I1GS Programmer’ s Workshop Chapter 2; Using the Shell and Editor

[press Return]
[directory listing printed]

4T
#CATALOG UTILITIES

[press Return]
[directory listing printed]

#T
#CATALOG UTILITIES/HELP

[press Return]
[directory listing printed]

#T
#CATALOG UTILITIES/HELP T

#CATALOG UTILITIES T
#CATALOG

The 20-command list is circular; that is, once you have used the Up Arrow key or the
Down Arrow key 20 times to scroll through the 20 commands, pressing the same arrow
key one more time returns you to the command you started with. Experiment with the
command-line scrolling and with the line-editing commands in Table 2.1 for a while. You
will find that these functions can save you a lot of time and frustration in entering long or
complex commands.

Entering Multiple Commands

You can enter several commands on one line by separating each command from the
preceding command with a semicolon. For.example, to change the name of the file WHITE
to BLACK and then open the file for editing, type in the following command line and press
Return:

RENAME WHITE BLACK ; EDIT BLACK

You can use this technique in Exec files as well.

Responding to Parameter Prompts

If you enter an APW command that requires one or more parameters and do not include a
required parameter, then APW prompts you for it. You are not prompted for optional
parameters. For example, the following exchange shows what happens when you enter the
RENAME command without parameters. The words shown in boldface are the ones you

type in:

APDA Draft 31 7127187

Chapter 2: Using the Shell and Editor _. Apple HGS Programmer’'s Workshop

RENAME
File to rename: /APW/OLDNAME
New name: /APW/NEWNAME

APW prompts you for parameters in the sequence in which they are shown in the command
descriptions in Chapter 3. For example, the RENAME commangd requires the current name
of the file followed by the new name for the file, and that is the order in which you are
prompted.

If two parameters are required and you include only one, the shell always assumes that the
first parameter was included and the second one was missing. For example, to change the
name of OLDNAME to NEWNAME, you could use the following command sequence:

RENAME /APW/OLDNAME
New name: /APW/NEWNAME

If a wildcard character is allowed in the command line, you €an use one in response to the
prompt. Wildcard characters are described in the section “Using Wildcard Characters” in
this chapter.

Since you are not prompted for optional parameters, there are some operations you cannot
carry out by simply responding to prompts. For example, if you do not include any
parameters after the COPY command, you are prompted for the filename of the file to copy.
However, since the target pathname is not a required parameter, you are not prompted for
it. If you do not include the target pathname on the command line (or on the same line as
the source filename in response to the File Name prompt), then the current prefix is
always used as the target directory (and the filename is not changed). The following
example shows what happens when you include only the parameters for which you are
prompted when using the COPY command:

COPY
Source file name: MYFILE
File exists-replace it?

Since you used the current prefix for MYF ILE, and the current prefix is also assumed for
the target directory (because no target directory was specified), APW asks if you want to
replace an existing file. To replace the file, type Y and press Return. To provide a new
filename, type N and press Return. The following prompt appears:

New name:
Type the new name for the file and press Return.

You can include both the source file and the target dlrcCtory in response to the prompt, as in
the following example: _

COPY , .
Source file name: MYFILE /MYPROGS/CSOURCE

In this case, the file named MYFILE in the current prefix is copied to the dlrcctory
/MYPROGS/CSOURCE/.

APDA Draft 32 7127187

Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor

Important: Some commands, such as the COPY command, are used in examples
and instructions given in this chapter. These examples do not show all of the ways
in which the commands can be used. If you have trouble using any command, see
the complete description of that command in Chapter 3.

Pathnames

Under ProDOS 16 on the Apple IIGS, each disk (or RAM disk) has a name, called a
volume name, and a directory of files on that disk (technically, a disk can contain more
than one volume, but this is hardly ever the case). Among the files in the volume directory
can be other directory files, which catalog the contents of subdirectories.

Note: Although a directory or subdirectory is actually a file on the disk, in the
following discussion the word file refers only to the program file or text file that we
are using the pathname to specify.

When you specify a file in an APW command, as when indicating which file to edit or
utility to execute, you must specify the file’s pathname. A pathname consists of a string
of names, each preceded by a slash (/). The first name in a full pathname is the name of
a volume directory. Successive names indicate the path, from the volume directory through
any subdirectories to the file, that ProDOS 16 must follow to find the file. A partial
pathname is a portion of a pathname; it must include the filename, and may include one or
more subdirectory names. A partial pathname does not include the volume name and does
not begin with a slash. A prefix is that part of the pathname that is left over when you
remove the partial pathname: it begins with a slash and the volume name, and can include
one or more subdirectories. The prefix does not include the filename.

Assume, for example, that you want to edit a file called
/APW/MYPROGS/C.SOURCE/GOODSTUFF

The filename is GOODSTUFF. There are two possible partial pathnames for this file, as
follows:

C.SOURCE/GCODSTUFF
MYPROGS/C.SOURCE/GOODSTUFF

There are three possible prefixes for this file, as follows:

/APW/
/APW/MYPROGS/
/APW/MYPROGS/C.SOURCE/

As described in the following sections, you can use partial pathnames, prefix numbers,
device names, and wildcard characters when specifying a pathname in APW.

Using Partial Pathnames

When you execute an APW command that requires a pathname, you can enter the full
pathname or a partial pathname. If the pathname in the command does not begin with a
slash (/), APW assumes that a partial pathname is being used and places the current prefix

APDA Draft 33 7127/87

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

in front of the pathname in the command. When you first launch APW from a chooser or
finder, the current prefix is set by the chooser or finder; it is typically the subdirectory
containing the chooser or finder program. If you use a self-booting disk, the current prefix
is the subdirectory containing the file APW.SYS16. You can change the current prefix at
any time with the PREF IX command.

For example, when you boot APW from the 3.5-inch disk that came with the system, the
current prefix is set to /APW/, the name of the boot volume. In this case, the following
two commands are equivalent:

CATALOG /APW
CATALOG

The current prefix can include as many levels of subdirectories as you wish (within the 64-
character limit on the length of pathnames set by ProDOS 16). For example, if you are
working on a hard disk you might set the current prefix to /HARDISK/APW/ . In this
case, the following two commands are equivalent:

CATALOG /HARDISK/APW/MYPROGS
CATALOG MYPROGS

Note: Do not include a slash (/) before the pathname when you omit the current
prefix from a pathname, or APW will look for a volume by that name. For
example, if you typed CATALOG /MYPROGS in the preceding example, you would
get the message Volume not found.

You can “back up” one directory level from the current prefix by starting the partial
pathname with two periods (..). For example, if the current prefix is /HARDISK/APW/,
you could use either of the following two commands to edit /HARDISK/MYFILE:

EDIT /HARDISK/MYFILE
EDIT ../MYFILE

Because APW uses standard prefixes to find the APW system files it needs, APW
commands and utilities continue to work correctly when you change the current prefix. For
example, when you execute the MAKELIB command on a standard APW floppy disk,
APW loads the file /APW/UTILITIES/MAKELIB, no matter what the current prefix is
set to. The prefixes that APW searches for APW system files can also be changed with the

PREF IX command, as discussed in the next section, the section “Standard Prefixes” in
Chapter 3, and the description of the PREF IX command in Chapter 3.

Using Prefix Numbers

ProDOS 16 provides eight prefix numbers that can be set to specific prefixes. Prefix Ois
the current prefix. APW uses prefixes 2 through 6 to determine where to search for certain
files. Program launchers, including APW, set prefix 1 to the prefix of the last program
executed. The prefixes are set to the default values shown in Table 3.1 when you start
APW. You can change any of the ProDOS 16 prefixes with the PREF IX command, as
described in the section “PREFIX” in Chapter 3, and you can include PREF IX commands
in the LOGIN file, as illustrated at the end of this section.

APDA Draft 34 7127187

—

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

The ProDOS 16 prefix numbers can be used instead of prefixes in pathnames. For
example, if you set prefix 7 to /APW/MYPROGS/, you can specify the pathname of
/BAPW/MYPROGS/C.SOURCE/GOODSTUFF as follows:

7/C.SOURCE/GOODSTUFF

Similarly, you could get a directory listing of the subdirectory /APW/MYPROGS/ by using
the following command:

CATALOG 7/

You can “back up” one directory level from any prefix by using two periods (..) after the
prefix name or number. For example, if the system prefix is /HARDISK/APW/SYSTEM,
you could use any of the following two commands to edit /HARDISK/APW/MYF ILE:

EDIT /HARDISK/APW/MYFILE
EDIT /HARDISK/APW/SYSTEM/../MYFILE
EDIT 4/../MYFILE

Each time you restart your Apple IIGS, ProDOS 16 retains the volume name of the boot
disk. You can use an asterisk (*) in a pathname to specify the boot prefix in some
commands. For example, if you booted the Apple IIGS from a disk named /CHOOSER/,
and then started APW, you could edit the file /CHOOSER/SYS . UTIL by using the
following command:

EDIT */SYS.UTIL

You cannot change the volume name assigned to the boot prefix except by rebooting the
system.

You can put prefix assignments in your LOGIN file. For example, suppose you have all of
your APW languages and your program files on a disk named /APW.LANG. The :
following procedure creates a LOGIN file on your APW disk that sets the language prefix
(prefix 5) to the LANGUAGES/ subdirectory on the /APW. LANG disk and that sets prefix 7
to the subdirectory /MYPROGS on that disk.

1. Make sure your APW backup disk is not write protected, put it in your startup disk
drive, and boot APW.

2. Type the following commands (press the Return key after each command):
EXEC
EDIT 4/LOGIN

3. You are now in the editor. If there is already a LOGIN file on your disk, it should be
open on the screen; if not, the screen should be blank except for the ruler and status
lines at the bottom of the screen. Type the following lines, ending each line with a
Return. You can use the arrow keys to move around in the file, and the Delete key
to correct mistakes.

PREFIX 5 /APW.LANG/LANGUAGES
PREFIX 7 /APW.LANG/MYPROGS

APDADraft 35 7/27/87

Chapter 2: Using the Shell and Editor Apple IIGS Programmer's Workshop

4. Press G-Q. When the editor’s Quit menu appears, prf:ss S to save the file, then E to
return to the shell.

5. To test the setup, reboot APW, and thcn enter the followmg command:
SHOW PREFIX
The response should be as follows:
System Prefix:
Number Name

/BPW/

/BPW/

/APW/
/APW/LIBRARIES/
/APW/

/BAPW/SYSTEM/
/APW.LANG/LANGUAGES
/APW/UTILITIES/
/APW .LANG/MYPROGS

~Nodbk WP O *

Using Device Names

ProDOS 16 assigns a device name to each I/O device currently on-line. Use the SHOW
UNITS command to obtain a list of the device names and the ProDOS volumes currently in
those devices.

For example, suppose you have a hard disk attached to a controller board in slot 7, two
800K disks attached to the built-in smart port and a RAM disk on-line. The SHOW UNITS
command gives the following response (words shown in boldface are the ones you type
in):

SHOW UNITS
Units Currently On Line:

Device Name

.D1 /HARDISK
.D2 /APW

.D3 /RAMS

.D4 /MYPROGS
.CONSOLE

.PRINTER

Only those devices that contain formatted ProDOS disks are shown by the SHOW UNITS
command. For example, if you removed the disk from your first 800K disk drive and
repeated the command, you would get the following response:

APDA Draft 36 7127187

Apple 1IGS Programmer's Workshop Chapter 2: Using the Shell and Editor

SHOW UNITS
Units Currently On Line:

Device Name

.D1 /HARDISK
.D3 /RAMS

.D4 /MYPROGS
.CONSQOLE

.PRINTER

~ You can substitute a device name anywhere you would have used a volume name. For
example, to get a directory listing of the suderectory /MYPROGS /CSOURCE, you could
use the following command:

CATALOG .D4/CSOURCE

The names . CONSOLE and . PRINTER can also be used as device names. The device
name . CONSOLE represents the keyboard for input and the screen for output. The device
name .PRINTER can be used to redirect output to a printer. See the section “Redirecting
Input and Output” in Chapter 3 for information on redirection.

Using Wildcard Characters

Many of the APW commands allow you to substitite a special character, called a wildcard
character, for one or more of the characters in a filename. APW recognizes two wildcard
characters: the equal sign (=), and the question mark (?). The difference between these
two characters is that if you use the question mark, then each time APW finds a match for
the character it pauses and asks for confirmation before carrying out the command, whereas
if you use the equal sign, APW carries out the operation without asking for confirmation.

For example, suppose you want to write-protect every file in a directory called
/APW/MYFILES. The command DISABLE W pathname write-protects the file specified
by pathname. To write-protect these files, use the following command:

DISABLE W /APW/MYFILES/=

If you were deleting files rather than write-protecting them, on the other hand, it might be a
good idea to double-check each match before letting APW delete it. To delete files in the
directory /APW/MYFILES/ that have the extension . BKUP, with APW asking for
confirmation before deleting each file, use the following command:

DELETE /APW/MYFILES/?.BKUP

Each time APW finds a filename in the directory /APW/MYFILES that ends in . BKUP, it
writes the name of the file to the screen. A cursor appears after the filename. To indicate
that this file should be deleted, type Y (for yes) and press Return. To indicate that the file

should not be deleted, type N (for no) and press Return. In either case, when you press
Return, the shell looks for the next match. If no further matches are found, it deletes the
indicated files. To delete the indicated files and quit without looking for the next match,
type Q (for quit) and press Return. No files are deleted until all matches have been found

or until you type Q and press Return.

APDA Draft 37 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Important: Typing Q does not terminate the command without acting on the
selected files. When you type Q and press Return, APW stops looking for new
matches to the wildcard filename and acts on all the files for which you have already

responded by typing Y. To terminate the command without deleting any files, press
Esc.

You can specify as many or as few characters with a wildcard character as you wish. For
example, the filename specification MY=ILE would match the names MYFILE, MYBILE
and MYOWNFILE. You can use more than one wildcard character in a single filename. For
example, =YF?LE would match MYFILE, MARYFILE, and MYFOOLE. You can use both
equal signs and question marks in a filename specification, but as long as at least one
quesdon mark is present, APW stops and waits for confirmation for every match.

You cannot use wildcard characters for pathnames of directory files or for the directory
portion of a pathname (that is, the prefix). In addition, with certain commands you cannot
use wildcard characters in filenames at all. For example, you cannot use wildcard
characters in the ASSEMBLE command or in the second filename of a RENAME command.

Some commands accept wildcard characters but use only the first filename matched. For
example, if you use a wildcard character for the first filename of a RENAME command, only
the first file matched is renamed. If you use a question mark (?) in such a case, however,
and respond N to the first file matched, then the next match is offered, and so forth until
you accept one. The following sequence illustrates this feature. The words shown in
boldface are the ones you type in:

RENAME /APW/MY?ILE /APW/YOURFILE
/APW/MYFILE ' N
/APW/MYBILE Y

In this example, the file MYF ILE is left unchanged, and the filename MYBILE is changed
to YOURFILE.

Using Help Files

APW includes a help file for each APW command. To obtain a listing of the APW
commands, use the HELP command with no parameters. To display a help file on any
command, use the HELP command with the command name as a parameter, as follows:

HELP command

Here command is the name of the command for which you need help. The help file for
each command includes the command syntax, a brief command description, and a list of the
required and optional parameters for the command,

The APW help files are all contained in the HELP / subdirectory in the utilities prefix
(prefix 6). Because they are standard ASCII text files, you can edit them if you wish. If
you add an alias for a command to the command table, you might want to copy the help file
for the command to a file with the alias command name. For example, if you create the
alias CMP for the COMPILE command, use the following command to make a help file for

CMP:

APDA Draft 38 7127187

Apple IIGS Programmer’ s Workshop Chapter 2: Using the Shell and Editor .

COPY /APW/UTILITIES/HELP/COMPILE /APW/UTLITIES/HELP/CMP

After you execute this command, there are two copies of the same help file in the HELP /
subdirectory: one named COMP ILE, and one named CMP. You can then edit the CMP file
to change the command name in the file from COMPILE to CMP.

Note: The HELP command does not show aliases created with the ALIAS
command. Enter ALTAS to list all the aliases currently in effect.

Listing a Directory

To obtain a listing of the files in a directory, use the CATALOG command. For example, to
get a listing of the contents of the /APW/ directory, enter

CATALOG /APW

Note: The CAT command is an alias for the CATLOG command; therefore the
command CAT /APW also provides a listing of the contents of the /APW/
directory.

The directory listing for your program subdirectory might look something like Figure 2.1.

/APW/MYPROGS /=

Name Type Blocks Modified Created Access Subtype
MYSYSTEM sl6 30 9 NOV 86 09:14 18 SEP 86 13:12 DNB R

ABSPROG EXE 8 12 APR 86 11:02 4 MAR 86 03:01 NBWR
ABS.SOURCE SRC 9 13 APR 86 18:18 4 MAR 86 03:19 DNBWR ASM65816
C.SOURCE SRC 5 26 MAR 86 07:43 29 FEB 86 12:34 DNBWR c
COMMAND.FILE SRC 1 9 APR 86 19:22 31 MAR 86 04 22 DNEWR EXE
ABS.OBJECT OBJ 8 12 NOV B6 15:02 4 MAR 86 14:17 NBWR

TEXTFILE TXT 1: 24 DEC 85 24:59 24 DEC B85 11:14 DNBWR

Blocks Free: 1538 Blocks Used: 62 Total Blocks: 1600
Figure 2.1. Directory Example
The fields in the directory listing are defined as shown in Table 2.2.

APDA Draft 39 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Table 2.2. Fields in a Directory

Field
Name

Type

Blocks
Modified
Created
Access

Subtype

Meaning
The name of the file. Names are not case sensitive.

The ProDOS 16 file type. ProDOS 16 file types are described in the
Apple IIGS ProDOS 16 Reference manual. The file types most commonly
used in APW dre as follows:

DIR directory file (type $OF)

EXE load file that runs under a shell program (type $B5)

LIB library file (type $B2)

OBJ APW object file (type $B1)

S16 load file that runs independently of any shell program (type $B3)
SRC APW source file (ProDOS 16 file type $B0)

STR startup load file (type $B6)

TXT ASCII text file (type $04)

A more complete list of ProDOS 16 file types is given in Table 3.4.

The number of blocks on the disk occupied by this file, including the blocks
used by the file system. A block is 512 bytes.

The last date and time at which this file was modified.
The date and time at which this file was first created.

Each of the letters in this list represents one of the ProDOS 16 access
privileges, as follows:

D “Delete” privileges. If you disable this attribute, the file cannot be
deleted.

N “Rename” privileges. If you disable this attribute, the file cannot be
renamed.

B “Backup required” flag. If this attribute is disabled, a backup utility
assumes that the file has not been changed since the last time it was
backed up. There is no APW command that disables this attribute.

W “Write” privileges. If you disable this attribute, the file cannot be
written to.

R “Read” privileges. If you disable this attribute, the file cannot be
read.

Use the ENABLE and DISABLE commands to set and clear these attributes.

For an absolute load file, this field shows the memory address at which the
file is loaded when you run it. For an APW source file, this field shows the

APW language type.

You can use the CATALOG command to get a complete listing of any subdirectory, to get
catalog information on an individual file, or, with wildcard characters, to list a specific
subset of files on a subdirectory. For example, to list all of the files in the current directory
that begin with MY and end in .PAS, use the following command:

CATALOG MY=.PAS

APDA Draft

40 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

You can use device names to list the directory on a volume even if you don’t know the '
name of the volume. For example, to list the files in the second disk drive attached to your
system, use the following command:

CATALOG .D2

To get information about a file named MYFILE in the subdirectory /APW/MYPROGS/, use
the following command:

CATALOG /APW/MYPROGS/MYFILE

You can also use the Files utility to list directories. The Files utility can list all of the files
in a directory, including the contents of all subdirectories; it can list filenames in several
columns on the screen; and it can search for filenames that include a string that you specify.
The Files utility is described in detail in Chapter 3.

The Editor

The Apple IIGS Programmer’s Workshop Editor is a full-screen text editor, with
considerable text-manipulation facilities. You can perform the following functions while in
the editor:

* delete text

* copy text

* move text

» search for a text string

» search for a text string and automatically replace it with another string
+ jump from one position in the file to another

+ scroll the screen down or up

+ set and clear tab stops

» restore accidentally deleted text

» define and use macros of editor keyboard commands

You control the editor with keyboard commands. All of the editor’s features are described
in detail in Chapter 4. This section provides a brief introduction to the use of the editor.

Calling the Editor

To call the editor, use the following command:

EDIT pathname

Here pathname is the full or partial pathname of the file you wish to edit. The file you
specify in the EDIT command is opened; if the file does not already exist on the disk, a
new file with that name is opened.

APDA Draft 41 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Language Types

Every APW file has an APW language type. If you open a new file, it is given the current
APW language type, whereas if you open a preexisting file, APW’s current language
changes to match the language type of that file.

You can also change the current language by entering as a command the name of the
language you wish to use. You can change the APW language type of any existing APW
source file with the CHANGE command, described in Chapter 3.

Each language compiler, assembler, interpreter, text formatter, or linker you add to APW
has a language name that can be assigned to a file. To get a list of the languages defined in
your system, use the command SHOW LANGUAGES. Commonly used APW language
types are shown in Table 2.3. A more complete list of currently assigned APW language
types is given in Appendix B.

Table 2.3. Commonly Used APW Language Types

Language Type Meaning

EXEC An APW command file

TEXT An ASCII text file (ProDOS 16 file type $B1)
PRODOS An ASCII text file (ProDOS 16 file type $04)
ASM65816 APW 65816 assembly-language source code
ce APW C source code

LINKED APW Linker command file

Opening and Saving a File

Use the following procedure for opening and saving a new file named MYFILE:

1. Enter as a command the language type you want to use for the file by typing the
name of the language and pressing Return. For example, if you want to create a C
source file, enter

ccC

Note that if the new file is the same language type as the last file edited, you can skip
this step. Use the SHOW LANGUAGE command to find out what the current
language is set to.

2. Type EDIT MYFILE and press Return. The editor opens a new file, named
MYFILE.

3. Press Control-Q or Apple-Q. The editor’s Quit menu appears on the screen. Press
S to save the file and E to exit the editor.

Using the Editor

The APW Editor allows you to enter and modify source files for all APW programming
languages, and to write text files with the APW TEXT language type or with the

APDA Draft 42 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

ProDOS 16 standard text-file type. The editor provides a full range of editing functions,
described in detail in Chapter 4 and summarized in Appendix B. In this section, enough
commands are described to get you started using the editor.

When you press the Esc key, the editor enters a special mode called escape mode. You can
cause a command to be repeated automatically up to 32767 times while in escape mode by
typing the number of repetitions after you press the Esc key and before you execute the
command. For example, to scroll down 10 lines, type Esc 10 Apple-P. If it is impossible
for the editor to repeat the command as many times as you specify, it repeats it the
maximum number of times possible.

To exit escape mode, press the Esc key again.

To get started using the editor, use the commands shown in Table 2.4. Note that (as
shown in Chapter 4 and Appendix B) there are alternate key combinations for several of
these commands; only one key combination is shown for each command here for the sake
of simplicity.

Note: Screen movement descriptions in this manual are based on the direction the
display screen moves through the file, not the direction the lines appear to move on
the screen. For example, if a command description says that the screen scrolls
down one line, it means that the lines on the screen move up one line, and the next
line in the file becomes the bottom line on the screen.

APDA Draft 43 7127187

‘Chapter 2: Using the Shell and Editor

Apple 1IGS Programmer’s Workshop

Table 2.4. Basic Editor Commands

Command
Help

Cursor Movement

Top of Screen
/Page Up

Bottom of Screen
/Page Down

Toggle Insert
Mode

Tab

Set and Clear
Tabs

Scroll Down
One Line

Scroll Up
One Line

Clear

Delete Character
Left

Undo Delete

APDA Draft

Key
a-?

Tleo

a-T

a-4

G-E

Tab

@G-Tab

a-P

G-0

G-Delete

Delete

Action

Display the editor’s help file. Use the Cursor Movement, Top of
Screen/Page Up, and Bouom of Screen/Page Down commands to move
through the help file. Press Esc, Return, or Enter to return to your file.

Move the cursor. Use the arrow keys to move the cursor around on the
SCreen.

Move the cursor to the top of the screen. If the cursor is
already at the top of the screen, the entire screen is scrolled up one page
(that is, one screen’s height).

Move the cursor to the bottom of the screen. If the
cursor is already at the bottom of the screen, the entire screen is scrolled
down one page.

Change the editor to overstrike mode if insert mode is active;

change the editor to insert mode if overstrike mode is active. In insert
mode, each character you type is inserted in the line of text at the cursor
position; any characters to the right of the cursor are pushed to the right
to make room. In overstrike mode, each new character replaces the
character the cursor is on.

Press this key to move the cursor to the next tab stop. If you enter text
after pressing Tab, or if you are in insert mode, spaces are inserted in
the line up to the tab stop. No tab character (ASCII code $09) is
inserted in the file,

If there is no tab stop at the cursor position, one is

added. If there is a tab stop at the cursor position, it is removed. The
default locations of tab stops depend on the APW language type as
described in the section “Setting Editor Defaults” in Chapter 4.

Use this command to scroll the screen down one line.
Use this command to scroll the screen up one line.

After pressing this key combination, use any of the cursor-movement
or screen-scroll commands to mark a block of text (all other commands
are ignored), then press Return. The selected text is deleted from the
file. To cancel the Clear operation without deleting the text from the
file, press Esc instead of Return.

Press this key to delete the character to the left of the
cursor.

This command restores at the cursor position the last text deleted from
the file. If the cursor has not been moved, the file is restored to its
state before the delete. The undo buffer acts as a stack, so multiple
Undo Delete operations are possible. This command does not undo a
Clear operation.

44 7127187

Apple IIGS Programmer’ s Workshop

Chapter 2: Using the Shell and Editor

Table 2.4. Basic Editor Commands (continued)

Copy

Cut

Paste

Search Down

Search Up

APDA Draft

a-C

a-L

3-K

After pressing this key combination, use cursor-movement or screen-
scroll commands to mark a block of text (all other commands are
ignored), then press Return. The selected text is written to the file
SYSTEMP in the work prefix (prefix 3). (To cancel the Copy operation
without writing the block to SYSTEMP, press Esc instead of Return,)
Use the Paste command to place the copied material at another position
in the file.

After pressing this key combination, use cursor-movement or screen-
scroll commands to mark a block of text (all other commands are
ignored), then press Return. The selected text is written to the file
SYSTEMP in the work prefix and deleted from the file you are editing.
(To cancel the Cut operation without cutting the block from the file,
press Esc instead of Return.) Use the Pasie command to place the cut
text at another location in the file,

The contents of the SYSTEMP file are copied to the current cursor
position.

This command allows you to search through a file for a character or
string of characters. Enter the search string in response to the prompt
at the bottom of the screen. Searches are not case sensitive, and they
include all occurrences of the string, whether it is imbedded in a longer
string or not.

When you press Return, the editor looks from the cursor position
toward the end of the file for the search string, If the string is found,
the screen is moved so that the next occurrence of the string is on the
top line with the cursor placed on the first character of the target string,
The search stops at the end of the file.

This command operates exactly like Search Down, except that the editar
looks for the search string starting at the cursor and proceeding toward
the beginning of the file. The search stops at the beginning of the file.

45 7127187

Chaprer.2 : Using:the Shell and Editor

Apple IIGS Progmmnmr’s Workshop

Table24. Basic:Editor Commands (continued)

Searcrand
Reﬁlacésmn

Search and
Replace Up

Quit

APDA Draft

a-J

G-H

This command allows you to search through a file for a

character or string of characters and to replace the search slnng with a
replacement string. Enter the search and repiace strings in response o
the prompis at the bottom of the screen. Searches are not case
sensitive, and they include all occurrences of the string, whether it is
embedded in a fonger string or not.

When you enter the Replace string and press Return, the prompt
Auto or Manual (A M Q) ? appears.

Type A and press Retum (o cause all occurrences of the search string

from the ¢ursor position to the end of the file'to be replaced

aitomatically. The cursor returns to the starting pomt when the
replacement is done.

If:you type M and press Return, then when the search string is found, it
is highlighted on the top line of the screen and the prompt

Replace (Y N Q) ?-appearsat the bottom of the screen. Type Y to
replace the string and search for the next occurrence; N-to Jeave this
occufrence of the string unchanged and search for the next occurrence; or

Q 10 leave the string unchanged and terminate the Search and: Replace
opemuon ‘Press Return 1o execute the command. When the operation
is: ﬁmshed the cursor returns 'to its starting: pomt

Type Q and press Return in- response to the
Auto or Manual promptto terminate the Search and Replace
operanon and.return 1o the file you are edifing.

When you enter a replacement string and press ‘A or M, the editor lacks
from the: cursor:position toward the-end of the file for the search string.
The sedrch stops-t the end of the file.

This-command operates exactly like Search and Replace

Down, except that the editor looks for the search stfing starting at the
cursor and proceeding toward the beginning of the ﬁle “The search
stops-at-the beginning of the file.

This command calls the Quit menu, which allows you to save the file,
save the file to a new name, open a new file, or quit the editor and
return to the shell. See Chapter 4 for a complete descnpr.lon of all the
options.

46 7127187

Apple HGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

As you become familiar with APW, you can study Chapter 4 to learn the full capabilities of
the editor and the fastest way to obtain results. Advanced features described in Chapter 4
include the following:

» Editor macros: a macro allows you to substitute a single keystroke for up to 128
predefined keystrokes. A macro can contain editor commands and text.

» Editing modes : the operation of the editor depends on several modes that can be
toggled between different states. Each APW language has a default setting for each
mode. You can toggle the modes while in the editor, and you can change the default
setting for any language (see the section “Setting Editor Defaults” in Chapter 4).

» Additional commands: in addition to the commands mentioned here, there are several
more commands for moving around in the file and manipulating text.

Using a Printer

You can send to a printer any APW output that would normally go to the screen. To
redirect output to the printer, use the output redirection operator, >, anywhere on the
command line. For example, to send a listing of the directory /APW/MYPROGS/ to the
printer, use the following command:

CATALOG /APW/MYPROGS >.PRINTER

See the section “Redirecting Input and Output” in Chapter 3 for more information on
sending output to the printer.

You can use this redirection facility together with the TYPE command to print out the
contents of a text file, as follows:

TYPE pathname >.PRINTER

Here parhname is the full or partial pathname, including the filename, of the file you want
to type.

Default Printer Settings

By default, APW

* attempts to print from a printer connected to slot 1

* sends a form-feed command to the printer after every 60 lines
does not add a line feed after a carriage return
+ does not count the characters in each line

* does not send an initialization string when you direct output to the printer.
You can use the following commands to ovesride these defaults:
SET PRINTERSLOT slotnum

SET PRINTERINIT string

APDA Draft 47 7127187

Chapter 2. Using the Shell and Editor Apple IIGS Programmer’s Workshop

SET PRINTERLINES linenum

SET PRINTERLINEFEED value

SET PRINTERCOLUMNS colnum

Where:

slotnum

string

APDA Draft

The number of the slot containing your printer-driver PC board (an ASCII
number from 1-7).

The default value for slotnum is 1, the built-in printer port on the Apple
IIGS.

Important: If you specify the wrong slot number, the printer
initialization string and output data are sent to the wrong slot, with
consequences that depend on the device assigned to that slot. For
example, the system might hang or reset.

The initialization string to be sent to your printer each time you send text to
the printer. Use this string to set the printer options you want to use, such
as character pitch, print quality, line spacing, or boldfacing. Precede a
character with a tilde (~) to indicate a control character. Precede a character
with a number sign (#) to indicate that the next character should have the
most significant bit set. Precede the tilde with a number sign to indicate a
control character with the most significant bit set.

To specify the number-sign character ($23), use the sequence ~#. To
specify the tilde character ($7F), use the sequence ~~. To specify the tilde
character with the most significant bit set ($FE), use the sequence #~~. A
space is interpreted as a space character, $20.

Important: The shell does no error checking on the initialization
string. If you specify an illegal control character, the shell subtracts
$40 from the character and sends it to the printer anyway. For
example, if you specify ~g, the shell sends $27 to the printer.

The following command sends the string “Control-L. Esc a 2" to the
printer:
SET PRINTERINIT ~L~[aZ2

For an Apple ImageWriter™ II printer, this string feeds the paper to the next
top-of-form position and sets the printer to near-letter-quality mode.

The following command sends the sequence $1B $44 $80 $00 to the
printer:
SET PRINTERINIT ~[D#~@~@

For an Apple ImageWriter II printer, this sequence adds an automatic line
feed after every carriage return.

See the manual that came with your printer for the options available and the
codes necessary to set them.

48 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell aﬁd Editor

linenum

value

colnum

APDA Draft

Important: If you are using a parallel interface card to connect a
parallel printer to your Apple IIGS, you must use the initialization
string Control-I80N to set the card to 80-column mode and turn off
echoing to the screen. To do so, use the following command:

SET PRINTERINIT ~IBON

An ASCII number indicating the number of lines to be sent to the printer
before a form-feed character ($0C) is sent. This command sets the page
length. If linenuwn = 0, no form-feed characters are sent. Note that a form
feed advances the paper to the next top-of-form position, which
corresponds to the top of the next page only if you set up your printer
correctly. See the manual that came with your printer for instructions on
setting the top of form. (You can usually reset the top of form by turning
off the printer, rolling the paper so that the top of the page is slightly above
the print head, and turning the printer back on.)

The default for linenum is 60.

If you set value to any value (TRUE would be appropriate, but any character
or string of characters will do), then the printer driver automatically adds a
line feed after every carriage return. To cancel this effect, use the

UNSET PRINTERLINEFEED command.

Depending on the printer you are using and how it is set up, it may or may
not automatically add a line feed at the end of each line. If no line feed is
added by either the printer or APW, the printer overprints every line of text
without advancing the paper. If APW adds a line feed when the printer is
adding one too, the lines are double spaced. You can use the
PrinterLineFeed variable to correct either condition without resetting
your printer’s DIP switches. If your output looks okay, you don’t have to
worry about this variable at all.

The default for value is null—that is, no line feed is sent.

An ASCII number indicating the number of characters on a line. The printer
driver assumes a new line has begun each time colnum+1 characters have
been printed since the last carriage return. You can set this variable to cause
the printer driver to count lines on a page in the case that your printer
automatically inserts a carriage return and line feed to wrap lines that are too
long.

If your printer stops printing at the end of the line, or returns to the start of
the line and overprints the line, then the printer driver can keep track of the
lines on the page by counting the number of carriage return characters in the
file. In this case you can set colnum to 0 and the printer driver will count a
new line only when a carriage return is sent.

The default for colnwm is 0.

49 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

Important: If you are using the built-in printer port on the Apple IIGS, you can
also use the Control Panel to control a variety of printer interface settings. Make
sure that the Control Panel settings and APW printer settings are consistent. For
example, if you use the Control Panel to set the line length, you should set colnum
to the same value to assure that the number of lines on the page are counted
correctly in case some lines wrap to the next line. Also, if you set both value and
the Control Panel to add a line feed after every carriage return, you will get two line
feeds (three if the printer is adding one too). See the Apple 1IGS Owner’s Guide for
instructions on using the Control Panel.

Including Printer-Setup Commands in the LOGIN File

You can include these commands in a LOGIN file so they are executed each time you load
APW. Use the following procedure to create a LOGIN file:

1. Boot APW.

2. Type the following commands (press the Return key after each command):
EXEC
EDIT 4/LOGIN

3. You are now in the editor. Type the printer-setup cofrﬁnands, one per line, ending
each line with a Return. See Table 2.4 for a set of basic editor commands.

4. After the printer-setup commands, type an EXPORT command for each variable.
The EXPORT command has the following form:
EXPORT variable

where variable is the name of one of the printer variables you just set. For example,
if you used the SET PRINTERSLOT and SET PRINTERINIT commands, you
must follow them with the following commands:

EXPORT PRINTERSLOT
EXPORT PRINTERINIT

5. Press G3-Q. When the editor’s Quit menu appears, press S to save the file and then
press E to return to the shell.

6. To test the setup, first make sure your printer is properly connected to your Apple
IIGS as described in the Apple IIGS Owner’s Guide. Then reboot APW, turn on
your printer, and enter the following command:

TYPE 4/LOGIN >.PRINTER
The contents of the LOGIN file should be sent to your printer.

Using Exec Files

The shell can accept commands from a command file, called an Exec file. To create an
Exec file, use the following procedure:

1. Change the currrent language to EXEC by typing EXEC and pressing the Return key.

APDA Draft 50 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

2. Type EDIT filename, where filename is the name you want to use for the Exec file,
and press Return.

3. Type the commands in the file. You can put one command on each line, or you can
put several commands on each line, separated by semicolons (;).

4. Press G-Q to quit the editor. Save the file when prompted to do so.

Exec files can include conditional-execution commands (IF statements, for example); you
can also pass parameters into Exec files. An Exec file can call other Exec files, and it can
be set to terminate automatically if a routine it calls returns an error. Exec files and
conditional-execution commands are described in the section “Exec Files” in Chapter 3.

To execute an Exec file, type the pathname of the file as if it were an APW command. If
you need to pass parameters into the Exec file, list them after the filename, separated by
spaces. (Note that the pathname is not case sensitive, but parameter values are case
sensitive.) For example, if the Exec file had the pathname
/MYPROGS/EXEC.FILES/ANIMALS and required two animal names as parameters, you
could enter the following command to run it:

/MYPROGS/EXEC.FILES/ANIMALS dog alligator
APW executes each command in the file as if it were typed from the keyboard.

You can also place an Exec file in the UTILITIES/ subdirectory (prefix 6) and add it to
the command table as a utility program. Then you can execute the program just by typing
its name on the shell’s command line; in this case, the full pathname of the Exec file is not
needed. The command table is discussed in the section “Command Types and the
Command Table” in Chapter 3.

Exec-file variables, such as parameters passed into the file or those defined with SET
commands, are normally local to that Exec file (that is, the definitions are not valid in any
other Exec file). To use the variables in an Exec file called by that file, you must include
the variable name in an EXPORT command. To use the variables in the Exec file that calls
the file in which the variables are defined, you must execute the called Exec file with an
EXECUTE command. The EXECUTE command can also be used from a command line to
make the variables available at command level. The EXPORT and EXECUTE commands are
described in detail in the section “Exec Files” in Chapter 3.

Compiling (or Assembling) and Linking a Program

The Apple IIGS Programmer’s Workshop uses a single format for object files and a single
set of commands for compiling or assembling programs written in any APW source
language. Therefore, you can write different modules or routines of your program in
different APW languages. Creating an executable program using APW is a three- or four-
step process, as follows:

1. Write the source code. You can divide your source code among as many files as you
wish and can use any combination of APW languages for your program. Each file,
however, must consist of source code for only one language. If you are using more
than one language, see the manuals that came with your APW languages for

APDA Draft 51 7127187

Chaprer 2: Using the Shell and Ediror Apple IIGS Programmer’'s Workshop

instructions for passing parameters between languages and for examples of
multilanguage programs.

2. Compile the source code. The compiler (or assembler) converts the source code into
machine-language instructions, data, and symbolic references, and writes the result
out as object files. Each source file can yield one or more object files. Because the
object files contain symbolic references as opposed to actual memory addresses, they
cannot be loaded by the System Loader or executed by ProDOS 16. In addition,
some of the references in the object files may be to routines in library files, so that
the set of object files does not necessarily represent all of the object code for the
program.

3. Link the object and library files. The APW Linker replaces the symbolic references
with entries in relocation dictionaries that can be used by the loader to relocate the
references at load time. The linker also.combines all of the object files and
referenced library subroutines into a single load file. The load file still does not
contain actual memory addresses, but the relocation dictionaries created by the linker
contain all the information the loader needs to load the file.

4. As an optional step, if your load file contains many references that require relocation,
you may be able to reduce its size significantly by running the Compact utility
program. Compact is discussed in the section “Compacting Your Load File” later in
this chapter. :

Note: For simplicity’s sake, the words compiler and compile are used in this
section to include assembler and assemble.

This section begins with a short sample program that illustrates a typical sequence for
writing, compiling, and linking a program, followed by a discussion of “the other features
of the commands for compiling and linking files.

See the discussions of the ASML and LINK commands in Chapter 3, the section “Partial
Assemblies or Compiles” in Chapter 3, and the section “Using the Advanced Linker”in
Chapter 5 for more information on controlling assemblies, compiles, and links.

A Sample Assembly and Link

To get some practice in the use of APW, boot your APW disk and try the following

procedure:

1. Set the system language to the language type of the source code you intend to write.
We are going to write a simple assembly-language file for this example, so enter the
following command:

ASME5816

2. Set the current prefix to the subdirectory you want to use for your files. If your
work disk is called /MYPROGS, for example, enter the following command:

PREFIX /MYPROGS

3. Open a file for editing. We will call our source file HW. To open an editor file
named HW, enter the following command:

EDIT HW

APDA Draft 32 7127187

Apple 1IGS Programmer's Workshop Chapter 2: Using the Shell and Editor

4. Write the source code for your program. For our example, type in the following

program:

KEEP HELLO Qutput filename

MCOPY 2/AINCLUDE/M16.UTIL Macro file
MAIN START Beginning of segment

PHK Set data bank equal

PLB to code bank

WRITELN #'Hello world!’® Macro that writes string

LDA #0 Set error code to 0

RTL Return to shell

END End of segment

5. Press G-Q to quit the Editor. When the Quit menu appears, press S to save the file
to disk and then press E to return to the APW Shell command line.

6. To assemble, link, and execute the file HW, enter the following command:
RUN HW

The words Hello world! should be written to the screen following the
diagnostic output of the assembler and linker. If not, check your source file for
errors and try again.

7. You now have a file on your work disk called HELLO. To execute this program,
enter HELLO from the APW Shell command line. (Because it ends in an RTL
instruction rather than a ProDOS QUIT call, this program cannot be executed from a
finder or chooser program.)

Specifying Names for Output Files

Before we go on to consider the use of APW commands to compile and link programs, we
discuss in some detail the various ways in which you can specify the names of output files.
If you do not specify the name for an object file, the compiler reads the source file and
compiles it, but no object file is written to disk. Similarly, the linker can link a series of
object files and library files without writing any load file to disk if you do not specify the
name for the load file. There is no default filename for output files unless you set one.
Therefore, it is important to understand the various options provided by APW for naming
output files before attempting to use any of the commands to compile or link programs.

As noted earlier, the output of a compile or assembly consists of one or more object files.
APW compilers and assemblers that are able to perform partial compiles or assemblies
often create more than one object file for a given program. Each object file contains some,
but often not all, of the object segments that make up that program. It is the job of the
linker to extract the most recent version of each object segment from these files and
combine them all into a single load file. Object filenames are constructed to make this job
easier for the linker: all the object files created from a given source file begin with the same
root filename and end with distinct filename extensions.

The program MYF ILE, for example, after several partial compiles, might include the object
files MYFILE.O.ROOT, MYFILE.Q.A, MYFILE.O.B,and MYFILE.OQ.C. The object-
file root filename in this case is MYFILE . 0. The file with the . ROOT extension contains
the first segment to be processed by the linker. The files with alphabetic extensions (.2,

APDA Draft 53 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

.B, .C) contain other program segments; MYFILE.O. C is the last file created by a partial
compile.

In addition to linking files that share the same root filename, the APW Linker can link
together object files with different root filenames and library files.

After linking, each program consists of a single load file. The full pathname of the load file
can be anything other than the full pathname of the source file or of one of the object files.

Depending on the assembler or compiler you are using, you have either two or three ways
to specify the names of object files.

* You can use the APW Shell’s command-line KEEP parameter to specify the name of
the object file.

* You can specify a default object filename with the KeepName shell variable.

» If your assembler or compiler provides a way to do so, you can specify the root
filename of the object files in the source file.

Note: These methods are listed in the order of priority followed by the shell. For
example, if you specify different object filenames on the shell’s command line and
in the source file, the command-line name is used. On the other hand, any specific
compiler might not support one or more of these methods.

Since there is only one load file per program, the APW Linker does not append any
extensions to load filenames. As with object filenames, there are several ways to specify a
load filename, as follows:

* You can use the APW Shell’s command-line KEEP parameter to specify the name of
the load file.

* You can specify a default load filename for the LINK command with the LinkName
shell variable. You can specify a default load filename for a LinkEd file with the
KeepName shell variable.

* You can specify the load filename by calling the advanced linker and specifying a
KEEP command in the LinkEd file. |

* You use a shell command (such as ASML) that automatically calls the linker after a

successful compile. In this case, the root filename used for the first object file is also
used as the load filename.

Note: These methods are listed in the order of priority followed by the shell. For
example, if you specify different load filenames on the shell’s command line and in
the LinkEd file, the command-line name is used.

Specifying the Object Filename on a Shell Command Line
You can use the APW Shell’s command-line KEEP parameter to specify the name of the

object file. For example, to compile MYF ILE and write the object files to files with the root
filename MYF ILE . O, you can use the following command:

ASSEMBLE MYFILE KEEP=MYFILE.O

APDA Draft 54 7127187

Apple IIGS Programmer's Workshop Chapter 2: Using the Shell and Editor

In order to use the KEEP parameter when you specify multiple source filenames on the
command line, you must use a wildcard character in the filename. Two wildcard characters
are available for this purpose: % and $. When you use the percent sign (%) wildcard, the
shell replaces it with the source filename. When you use the dollar sign ($) wildcard, the
shell removes the last extension from the source filename and replaces the dollar sign with
the resulting filename.

For an example of the use of the percent sign wildcard, assume you execute the following
command:

COMPILE MYFILE YURFILE KEEP =%.0

The shell uses the name MYFILE . O .ROOT for the first object file created from the source
file MYFILE and the name YURFILE .O.ROOT for the first object file created from the
source file YURFILE.

For an example of the use of the dollar sign wildcard, assume you execute the following
comrmmand:

COMPILE MYFILE.CC YURFILE.ASM KEEP=$

In this case, the shell uses the name MYFILE . ROOT for the first object file created from the
source file MYFILE . CC and the name YURF ILE . ROOT for the first object file created
from the source file YURFILE .ASM.

Important: Because ProDOS 16 does not allow filenames longer than 15
characters, you must be careful not to specify a filename in the KEEP parameter that
will result in an output filename longer than 15 characters. For example, if you
specify KEEP=% . OUT and the source filename is LONGNAME, the compile will fail
when the shell tries to open the file LONGNAME . OUT . ROOT, which has 17
characters.

If you specify both a KEEP directive in the source file and a KEEP parameter on the
command line, the command-line parameter takes precedence.

Specifying a Default Object Filename With the KeepName Variable

If you do not use the KEEP parameter, the compiler looks for a KeepName shell variable
to determine the default output filename. To specify a default filename, use the following

commands (replace value with the output filename you want to use):

SET KEEPNAME value
EXPORT KEEPNAME

The SET command specifies the value for the KeepName variable. The EXPORT
command makes that value available in Exec files.

The KeepName variable can include the wildcard characters % and $. As for the KEEP

parameter, the percent sign (%) is replaced with the source filename and the dollar sign ($)
1s replaced with the source filename with the last extension removed. You must be careful

APDA Draft 55 7127/87

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

not to specify a combination of a KeepName variable and a source filename that will result P
in an output filename longer than 15 characters, or the compile will fail.

You can include a definition for the KeepName shell variable in your LOGIN file. For
example, to set KeepName 10 % . O, so that the default output filename is the source
filename with the extension . O, put the following lines in your LOGIN file:

SET KEEPNAME %.0
EXPORT KEEPNAME

Note that in this case the EXPORT command is required to make the value of KeepName
available on the command line as well as in Exec files.

Specifying the Object Filename in the Source File

If your assembler or compiler provides a way to do so, you can specify the root filename of
the object files in the source file. If you are using the APW Assembler, for example, put a

KEEP directive at the beginning of the source file.

If you have linked several source files together (such as with APPEND directives in
assembly language or #append directives in C), the output filename you specify at the
beginning of the first source file is used as the root filename for all the object files, even if
the files are not all in the same language.

Depending on the compiler you are using, the root filename specified in the source file may
be overridden by the filename in the KEEP parameter and by the default filename set by the
KeepName variable.

Specifying the Load Filename on a Shell Command Line

To specify names for load files, you use methods similar to those used to specify root
names for object files. ‘

As for object-file root names, you can use the APW Shell’s command-line KEEP parameter
to specify the name of the load file. For example, to compile MYFILE, link the object files,
and write a load file with the filename MYFILE . O, you can use the following command:

ASML MYFILE KEEP=MYFILE.O

If you specify multiple source filenames on the command line, you must use a wildcard
character in the filename as described in the section “Specifying the Object Filename on a
Shell Command Line” earlier in this chapter. For example, assume you execute the
folllowing command:

CMPL MYFILE YURFILE KEEP =%.0

The shell uses the name MYF ILE .0 .ROOT for the first object file created from the source
file MYFILE and the name YURFILE.O.ROOT for the first object file created from the
source file YURFILE. Ituses the name MYFILE . O for the load file.

APDA Draft 56 7127/87

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

If you perform separate compiles and links, you can specify the load filename
independently of the object filename. For example, you could perform a compile and link
with the following commands:

COMPILE MYFILE YURFILE KEEP =%.0
LINK MYFILE.O YURFILE.O KEEP=MYLOAD

The result is identical to that for the CMPL command, except that the load file is named
MYLOAD instead of MYFILE.O. Note that the LINK command requires only the root
filenames of the object files; the linker automatically links all files that share the same root
filename.

You can also specify a KEEP parameter on an ALTINK command line. ALINK executes a
LinkEd command file. If you specify a KEEP parameter that includes a wildcard character
on an ALINK command line, the name of the LinkEd file (rather than the root name of the
object file) is used to create the load filename.

The LINK and ALINK commands are discussed further in the section “Linking Your
Program: The LINK and ALINK Commands” later in this chapter.

Specifying a Default Load Filename With a Shell Variable

If you don’t use the KEEP parameter with the LINK command, the shell checks to see if
you have specified a default output filename with the LinkName shell variable. To specify
a default filename, use the following commands (replace value with the output filename you
want to use):

SET LINKNAME value
EXPORT LINKNAME

The SET command specifies the value for the LinkName variable. The EXPORT
command makes that value available in Exec files.

The LinkName variable can include the wildcard characters ¢ and $. When you use the
percent sign (%) wildcard, the shell replaces it with the object file's root filename. When
you use the dollar sign ($) wildcard, the shell removes the last extension from the root
filename and replaces the dollar sign with the resulting filename. For example, if
LinkName is set to % . O and you execute the command LINK MYF ILE, the shell uses the
name MYFILE. O for the load file. Similarly, if LinkName is set to $ and you execute the
command LINK MYFILE.CC, the shell uses the name MYF ILE for the load file.

Important: Because ProDOS 16 does not allow filenames longer than 15
characters, you must be careful not to specify a root filename-LinkName
combination that will result in a load filename longer than 15 characters. For
example, if LinkName is set to % . LOADFILE and the root name is LONGNAME,
the link will fail when the shell tries to open the file LONGNAME . LOADFILE,
which has 17 characters.

You can include a definition for the LinkName shell variable in your LOGIN file. For
example, to set LinkName to % .0, so that the default output filename is the object root
filename with the extension .0, put the following lines in your LOGIN file:

APDA Draft 57 7127187

Chapter 2: Using the Shell and Editor Apple HGS Programmer's Workshop

SET LINKNAME %.0
EXPORT LINKNAME

Note that in this case the EXPORT command is required to make the value of LinkName
available on the command line as well as in Exec files.

Note: The LinkName variable can be used only with the LINK command. If you
are using a LinkEd file, you can use the KeepName variable to set a default load
filename. The ASML and ASMLG commands (and their aliases) use the root
filename of the first object file as the load filename, as discussed in the section
“Using the Object-File Root Filename for the Load Filename,” later in this chapter.

Specifying the Load Filename in a LinkEd File

If you perform a separate link by using a LinkEd file instead of the LINK command, you
can use the LinkEd KEEP command to specify the load filename. There are three ways to
execute a LinkEd file:

* You can execute the LinkEd file separately from the compile with the shell’s ALINK
command.

* You can append the LinkEd file to your source code (using an APPEND directive) and
compile and link the program with one COMPILE or ASSEMBLE command.

* You can name the LinkEd file as the last source file on the COMP ILE or ASSEMBLE
command line.

If you specify both a KEEP command in the LinkEd file and a KEEP parameter on the
command line, the command-line parameter takes precedence.

LinkEd and the LinkEd KEEP command are described in the section “Using the Advanced
Linker” in Chapter 5. The ALINK command is discussed further in the section “Linking
Your Program: The LINK and ALINK Commands” later in this chapter.

Note: You cannot execute a LinkEd file with a LINK command. Use the ALINK,
ASSEMBLE, or COMP ILE commands to execute a LinkEd file.

Using the Object--File Root Filename for the Load Filename

The ASML, CMPL, ASMLG, CMPLG, and RUN commands automatically call the standard
linker after a successful compile. If you use one of these commands, the root filename
used for the first object file created is also used as the load filename. For example, the
following command assembles the file MYFILE, links the resulting object files, and then
runs the program:

RUN MYFILE KEEP=MYFILE.O

The first object file has the filename MYFILE .0 .ROOT. The linker links all the object files
with the root filename MYFILE . O and creates the load file MYFILE . O. After successful
execution of this command, then, the following files will be on the disk:

APDA Draft 58 7127187

Apple IIGS Programmer’ s Workshop Chapter 2: Using the Shell and Editor

MYFILE source code
MYFILE.O.ROOT first object file
MYFILE.O.A second object file
MYFILE.O load file

This relationship between the object file root filename and the Joad filename holds whether
you used a directive in the source file, the KEEP parameter on the command line, or the
KeepName shell variable to specify the output filename.

Important: Because the shell will not let you overwrite a source file with a load
file, you cannot set KeepName to % and use it with a link. For example, if
KeepName is set to % and you try to execute the command CMPI, MYFILE, the
link will fail when the linker tries to write a load file named MYFILE. Similarly,
the command CMPL MYFILE KEEP=MYFILE will fail when the linker tries to
overwrite the source file MYF ILE with a load file of the same name.

Assume, for example, that you execute the following command to compile and link three
files, two in C and one in assembly language:
CMPL MYFILE1l.CC MYFILEZ.CC MYFILE3.ASM

Assume further that you set the KeepName variable to $. After this CMPL command has
been successfully executed, the following files are on the disk:

MYFILEl.CC C source code

MYFILE2.CC C source code

MYFILE3.ASM ASM65816 source code

MYFILE1l.ROOT object file from the first C source file
MYFILE2.ROOT object file from the second C source file
MYFILE3.ROOT first object file from the assembler source file
MYFILE3.A second object file from the assembler source file
MYFILEL load file

Notice that the root filename of the first object file created is used as the load filename.

Specifying the File Type of Your Load File

By default, load files created by the APW Linker have ProDOS 16 file type $B5 (shell load
file). You can change the file type of any file with the shell’s FILETYPE command,
which is described in the section “Command Descriptions” in Chapter 3. You can also
change the default file type created by the linker. To do so, use the following commands:

SET KEEPTYPE fype
EXPORT KEEPTYPE

APDA Draft 59 7127187

Chapter 2: Using the Shell and Editor Apple 1IGS Programmer’s Workshop

For type, substitute the hexadecimal file type that you want assigned to load files by the
linker. For example, to cause the linker to create files of type $B3 (ProDOS 16 system
load files), use the following command:

SET KEEPTYPE $B3
Valid file types for load files are $B3 through $BE as shown in Table 2.5

Table 2.5. Load File Types
Value Abbreviation File Type

$B3 S16 ProDOS 16 system load
$B4 RTL Run-time library

$B5 EXE Shell load

$B6 STR Startup load

$BS8 NDA New desk accessory
$B9 CDA Classic desk accessory
$BA TOL Tool set file

You can include a definition for the KeepType shell variable in your LOGIN file. To set
KeepType to $B3, for example, so that the default file type created by the linker is a
system load file, put the following lines in your LOGIN file:

SET KEEPTYPE S$R3
EXPORT KEEPTYPE

Shell Commands for Assembling, C'omp\ilin'g, and Linking

The APW Shell provides several commands for assembling, compiling, and linking
programs. These commands are powerful and versatile, and therefore somewhat complex.
There are many ways of assembling, linking, and running a program in APW; the method
you use will depend on your needs and personal preferences. In this section, we explore
some of the functions performed by the shell commands for compiling and linking files.

All of the shell commands are described in detail in the section “Command Descriptions” in
Chapter 3. Examples of the use of these commands are given in the section “A Sample
Assembly and Link” earlier in this chapter.

The following APW Shell commands assemble or compile a program and then return
control to the shell:

* ASSEMBLE
*+ COMPILE

The following commands first assemble or compile a program, then call the linker, and
then return control to the shell:

« ASML
* CMFL

APDA Draft 60 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

The following commands assemble or compile a program, call the linker, run the program,
and then return control to the shell:

* ASMLG
* CMPLG
* RUN

The following commands call the linker and then return control to the shell:
* ALINK
* LINK

The ASSEMBLE and COMPILE Commands

The ASSEMBLE and COMP ILE commands are identical; that is, they are aliases for the
same command. In the simplest case, you need name only the source file on the command
line. The shell determines the language type of the source file and calls the appropriate
assembler or compiler. For example, to assemble or compile the file MYFILE, you can use
either of the following commands:

ASSEMBLE MYFILE
COMPILE MYFILE

As before, for simplicity’s sake we use the terms compiler and compile to include
assembler and assemble.

The complete syntax of these commands is as follows:

COMPILE [+E|-E] [+LIzL] (+S|=8] [+T|=I] [+W|=W]
filel [file2] [..] [KEEP=ouffile]
[NAMES= (segl [seg2] [...1)] [languagel= (option ...)
[language2= (option ...} 1 [...]]

Square brackets indicate optional parameters. Italics indicate variables that must be
replaced with specific values. The vertical bar (l) indicates a choice. See the section
“Command Descriptions” in Chapter 3 for a complete discussion of command syntax.

In the following sections, we explain each of the components of these commands. Since
the ASSEMBLE and COMP ILE commands perform a single main function (that is, an
assembly or compile), they are a bit simpler to explain than most of the other commands
listed above. Therefore, we explore these commands in some detail before going on to
discuss some of the extra nuances introduced by the other commands.

Diagnostic Qutput: the L and S.Options

By default, the only output of a compile written to the screen is the name of the compiler or
assembler called, plus possibly the name of the segment being processed. If any errors
occur, they are also written to the screen. The ASSEMBLE and COMP ILE commands
provide parameters to control the output of source listings (the L parameter) and symbol
tables (S) for those APW compilers that support such output.

APDA Draft 61 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

The source listing shows the contents of the source file, with each line preceded by the line
number used by the compiler while it processes the file. The line number is used in error
messages and symbol-table listings, for example. The contents of a symbol-table listing, if
any, depend on the compiler you are using; see the manual that came with your compiler
for a description. Typically, the symbol table provides a cross-reference of symbolic
references in the file and the numbers of the lines on which they are defined.

Since the default is to not print the source listing or symbol table, you will usually use the
+L and +S forms of these parameters; these forms enable the listings. However, since
your compiler might also let you control these listings from the source file, the shell also
provides the -L and -S forms of these parameters; these forms override the source-file
directives and turn the listings off.

The L and S parameters must be placed before the name of the first source-code file on the
command line. For example, to assemble the file MYFILE and write the source-code
listing on the screen as the assembly proceeds, you could use the following command:

ASSEMBLE +L MYFILE

Error Handling: the E, T, and W Options

Under APW, there are two fundamental types of errors: fatal and nonfatal. A fatal error is
one that precludes any further processing by the compiler or linker that is currently
executing. In the case of a fatal error, processing stops immediately. When a nonfatal
error occurs, processing can continue, but the file that is created almost certainly contains
bugs. In the case of a combined compile and link (such as for the ASML command), the
compiler can pass control to the linker or can tell the shell to terminate execution of the
command when the compile is finished, depending on the severity of the error. The error
messages generated by the compiler or linker can help you diagnose the cause of the error.

Linker errors and error levels are described in Appendix C. If you are writing a compiler
or linker, see the section “Entry and Exit” in Chapter 6.

The APW Shell provides several options that affect the way errors are handled. For
compilers and linkers that support these options, you can control some aspects of APW’s
error handling with the E, T, and W command-line options, as follows:

Note: Although APW defines conventions for handling errors and provides shell
command-line options that affect error handling, any individual compiler or linker
may or may not follow these conventions. See the manual that came with the

compiler or linker that you're using to see which of these options are valid for that

program.

« If you specify +E, when the compiler terminates execution due to a fatal error, it calls
the APW Editor. The editor displays the source file with the offending line on the
fourth line on the screen (or as far down on the screen as possible, if the error is in
one of the first three lines of the file). If you specify —E and a fatal error occurs, you
are returned to the shell’s command line or the Exec file that executed the command.
The default for this option is +E when the command is executed from the command
line and -E when the command is executed from an Exec file.

APDA Draft 62 7127187

Apple 11GS Programmer’s Workshop Chapter 2. Using the Shell and Editor

» If you select +T, any error causes the compile to terminate. If you select both +T and
+E, an error causes the shell to call the APW Editor and display the offending line as
the fourth line on the screen. If you omit this option or select —T, only fatal errors
cause immediate termination of the compile.

« If you select +W, the compiler stops and waits for a key press when any error occurs,
to give you the opportunity to read the error message and to decide whether to
continue (that is, to continue the compile in case of a nonfatal error or to call the editor
in case of a fatal error). Press Apple-Period (G-.) to halt execution, or press any
character key or the spacebar to continue. If you omit this option or select —W,
execution continues without pausing when an error occurs.

Specifying Source Files

In APW, you are not required to have all of your source code in a single file. You can use
a separate command to compile each source file, or you can compile several source files
with a single command. There are two ways to use a single command to compile multiple
source files:

* You can append one source file to the end of another, using directives in the source
files (if the language you are using provides such a directive). In APW Assembler,
for example, you can use APPEND directives; in APW C you can use #append
directives.

If the appended file is in the same language as the file being processed, the compiler
treats the appended code as if it were in the file it is already processing. In this case,
the compiler continues processing the program without a break.

If, on the other hand, the appended file is in a different language than the file being
processed, the compiler returns control to the shell, which calls the appropriate
compiler for the new file.

* You can name more than one source file in the command line. For example, to
compile files MYFILE1 and MYFILE2, you can use the following command:

COMPILE MYFILEl MYFILEZ2

In this case, regardless of the language type of MYFILE2, when the compiler finishes
processing MYFILE], it returns control to the shell. The shell then calls the
appropriate compiler for MYFILE2, which opens that file and compiles it.

The KEEP Parameter

If you have named an output file in a directive in the source file or if you have set the
KeepName shell variable (see the section, “Specifying Names for Output Files” earlier in
this chapter), MYFILE is compiled and, if successful, one or more object files are written
to disk. If you have not previously specified an output filename, you can do so on the
command line with the KEEP parameter. For example, to compile MYFILE and write the
object files to files with the root filename MYF ILE. O, you can use the following command:

ASSEMBLE MYFILE KEEP=MYFILE.O

APDA Draft 63 7127187

Chapter 2: Using the Shell and Editor Apple 1IGS Programmer’s Workshop

The first object file is named MYF ILE .0.ROOT. A second file named MYFILE.O.A may
also be written, depending on the assembler or compiler you are using and the number of
segments in the source file.

R

If you have listed more than one source file on the command line, you must use one or
more wildcard characters in the KEEP parameter, as described in the section “Specifying
the Object Filename on a Shell Command Line” earlier in this chapter.

The NAMES Parameter

The NAMES parameter is provided for those APW compilers that can do partial compiles.
A partial compile involves recompiling one or more, but not all, of the segmentsin a
program after at least one full compile has already been done. When you link the program,
the linker automatically selects only the latest version of each segment.

The purpose of partial compiles is to speed up the development process. Suppose you
have written an assembly-language program that includes 25 segments, have assembled the
program, and have discovered bugs in two of the segments. With the APW Assembler,
you can correct the two problem segments and then reassemble those segments only; there
is no need to reassemble the segments that were not changed.

To perform a partial compile, you use the NAMES parameter on the command line to specify
the segments to be compiled. For example, to do a partial assembly of the file MYFILE,
reassembling the segments D ICK and JANE, you could use the following command:

ASSEMBLE MYFILE NAMES=(DICK JANE)

Important: There are three circumstances in which you cannot perform a partial
compile, but must do a full compile instead, as follows:

» When you delete or rename a segment. If you do a partial compile in this case, the
linker will not know that the old version of the segment is no longer valid and will
link it into your program.

* When the order in which the segments are linked is significant.

« When you change the definition of a global symbol. References to global symbols
within each file are resolved by the compiler, so if you change the definition of a
global symbol you must be sure that you recompile every segment in which that
symbol is used. The best way to make sure you have caught every occurance of the
symbol is to do a full compile.

Partial assemblies and compiles are discussed in detail in the section “Partial Assemblies or
Compiles” in Chapter 3.

Language-Specific Paramelers

Since each compiler or assembler operating under APW has its own requirements and
abilities, the APW Shell allows you to pass parameters directly to compilers. To do this,
you include the language name of the compiler on the command line, followed by an equal
sign and a list of options in parentheses. The APW Shell does not do any error checking
on the options string; it merely sends it on to the compiler.

APDA Draft 64 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

For example, to pass the —D parameter (which assigns a definition to a symbol) toa C
program named MYFILE, you might use the following command:

COMPILE MYFILE CC=(-Dlucky=13)

Note that the language name of C is CC. The language names of APW languages are listed
in Appendix B.

Linking Your Program: The LINK and ALINK Commands

After you have created one or more object files by compiling your program, you must call
the APW Linker to create an executable load file. While there are several APW commands
that automatically call the standard linker, we first consider a separate link in order to make
the relationships between object files, library files, and load files clearer.

How much attention you must focus on the link process depends on the sort of
programming you are doing. If you are writing simple programs or utilities using one or at
most two or three source files, the standard linker with few or no parameters is adequate
for your use. On the other hand, if you want to select specific segments out of object files,
assign object segments to load segments during the link process, or control the diagnostic
output of the linker during the link process, then you must use the advanced linker. In
between these two extremes are command-line options that let you search nonstandard
library files, link object files with different root filenames, and turn on or off the linker’s
diagnostic output.

Note: You may have to use the advanced linker to make a segment dynamic.
Refer to the manual that came with the APW language you are using to see if there
is a way to assign dynamic segments in the source code.

For example, suppose you have compiled a program named MYF ILE and created the object
files MYFILE.OQ.ROOT and MYFILE.O.A. To link this program, you could use the
following command:

LINK MYFILE.O KEEP=MYFILE.O

Assuming that there are no source files in the directory named MYF ILE . O, the linker links
the object files MYFILE.O.ROOT and MYFILE, Q. A, creating the load file MYFILE.O.
If, after processing MYFILE.O.ROOT and MYFILE.O. A, there were any unresolved
references, the linker would automatically search any library files in the library prefix,
prefix 2. When it finds the segment it needs in a library file, the linker extracts only that
segment and links it into the program.

This program, in fact, would be an ideal candidate for use with one of the commands that
automatically links the program after the compile. These commands are discussed in the
next section.

Now assume that your program has been compiled into two sets of object files, with root

filenames MYFILE . O and MYTFINE .O. Assume further that you have created your own
library file called MYLIB that you want to search as part of the link. To link this program,
you could use the following command:

LINK MYFILE.C MYTFINE.O MYLIB KEEP=MYPROG

APDA Draft . 65 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

The linker first links MYFILE. O, then links MYTFINE . O, and then (if there are any
unresolved references) searches MYLIB. Finally, if there are still unresolved references,
the linker searches the library files in the library prefix. It creates a load file named
MYPROG.

Note that you have considerable control over the link with this command. The linker links
object files and searches libraries in the sequence in which you list them. For example,
suppose you had used the following command to link this program:

LINK MYTFINE.O MYLIB MYFILE.O KEEP=MYPROG

In this case, the linker would first link MYTF INE . O, then search MYL IR, and then link
MYFILE.O. Finally, if there were still unresolved references, the linker would search the
library files in the library prefix. As before, it would create a load file named MYPROG.

The LINK command takes the L and S parameters as well. The +1. parameter generates a
link map, which is a listing of the segments in the object file with the starting address,
length in bytes, and segment type of each segment. The +S parameter generates a symbol-
table listing of all the global references in the object file. The default for these parameters is
to generate no listings; since there is no way to turn these listings on in the object files, the
-L and -S parameters have no real function in the LINK command. You may wish to use
-L and ~S in Exec files, however, just to remind yourself that the command will generate
no diagnostic output other than error messages.

If you need complete control over the link, you must use the advanced linker. The
advanced linker is controlled by executing a LinkEd file. To execute a LinkEd filein a
separate link, use the AL INK command. Actually, the ALINK command is an alias for the
ASSEMBLE and COMP ILE commands. A LinkEd file is treated by APW like any other
source file, except that when the shell processes a LinkEd file, it calls the advanced linker
instead of calling a compiler or assembler.

Although ALINK is an alias for ASSEMBLE, note that several of the parameters and options
provided by APW for the ASSEMBLE command make no sense for a LinkEd file. Since
only one link is done for each program, for example, listing two LinkEd files on the
ALINK command line would cause two separate links to take place, not one link of two
files. Because there is no such thing as a partial link, the NAMES parameter is not useful
for LinkEd files, and because you cannot append a source file in any other language to a
LinkEd file, the language-specific parameters have no function on an ALINK command
line.

The s and L parameters operate for ALINK exactly as they do for LINK, except that,
because LinkEd files can include commands to turn the diagnostic output on, the —S and
—L parameters are useful in the ALINK command to override those commands and turn the
output off.

Because LinkEd files are treated by the APW Shell like language files, they can be executed
in all the ways that languages can. That means they can be appended to the last source file
processed or listed as the last language source file on an ASSEMBLE or COMPILE
command line. Note that the LinkEd file must be the /ast file processed, because no more
source files will be compiled after the link.

APDA Draft 66 7127187

Apple IIGS Programmer’'s Workshop Chapter 2: Using the Shell and Editor

The advanced linker is described in detail in the section “Using the Advanced Linker” in
Chapter 5.

Compiling and Linking : ASML, ASMLG, CMPL, CMPLG, and RUN

There are several APW commands that automatically call the standard linker after a
successful compile or assembly: ASML and CMPL compile and link the program; ASMLG,
CMPLG, and RUN compile, link, and run the program. Actually, there are only two distinct
commands: ASML and ASMLG. CMPL is an alias for ASML, while CMPLG and RUN are
aliases for ASMLG. Furthermore, ASMLG is identical to ASML except that after a successful
compile and link, ASML returns control to the shell whereas ASMLG runs the program.
Therefore, the command ASML is used in this section as representative of this entire set of
commands.

All of these commands take the same parameters as the ASSEMBLE and COMPILE
commands. Because the linker is called automatically, however, output files include the
load file in addition to object files, and input files can include object files and library files in
addition to source files. The section “Specifying Names for Output Files,” earlier in this
chapter, presents the various ways you can determine the names of output files. In this
section we explain how you can control the compile and link process by naming input files.

When the shell executes the ASML command, it uses the following procedure:

1. The shell looks for a source file with the filename of the first input file listed on the
command line. If there is no source file by that name, the shell assumes it is an
object file or a library file.and goes on to the next filename.

2. The shell calls the compiler that corresponds to the APW language type of the first
source file it finds on the command line.

3. The shell passes to the compiler the option flags (if any), the KEEP filename (if any),
the NAMES segment list, and any languagc—SPecﬂ'lc options that match the language
type of the file.

4. The compiler processes the source file and any source files of the same language
type appended to that source file. If the compiler comes to an appended file of a
different language type, it goes to step 5. If it has come to the end of the last
appended file, it goes to step 6.

5. The compiler returns control to the shell, which calls the compiler that corresponds
to the language type of that file. Retumn to to step 3.

6. The compiler returns control to the shell, which looks for the next source filename
on the command line. If it finds another source filename, it returns to step 3. If
there are no more source filenames, the shell goes on to step 7.

7. The shell calls the linker and passes to it the option flags (if any), any KEEP
filename, and the list of input files from the command line.

8. The linker looks for an object file that corresponds to the first filename on the
command line. If the first filename was a source file, the linker looks for the object
file created from that source file. If the first filename was an object-file root
filename, that object file is processed first.

9. The linker processes all of the remaining files in the sequence in which the ﬁlenames
are listed. If a source filename is listed, the linker looks for the object files created

APDA Draft 07 7127187

Chapter 2: Using the Shell and Editor '~ Apple IIGS Programmer’s Workshop

from that source file. If an object-file root filename is listed, all the files with that
root filename are linked. If a library filename is listed, that file is searched for any
unresolved references.

10. If there are still any unresolved references, the linker searches the library files in the

library prefix.

11. The linker writes the load file to disk and returns control to the shell. (In the case of

the ASMLG, CMPLG, and RUN commands, the shell executes the load file.) The
name of the load file is the name used in the KEEP parameter on the command line, if
any. If there was no KEEP parameter, the root filename of the first object file created
is used as the load filename.

For example, suppose you have a program consisting of source files MYFILE and

MYTF INE, plus object files START . ROOT, GDAY . ROOT, and GDAY . A. In addition to the
system libraries, you want to search the library file MYLIB, but you want to search that file
before GDAY is linked. Assume that the user has set the KeepName shell variable to % . 0.
The first segment of the program is in START . ROOT. To compile, link, and run this
program, you can use the following command:

CMPLG START MYFILE MYTFINE MYLIB GDAY

The program is processed in the following sequence:

1.

The shell looks for a source file with the filename START. Since there is no source
file by that name, the shell assumes it is an object file or a library file and goes on to
the next filename. It is important to note that, if there were a source file by that
name, it would be compiled and the file START . ROOT would be overwritten.

The shell calls the compiler that corresponds to the APW language type of the first
source file it finds on the command line—in this case, MYFILE.

The compiler processes MYF ILE, including any source files of the same language
type appended to MYFILE. The resulting object files are written to the disk with the
filenames MYFILE.O.ROOT and MYFILE.O.A. Assume that the compiler finds
no appended source files of a different language type; it comes to the end of the last
appended file and returns control to the shell.

The shell looks for the next source filename on the command line—in this case,
MYTFINE.

The compiler processes MYTF INE, including any source files of the same language
type appended to MYTFINE. The resulting object files are written to the disk with
the filenames MY TF INE . O0.ROOT and MYTFINE.O.A. Assume that this time the
compiler finds a source file of a different language type appended to MYTF INE,
called MYOTHER,; in this case, the compiler returns control to the shell, which calls
the compiler that corresponds to the language type of the appended file.

The new compiler processes the appended file (MYOTHER). The resulting object file
is written to the disk with the filename MYTFINE.O.B. When the compiler comes
to the end of the last appended file, it returns control to the shell.

The shell can find no more source files, so it calls the linker and passes to it the list
of input files from the command line, with the appropriate object-file root filenames
substituted for the source filenames. For example, the name MYFILE. O is passed

APDA Draft 68 7127187

Apple IIGS Programmer’ s Workshop Chapter 2. Using the Shell and Editor

to the linker instead of MYFILE. Since the first object file created had the root
filename MYFILE.O, that name is passed to the linker as the KEEP filename.

8. The linker looks for an object file that corresponds to the first filename on the
command line, START. It finds the file START . ROOT and links it.

8. The linker processes MYFILE.O.ROOT, MYFILE.O.A, MYTFINE.O.ROOT,
MYTFINE.O.A, and MYTFINE,.O.B.

10. Assuming there are some unresolved references, the linker searches MYLIB.
11. The linker links GDAY . ROOT and GDAY .A

12. If there are still any unresolved references, the linker searches the library files in the
library prefix.

13. The linker writes the load file to disk with the load filename MYFILE . O and returns
control to the shell, :

14. The shell executes MYFILE.O,

Before executing the CMP LG command, the following files were in your directory:

START.ROOT object file containing first segment of program
MYFILE source file

MYTFINE source file

MYOTHER source file

MYLIB library file

GDAY .ROOT object file

GDAY.A object file

After executing the CMPLG command, you have the following files in the directory:

START .ROOT object file containing first segment of program -
MYFILE source file

MYTFINE source file

MYOTHER source file

MYLIB library file

GDAY . ROOT object file

GDAY.A object file

MYFILE.Q.ROOT object file from MYFILE

MYFILE.O.A object file from MYFILE
MYTFINE.O,ROOT object file from MYTF INE
MYTFINE.O.A object file from MYTFINE
MYTFINE.O.B object file from file appended to MYTFINE
MYFILE.O load file

APDA Draft , 69 7127187

Chapter 2: Using the Shell and Editor Apple 1IGS Programmer's Workshop

In summary, each source file listed on the command line is first compiled independently,
then the linker is called just as if the LINK command had been used. The compilers ignore
object files and library files. The shell replaces each source filename with the root filename
of the object files created from that source file, and then the entire list of filenames is sent to
the linker. All command-line parameters that would be passed by the COMP ILE command
are passed to each compiler called. All parameters that would be passed by the LINK
command are passed to the linker.

The ASML and related commands let you combine the functions of the COMPILE and LINK
commands in one line. In the case of a fairly simple program, with one source file and no
custom library files, the ASML command makes the link process nearly invisible. You can
compile and link the program with one command, without worrying about which object
files to link or which library files to search. In the case of a complex program for which
you want to compile some source files and link them to some files already compiled (that
is, to some object files), and perhaps search some custom library files while you’re at it,
the ASML command gives you the power to do so. For even more control over the link
process, you can use a LinkEd command file. The cost of increased versatility and power,
however, is increased complexity.

Compacting Ydur Load File

As a final step in program development, you can run the Compact utility program.
Compact converts a load file to the most compact form provided by the object module

format. To compact the load file MYPROG and create the compacted load file
MYPROG.CMPCT, for example, use the following command:

CCMPACT MYPROG MYPROG.CMPCT

Compacted load files take up less space on disk and load faster than noncompacted load
files. In addition, Compact can be used to help make programs restartable. See the section
“Command Types and the Command Table” in Chapter 3 for a discussion of restartability.

Not all load files are significantly improved by compacting, however, so you may want to
test both a compacted and noncompacted version of your program before releasing it.

Important: In order to load a compacted load file, you must have version 1.2 or
later of the system loader on your boot disk.

Launching Programs

Under ProDOS 16 on the Apple IIGS computer there are two principal types of executable
load files: system load files (file type $B3) and shell load files (file type $B5). After you
have written a program, you can use the FILETYPE command (described in Chapter 3) to
assign a file type to it.

System load files take over complete control of the computer; they do not operate under a
shell program. APW itself is an example of such a program. To execute a system load
file, the calling program (such as a finder or chooser) executes a ProDOS 16 QUIT call,
shutting itself down. When the called program finishes and executes a QUIT call, ProDOS
16 normally relaunches the calling program. (For a more complete description of the QUIT

APDA Draft 70 7127187

Apple 1IGS Programmer’s Workshop . Chapter 2: Using the Shell and Editor

call, see the Apple IIGS ProDOS 16 Reference.) A system load file must make Apple IIGS
tool calls to set up the environment it needs, including the graphics or text screen it needs
and the input it accepts.

Shell load files run under a shell program (such as the APW Shell); they do not remove the
shell from memory. The shell uses System Loader calls to load the program, and then
transfers control to it. When the program terminates, it returns control to the shell. A shell
load file uses the environment set up for it by the shell under which it runs. For more
information on writing a program to run under a shell, see the sections “APW Utilities” in
Chapter 6 and “Shell Load Files” in Chapter 7.

To launch a program of either file type from the APW shell, enter the pathname of the file
as a command. For example, if you want to run a program called STAR . WARP that is in
the subdirectory /MYPROGS/GAMES/, type the following line and press Return:

/MYPROGS/GAMES/STAR . WARP

Note that ProDOS 8 SYS files can be launched by APW only if the ProDOS 8 operating
system (the file P8) is present in the system prefix (prefix 4) of your disk and that BIN
files cannot be executed by the APW Shell.

Using the Apple IIGS Debugger

Once you have created an executable load file, you can use the Apple IIGS Debugger as an
aid in debugging it. The Apple IIGS Debugger is both powerful and versatile. The
debugger can execute a load file in memory one instruction at a time, showing you the
contents of Apple IIGS registers, stack, direct page, and memory at any step. You can
execute each instruction individually, or have the debugger automatically execute each in
turn until it reaches a breakpoint that you have set (or until the program hits a BRK

" instruction or crashes). If you have timing-critical code, you can execute specified
subroutines or the entire program at the full speed of the Apple IIGS CPU. You can change
the contents of registers or memory locations at any time and resume execution of the
program. You can display any of the debugger’s diagnostic displays or the normal display
of your program, and you can switch back and forth between displays at any time.

The debugger shows an assembly-language disassembly of the machine code in memory as
it steps through your program. It shows absolute addresses in the disassembly. The
debugger cannot translate machine code into any higher-level language or keep track of
symbols. You will probably find the debugger of most use, therefore, in debugging
assembly-language programs, because it is relatively easy to relate your assembly-language
code to the disassembly. For higher-level languages, the debugger might give you some
insight into what is going wrong with the execution of the program, but it is up to you to
figure out the source-code command or statement responsible.

The APW Debugger is described in detail in the Apple IIGS Debugger Reference.

Using the Utilities

The Apple IIGS Programmer’s Workshop Shell includes most of the functions that you
need to write, compile, link, and run programs. A few functions, however, are

APDA Draft 71 7127187

Chapter 2: Using the Shell and Editpr Apple IIGS Programmer’s Workshop

implemented as separate routines designed to be run under the shell; these are referred to as
APW utility programs, or utilities.

Most APW utilities, such as Init (which formats disks), require no more input than any
other shell command; in this manual such utilities are referred to as external commands.
You use them just like other APW commands, but they must be present in the utilities
prefix (prefix 6). You may have a few utilities on your system, however, that perform
more complex functions and that require some interactive input. If you add such a utility
program to your system, refer to the documentation and help file that came with the
program for instructions in its use.

Summing It All Up: Developing and Running a
Program

This section illustrates the interactions among the various programs in the Apple IIGS
Programmer’s Workshop by presenting a typical sequence of procedures and events
involved in developing and running a multilanguage program. For this purpose, we
assume that you are developing an application written mostly in C, with some routines
written in 65816 assembly language. See the manuals that came with your APW languages
for actual multilanguage programming examples that you can run on your Apple IIGS. The
process described here is illustrated in Figure 2.2.

See the Apple IIGS ProDOS 16 Reference manual for a complete description of the
program load process as implemented by the System Loader and Memory Manager.

APDA Draft 72 7127187

Apple HGS Programmer’s Workshop

,
0
o

C
Sou

B T
-

-

.

o

Shell; sof
language
o C

Shell: call
APW Editor

Editor:
write C
outines

hell: call

compiler

C compiler:
complle C
programs

[toad
fle

Load
file

Figure 2.2. Program Interactions

APDA Draft

Chapter 2: Using the Shell and Editor

Shell: set
language to
ASM65816
Shell: call
APW Editor
Editor: wrte
ASM658146
outines
Shell: call
ASM65816
gassembler,
Assembler’
gssemble
c 465816 ASM&5816
object i{J| oblect rograms
Shell: call
APW Linker
tinker: link
files into a
load flle
Shefl: run
program
Loader and
Memory Program
Manager: in
load memory
program
Program
in
memory

Debugger:
debug
program

73

-
e

-
e

-.‘-‘----.--‘..u-ﬂ""

source

"'"'"""‘"""“"'""II“H

v
\
\
]
L]
]
[
\
¥
]
1
]
.
]
1

e

7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

1. Using an APW Shell command, set the current lIanguage for APW to CC. (Every
APW file has an APW language type; if you open a new file, it is given the current
APW language type.)

2. Call the APW Editor and open a new file.

3. Use the editor to write the C-language routines. You can divide the program among
as many files as you wish. In APW C, you can specify which subroutines go in
which load segments. You do not have to return to the shell between files; instead,
you can save one file and open another within the editor, Until you open a non-C
file with the editor or use a shell command to change the current language, the
current language remains CC.

4. Quit the editor, change the current language to ASM6581 6, call the editor, and open
anew file. You can divide the 65816 assembly-language routines among as many
files and as many segments per file as you wish. The APW Assembler allows you
to specify which object segments go in which load segments. Make the assembly-
language routines relocatable: that is, use no absolute addresses—use labels and
relative addressing only.

If you have used macros in your assembly-language program, you can run the
MacGen utility to generate a custom macro file for the program.

Until you use a shell command to change the currrent language or open a non-
assembly-language file with the editor, the current language remains ASM65816.

5. Quit the editor, call the APW Assembler to assemble the 65816 assembly-language
routines, and call the APW C Compiler to compile the C routines. You can compile
both languages with a single command by listing all the files on the same command
line or by appending one file to the other with APPEND directives and then executing

the COMP ILE command.

6. Use the APW Linker to link the object files into a load file. You can link the object
files with the standard linker or with the advanced linker. The standard linker places
all object segments with the same load-segment name into a single load segment,
while the advanced linker ignores the load-segment names in the object file and
follows the directions in a LinkEd file to determine which object segments go in each
load segment.

You can compile and link both languages with a single command by listing all the
files on the same command line or by appending one file to the other with APPEND
directives and then executing the CMPL command. .

The shell checks the language type of the first file and calls the C compiler. When
the compiler gets to a 65816 file, it returns control to the shell, which calls the APW
Assembler. When the assembler is finished, it returns control to the shell again,
which calls the standard linker. The object files output from the C compiler and
those that are output from the APW Assembler are all in the same format and so are
indistinguishable to the linker. The linker combines the object files, resolves
references, writes the load file, and returns control to the shell.

If you want to change load-segment assignments or control the sequence in which
load segments are created, you must use the advanced linker. Write a LinkEd file
like a language source file: that is, first set the system language to LINKED and then
use the editor to write the file.

To compile and link the entire program in one operation using the advanced linker,
do the following:

APDA Draft 74 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell g.;znd Editor

a. Using the editor, tie all of your source files together by placing an APPEND
directive (in assembly language) or a #append function (in C) at the end of each
file.

b. Putan APPEND directive that references the LinkEd file at the end of the last file
in the program.
c. In the shell, execute the COMP ILE command.

Alternatively, you can list all the source files, including the LinkEd file, on the
COMPILE command line. Make sure that the LinkEd file is the last one listed.

The shell checks the language type of the first file and calls the C compiler. When
the compiler gets to a 65816 file, it returns control to the shell, which calls the APW
Assembler. When the assembler gets to the LinkEd file, it returns control to the shell
again, which calls the advanced linker. The advanced linker, controlled by the
commands in the LinkEd file, can do the following:

combine the object files

resolve references '

assign object segments to load segments

label certain load segments as dynamic

search libraries

write the load file

When it is finished, the linker returns control to the shell.

7. Run the program by typing in the name of the load file and pressing the Return key.

(You can also automatically execute a program after linking by using the CMPLG
command.) When a program is run on the Apple IIGS, the following events occur:

a. The System Loader loads the first segment into memory (calling the Memory
Manager to request the block of memory it needs). This segment is static: that is,
it remains in memory during the execution of the program. The loader uses the
relocation dictionary of the segment to relocate the code to its present location in
memory.

b. The loader loads all other static segments into memory, relocating them as
necessary.

c. The loader passes control of the system to the program and the program begins
to execute.

d. When a reference to a subroutine in a dynamic segment is encountered, control is
returned to the System Loader. If the segment is already in memory, the loader
transfers control to the segment. If not, the loader locates the segment, loads it
into memory, and transfers control to the segment. The System Loader keeps
track of all the segments in memory.

When there is insufficient room in memory to load a segment, the Memory
Manager calls the System Loader to unload a dynamic segment from memory.

8. If the program does not run correctly, you can use the Apple IIGS Debugger to step
through or trace the code, to insert breakpoints, to disassemble the machine code,
and to examine the contents of registers and memory locations. You can modify the
code in memory and rerun the program until the bug is fixed.

9. Correct the source code and recompile the program. If the language you are using
supports partial compiles, you can do a partial compile to recompile only the routine
containing the bug. ,

*® @& & o o 9

APDA Draft 75 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

10. Relink the program and rerun it. If you have used partial compiles, the linker selects
only the most recent version of each segment to put in the load file.

11. You can use the Crunch utility to combine the files created by partial compiles into a
single object file. Then link the program once again. Using Crunch is optional; if
you have performed several partial assemblies, using this utility speeds up the link
process.

12. After you have finished debugging the program, you can use the Compact utility to
decrease the size of the load file and to make it load faster.

Advanced Features

This chapter has covered the simpler and more basic procedures you need in order to write,
compile or assemble, link, debug, and run a program using the Apple IIGS Programmer’s
Workshop. APW has many additional capabilities not covered in this chapter. The
following list gives some indication of other functions and where to find information about
them in this manual. See the Preface for a chapter-by-chapter description of this book.

Use the table of contents and the index to find the specific tOplCS in which you are
interested.

* You can pipeline commands: that is, you can automatically use the output of one
command as the input of another. See “Pipelining Programs” in Chapter 3.

* You can redirect to a disk file the output that would normally go to the screen. You
can redirect input that would normally come from the keyboard to be from a disk file.
See “Redirecting Input and Output” in Chapter 3.

» You can link two or more object files that have different root filenames into the same
load file. See the discussions of the ASMI, and LINK commands in Chapter 3.

+ You can list the segments, segment-header contents, and segment contents of any file
on disk in object module format. See the discussion of the DUMBOBJ command in
Chapter 3.

* You can control the APW Linker from a file of linker commands called a LinkEd file.
LinkEd files provide much more versatile control of the linker than do the shell LINK,
CMPL, and CMPLG commands. The LinkEd command language makes it possible for
you to '

— choose specific segments to link

— place specific object segments in a load segment
— create multiple load segments '

— start segments at specified locations

— link any number of program files

— search a library

— set the program counter

— open a file for output

— control the printed output

For more information about using LmkEd ﬁles see thc section “Using the Advanced
Linker” in Chapter 5.

APDA Draft 76 7127187

Apple IIGS Programmer’s Workshop Chapter 2: Using the Shell and Editor

* You can specify which subdirectories are searched for specific routines. For
example, you can change the subdirectory searched for utility programs from
/APW/UTILITIES/ to /PRODOS/WORKSHOP/EXT .COM/. See the section
“Standard Prefixes” and the discussion of the PREF IX command in Chapter 3.

« You can use shell commands to initialize disks, to move, copy, and rename files, and
to create subdirectories. See the section “Command Descriptions” in Chapter 3.

* You can define temporary aliases for commands with thc ALIAS command. See the
discussion of the ALIAS command in Chapter 3. !

* You canread in a new command table at any time to define new command names or
aliases or to add new external commands to the system. See the section “Command
Types and the Command Table” and the discussion of the COMMANDS command in
Chapter 3.

* You can create your own library files. See the discussion of the MAKELIB command
in Chapter 3.

* You can create a ProDOS 8 executable load file (a BIN file) from a ProDOS 16 load
file. See the discussion of the MAKEBIN command in Chapter 3.

APDA Draft 77 7127187

Chapter 2: Using the Shell and Editor Apple IIGS Programmer’s Workshop

APDA Draft 78 7127187

Part 11

Reference

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Chapter 3

Shell

The Apple IIGS Programmer’s Workshop Shell includes the command interpreter that you
use to control the Apple IIGS Programmer’s Workshop, and it provides the interface
between APW and the Apple IIGS operating system. The shell also provides the following
features of APW:

» facilities for copying, renaming, deleting, and moving files

« executable command files (Exec files) for automatic execution of shell commands

« redirection of input and output

+ pipelining of programs

« the addition, deletion, and renaming of commands

« the creation of aliases for commands

» acommand to assign subdirectories to the ProDOS 16 prefix designators

» commands for assembling, compiling, linking, and running programs

« commands to execute other APW programs such as the editor and the MacGen utility

« the ability to execute other Apple IIGS programs
This chapter provides a reference guide to the APW Shell commands and Exec files. The
first part of the chapter explains how to redirect input and output, set standard prefixes, and
pipeline commands. It includes an explanation of partial compiles and provides an
introduction to shell command types and the command table. The central and largest part
of this chapter provides complete descriptions of all of the shell commands. You should
turn to this section any time you need a full explanation of a command or command

parameters. The last part of the chapter explains how to write and use Exec files and
describes in detail the commands that are used primarily in Exec files.

The following shell-related topics are covered in Chapter 2, “How to Use the Shell and
Editor™:

* entering commands

« scrolling through previously entered commands

* entering multiple commands on a single command line

 responding to parameter prompts

+ using prefix numbers for pathname prefixes

+ using device names for volume names

« using wildcard characters in filenames

APDA Draft 79 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

See Part I1], “Inside the Apple IIGS Programmer’s Workshop,” for the information you
need in order to add a program to APW.

Standard Prefixes

When you specify a file on the Apple IIGS, as when indicating which file to edit or utility to
execute, you must specify the file’s pathname as discussed in the section “Pathnames” in
Chapter 2. ProDOS 16 provides eight prefix numbers that can be used in the place of
prefixes in pathnames. This section describes the APW default prefix assignments for
these ProDOS 16 prefixes.

APW uses six of the ProDOS 16 prefixes (0 and 2 through 6) to determine where to search
for certain files. When you start APW, these prefixes are set to the default values shown in
Table 3.1 . You can change any of the eight ProDOS 16 prefixes with the APW PREFIX
command, as described in this chapter, and you can include PREF I X commands in the
LOGIN file, as shown in the section “Using Prefix Numbers” in Chapter 2.

You can use the ProDOS 16 prefix numbers instead of prefixes in pathnames. For
example, if you set prefix 7 to /APW/MYPROGS/, you can specify the pathname of
/BAPW/MYPROGS/C . SOURCE/GOODSTUFF as 7/C.SQURCE /GOODSTUFF.

Table 3.1. Standard Prefixes

Prefix Number Use Default

* Boot prefix Boot prefix

0 Current prefix Undefined

1 Application Prefix of APW.5YS16
2 APW library 1/LIBRARIES/

3 APW work 1/

4 APW system 1/SYSTEM/

5 APW language 1/LANGUAGES/

6 APW utility 1/UTILITIES/

7 undefined

Each time you restart your Apple IIGS, ProDOS 16 retains the volume name of the boot
disk; this volume name is the boot prefix. You can use an asterisk (¥) in a pathname in
some commands to specify the boot prefix. You cannot change the volume name assigned
to the boot prefix except by rebooting the system.

Note: When you use an asterisk followed by a space on a command line, it is
interpreted as a comment; see the description of the COMMENT command in the
section “Exec Files” in this chapter for details.

The application prefix is the prefix of the last application run, whether it’s the APW
Shell, the APW Editor, a utility program, or any other program.

The current prefix (also called the default prefix) is the one that is assumed when you
use a partial pathname. After APW is started, the current prefix (prefix 0) is undefined

unless you use the PREF IX command to set it.

APDA Draft 80 7127187

Apple lIGS Programmer’s Workshop Chapter 3: Shell

When you start APW, ProDOS 16 and the APW Shell become resident in memory, so
changing the current prefix does not affect the ability of the shell to function. The
following paragraphs describe APW'’s use of the standard prefixes.

APW looks in the current prefix (prefix 0) when you use a partial pathname for a file.

When you first boot APW, the application prefix (prefix 1) is set to the prefix of the
APW.SYS16 file and is used to set the other prefixes used by APW. As soon as you run
another program, such as the editor or a compiler, prefix 1 is reset. The other APW
prefixes do not change when prefix 1 changes, however.

The standard linker searches the files in the APW library prefix (prefix 2) to resolve any
references not found in the object files being linked. For information on creating and using
APW Assembler library files, see the discussion of the MAKELIB command in this chapter,
and the Apple IIGS Programmer’s Workshop Assembler Reference manual.

The work prefix (prefix 3) is used by some APW programs for temporary files. For
example, when you pipeline two or more programs so that the output of one program
becomes the input to the next, APW creates temporary files in the work prefix for the
intermediate results (pipelines are described in the section “Pipelining Programs™ later in
this chapter). Commands that use the work prefix operate faster if you set the work prefix
to a RAM disk, since I/O is faster to and from memory than to and from a disk. If you
have enough memory in your system to do so (1280K should be sufficient), use the Apple
IIGS control panel to set up a 256K RAM disk, and then use the PREFIX command to
change the work prefix. To change prefix 3 to a RAM disk named /RAMS, for example,
use the following command:

PREFIX 3 /RAMS

APW looks in the APW system prefix (prefix 4) for the following files:

* EDITOR The APW Editor (see Chapter 4).

* LOGIN An optional Exec file that is executed automatically at load time if it
is present (see the section “Exec Files™ later in this chapter).

* SYSCMND The shell’s command table (see the section “Command Types and
the Command Table” later in this chapter).

*+ SYSEMAC Editor macros (see the section “Macros” in Chapter 4).

*+ SYSHELP The help file for the editor (see the discussion of the HELP
command in Chapter 4).

*+ SYSTABS The default tab and editing-mode settings for the editor (see the

section “Setting Editor Defaults” in Chapter 4).

APW looks in the language prefix (prefix 5) for the APW Linker, the APW Assembler, and
any other assemblers, compilers, and text formatters that you have installed in your copy of
APW.

APW looks in the utility prefix (prefix 6) for all of the APW utility programs except for the
editor, assembler, and compilers. Prefix 6 includes the programs that execute external

commands, such as CRUNCH, INIT, and MAKELIB. The utility prefix also contains the
HELP/ subdirectory, which contains the text files used by the HELP command. Command

APDA Draft 81 7127187

Chapter 3 Shell Apple IIGS Programmer’'s Workshop

types are described in the the section “Command Types and the Command Table” later in
this chapter. : -

Note: The UTILTIES/ subdirectory on the /APW disk that comes with APW
Version 1.0 contains no help files and only a subset of the utility programs. The
/APWU disk contains a complete UTILTIES/ subdirectory. If you are running
APW from floppy disks, you can use the MU command to change the utility prefix
to /APWU/UTILTIES/ and the UMU command to change the utility prefix to
/APW/APW/UTILTIES/

Redirecting Input and Output

Most Apple IIGS programs use tool calls to accomplish input and output functions. The
Text Tool Set accepts input from whatever device driver routine is pointed to by standard
input and sends output to the device driver routine pointed to by standard output. (The
Text Tool Set is described in Volume II of the Apple IIGS Toolbox Reference.) Input
received through standard input is usually from the keyboard, while output through
standard output is usually sent to the screen. APW allows you to redirect the input and
output of any program—including the APW Shell and utilities—that uses standard I/O.
Input to a command or program can come from a text file or from the output of a program
instead of from the keyboard. Output from a command or program can be sent to a printer
or a disk file instead of to the screen.

Error messages can be redirected independently of other output. Error output is used
instead of standard output so that error messages can be displayed on the screen (for
example) even when standard output is going to a file. By redirecting error output, you can
place error messages in a separate disk file from that used for program listings and other
output.

Note that the input and output of programs that do not use standard I/O cannot be redirected
by APW.

To redirect standard input or output, use the following conventions on the command line:
<inputdevice Redirect standard input to be from inputdevice.
>outputdevice Redirect standard output to go to outputdevice.

>>outputdevice Redirect standard output to be appended to the current contents of
outputdevice.

>goutputdevice Redirect error output to go to outpuidevice.

>>goutputdevice Redirect error output to be appended to the current contents of
outputdevice.

You can include spaces before or after the redirection operators (<, >, >>, >&, >>&) to
improve readability, but no spaces are necessary.

APDA Draft 82 7127I87

Apple IGS Programmer’s Workshop Chapter 3: Shell

The input device can be the keyboard or any text or source file. The keyboard is the default
input device. To reassign the keyboard as the input device after input has been redirected,
use the device name . CONSOLE.

The output device can be the screen, the printer, or any file. If the file named does not
exist, APW opens a file with that name. To redirect output to the printer, use . PRINTER.
The screen is the default output device. To reassign the screen as the output device aftcr
output has been redirected, use the device name . CONSOLE.

Warning: Be sure the printer is on-line before directing output to it. With some
hardware (such as parallel printer cards), the system hangs if the printer is not on-
line.
If you use output redirection to open a new file on disk, the file has the file type TXT
(ProDOS 16 file type $04). If you use output redirection to send output to an existing file,
the file’s language type is not changed.
Warning: If you redirect output to an existing file, the original contents of that file
are destroyed without wamning, regardless of the file type of the file. If you do not
want to overwrite an existing file, check to make sure there is no file with the
pathname you intend to specify before executing the redirection.

Important: If a disk file is used for input or output, the disk must remain on-line
until the command finishes executing.

Both input and output redirection can be used on the same command line. The input and
output redirection instructions can appear in any position on the command line.

For example, to redirect output from an assembly of the program MYPROG to the printer,
you could use either of the following commands:

ASSEMBLE MYPROG >.PRINTER
ASSEMBLE >.PRINTER MYPROG

To redirect output from the CATALOG command to be appended to the data already in a
disk file named CATSN . DOGS, use the following command:

CATALOG >>CATSN.DOGS
To redirect input in response to the AINPUT directives in an assembly-language source file
to be from the file ANSWERS rather than the keyboard, you could use one of the following
commands:

ASSEMBLE <ANSWERS MYPROG

ASSEMBLE MYPROG <ANSWERS

Input and output redirection can be used in Exec files. See the section “Exec Files” later in
this chapter for a description of Exec files.

APDA Draft 83 7127187

Chapter 3 Shell Apple 11GS Programmer’s Workshop

Pipelining Programs

APW lets you automatically execute two or more programs in sequence, directing the
output of one program to the input of the next. As illustrated in Figure 3.1, the output of
each program but the last is written to a temporary file in the work subdirectory named
SYSPIPEn, where n is a number assigned by APW. The first temporary file opened is
assigned an n of 0; if a second SYSPIPEn file is opened for a given pipeline, it is named
SYSPIPEL1, and so forth.

Important: Pipelining works only with programs that take their input from
standard input and send their output to standard output.

To pipeline, or sequentially execute programs PROGO, PROG1, and PROG2, use the
following command:

PROGO | PROG1 | PROG2

The output of PROGO is written to SYSPIPEQ. The input for PROG1 is taken from
SYSPIPEQ and the output is written to SYSPIPE1. The input for PROG2 is taken from
SYSPIPE1, and the output is written to standard output.

SYSPIPER files are text files (ProDOS 16 file type $04) and can be opened by the editor.

7

(Standard Input

PROGO |PROGL | PROG2

o)
\ SYSPIPEL
PROG2
Standard
Qutput

Figure 3.1. Pipelining Programs

For example, suppose you have a utility program called ALPHA that takes a list of items
from standard input, alphabetizes them, and writes them to standard output. You could use
the following command line to alphabetize the contents of the current directory and write
them to the screen:

APDA Draft 84 7127/87

Apple IIGS Programmer’s Workshop Chapter 3: Shell

FILES|ALPHA

To send the output to the file LISTING rather than to the screen, use the following
command line:

FILES|ALPHA >LISTING

The SYSPIPER files are not deleted by APW after the pipeline operation is complete. For
this reason, you can use the editor to examine the intermediate steps of a pipeline as an aid
to finding errors. The next time a pipeline is executed, however, any existing SYSPIPEn
files are overwritten.

Partial Assemblies or Compiles

If you are writing a large program, you may find that the debugging process is being
slowed considerably by the amount of time it takes to compile the program. You can often
speed up this process by using partial compiles or assemblies.

Note: Currently, the APW Assembler is the only program that provides this
capability, but other APW compilers may support partial compiles in the future.
Check the manual that came with your compiler to see if it allows you to perform
partial compiles.

In a partial compile or assembly, you specify which object segments are to be compiled.
The new versions of the segments are placed in a file with the same root filename as the
rest of the program, but with the next higher alphabetic extension. The root filename of a
file is the filename minus any filename extensions added by the assembler or compiler. For
example, the files MYFILE . ROOT, MYFILE.A, and MYFILE.B all have the same root
filename: MYFILE. (The root filename can include a period (.). For example, MYFILE.O
is a valid root filename from which the APW Assembler would create files
MYFILE.O.ROOT and MYFILE.O.A)

Important: The root filename cannot be longer than 10 characters for files to
which the . ROOT extension will be appended because ProDOS 16 limits the entire
filename to 15 characters, Using more than 10 characters in such a filename will
result in a fatal assembler or compiler error (Unable to open output
file).
To do a partial compile or assembly, you must use one of the following shell commands:

+ ASSEMBLE

¢ ASML

¢ ASMLG

* COMPILE

* CMPL

*+ CMPLG

* RUN

APDA Draft 85 7127187

Chapter 3 Shell Apple 1IGS Programmer’s Workshop

These commands are all very similar. The ASML and CMPL commands automatically link
the program after compiling or assembling it; ASMLG, CMPLG, and RUN also link the
program, and then automatically run the program after linking it. The COMP ILE command
is actually an alias for the ASSEMBLE command, as is CMPL for ASML and CMPLG (and
RUN) for ASMLG. All of these commands are described in this chapter.

Each of these commands has an optional parameter called NAMES, which you follow with a
list of the names of segments you want to compile or assemble. When the shell finds a
NAMES parameter, it performs a partial compile or assembly. Keep the following points in
mind when using the NAMES parameter:

» The name to list is the object-segment name, not the load-segment name. In an
assembly-language source file, the label of a START, PRIVATE, DATA, or
PRIVDATA directive is the object-segment name; the operand of the directive is the
load-segment name. Any number of object segments can have the same load-segment
name. Load-segment names are used by the linker and have no effect on an
assembly.

» Object-segment names are case-sensitive. If the language you are using is not case-
sensitive, it converts all names to uppercase in the object file, regardless of how they
appear in the source file. When using the NAMES parameter for case-insensitive
languages, you must enter the segment names in all uppercase. For case-sensitive
languages, on the other hand, you must list all object-segment names exactly as they
appear in the source code. Assembly language is case-insensitive in APW unless you
have used the CASE ON directive in the source file.

* You can include in one NAMES parameter list the names of all the segments you want
to use. This is true whether you have only one source file or you are compiling
several files at once.

» Be sure to include a KEEP directive in the file or a KEEP parameter in the command
line, or to define a shell KeepName variable. If you don’t, the program is compiled,
but the output is not saved.

« Use the same root filename for the partial compile as you used for the original
compile. The linker can automatically scan all files with the same root filename for
the most recent version of each segment.

An example of a sequence of partial assemblies is given at the end of this section.

There are two circumstances under which a file with a higher alphabetic suffix (.B, .C,
and so on) is created.

« If you include a NAMES parameter on the command line to request a partial assembly
or compile, only the segments named are compiled, and they are placed in a file with
the next available alphabetic extension. For example, if the files MYPROG . ROOT and
MYPROG.A are already on the disk, a partial assembly creates the file MYPROG . B.

» If the compile involves more than one language, then the first compiler or assembler
creates the . ROOT file and may create the . A file, the second compiler might create the
. B file, and so on.

APDA Draft 86 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Note: You cannot have more than 26 alphabgtic-extension files (. A through . z)
for each root filename. You can use the CRUNCH command described in this
chapter to combine all the alphabetic-extension files for one root filename into one

. A file at any time.

When the linker links the program, it uses the following procedure:
1. Tt starts with the . ROOT file and links the segment contained in that file.
2. Itlooks for a .A file. If it finds one, the linker looks for a . B file, and so on.
3. Itlinks the segments in the file that has the highest alphabetic suffix it has found.
4

. It works its way back through the alphabet to the . A file, ignoring any segments
with object-segment names identical to those it has already found, and linking the
rest.

You can also control which segments are linked and in what sequence by using a LinkEd
command file; see the section “Linking With a LinkEd Command File” in Chapter 5 for
details.

Important: During a partial compile, the compiler first looks for a . ROOT file,
then a . A file, then a . B file, and so on. The search is terminated as soon as one
file in the sequence is not found, and the next file created is given the next higher
alphabetic suffix. Therefore, if the files MYFILE.A, MYFILE.B, and
MYFILE.D are in the subdirectory, but MYFILE.C is not, the assembler or
compiler never finds MYFILE .D. The next file created by a partial assembly or
compile, then, would be MYFILE.C. You must be careful not to let such a
situation occur, because (in this example) the linker would start the next link with
the file MYFILE.D.

An example of a partial compile and assembly is shown in Figure 3.2, Assume you have
written a program consisting of two source files. The first file, named MYPROG, is in
65816 assembly language. It includes the main part of the program, and has four object
segments named MAIN, SEG1, SEG2, and DATA. The second file, named MYPROGC, is
in C. It includes a couple of mathematical subroutines that you didn’t want to write in
assembly language. The subroutines are named Lagrange and Fourier, Attheend of
the assembly-language routine is an APPEND directive that appends MYPROGC. MYPROG
begins with a KEEP directive that names the output file as TRANSFORM. To assemble
MYPROG and compile MYPROGC, enter the following command:

ASSEMBLE MYPROG

APDA Draft 87 7127187

Chapter 3 Shell

MYPROG
TRANSFORM.ROOT
MAIN :
] MAIN
SEG1 o TRANSFORM.A
E 1
= SEG]
SEG2 Y
@
(]
DATA = SEG2
DATA
TRANSFORM.B
Lagraonge]
gene Lagranged
Fourler
MYPROG
MAIN
()
SEGT =
E
[- \]
&
SEG2
(revised) =" ;
DATA g 'l
(revised) B
N
MYPROGC ~
2
fograng 2
agrange
(revised) \ 8
©
Fouri £
ourier o
&
-

Apple HIGS Programmer’s Workshop

Fourler \

TRANSFORM.C

-

€2 /

DATA /

TRANSFORM.D

[,

Lagrange

MYPROGC

Lagrange

(revised
again)

Fourler

T~

Link

SRRV

TRANSFORM

Load file

TRANSFORM.E

Lagrange

(Partial Compile)

Figure 3.2. An Example of the Use of Partial Compiles

APDA Draft

88

7127187

Apple IIGS Programmer’s Workshop . Chapter 3: Shell

The APW Shell processes the program as follows:
1. The shell checks the language type of MYPROG and calls the APW Assembler.

2. The assembler starts to assemble MYPROG; it opens TRANSFORM . ROOT and puts
the first segment (MAIN) in that file.

3. The assembler closes TRANSFORM. ROOT, opens TRANSFORM. A, and puts the rest
of the segments in there.

4. When it gets to the APPEND directive, it opens MYPROGC and checks its APW
language type. Finding that it’s not an assembly-language file, the assembler closes
MYPROGC and TRANSFORM. A and returns control to the shell.

5. The shell calls the C compiler, which compiles MYPROGC, placing both subroutines
in TRANSFORM. B,

The following files are now present on disk:

* MYPROG assembly-language source file

¢+ MYPROGC C source file

*+ TRANSFORM.ROOT object file containing the segment MAIN

« TRANSFORM.A object file containing SEG1, SEG2, and DATA

¢+ TRANSFORM.B object file containing segments Lagrange and Fourier

After working on the program for a while, you have changed segments SEG2, DATA, and
subroutine Lagrange. Rather than reprocess the entire program, you perform a partial
assembly by using the following command:

ASSEMBLE MYPROG NAMES=(SEG2 DATA Lagrange)

Note that the segment names for the C routine must be entered exactly as they appear in the
source code, since C is a case-sensitive language. The assembler finds the segments SEG2
and DATA in MYPROG, assembles them, and places them in the file TRANSFORM. C. Then
the shell calls the C compiler, which extracts subroutine Lagrange and places it in the file
TRANSFORM.D.

Finally, you make one more change to Lagrange. To recompile that routine only, you
need not process MYPROG at all. Instead, use the following command:

COMPILE MYPROGC KEEP=TRANSFQORM NAMES=(Lagrange)
This time you used the COMP ILE command rather than the ASSEMBLE command because
it satisfied your sense of aesthetics to use a compile command with a compiler. Actually,
the COMPILE and ASSEMBLE commands are aliases—they call the same APW Shell

routine. Note that you have to use the KEEP parameter in the command line, since the file
MYPROGC contains no KEEP command.

This last partial compile creates the file TRANSFORM. E.
Finally, to link the program and create the load file TRANSFORM, you use the following

command:

APDA Draft 89 7127187

Chapter 3 Shell Apple LIGS Programmer’s Workshop

LINK TRANSFORM KEEP=TRANSFORM

The linker does the following:
1. It finds the file TRANSFORM. ROOT and links the segment MAIN.

2. It finds the file TRANSFORM. A, then searches for TRANSFORM, B, and so on until
it finds TRANSFORM. E. It links Lagrange from TRANSFORM. E.

3. Itfinds Lagrange in TRANSFORM. D, realizes it has already linked it, and ignores
it.
4. Itlinks SEG2 and DATA in TRANSFORM.C.

5. Itlinks Fourier in TRANSFORM. B, ignoring the older version of Lagrange it
finds there.

6. Itlinks SEG1 in TRANSFORM. A, ignoring SEG2 and DATA,

Command Types and the Command Table

The Apple TIGS Programmer’s Workshop includes a large number of commands that
perform a variety of functions, from listing a disk directory to compiling a program. There
are three types of commands in APW: internal, external, and language.

» An internal command is one included in the APW Shell. Internal commands are
resident in memory whenever you are in the Apple IIGS Programmer’s Workshop.

* An external command is a separate APW utility program. These programs are in the
utility prefix (prefix 6) and are loaded from disk when you execute the commands.

» A language command changes the default APW language type. Any new file opened
for editing with the EDIT command is given the default language type.

Note: The existence of a language command on your system does not necessarily
indicate that you have the compiler for that language on your disk. Check the
contents of the language prefix (prefix 5) to see which compilers are installed in your
copy of APW.

The APW language type of a file is stored in the ProDOS 16 directory entry for the file, but
is separate from the ProDOS 16 file type. The APW language types include all assemblers
and compilers recognized by APW, plus ASCII text files (which have the language type
PRODOS), LinkEd command files (L INKED), and shell command files (EXEC).

Your APW disk or directory includes a language subdirectory (prefix 5, normally
LANGUAGES/). Note that, while compilers, assemblers, and the APW Linker are included
in the language prefix, some of the language types included in APW do not have
corresponding files in the language prefix. The EXEC, PRODOS, and TEXT language
types, for example, do not have compilers and so do not appear in the language prefix.

If you open an existing file for editing, the default language type changes automatically to
match that file. The language type of any source or text file can be changed with the
CHANGE command. Use the SHOW LANGUAGES command (note the plural) for a list of
the langnage commands available, and the SHOW LANGUAGE (singular) command for the
current default.

APDA Draft 90 7127187

Apple 1IGS Programmer’s Workshop Chapter 3: Shell

All APW compiler and assembler source files, LINKED files, and EXEC files are ProDOS
16 file type $B0. PRODOS text files are ProDOS 16 file type $04.

Table 3.2 shows some of the language types that APW recognizes. For a more complete
list of language numbers that have been assigned for APW, see Appendix B. The
assignment of a language number does not necessarily imply that that language is currently
available. To see a complete list of all APW language numbers, obtain the latest version of
Apple IIGS Technical Note #20.

Table 3.2, APW Language Types

Language Number Use

ASM65816 3 65816 assembler source

cc 10 APW C source

EXEC 6 command file

LINKED 9 APW Linker command language

PRODOS 0 ProDOS 16 text file (ProDOS 16 file type $04)
TEXT 1 APW textfile

All APW source files have a ProDOS 16 file type of $B0; the APW language type allows
APW to distinguish between source files in different languages. APW TEXT files are
standard ASCII files with ProDOS 16 file type $B0 and an APW language type of TEXT.
The TEXT language type is provided to support any text formatters that may be added to
APW in the future. The PRODOS language type creates standard ASCII files with
ProDOS 16 file type $04; these files are shown in a directory listing as TXT files. See the
Apple IIGS ProDOS 16 Reference for a discussion of ProDOS 16 file types.

You can add, delete, and rename commands by editing the default command table, which is
in a file called SYSCMND in the system prefix (prefix 4). This command table is read by the
shell at load time. You can also cause the shell to read a custom command table at any time
by using the COMMANDS command.

You can alter the contents of the command table to add command names to the shell, to
create permanent aliases for commands, or to delete commands. To change the contents of
a command table, open the command-table file with the EDIT command. Each command
in the command table is on a separate line; each line contains three fields, separated by
spaces, as illustrated in Figure 3.3. The fields specify the commands as follows:

1. The first field is the command name, which must follow the rules for a legal
ProDOS 16 filename. Command names are not case-sensitive.

2 The second field indicates the command type. Enter a C for an internal command, a
U (for utility) for an external command, or an L for a language. If you precede the
command type with an asterisk (*), the shell assumes that the program can be
restarted and does not remove it from memory as long as that memory is not needed
for other purposes. In this case, if that command is executed again, the program
need not be reloaded from disk. (This feature is useful only for utilities (U) and
compilers (L); if you precede a C with an asterisk, the shell ignores the asterisk.)

APDA Draft 91 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

Important: If you put an asterisk in the command table in front of the
command type of a utility or language that cannot be restarted, an error may
occur the first time the shell tries to restart that program. See the discussion of
restartability following Figure 3.3.

3. The third field specifies the command number or language number. For internal
commands, you must use an existing command number. For languages, you must
use one of the recognized language numbers listed in Appendix B. For external
commands, the third field is blank.

Note: If you add an internal shell command to the command table with a new
command number, the command will not work and an error message will be
generated when you try to execute the command. To add a new command to APW,
create a utility program as described in Chapter 6, “Adding a Program to APW.”

The third field can be followed by a space or tab and a comment. Blank lines are ignored.
You can create a comment line by starting it with a semicolon (;).

.
r

Sample command table
ALINK C
ASM65816 *L
ASML
ASMLG
ASSEMBLE
cc
COMMANDS
COMPILE
CONTINUE
COPY
DUMPOBJ
ECHO

WM WW

O*OOOO;OOO
=
O

w W
w

a
o N
(o)

29

Figure 3.3. Sample of a Command Table

In Figure 3.3, you can see that ALINK, ASSEMBLE, and COMP ILE all have the same
command number: 3. These internal commands (type C) are all aliases. ASM65816, on
the other hand, is a language command (type L). Language number 3 is not related to
command number 3. DUMPOBJ is a restartable utility program.

Restartability: For a program to be restartable, it must reinitialize all variables
and arrays each time it starts. To make it easier for you to write restartable
programs, OMF version 2.0 provides initialization segments, which are reloaded
from disk and executed each time a program is restarted from memory, and reload
segments, which are reloaded from disk each time a program is restarted.

Because OMF Version 1.0 does not support reload segments, and because the
current version of the linker generates OMF Version 1.0 files, the linker cannot
create reload segments. The Compact utility, however, converts OMF Version 1.0
load files to OMF Version 2.0. If it finds a load segment named ~globals or
~arrays, Compact makes it a reload segment. In addition, if you set the KIND
field in the segment header to $1F, Compact makes that segment a reload segment.

APDA Draft 92 7127187

Apple 1IGS Programmer’ s Workshop

Chapter 3: Shell

See the description of the LinkEd SEGMENT command in Chapter 5 for a way to set
the KIND field of a load segment. The Compact utility is described later in this

chapter.

The commands delivered with APW are shown in Table 3.3.

Table 3.3. APW Commands

Command

B
ALIAS
ALINK
ASM65816
ASML
ASMLG
ASSEMBLE
BREAK
CANON

CAT
CATALOG
cc
CHANGE
CMPL
CMPLG
COMMANDS
COMMENT
COMPACT
COMPILE
CONTINUE
CCOPY
CREATE
CRUNCH

DEBUG
DELETE
DISABLE
DUMPOBJ
ECHO
EDIT
ELSE
ENABLE
END
EQUAL
EXEC
EXECUTE
EXIT
EXPORT
FILES
FILETYPE
FOR
HELP

APDA Draft

Use

Comment character

Assign a temporary alias to a command

Compile a linker command file

Change default language to 65816 assembly language

Assemble and link the program

Assemble, link, and go (run the program)

Assemble the program

Exec-file command

Replaces words with the canonical spelling specified
in a dictionary file

List the disk directory

List the disk directory

Change default language to APW C

Change the language type of an existing source file

Compile and link the program

Compile, link, and go (run the program)

Read the command table

Comment

Converts load file to compact form

Compile the program

Exec-file command

Copy a file, directory, or volume

Create a new subdirectory

Combine object files formed by partial compiles
or assemblies into a single file

Execute the Apple IIGS Debugger program(if instailed)

Delete a file

Disable file attributes

List the contents of an OMF file to standard output

Exec-file command

Edit an existing file, or open a new file

Exec-file command

Enable file atiributes

Exec-file command

Compares two files or directores for equality

Change default language to EXEC command language

Execute an Exec file at present command level

Exec-file command

Export a shell variable

List the contents of a directory, including subdirectories

Change file type 1o type specified

Exec-file command

Provide on-screen help for commands, or list all
available commands

93

7127187

Chapter 3 Shell

Apple IIGS Programmer’s Workshop

Table 3.3. APW Commands (continued)

HISTORY
IF

INIT
LINK
LINKED
LOOP
MACGEN
MAKEBIN
MAKELIB
MCVE
PREFIX
PRODOS
QUIT
RENAME
RUN
SEARCH
SET
SHOW

TEXT
TYPE
UNALIAS
UNSET
VERSION

List last 20 commands entered

Exec-file command

Initialize a disk

Link an object file

Change default language to the LinkEd command language

Exec-file command

Generate a macro library for a specific program

Create a ProDOS 8 binary file from a ProDOS 16 load file

Generate a library file from an object file

Move a file to another directory or volume

Change the default prefixes

Change default language to ProDOS 16 text

Quit APW

Change a filename

Same as ASMLG or CMPLG

Search a file for a string

Set shell variables

Show languages, system default language, prefixes,
time, volumes on line

Change default language to TEXT

Type a file to standard output

Delete an alias created with the ALTAS command

Delete a shell variable

Displays version of APW you are using

Internal
Internal
External
Internal
Language
Internal
External
External
Extemal
Internal
Internal
Language
Internal
Internal
Intemal
Extemnal
Internal
Internal

Language
Intemnal
Internal
Intemal
External

See Chapter 6 for instructions on adding APW utilities to the Programmer’s Workshop.

APDA Draft

94

7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Command Descriptions

'T'he following notation is used to describe commands:

UPPERCASE

italics

direcitory

filename

pathname

APDA Draft

Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The command interpreter is not case
sensitive; that is, you ¢an enter commands in any combination of
uppercase and lowercase letters. Segment names are case-sensitive.
In case-sensitive languages, segment names must be entered exactly
as they appear in the source code. Segment names in case-
insensitive languages must be entered in uppercase.

Italics indicate a variable that you must replace with specific
information, such as a pathname or file type.

This parameter indicates any valid directory pathname or partial
pathname. It does nor include a filename. If the volume name is
included, directory must start with a slash (/); if directory does not
start with a slash, the current prefix is assumed. For example, if
you are copying a file to the subdirectory SUBDIRECTORY on the
volume VOLUME, the directory parameter would be
/VOLUME/SUBDIRECTORY/. If the current prefix were
/VOLUME/, you could use SUBDIRECTORY for pathname .

The device names .D1, .D2,Dacan be used for volume
names. If you use a device name, do not precede it with a slash.
For example, if the volume VOLUME in the above example were in
disk drive .D1, you could enter the directory parameter as
.D1/SUBDIRECTORY/.

ProDOS 16 prefix numbers can be used for directory prefixes. Two
periods (..) can be used to indicate one subdirectory above the
current subdirectory. If you use one of these substitutes for a
prefix, do not precede it with a slash. For example, the HELP/
subdirectory on the APW disk can be entered as 6 /HELP /.

This parameter indicates a filename, not including the prefix. The
unit names . CONSOLE and . PRINTER can be used as filenames.

This parameter indicates a full pathname, including the prefix and
filename, or a partial pathname, in which the current prefix is
assumed. For example, if a file is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, the pathname parameter
would be /VOLUME/DIRECTORY/FILE. If the current prefix
were /VOLUME/, you could use DIRECTORY /FILE for
pathname. A full pathname (including the volume name) must begin
with a slash (/); do not, however, precede pathname with a slash if
you are using a partial pathname.

The device names . CONSOLE and. PRINTER can be used as
filenames; the device names .D1, .D2,Da can be used for
volume names; and ProDOS 16 prefix numbers or double periods
(..) can be used instead of a prefix.

A vertical bar indicates a choice. For example, +L | -L indicates
that the command can be entered as either +L or as - L.

95 7127187

Chapter 3 Shell Apple 1IGS Programmer’s Workshop

AR An underlined choice is the default value.
[] Parameters enclosed in square brackets are optional.

Ellipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

The following pointers will help you use the APW Shell command interpreter:

+ The command-line prompt is a number sign (#); whenever a number sign appears at
the left edge of the screen followed by a cursor, you can enter a command.

* You must separate the command from its parameters by one or more spaces.

* You can use the Right Arrow key to expand command names as described in the
“Entering Commands” section of Chapter 2; you can use the Up and Down Arrow
keys to scroll through previously entered commands. -

+ There are no abbreviations for command names, except for those aliases that you add
to the system as described in the section “Command Types and the Command Table”
in this chapter and in the description of the ALTAS command in this chapter.

+ All commands and parameters, except for segment names, can be entered in any
combination of uppercase and lowercase characters. Segment names are case-
sensitive. In case-sensitive languages, segment names must be entered exactly as
they appear in the source code. Segment names in case-insensitive languages must be
entered as all uppercase characters.

* When you are calling an assembler, compiler, or linker, if there is a conflict between a
parameter in a command line and a source-code command, the command-line
parameter takes precedence. When neither a source-code command nor a command-
line parameter has been used, the default parameter is used.

For example, if you specify +L as a parameter for the ASSEMBLE command, a
source-code listing is included in the output even if you include a LIST OFF
directive in the source code. If you include neither the LIST directive nor the L
parameter, the default (no listing) is used.

» If you fail to enter a required parameter, you are prompted for it, as described in
Chapter 2.

* Any of the APW Shell commands can be placed in an Exec command file for
automatic execution. Exec files are described in the section “Exec Files” later in this
chapter.

ALIAS

ALIAS [alias [command]]

This internal command assigns an alias to-an APW Shell command.

alias The alias that you want to assign to this command. If you do not include an
alias, all aliases for all commands that are in effect are written to the screen.

command The shell command for which you want to define an alias. You can include
one or more parameters as part of the command. If you do not include a
command name, the command for which alias is an alias is written to the
screen.

APDA Draft 96 7127187

Apple IIGS Programmer's Workshop Chapter 3: Sheli

You can use this command to assign temporary aliases for APW commands. An alias
assigned by this command is local to the Exec file in which it is defined and is passed on to

any Exec file called by that file. An alias defined in the LOGIN file is valid on the
command line and in all Exec files. An alias defined in an Exec file is valid in all Exec files

called by that file, but not at higher levels unless the Exec file is called with an EXECUTE
command.

For example, suppose you want to create the alias DIR for the CATALOG command. To do
so, execute the following command:

ALIAS DIR CATALOG
Now, each time you type DIR, you get a catalog listing.

As another example, suppose you want to create an alias called VOLUMES that lists the
units that are on line plus the current date and ime. To do so, execute the following
command: .

ALIAS VOLUMES SHOW UNITS TIME

Now, each time you type VOLUMES, the system responds as if you had typed
SHOW UNITS TIME.

The ALIAS command makes a single substitution for whatever alias name you specify. It
also allows you to use an existing command for an alias. Thus, the following command is
valid:

ALIAS SHOW SHOW UNITS

This command makes SHOW an alias for the command SHOW UNITS. If you execute this
ALIAS command, then each time you enter SHOW, the system responds as if you typed
SHOW UNITS. For example, if you type SHOW TIME, the system responds as if you
typed SHOW UNITS TIME.

Note: The ALIAS command does not check to see if the command for which you
are creating an alias is valid. Therefore, you can create a nonfunctional alias or
even accidently make an existing command nonfunctional. For example, if you
enter the command ALIAS SHOW TIME, the alias SHOW is substituted for the
command TIME, making the original command SHOW inoperative. Because there is
no TIME command, when you enter SHOW, you get the error message

ProDOS: File not found. To correct this condition, use the UNALIAS
command (in this example, UNALIAS SHOW).

The ALIAS command does not modify the command table; aliases are lost each time you

- boot the system (unless they are included in the LOGIN file). See the section “Command
Types and the Command Table” earlier in this chapter for instructions on creating
permanent aliases for commands.

Use the UNALIAS command to delete aliases set with the ALIAS command.

APDA Draft 97 ' 7127187

Chapter 3 Shell

ALINK

Apple IIGS Programmer’s Workshop

ALINK ([option...] filel [file2...] [KEEP=oulfile]

This internal command calls the APW Linker to process one or more files of LinkEd

commands.

Note: ALINK is a synonym for ASSEMBLE; you can use the ASSEMBLE or
COMPILE commands instead of ALINK if you prefer. The ALINK command
accepts all of the parameters of the ASSEMBLE command; however, some of these
parameters are ignored by the linker. Only those parameters that are used by the
linker are described here. See the ASML command for a complete list of
parameters.

option...

APDA Draft

You can specify as many of the following options as you wish by
separating the options with spaces.

+E|-E

+L{=L

+S|=S

+T|=T

+W =W

If you specify +E, when the linker terminates execution due to a
fatal error or because you also specified +T, it calls the APW
Editor. The editor displays the source file with the offending line
on the fifth line on the screen (or as far down on the screen as
possible, if the error is in one of the first four lines of the file). If
you specify —E and a fatal error occurs, you are returned to the
shell’s command line or the Exec file that executed the command.
The default for this option is +E when the command is executed
from the command line and -E when the command is executed
from an Exec file.

If you specify +1, the linker generates both a listing of the LinkEd
source code and a listing (called a link map) of the segments in
the object file, including the starting address, the length in bytes
(hexadecimal) of each segment, and the segment type. If you
specify —L, the source-code listing and link map are not produced.
The L parameter in this command overrides any LIST and
SOURCE commands in the LinkEd source file.

If you specify +S, the linker produces an alphabetical listing of all
global references in the object file (called a symbol table). If you
specify —S, the symbol table is not produced. The S parameter in
this command overrides the SYMBOL command in the LinkEd
source file.

If you select +T, any etror causes the link to terminate. If you omit
this option or select —T, only fatal errors cause immediate
termination of the link.

If you select +W, the linker stops and waits for a key press when
any error occurs in order to give you the opportunity to read the
error message and to decide whether to continue (that is, to
continue the link in case of a nonfatal error or to return to the shell
in case of a fatal error). Press Apple-Period (G-.) to halt
execution, or press any character key or the Space bar to continue.
If you omit this option or select —W, execution continues without
pausing when an error occurs.

98 7127187

Apple 1IGS Programmer’ s Workshop Chapter 3: Shell

filel file2 ... The full pathnames or partial pathnames (including the filenames) of one

or more LinkEd source files. The files are processed in the sequence in
which they are listed. Each source file performs a separate link and creates
a separate load file. To use multiple LinkEd files to create a single load ﬁle,
use the LinkEd APPEND and COPY commands.

KEEP=outfile You can use this parameter to specify the pathname or partial pathname
of the load file. There must not be any spaces between KEEP and the equal
sign (=).

In order to use the KEEP parameter when you specify multiple LinkEd
source filenames on the command line, you must use a wildcard character in
the filename. Two wildcard characters are available for this purpose: % and
$. The percent sign (%) is replaced with the pathname of the LinkEd file.
The dollar sign ($) is replaced with the pathname of the LinkEd file but with
the last extension removed. For example, assume you execute the
following command:

ALINK LINK1 LINK2 KEEP =%.0

The shell uses the name LINK1 . O for the load file created by executing the
LinkEd file LINK1 and the name LINK2 . O for the load file created by the
LinkEd file LINK2. Similarly, if you execute the command

ALINK MYFILE.LNK KEEP=$, the shell uses the name MYF ILE for the
load file.

Important: Remember the following points regarding the KEEP parameter:

If you have a KEEP command in the LinkEd file and you also use the KEEP
parameter, the KEEP parameter on the command line takes precedence.

You can specify a default load filename by using the KeepName shell variable. Shell
variables are described in the section “Variables” later in this chapter.

If you use neither the KEEP parameter, the KeepName shell variable, nor the KEEP
command, no load file is produced.

To use the KEEP parameter with multiple LinkEd source files, you must use a
wildcard character in the KEEP parameter.

Because ProDOS 16 does not allow filenames longer than 15 characters, you must be
careful not to specify a filename in the KEEP parameter that will result in a load
filename longer than 15 characters. For example, if you specify

KEEP=%.LOADF ILE and the LinkEd name is LONGNAME, the link will fail when the
shell tries to open the file LONGNAME . LOADF ILE, which has 17 characters.

If a load file named outfile already exists, it is overwritten without a warning when
this command is executed.

If a source file named outfile already exists, APW will not let you overwrite it and the
link will fail.

APDA Draft 99 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

The output listing of the link is sent to the screen unless you redirect output to the printer or
use the PRINTER ON LinkEd command. Output redirection is described in the section
“Redirecting Input and Output” earlier in this chapter.

Important: If you do not need to take advantage of the advanced link capabilities
provided by LinkEd, do not create a LinkEd file, and do not use the ALINK
command. Instead, use one of the following commands to link your program:
LINK, ASML, ASMLG, CMPL, CMPLG, or RUN. The linker is described in detail in
Chapter 5.

ASMé65816

ASM65816

This language command sets the shell default language to APW 65816 assembly language.

ASML

ASML [option ...] filel [file2] [...] [KEEP=outfile]
[NAMES= (segl [seg2] [..]1)] [languagel= (option ...)
[language2= (option ...)] [...]]

This internal command assembles (or compiles) one or more source files and links one or
more object and library files. The APW Shell checks the language of each source file and
calls the appropriate assembler or compiler. If the maximum error level returned by each
assembler or compiler is less than or equal to the maximum allowed (0 unless you specify
otherwise with the MERR directive or its equivalent in the source file), the standard linker is
called to link the resulting object files plus any other object and library files named on the

ASML command line.
The CMPL command is an alias for ASML.

Note: Not all compilers or assemblers make use of all the parameters provided by
this command (or by the ASSEMBLE, ASMLG, COMP ILE, CMPL, CMPLG, and
RUN commands, which use the same parameters). The APW Assembler, for
example, includes no language-specific options, and so makes no use of the
language= (option ...) parameter. If you include a parameter that a compiler or
assembler cannot use, it ignores it; no error is generated.

If you include more than one source file, or use APPEND directives to tie together
source files in more than one language, then all parameters are passed to every
compiler. Each compiler uses those parameters that it recognizes. See the reference
manual for the compiler you are using for a list of the options that it accepts.

Note: Command-line parameters (those described here) override source-code
options when there is a conflict.

APDA Draft 100 7127187

Apple 11GS Programmer’s Workshop Chapter 3: Shell

option...

filel file2 ..

APDA Draft

You can specify as many of the following options as you wish by
separating the options with spaces.

+E | -E If you specify +E, when the compiler terminates execution due to a
fatal error, it calls the APW Editor. The editor displays the source
file with the offending line on the fifth line on the screen (or as far
down on the screen as possible, if the error is in one of the first
four lines of the file). If you specify —E and a fatal error occurs,
you are returned to the shell’s command line or the Exec file that
executed the command. The default for this option is +E when the
command is e¢xecuted from the command line and -E when the
command is executed from an Exec file.

+L | =L If you specify +L, the assembler or compiler generates a source
listing; if you specify —L, the listing is not produced. The L
parameter in this command overrides the LIST directive in the
source file.

+51=8 If you specify +S, the linker produces an alphabetical listing of all
global references in the object file; the assembler or compiler may
also produce a symbol table. The APW Assembler, for example,
produces an alphabetical listing of all local symbols following each
END directive. If you specify —S, these symbol tables are not
produced. The S parameter in this command overrides the
SYMBOL directive in the source file. ‘

+T | =T If you select +T, any error causes the compile to terminate. If you
omit this option or select —T, only fatal errors cause immediate
termination of the compile. Note that if you select both +T and +E,
any error causes the shell to call the APW Editor and display the
offending line as the fifth line on the screen.

+W| =W If you select +W, the compiler stops and waits for a key press when
any error occurs, to give you the opportunity to read the error
message and to decide whether to continue (that is, to continue the
compile in case of a nonfatal error or to call the editor in case of a
fatal error). Press Apple-Period (&3-.) to halt execution, or press
any character key or the Space bar to continue. If you omit this
option or select —W, execution continues without pausing when an
€ITOor OCCurs.

. The full pathnames or partial pathnames (including the filenames) of the
source files to be assembled (or compiled). You can also include the full
pathnames or partial pathnames, minus filename extensions, of additional
object and library files to be passed on to the linker. You may include as
many source, object, and library files as you choose, but at least one of the
files must be a source file. Separate the filenames with spaces.

The source files do not all have to have the same APW language type.
Note, however, that if you include a LinkEd file, it must be the last file
listed. This is because once the advanced linker has been called by a
LinkEd file, the linker is not called again regardless of how many source or
object files follow the LinkEd file.

101 7127187

Chapter 3 Shell Apple lIGS Programmer’s Workshop

The first object file you list must have a . ROOT file; for the other object
files, either a .ROOT file or a . A file must be present. On the command
line, use the filename without any . ROOT or alphabetical extension. For
example, the program TEST might consist of object files named
TEST.ROQOT, TEST.A, and TEST.B, all in directory /APW/MYPROG/.
In this case, you would use /APW/MYPROG/TEST for the object-file
filename.

Any library files specified are searched in the order listed. If a library file is
listed before one or more object or source files, the library file is searched
before those files are linked. Only the segments needed to resolve
references that haven’t already been resolved are extracted from library files.
See the discussion of the MAKELIB command in this chapter for more
information on library files.

The ASML command is equivalent to an ASSEMBLE command followed by
a LINK command. During the assembly stage, the source files are compiled
or assembled as if they had been listed in an ASSEMBLE command; the
object and library files listed on the command line are ignored. The source
filenames are replaced with the root filenames of the object files created
from those source files; then the entire list of filenames is sent to the
standard linker as if they were listed in a LINK command.

Important: If there is a source file on the disk with the same name as a root
filename you list in this command, the source file will be compiled and the object
file you had intended to use will be overwritten or ignored. For example, if the
object file MYFILE . ROOT and the source file MYFILE are both on the disk and
you include the filename MYFILE on the command line with the intention of linking
MYF ILE . ROOT, the shell will find MYF ILE during the assembly stage of this
command and assemble it instead.

KEEP=outfile You can use this parameter to specify the pathname or partial pathname

APDA Draft

(including the filename) of the output file. There must not be any spaces
between KEEP and the equal sign (=).

For a one-segment program, the assembler or compiler names the object file
outfile .ROOT. If the program contains more than one segment, the
assembler places the first segment in outfile . ROOT and the other segments
in outfile . A. If this is a partial assembly (or several source files with
different programming languages are being compiled), other filename
extensions may be used; see the section “Partial Assemblies or Compiles” in
this chapter.

If the assembly is followed by a successful link, the load file is named
outfile.

In order to use the KEEP parameter when you specify multiple source
filenames on the command line, you must use a wildcard character in the
filename. Two wildcard characters are available for this purpose: % and $.
The percent sign (%) is replaced with the pathname of the source file. The
dollar sign ($) is replaced with the pathname of the source file with the last
extension removed. For example, assume you execute the following
command:

ASML MYFILE YURFILE KEEP =%.0

102 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

The shell uses the name MYFILE . O .ROOT for the first object file created
from the source file MYFILE and the name YURFILE.O.ROOT for the first
object file created from the source file YURF ILE. Similarly, if you execute
the command

ASML MYFILE.C KEEP=S$, the shell uses the name MYFILE . RQOT for
the first object file.

In the case of multiple source files, if the assembly is followed by a
successful link, the load file is given the root name of the first object file
linked.

Important: Keep the following points in mind regarding the KEEP parameter:

If you have a KEEP directive in the source file and you also use the KEEP parameter,
the parameter on the command line takes precedence.

You can specify a default filename for object files by using the KeepName shell
variable. Shell variables are described in the section “Variables™ later in this chapter.

The rules by which the shell names load files, in order of precedence, are as follows:

» If the KEEP parameter is specified on the command line, that name is used. If the
KEEP parameter contains a wildcard character, the root name is based on the
name of the first object file created. (Note that, if the first filename on the
command line is an object file, that is the first file linked, but it was not the first
gil)je)ct file created by the ASML command, so its root name is not used for the load

e

 If there is no KEEP parameter, the root name specified by KeepName is used for
the load filename. If the KeepName variable includes a wildcard character, the
load filename is based on the name of the first object file created.

» If KeepName has not been set, the root name of the first object file as determined
by a directive in the source file is used.

« If you use neither the KEEP parameter, the KEEP directive, nor the KeepName
shell variable, then the object files are not saved at all. In this case, the link
cannot be performed, because there is no object file to link.

To use the KEEP parameter with multiple source files, you must use one or more
wildcard characters in the KEEP parameter.

Because ProDOS 16 does not allow filenames longer than 15 characters, you must be
careful not to specify a filename in the KEEP parameter that will result in an output
filename longer than 15 characters. For example, if you specify KEEP=% . OUT and
the source filename is LONGNAME, the compile will fail when the shell tries to open
the file LONGNAME . QUT . ROOT, which has 17 characters.

If object files with the root filename outfile already exist, they are overwritten without
a warning when this command is executed. Similarly, if a load file named outfile
already exists, it is overwritten without a warning when the program is linked.

If a source file named outfile already exists, APW will not let you overwrite it and the
link will fail.
The linker may attempt to link any file in the same prefix as outfile that has the root

filename outfile and ends in an alphabetic suffix. For example, suppose outfile is
named OUTF ILE and there is already a file named OUTFILE. B in the same prefix.

APDA Draft 103 7127187

Chapter 3 Shell =~ Apple 1GS Programmer’s Workshop

When you execute the ASML command, the assembler creates the files
OUTFILE.ROOT and OUTFILE. A; then the Linker attempts to link OUTFILE.B
along with the other files. Make sure no such files are present in the prefix of outfile
before executing the ASML command.

NAMES=(segl seg2 ...) This parameter causes the assembler or compiler to perform
a partial assembly or compile; the operands segl, seg2, ... specify the
names of the segments to be assembled or compiled. There must not be any
spaces between NAMES and the equal sign (=). Separate the segment names
with one or more spaces. The APW Linker automatically selects the latest
version of each segment when the program is linked.

In case-sensitive languages, segment names must be entered exactly as they
appear in the source code. Segment names in case-insensitive languages
must be entered as all uppercase characters.

The object file created when you use the NAMES parameter contains only the
specified segments. In assembly language, you assign names to segments
with START, DATA, PRIVATE, or PRIVDATA directives. In most high-
level languages, each subroutine becomes an object segment and the
segment name is the same as the subroutine name.

You must use the same output filename for every partial compile or
assembly of a program. For example, if you specify the output filename as
OUTF ILE for the original assembly of a program, the assembler creates
object files named OUTFILE .ROOT and OUTFILE .A. In this case you
must also specify the output filename as OUTF ILE for the partial assembly.
The new output file is named OUTFILE . B and contains only the segments
listed with the NAMES parameter. When you link a program, the linker
scans all the files whose filenames are identical except for their extensions
and takes the latest version of each segment.

If you include more than one source-file filename on the command line, the
complete list of segment names in the NAMES parameter is used for each
source file. Thus, for example, if you list two source-file filenames and
include the parameter NAMES= (TOM DICK HARRY) on the command
line, then a partial assembly or compile is done for each of the two source
files and each of the source files is searched for segments TOM, DICK, and
HARRY.

Note: No spaces are permitted immediately before or after the equal sign
in the NAMES parameter.

See the section “Partial Assemblies or Compiles” earlier in this chapter for
more information on partial assemblies.

APDA Draft 104 7127187

Apple 1IGS Programmer’ s Workshop Chapter 3: Shell

languagel=(option ...) ... This parameter allows you to pass parameters directly to

specific APW compilers or assemblers. For each compiler or assembler for
which you want to specify options, type the name of the language (exactly
as shown by the SHOW LANGUAGES command), an equal sign (=), and the
string of options enclosed in parentheses. The contents and syntax of the
options string is specified in the compiler or assembler reference manual.
Note that the APW Shell does no error checking on this string before
passing it through to the compiler or assembler. You can include option
strings in the command line for as many languages as you wish; if a
language compiler is not called, the string for that language is ignored.

Note: No spaces are permitted immediately before or after the equal sign
in this parameter.

When you execute the ASML command, the following sequence of events occurs:

L

The shell calls the assembler or compiler that corresponds to the APW language type
of the first source file listed on the command line. For example, if the APW
language type of the first source file is ASM65816, the shell calls the APW
Assembler.

The assembler or compiler processes the source file. One or more object files are
created, assuming that you provided a filename for it and that no errors are found
with error level greater than that set by MERR,

. The assembler or compiler passes control back to the shell, which calls the

appropriate assembler or compiler to process the next source file. This process is
repeated until all source files have been compiled.

. The shell calls the standard linker and passes to it the root filenames of all the object

files to be linked, together with any library files listed on the command line. The
object files include those created in sm;as 2 and 3 plus any object files you listed on
the command line.

The linker links the object files and searches the library files in the sequence in which
the files were named on the command line. For example, suppose the command line
included the source file MYPROG, the object-file root filename MYOBJ, and the
source file MYCPROG, as follows:

ASML MYPROG MYOBJ MYCPROG

Assume further that MYPROG generates the object files MYPROG . ROOT and
MYPROG. A, that MYCPROG generates the object file MYCPROG . ROOT, and that the
object files MYOBJ . ROOT, MYOBJ . A, and MYOBJ . B are present on the disk. In
that case, the linker would process these files in the following sequence:

MYPROG.ROOT
MYPROG.A
MYOBJ.ROOT
MYOBJ.A
MYOBJ.B
MYCPROG.ROOT

Any library files listed on the command line are searched for unresolved references
(if any) in the sequence in which those files are listed. For instance, assume the

example in step 5 had included the library file MYLIB, as follows:
ASML MYPROG MYOBJ MYLIB MYCPROG

APDA Draft , 105 7127187

Chapter 3 Shell Apple TIGS Programmer’s Workshop -

In that case, the linker would process the files in the followmg sequence

MYPROG ROOT
MYPROG.A
MYOEJ .RCOT
MYOEBJ.A
MYOBJ.B
MYLIB
MYCPROG. ROOT

7. If there are still any unresolved refe;rences, the library files in the hbrary prefix
(prefix 2) are searched. ‘

8. The linker creates a load file. The filename is the same as the root filename of the
first object file created.. It is determined by KEEP parameter in the command line; if
there is is no KEEP parameter, the KeepName shell variable is used if no .
KeepName variable has been set, the KEEP dJIecuve in the first source file i is used.

Press Apple-Period {&-.) to stop the assemhly or compile after it has begun. The
assembler or compiler may respond by halting execution and calling the editor with the first
line of your source file at the top of the screen, or it may retumn you to the shell.

Listings and error messages are sent to the screen unless you elther include a PRINTER
ON directive (or eqmvalent) in the source file or redirect output to a disk file or the printer.
Output redirection is described in the section “RedJrectmg Input and Output earlier in this
chapter. ,

The following command assembles and links a source file named MYFILE and writes the
load file to disk as the file M\YPROG. No source listing or symbol table is produced unless
called for by directives in MYFILE:

ASML MYFILE KEEP=MYPROG~
The following command also assembles and links a source file named MYFILE and writes

the load file to disk as the file MYPROG. A symbol table is produced, but no source listing
is generated regardless of whether one is called for by directives in MYFILE:

ASML -L +5 MYFILE KEEP=MYPROG

The following command assembiles the segments TOOLCALL and TEXT OUT in the source
file named MYF ILE, links the program, and writes the load file to disk as the file MYPROG:

ASML MYFILE KEEP=MYPROG NAMES=(TOOLCALL TEXT;OUT)‘
The following command assembles the source file named MYFILE.SRC. If
MYFILE.SRC or a file appended to MYFILE . SRC is a C program, the C-compiler option
that adds a prefix to the include-file path list is passed to the C compiler. Object files are

named MYFILE.RQOOT, MYFILE, A, and so on. After the program is assembled or
compiled, it is linked and the load file is written to dlsk as the file MYFILE:

ASML MYFILE.SRC KEEP=$.EXE CC (I/APW/LIBRARIES/CINCLUDE)

APDA Draft 106 " 7127/87

Apple IIGS Programmer’'s Workshop Chapter 3: Shell

The following command assembles the ASM65816 source file named MYFILE and
compiles the C source file named MYCFILE. The object files created are saved with names
specified by the KeepName variable or by KEEP directives in the source files. After the
programs are assembled and compiled, the object files created from MYFILE, the object
files with the root name MYOBJ, and the object files created from MYCFILE are linked.
The name of the load file is the root filename of the first object file created:

ASML MYFILE MYOBJ MYCFILE

The following command assembles the source file MYFILE. The object files created are
saved with the root filename MYPROG. After the program is assembled, the object files
created from MYF ILE and the object files with the root name MYOBJ are linked. If the
linker cannot resolve all references, it searches the library file MYLIB. The load file is
written to disk with the filename MYPROG:

ASML MYFILE MYOBJ MYLIB KEEP=MYPROG
Note: If you have appended a LinkEd file to the end of your program, the link is
controlled by the commands in the LinkEd file. In this case, the standard linker is

not called, and the operation of the ASML command is identical to that of the
ASSEMBLE command.

For more examples and discussion of the use of the ASML command, see the section
“Compiling (or Assembling} and Linking a Program” in Chapter 2.
ASMLG

[KEEP=outfile]
[languagel= (option ...)

ASMLG [option ...] filel [file2] [...]
[NAME S= (segl [seg2] [..])]
[language2= (option ...) 1 [...]]

This internal command asserables (or compiles) one or more source files, links one or more
object and library files, and runs the resulting load file. Its function is identical to that of
the ASML command, except that once the program has been successfully linked, it is
executed automatically. See the ASMIL. command for a list of options and a description of
the parameters.

The CMPLG and RUN commands are aliases for ASMLG.

ASSEMBLE

ASSEMBLE [option ...] filel |[file2] [..] [KEEP=outfile]
[NAMES= (seg! [seg2] [..]1)]) [languagel= (option ...)
[language2= (option ...} 1 [...]]

This internal command assembles (or compiles) one or more source files. Its function is
identical to that of the ASML command, except that the ASSEMBLE command does not call
the linker to link the object files it creates; therefore, no load file is generated. You can use
the .INK command or a LinkEd file to link the object files created by the ASSEMBLE

APDA Draf: 107 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

command. See the ASML. command for a list of options and a description of the
parameters.

The COMP ILE command is an alias for ASSEMBLE.

BREAK

BREAK

This internal command is used to terminate a FOR or LOOP statement. See the section
“Exec Files” later in this chapter for a more complete discussion of this command.

CANON
CANON [+A|-A] [+C n] [+S|=8] dictionary [inputfile]

This utility compares the spelling of words in the input file with words in the dictionary
file. Any words in the input file that are included in the dictionary file are replaced with the
canonical spelling specified in the dictionary file. The result is written to standard output
(by default, the screen).

+A |- If you specify +4, the following characters are treated hkc lctters by Canon:
$ %@
If you specify -A or omit this parameter, these characters'cannot-be
included in the character strings in the dictionary, except as leading
characters for search strings (as explained below).

+C n If you specify +C followed by a number, only # characters are considered
significant when matching patterns. If you do not specify this parameter, all
characters are considered significant. Note that there must be space between
+C and n. ‘

+S|-S If you specify +S, pattern matching is case sensitive. If you specify -S or
omit this parameter, pattern matching is not case sensitive. -

dictionary The full pathname or partial pathname '(including the filename) of the
dictionary file.

inputfile The full pathname or partial pathname (1nc1udmg the filename) of the i 1nput
file. You can use wildcard characters in the filename.

Canon works in a manner similar to a global search and replace function in a text editor,
except that any number of different character strings can be searched for simultaneously.
The dictionary file is a text file that specifies the character strings to be replaced and the
replacement strings (the canonical spellings).

The maximum length of a line in the dictionary file is 256 characters. Each string must
begin with a letter and can contain any number of letters and numerals. The underscore
character (_) is considered a letter by Canon. If you specify the +A option, the dollar sign
($), percent sign, (%). and at sign (@) are also considered letters.

APDA Draft 108 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Each line of the dictionary file can contain either one or two strings. If a line contains one
string, Canon uses that string as both the search and replace string. For example, suppose
the dicsionary contains the following line: ‘

main

If your search is not case sensitive (that is, the command line does not include the +S
parameter), the following strings are all converted to main:

Main
MAIN
mAIN

If your search is restricted to four characters (that is, the command line includes the +C 4
parameter), the following strings are all converted to main:

mainstream
mainly
maintenance

If a line of the dictionary file contains two strings, Canon searches for the first string and
replaces it with the second. For example, suppose the dictionary contains the following
line:

Main main

If yowr search is not case sensitive (that is, the command line does not include the +S
parameter), this line functions exactly like a line containing the single string ma in. If the
search is case sensitive, however, only the string Main is converted to main. In this case,
the following strings would not be converted to main:

MAIN
mAIN
MaiN

The search string can include a prefix consisting of any number of characters that are not -
recognized as letters or numerals by Canon. Canon replaces only those strings that match

the entire search string, including the prefix, but does not replace the prefix. For example,
suppose the dictionary contains the following line:

.seconds tenths

In this case, Canon would convert the string hours.minutes.seconds to
hours.minutes.tenths. The string hours/minutes/seconds would not be
changed, however.

Canon writes the converted file to standard output (by default, the screen). To save the
result in a file, you must redirect output to a pathname. For example, to process the file

MYPROG. SRC with the dictionary C . CONVERT, creating the new file MYPROG . CC, you
could use the following command line:

CANON C.CONVERT MYPROG.SRC > MYPROG.CC

APDA Draft 109 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

CAT
CAT [pathname ...)

This internal command is an alias for CATALOG.

CATALOG
CATALOG [pathname ...]

This internal command lists to the screen the directory of the volume or subdirectory you
specify.

pathname The pathname or partial pathname of the yolume, directory, subdirectory or
file for which you want directory information. You can include any number
of pathnames; the directory for each pathname is listed in turn. If you
include a filename, you can use wildcard characters in the filename.
For example, to list the entire contents of the current directory, use the following command:

CATALOG

To list the entire contents of the subdirectory /APW/UTILITIES/, use the followmg
command:

CATALOG /APW/UTILITIES

To get directory information about the MAKELIB file in the UTILITIES/ sudercctory
when the current prefix is /APW/, use the following command:

CATALOG UTILITIES/MAKELIB

To list every file beginning with M or N in the UTILITIES/ subdirectory, use the
following command:

CATALOG /APW/UTILITIES/M= /APW/UTILITIES/N=

Or, for example, if /APW/UTILITIES/ were the current dlrectory, you 00u1d use the
following command to achieve the same result:’

CATALOG M= N=

See the section “Listing the Directory” in Chapter 2 fora description of the fields in the
directory listing. A list of ProDOS 16 file types is given in Table 3.4 in the discussion of
the FILETYPE command. ;

APDA Draft 110 7127187

Apple IIGS Programmer’s Workshop ' Chapter 3: Shell

CC
cc

This language command sets the shell default language to APW C.

CHANGE

CHANGE pathname language

This internal command changes the language type of an existing file.

pathname The full pathname or partial pathname (including the filename) of the source
file whose language type you wish to change. You can use wildcard
characters in the filename.

language The language type to which you wish to change this file.

In APW, each source or text file is assigned the current default language type when it is
created. When you assemble or compile the file, APW checks the language type to
determine which assembler, compiler, linker, or text formatter to call. Use the CATALOG
command to see the language type currently assigned to a file. Use the CHANGE command
to change the language type to any of the languages listed by the SHOW LANGUAGES
command. The section “Command Types and the Command Table” earlier in this chapter
includes a discussion of language types and language commands.

You can use the CHANGE command to correct the APW language type of a file if the editor
was set to the wrong language type when you created the file, for example. Another use of
the CHANGE command is to assign the correct APW language type to an ASCII text file
(ProDOS 16 file type $04) created with another editor.

CMPL
CMPL [option ..] filel (file2] [...]1 [KEEP=outfile]

[NAMES= (segl [seg2] [..1)1 I[languagel= (option ...)

[language2= (option ...)] [...]1]
This internal command compiles (or assembles) one or more source files and links one or
more object and library files. Its function, options, and parameters are identical to those of
the ASML command. See your compiler manual for the language-specific options available.

The CMPL command is an alias for ASML.

APDA Draft 111 7127187

Chapter 3 Shell Apple 11GS Programmer's Workshop

- CMPLG
CMPLG [option...] filel [file2] [KEEP=oulfile]

]
[NAMES= (segl [seg2] [...]1)] [languagel= (option ...)
[language2= (option ...) 1 [...]] _ ,

This internal command compiles (or assembles) one or more source files, links one or more
object and library files, and runs the resulting load file. See the ASML command for a list
of options and a description of the parameters. See your compiler manual for the language-
specific options available,

The CMPLG and RUN commands are aliases for ASMLG.

COMMANDS

COMMANDS pathname

This internal command causes APW to read a command-table file, resetting all the
commands to those in the new command table.

pathname The full pathname or partial pathname (mcludmg the ﬁlename) of the file
containing the command table.

When you load APW, it reads the command-table file named SYSCMND in prefix 4. You
can use the COMMANDS command to read in a customn command table at any time.
Command tables are described in the section “Comrnand Types and the Command Table™
earlier in this chapter.

Note: The shell does no error checking when it executes the COMMANDS
command. Any error in your custom command table will not show up until you try
to execute the command that is defined in the line that contains the error.

COMMENT

COMMENT [fext]

This internal command, or an asterisk (*) is used to enter comments into Exec files. There
must be a space between the COMMENT command and the comment. See the section “Exec
Files” later in this chapter for a more complete discussion of this command.

COMPACT
COMPACT infile [-O outfile] [-P] [-R] [-S]

This utility converts a load file to the most compact form provided for by the object module
format.
infile The full pathname or partial pathname (including the filename) of the load
file that you wish to compact. You can use wildcard characters in the
filename.

APDA Draft 112 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

outfile The full pathname or partial pathname (including the filename) of the output
file. If you do not specify -0 outfile, then infile is overwritten.

-P If you specify the -P option, a progress report is written to standard output.
The progress report first shows the version number of Compact that you are
using, and then shows the number of the segment being processed and the
operation being performed on that segment.

-R If you specify the —R option, any load segment named ~globals or
~arrays is made a reload segment.

-S If you specify the —S option, a summary report is written to standard output
when Compact is finished. The summary report shows the total number of
segments in the file and the number of each OMF record type compacted,
copied, or created.

Press Api)lc-Pcriod (G-.) to cancel the command.

The Compact utility can decrease the size of load files by 20 percent to 70 percent and make
them load up to 25 percent faster. The amount of reduction in size and loading time
achieved for a particular file depends on the number and nature of symbolic references in
the file.

In addition to compacting a file, the Compact utility converts OMF version 1.0 files to
version 2.0. If you specify the -R option and Compact finds a load segment named
~globals or ~arrays, Compact makes it a reload segment. See Chapter 7 for a
description of OMF 2.0 and reload segments, and the section “Command Types and the
Command Table” earlier in this chapter for a discussion of restartability.

Important: In order to load a compacted load file, you must have Version 1.2 or
later of ProDOS 16 and the System Loader.

Use Compact as the last step in program development, after the program has been
completely debugged, to maximize the performance and minimize the size of the load file.

COMPILE

COMPILE [(option...]1 filel [file2...] [KEEP=ouffile]
[NAMES= (segl [seg2{ ..11)1 [languagel=(option ...)
[language2= (option ...) [...1]]

This internal command compiles (or assembles) one or more source files. Its function is
identical to that of the ASML command, except that it does not call the linker to link the
object files it creates; therefore, no load file is generated. You can use the LINK command
or a LinkEd file to link the object files created by the COMP ILE command. See the ASML
command for a list of options and a description of the parameters. See your compiler
manual for the language-specific options available.

The COMP ILE command is an alias for ASSEMBLE.

APDA Draft 113 7127187

Chapter 3 Shell Apple IIGS Programmer's Workshop

CONTINUE -
CONTINUE

This internal command causes control to skip over following statements to the next END
statement that isn’t the END for an IF statement. See the section “Exec Files” in this
chapter for a more complete discussion of this command.

COPY

COPY [—C] pathnamel [pathname2]
..COPY [-D] volumel volume2

This internal command copies a file to a new subdirectory or to a duplicate file with a
different filename. This command can also be used to copy an entire directory or to
perform a block-by-block disk copy.

—C If you specify —C before the first pathname, COPY does not prompt you if
the target filename (pathname?2) already exists.

pathnamel The full or partial pathname (including the filename) of the file or directory
to be copied. Wildcard characters can be used in the filename. If you do
include wildcard characters, both files and subdirectories that match
pathnamel are copied.

pathname? The full or partial pathname (including the filename) to be given to the copy
of the file or to the directory to which the file is to be copied. Wildcard —.
characters cannot be used in this filename. If pathnamel does notinclude
wildcard characters, all of the directories and subdirectories in pathname?2
must already exist. If pathname! does include wildcard characters and the
last filename in pathname2 does not exist, a subdirectory with that name is
created. If pathnamel and pathname2 are both directories, a subdirectory
named pathnamel is created in pathname2 and the entire directory (including
all the files, subdirectories, and files in the subdirectories) is copied into it.
If you omit pathnameZ2, the current directory is used and the new file has the
same name as the file being copied.

-D If you specify —D before the first pathname, both pathnames are volume
names, and both volumes are the same size, then a block-by-block disk
copy is performed. ‘

Note: A block-by-block disk copy is much faster than a file-by-file
copy. Use the -D option whenever you can.

volumel The name of a volume that you want to copy onto another volume. The
entire volume (including all the files, subdirectories, and files in the
subdirectories) is copied. If both pathnames are volume names, both

volumes are the same size, and you specify the -D parameter, then a block-
by-block disk copy is performed. You can use a device name (such as

.D1) instead of a volume name.

volume2 The name of the volume that you want to copy onto. You can use a device
name instead of a volume name.

APDA Draft 114 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Warning: Under certain conditions, COPY can perform a recursive copy. For
example, if CDIR is a subdirectory of BD IR, which in turn is a subdirectory of
/ADIR, and the current directory is BDIR, then the following command copies
/ADIR and all of its subdirectories into CDIR: COPY -C /ADIR CDIR.
Because CDIR is a subdirectory of /ADIR, it is copied into itself, then all of the
subdirectories of /ADIR, including the new copy of CDIR, are copied into the new
CDIR, and so forth.

Unless you specify the -D parameter, the COPY command copies individual files. If a file
with the same filename as one you are trying to copy exists in the target subdirectory, you
are asked if you want to replace the target file. Type Y and press Return to replace the file.
Type N and press Return to copy the file to the target prefix with a new filename. In the
latter case, you are prompted for the new filename. Enter the filename, or press Return
without entering a filename to cancel the copy operation. If you specify the —C parameter,
the target file is replaced without prompting.

Note: If you do not include any parameters after the COP Y command, you are
prompted for a pathname, since APW prompts you for any required parameters.
Since the target prefix and filename are not required parameters, however, you are
not prompted for them. Consequently, the current prefix is always used as the
target directory in such a case. To copy a file to any subdirectory other than the
current one, you must include the target pathname as a parameter either in the
command line or following the pathname entered in response to the

Source file name prompt.

If you use volume names for both the source and target and specify the =D parameter, the
COPY command copies one volume onto another. In this case, the contents of the target
disk are destroyed by the copy operation. The target disk must be initialized as a ProDOS
16 volume (use the INIT command) before this command is used. Because this command
performs a block-by-block copy, it makes an exact duplicate of the disk. Therefore, both
disks must be the same size for this command to work. You can use device names rather
than volume names to perform a disk copy; device names are described in the section
“Using Device Names” in Chapter 2.

The following command makes a copy of the file FILEA on the current prefix, gives the
copy the filename FILEB, and places it in the same prefix:

COPY FILEA FILEB

Notice that trailing slashes (/) are not significant to ProDOS 16; they are stripped by the
shell. If a target directory already exists, ProDOS recognizes it as a directory. If a target
filename does not already exist and you are copying a single file to it, the target is treated as
a filename; if you are copying more than one file to it, the target is treated as a directory
name and a directory by that name is created.

Assume, for example, that you have a directory named PROGRAMS/ on your disk. In this
case, the following command copies the file MYPROG from the directory APW/ into the
subdirectory /APW/PROGRAMS/ without changing the name of MYPROG:

COPY /APW/MYPROG /APW/PROGRAMS/

APDA Draft 115 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

If there is no file or directory named /APW/PROGRAMS/ on the disk, however, this same
command copies the file /APW/MYPROG to another file named /APW/PROGRAMS. On the
other hand, the following command copies all the files and subdirectories that begin with
the string MYPROG from the directory /APW/ into the directory /APW/PROGRAMS/:

COPY /APW/MYPROG= /APW/PROGRAMS/
If PROGRAMS/ does not already exist, it is created by this command.

The following command copies the subdirectory /APW/UTILITIES/HELP/ into the
subdirectory /HARDISK/DOCUMENTS/HELP/ :

COPY /APW/UTILITIES/HELP/ /HARDISK/DOCUMENTS
An error results if /DOCUMENTS/ does not already exist.

The following command performs a block-by-block disk copy of the volume /APW onto
the volume in disk drive .D2:

COPY -D /APW/ .D2

CREATE

CREATE directoryl [directory?2 ...}

This internal command creates a new subdirectory.

directoryl directory?2 ... The pathnames or partial pathnames of the subdirectories you
wish to create. -

CRUNCH

CRUNCH rootname

This external command combines the object files created by partial assemblies or compiles
into a single object file. For example, if an assembly and subsequent partial assemblies
have produced the object files FILE ,ROOT, FILE.A, FILE.B, and FILE.C, then the
CRUNCH command combines FILE .A, FILE.B, and FILE. C into a new file called
FILE.A, deleting the old object files in the process. The new FILE . A contains only the
latest version of each segment in the program. New segments added during partial
assemblies are placed at the end of the new FILE. A,

rootname The full pathname or partial pathname, including the filename but minus any
filename extensions, of the object files you wish to combine. For example,
if your object files are named FILE .ROOT, FILE.A,and FILE.B in
subdirectory /HARDISK/MYFILES/, use /HARDISK/MYFILES/FILE
for rootname.

All files with the root filename you specify and an alphabetic suffix must be object files.
For example, if the object files FILE .ROOT, FILE. A, and FILE . B are present together
with the source file FTLE. C, an error occurs when the Crunch utility tries to process

APDA Draft 116 7127187

Apple 1IGS Programmer’s Workshop Chapter 3: Shell

FILE.C. In addition, there must be no gaps in the sequence. For example, if you have
the object files FILE .ROOT, FILE .A, FILE.B, and FILE . D, the Crunch utility cannot
find FILE.D.

Use the DUMPOBJ command to obtain a listing of the segments in any object or load file.
See the section “Partial Assemblies or Compiles” earlier in this chapter for more
information on partial assemblies.

DEBUG
DEBUG

This external command calls the Apple IIGS Debugger if it is present in the utility
subdirectory (prefix 6). If you do not have the debugger, you get a message informing you
that the debugger is not available.

The debugger is described in detail in the Apple IIGS Debugger Reference.

DELETE
DELETE [-C] pathnamel {pathname2 ...]

This internal command deletes the file or files you specify.

—C If you specify —C before the pathname, DELETE does not prompt you
before deleting the contents of a directory.

pathnamel pathname?2 ... The full pathnames or partial pathnames (including the
filenames) of the files to be deleted. Wildcard characters may be used in the
filenames.

To delete all the contents of a directory, use the pathname of the directory followed by an
equal-sign (=) wildcard character. For example, to delete the contents of the directory
/MYFILES/BACKUPS/, use the following command:

DELETE /MYFILES/BACKUPS/=

When you do so, the prompt Are you sure? appears on the screen. Type Y and press
Return to execute the command. Type N and press Return to abort the command. To
suppress the prompt, use the ~C parameter with the DELETE command.

You cannot delete a directory that is not empty; you must delete the contents of the directory
first, and then delete the directory. To delete the directory /MYFILES/BACKUPS/
together with all its contents, suppressing the Are you sure? prompt, for example, use
the following commands:

DELETE -C /MYFILES/BACKUPS/=
DELETE /MYFILES/BRACKUPS

APDA Draft 117 7127187

Chapter 3 Shell Apple I1GS Programmer’s Workshop

DISABLE

DISABLE D|N|W|R pathnamel [pathname2 ...]

This internal command disables one or more of the access attributes of a ProDQOS 16 file.

D “Delete” privileges. If you disable this attribute, the file cannot be deleted.

N “Rename” privileges. If you disable this attribute, the file cannot be
renamed.

W “Write” privileges. If you disable this attribute, the file cannot be written to.

R “Read” privileges. If you disable this attribute, the file cannot be read.

pathnamel pathname? ... The full pathnames or partial pathnames (including the
filenames) of the files whose attributes you wish to disable. You can use
wildcard characters in the filenames.

Note: The “backup required” flag cannot be disabled by the DISABLE command.
This flag can be disabled only by backup programs: that is, programs that create
backup copies of files on a disk. When set, the backup required flag indicates that
the file has not been backed up since the last time the file was modified.

You can disable more than one attribute at one time by typing the operands with no
intervening spaces. For example, to “lock™ the file TEST so that it cannot be written to,
deleted, or renamed, use the command

DISABLE DNW TEST

Note: In order to protect a file so that it cannot be altered by the editor, you must
disable the Delete access attribute. This is because, when the editor saves a file, it
first deletes any existing file with that name and then creates a new file with the
same name.

Use the ENABLE command to reenable attributes you disabled with the DISABLE
command.

When you use the CATALOG command to list a directory, the attributes that are currently
enabled are listed in the Access field for each file. ProDOS 16 access attributes are
described in the Apple 1IGS ProDOS 16 Reference. Directory listings are dcscnbed in the
section “Listing a Directory” in Chapter 2.

DUMPOBJ

DUMPOBJ [option ...] pathame [NAMES= (segl [seg2] [..])]

The DumpOBJ utility writes the contents of an object file to standard output (normally the
screen). The default format for the listing is object-module-format (OMF) operation codes

and records. You can also list the file as a 65816 machine-language disassembly or as
hexadecimal codes.

APDA Draft 118 7127187

Apple IIGS Programmer's Workshop Chapter 3: Shell

oplion...

pathname

APDA Draft

You can specify as many of the following options as you wish by
separating the options with spaces. If you select two mutually exclusive
options (such as +X and +D), the last one listed is used. If an option can’t
function due to the other options set, it is ignored. For example, if you
select —H to suppress segment headers, and also specify —S to select short
headers, then the - S is ignored.

—A Suppress all information but the operation codes and operands for
each line of an OMF-format or 65816-format disassembly. The
default is to include the displacement into the file and the program
counter for each line at the beginning of the line.

+D Write the file dump as a 65816 disassembly rather than as OMF
records.

~F Suppress the checking of the file type. You can use this option to
dump the contents of any file, whether it is in OMF or not. See the
following discussion for more information on examining non-OMF
files. .

—~H If the output format is hexadecimal codes (+X option), this option
causes the headers to also be listed as hexadecimal codes. For all
other output formats, the headers are not printed at all.

—-I For 65816 disassembly listings, assume that the CPU is set to short
index (X and Y) registers at the start of the disassembly, rather than
starting in full native mode. This option has no effect on OMF-format
and hexadecimal listings.

-L Don’t show the contents of CONST and LCONST records for an OMF-
format disassembly. This option lets you see the structure of an OMF
file without listing all of the data in the file.

-M For 65816 disassembly listings, assume that the CPU is set to short
memory (accumulator) registers at the start of the disassembly, rather
than starting in full native mode. This option has no effect on OMF-
format and hexadecimal listings.

-0 Don’t show the contents of the segments; that is, list the headers only.

—-S Write only the name of the segment and the segment type for the
segment headers. The default is to include all of the information in the
segment header.

+X Write the file dump in hexadecimal codes rather than as OMF records.
Segment headers are always printed in ASCII text unless you also

select the —H option.
The full pathname or partial pathname (including the filename) of the file

you wish to dump. The file may be a library file, the output of an assembler
or compiler, a load file, or any other file that conforms to APW object

module format. If you use the —F option, you can specify a file of any file
type.

119 7127187

Chapter 3 Shell Apple IIGS Programmer's Workshop

segl seg2 ... The names of specific segments you wish to dump. If you specify the
NAMES parameter, only the segments you specify are processed. To geta
list of segments in the file, use the -0 and —S options with the DUMPOBJ
command. In case-sensitive languages, segment names must be entered
exactly as they appear in the source code. Segment names in case-
insensitive languages must be entered as all uppercase characters.

Press Apple-Period (3-.) to cancel the DumpOBYJ listing and return to the shell.

If the file consists of more than one segment, each segment is listed separately. Each
segment listing begins with the segment header, followed by the segment body. A typical
segment header is shown in Figure 3.4. The fields in the segment header are described in
the section “Object Module Format™ in Chapter 7.

Byte count : $00000078 120
Reserved space: $00000000 0
Length : $00000021 33
Label length : $0A 10
Number length : 504 4
Version : 802 2
Bank size : 500010000 65536
Kind : 50000 static code segment
Org : $00000000 0
Alignment : $00000000 0
Number sex : 500 0
Segment number: $0001 1
Segment entry : $00000000 0
Disp to names : $002C 44
64

Disp to body : $0040
Load name g
Segment name : SECOND

Figure 3.4. Sample DumpOBJ Segment Header

The format in which the body of the segment is shown depends on the option used. The
default is to show the contents of each record in the segment in object module format, A
typical OMF segment dump is shown in Figure 3.5. The first column shows the actual
displacement into the segment, in bytes, of that record. Because the segment header takes
up 61 bytes (that is, it ends at byte $3C), the first record in the segment starts at $3D. The
second column shows the setting of the program counter for that segment: that is, the
cumuladve number of bytes that the linker will create in the load file. The third and fourth
columns show the record type and operaton code of the OMF record shown on that line.
The last column shows the contents of the record. Expressions are shown in postfix form:
that is, the values being acted on are written first, followed by the operator. OMF records
and expressions are described in the section “Object Module Format” in Chapter 7.

Note: The OMF dump is provided to aid in the debugging of compilers. If you
are not highly familiar with the OMF, the default DumpOBJ listing will not be of
much use to you. You can, however, use the options provided to examine the
contents of an object file in machine-language disassembly format or as
hexadecimal codes.

APDA Draft 120 7127187

Apple 1IGS Programmer’s Workshop Chapter 3: Shell

00003D 000000 | USING ($E4) | DATA

000042 000000 | CONST ($03) | 4BABAE

000047 000003 | EXPR (SEB) | 02 : L:MSG2

000050 000005 | CONST ($04) | a00000B9

000055 000009 | BEXPR {$ED) | 02 : MSG2

00005E 00000B | CONST ($04) | DAS5A4820

000063 00000F | BEXPR (SED) t 02 : ~COUT

00006D 000011 | CONST ($0a) | 7AFACBCADOF1A9000060
000078 00001B | END ($00))

Figure 3.5. DumpOBJ OMF-Format Segment Body

If you select the +D option, the segment body is displayed in 65816 disassembly format. A
typical disassembly segment dump is shown in Figure 3.6. The first column shows the
actual displacement into the segment, in bytes, of the first byte in the line. The second
column shows the setting of the program counter for that segment: that is, the cumulative
number of bytes that the linker will create in the load file. The third column shows the
disassembly. The disassembly starts with LONGA and LONGI directives, indicating
whether the disassembler is assuming long or short operands for the accumulator and index
registers. The APW Assembler is described in the Apple IIGS Programmer’s Workshop
Assembler Reference manual.

Note: The disassembler tries to keep track of REP and SEP instructions, which
are used to set bits in the status register. The status register settings determine
whether 16-bit (native mode) or 8-bit (emulation mode) index-register (X and Y)
and accumulator-register transfers are used by the CPU. Any time the disassembler
finds an REP or SEP instruction, it inserts the appropriate LONGA and LONGI
directives in the disassembly to indicate the state of the registers. (The LONGA and
LONGI directives tell the APW Assembler whether to use long or short operands
for transfer instructions.) LONGA and LONGI directives are also placed at the
beginning of every segment in the disassembly to indicate the state of the registers
on entering the segment. If an expressmn involving a label was used as the
operand of the REP or SEP instruction, the disassembly might lose track of the
setting of the status register.

APDA Draft 121 7127187

Chapter 3 Shell

00003D
00003D
00003D
00003D
000043
000045
000046
00004B
00004F
000054
000056
000057
000058
00005D
00005F
000060
000061
000062
000064
000067
000068

000000
000000
000000
000000
000000
000001
000002
000005
000008
00000B
00000C
00000D
00000E
000011
000012
000013
000014
000015
000017
00001A
00001B

SECOND

LONGA
LONGI
START
USING
PHK
PLB
LDX
LDY
LDA
PHX
PHY
PHA
JSR

PLY

PLX
INY
DEX
BNE
LDA
RTS
END

ON
ON

DATA

L:MSG2

#350000
MSG2,Y

~COUT

*+5F1
#30000

Apple IIGS Programmer’s Workshop

Figure 3.6. DumpOB]J Disassembly-Format Segment Body

If you select the +X optior, the segment body is displayed in hexadecimal format. A
typical hexadecimal segment dump is shown in Figure 3.7. The first column shows the
actual displacement into the segment, in bytes, of the first byte in the line. The next four
columns show the next 16 bytes in the file. The last column shows the ASCII equivalents
of those bytes. The hexadecimal dump starts with the first byte after the segment header
(unless you specify the ~H option, in which case the segment header is included in the
hexadecimal dump), and ends at the last byte before the next segment header. Because all
segments in object files start on block (that is, 512-byte) boundaries, the bytes from the
END record to the end of the block are mcanmglcss (in Figure 3.7 they contain repetitions
of the data in the segment).

APDA Draft

122

7127187

Apple IIGS Programmer’s Workshop

Chapter 3: Shell

00003D | E4044441 5441034B ABAEEB0O2 84044D53 | d DATA K+.k MS
00004D | 47320004 AQ0000B9 ED028B304 4D534732 | G2 9m M3G2
00005D | OO0O4DASA 4820ED02 83057E43 4r555400 | ZZH m ~CQUT
00006D | OA7AFACS8 CADOF1A9 00006000 434F4E44 | zzHJPg) =~ COND
00007D | E4044441 5441034B ABAEEBO2 84044D53 | d DATA K+.k MS
00008D | 47320004 AQQ000B9 ED028304 4D534732 | G2 9m MSG2
00009D | O0O004DASA 4820ED02 B83057E43 4F555400 | ZZH m ~COUT
0000AD | OA7AFACS CADOF1AS 00006000 434F4E44 | zzHJPg) =~ COND
0000BD | E4044441 5441034B ABAEEB(O2 84044D53 | d DATA K+.k MS
0000CD | 47320004 ACOQOOBY9 ED028304 4D534732 | G2 9m MSG2
0000DD | O0O004DASA 4B820ED02 83057E43 4F555400 | ZZH m ~CQUT
0000ED | OA7AFACS CADOF1lA9 00006000 434F4E44 | zzHJPg) =~ COND
0000FD | E4044441 5441034B ABAEEB0O2 84044D53 | d DATA K+.k MS
00010D | 47320004 A00000B9 ED028304 4D534732 | G2 9m MSG2
00011D | O0004DASA 4820ED02 83057E43 4F555400 | ZZH m ~CouT
00012D | OA7AFACS8 CADOF1A9 00006000 434F4E44 | zzHJPg) =~ COND
00013D | E4044441 5441034B ABAEEBR(0Z2 84044D53 | d DATA K+.k MS
00014D | 47320004 AO0000B9 ED028304 4D534732 | G2 9m MSG2
00015D | O0O004DASA 4820ED02 83057E43 4F555400 | ZZH m ~COUT
00016D | OA7AFACS CADOF1A9 00006000 434F4E44 | zzHJPg) = COND
00017D | E4044441 5441034B ABAEEB(02 84044D53 | d DATA K+.k MS
00018D | 47320004 A00000B9 ED028304 4D534732 | G2 9m MSG2
00019D | 0004DASA 4820ED02 83057E43 4F555400 | ZZH m ~COUT
0001AD | OA7AFACS8 CADOF1A9 00006000 434F4E44 | zzHJPg) = COND
0001BD | E4044441 5441034B ABAEEB0O2 84044D53 | d DATA K+.k MS
0001CD | 47320004 A00000B9 ED028304 4D534732 | G2 9m MSG2
0001DD | O0OO04DASA 4820ED02 83057E43 4F555400 | ZZH m ~COUT
0001ED | OA7AFACB CADOF1A9 00006000 434F4E44 | zzHJPg) =~ COND
0001FD | E40444 | dD

Figure 3.7. DumpOBJ Hexadecimal-Format Segment Body

DumpOBJ can be used to dump the contents of any file, even if it is not in OMF. To dump
the contents of a non-OMF file, use the —H and -F options, together with either the +X or
+D options.

Important: Any other combination of options, or no options, will probably
produce unusable results, since in that case DumpOBJ attempts to scan the file for
segments as if it were in OMF.

DumpOBYJ is extremely useful for debugging compilers and assemblers, but it is also useful
whenever you want to see the contents of an OMF file. For example, before using the
SELECT command in a LinkEd file to extract specific segments from the object file

GOOD . STUFF, you could use the following command to list the names and segment types
of all the segments in the file:

DUMPOBJ —S -0 GOOD.STUFF

DumpOBJ specifies the type of each segment (such as static data, static code, dynamic
data, and so forth). Code segments are created by a START—END pair of directives in an
assembly-language source file; data segments are created by a DATA—END pair. In most
high-level languages, each subroutine corresponds to an object segment. Static and
dynamic segments are assigned by the linker; you can use LinkEd commands to control
these assignments. See Chapter 5 for a discussion of LinkEd commands.

APDA Draft 123 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

ECHO

ECHO string
This internal command lets you write messages to the screen from an Exec file. See the
section “Exec Files” earlier in this chapter for a more complete discussion of this command.

EDIT

EDIT pathname

This intemal command calls the APW Editor and opens a file to edit.

pathname The full pathname or partial pathname (including the filename) of the file
you wish to edit. If the file named does not exist, a new file with that name
is opened. If you use a wildcard character in the filename, the first file
matched is opened.

The APW default file type changes to match the file type of the open file. If you open a
new file, that file is assigned the current default file type. Use the CHANGE command to
change the file type of an existing file. To change the APW default file type before opening
a new file, type the name of the language you wish to use, and press Return.

The editor is described in Chapter 4.

ELSE

ELSE
ELSE IF

This internal command is used as part of an IF command. See the section “Exec Files”
later in this chapter for a more complete discussion of this command.
ENABLE

ENABLE D|N|RB|WI|R pathnamel [pathname2 ...)

This intemal command enables one or more of the access attributes of a ProDOS 16 file, as
follows:

D “Delete” privileges. If you enable this attribute, the file can be deleted.

N “Rename” privileges. If you enable this attribute, the file can be renamed.

B “Backup required” flag. If you enable this attribute, a backup utility
program will assume that this file has not been backed up since the last time
it was modified.

W “Write” privileges. If you enable this attribute, the file can be written to.

R “Read” privileges. If you enable this attribute, the file can be read.

APDA Draft 124 7127187

Apple IIGS Programmer’s Workshop ‘ Chapter 3: Shell

pathnamel pathname?2 ... The full pathnames or partial pathnames (including the
filenames) of the files whose attributes you wish to enable. You can use
wildcard characters in the filename.
You can enable more than one attribute at one time by typing the operands with no
intervening spaces. For example, to “unlock” the file TEST so that it can be written to,
deleted, or renamed, use the command

ENABLE DNW TEST
When a new file is created, all the access attributes are enabled. Use the ENABLE
command to reverse the effects of the DISABLE command.
END
END

This internal command terminates a FOR, IF, or LOOP command. See the section “Exec

- Files” later in this chapter for a more complete discussion of this command.

EQUAL
EQUAL [option ...] pathamel pathname2

The Equal utility compares two files or directories for data equality and can show
differences in file dates or types.

option You can specify as many of the following options as you wish by
separating the options with spaces.

4D |1 -D If you specify -D, Equal does not compare the creation and
modification dates and times of files. If you do not include this
option or specify +D, creation and modification dates and times are
compared.

+M| -M If you specify -M, Equal does not list the names of missing files:
that is, files that are present in one of the directories you listed but
not in the other. If you do not include this option or specify +M,
missing files are listed.

+N n Display the first » mismatched bytes. If you specify a value for
this option, the output for each file stops after n bytes of the files
that do not match have been listed. If you set n to 0, no
mismatches are displayed. If you do not select this option, the
display stops after 10 mismatches for each file. Note that there
must be space between N and n.

+P | =2 If you specify +P, Equal shows progress information. Progress
information consists of brief messages that tell you what the utility
is currently working on: for example, which subdirectory is
currently being processed. If you do not include this option or
specify -P, progress information is not produced.

APDA Draft 125 7127187

Chapter 3 Shell Apple lIGS Programmer’'s Workshop

#T|-T If you specify -T, Equal does not compare the file types of files.
If you do not include this option or specify +T, file types are
compared.

pathnamel pathname2 The full pathnames or partial pathnames of the two directories
or files that you want to compare. If you name two directories, all files and
subdirectories in the two directories are compared.

You can use Equal to determine whether two files are identical or whether the contents of
two directories are the same. If you list the pathnames of two directories, a file-by-file
comparison is made of the directories. Equal reads the filename, file type, and creation and
modification dates of a file in the first directory and then checks to see if a file of the same
name exists in the second directory. If it does, Equal compares the files byte-by-byte,
leaving the files and going on to the next pair after listing 10 bytes if they are not identical.
You can set options to suppress the comparison of file types, to suppress the comparison
of file dates and file times, and to specify a different number of bytes to compare before
going on to the next file. By default, Equal lists any filenames of files that exist in one file
but not in the other. You can suppress that output as well.

By specifying filenames instead of directory names, you can compare two files with
different filenames.

EXEC

EXEC

This langnage command sets the shell default language to EXEC. When you type the name
of a file that has the EXEC language type and press Return, the shell executes each line of
the file as a shell command. Exec command files are described in the section "Exec Files"
later in this chapter.

EXECUTE

EXECUTE pathname [paramlist)

This internal command executes an Exec file. If this command is executed from the APW
Shell command line, the variables defined in the Exec file are treated as if they were defined
on the command line.

pathname The full or partial pathname of an Exec file. This filename cannot include
wildcard characters.

paramlistt The list of parameters being sent to the Exec file.

You can execute an Exec file by using the EXECUTE command instead of just typing the
name of the Exec file and typing Return. The difference between these two methods of
executing Exec files is as follows: if you use the EXECUTE command from the shell
command line, any variables defined in the Exec file remain valid after control returns to the
shell; if, on the other hand, you do not use the EXECUTE command, variables are valid
only within the Exec file in which they are defined. See the section “Exec Files™ in this
chapter for a more complete discussion of this command.

APDA Draft 126 7127/87

Apple IIGS Programmer’s Workshop | Chapter 3: Shell

EXIT
EXIT ({number]

This internal command terminates execution of an Exec file. See the section “Exec Files”
later in this chapter for a more complete discussion of this command.

EXPORT
EXPORT [variable ...]

This internal command makes the specified variables available to Exec files called by the
current Exec file. See the section “Exec Files” later in this chapter for a more complete
discussion of this command.

FILES
FILES [option..] [directory)]

The Files utility lists the contents of a directory. You can use this utility to list the full
contents of a directory, including the contents of all included subdirectories. You can also
search for filenames that include a specified string.

option You can specify as many of the following options as you wish by
separating the options with spaces.

+Cn When you specify +C followed by a number, Files displays the
filenames in # columns. If you omit this parameter, one column is
used. You cannot specify the +C parameter together with the +L,
+F, Oor +R options. Note that there must be a space between the +C
and the n.

+F string When you specify +F followed by a character string, Files lists
all files in the specified directory whose filenames include the
string. This option searches all included subdirectories regardless
of whether the +R option is also used. When you specify both the
+F and +L options, the +L option is ignored. Note that there must
be a space between +F and string.

+L | =L When you specify +L, Files lists detailed information about each
file, similar to the information listed by the CATLOG command (see
below). If you omit this parameter or specify L, Files lists only
filenames.

+P | =P When you specify +P, Files shows the version number and the
current date and time. If you omit this parameter or specify P,
Files lists the directory contents with no header information.

+R|=R When you specify +R, Files lists all files in the directory, including
all files in included subdirectories. If you omit this parameter or
specify —R, Files lists only the files in the directory specified by
directory.

APDA Draft 127 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

directory The full pathname or partial pathname of the directory for which you want a
catalog listing.

When you specify the +L option, you get detailed information about the directory, as
follows:

Name Type Size (in blocks) Modified (date and time) Created (date and time) Subtype

The subtype corresponds to the Subtype column in the CATALOG command, but does not
display mnemonics. The subtype of source files (file type SRC) indicates the APW
language type; use the SHOW LANGUAGES command to get a listing of the language
numbers of the APW languages installed in your system.

The Files utility generates output with no column headings to facilitate its use as input to
future utilities.

FILETYPE
FILETYPE pathname filetype

This internal command changes the ProDOS 16 file type of a file.

pathname The full pathname or partial pathname (including the filename) of the file
whose file type you wish to change.

filetype The ProDOS 16 file type to which you want to change the file. Use one of
the following three formats for filetype:

» A decimal number 0-255.
« A hexadecimal number $00-$FF.

+ The three-letter abbreviation for the file type used in disk directories:
for example, S16, OBJ, EXE. A partial list of ProDOS 16 file types is
shown in Table 3.4. See the Apple IIGS ProDOS 16 Reference for a
complete list of file types.

You can change the file type of any file with the FILETYPE command; APW does not
check to make sure that the format of the file is appropriate.

Table 3.4. ProDOS File Types

Decimal Hex Abbreviation File Type

004 $04 THT Text

006 $06 BIN ProDOS 8 binary load
015 $0F DIR Directory

176 $BO SRC Source

177 $B1 OBJ Object

178 $B2 LIB Library

179 $B3 S16 ProDOS 16 load

180 $B4 RTL Run-time library

181 $B5 EXE Shell load

182 $B6 STR Startup load

APDA Draft 128 7127187

Apple IIGS Programmer’'s Workshop Chapter 3: Shell

184 $B8 NDA New desk accessory
185 $B9S CDA Classic desk accessory
186 $BA TOL Tool set file
249 $F9 P16 ProDOS 16 system file
255 $FF 'SYS ProDOS 8 load

FOR

FOR variable [IN valuel value2 ...]

This internal command, together with the END statement, creates a loop that is executed
once for each parameter-value listed. See the section “Exec Files” in this chapter for a more
complete discussion of this command.

HELP

HELP [commandname ...]

This internal command provides on-line help for all the commands in the command table
provided with APW. If you omit commandname, the HELP command causes a list of all
the commands in the command table to be printed on the screen.

commandname ... The names of the APW Shell commands about which you want
information.

When you specify commandname, the shell looks for a text file with the specified name in
the HELP / subdirectory in the utility prefix (prefix 6). If it finds such a file, the shell
prints the contents of the file on the screen. Help files contain information about the
purpose and use of commands. They show the command syntax in the same format as
used in this manual.

If you add commands to the command table or change the name of a command, you can
add, copy, or rename a file in the HELP / subdirectory to provide information about the
new command.

HISTORY

HISTCRY

This internal command lists to the screen the last 20 commands that you have entered on the
APW command line. Use the Up Arrow and the Down Arrow keys to scroll through these
commands as described in the section “Scrolling Through Commands™ in Chapter 2.

IF

IF expression

APDA Draft 129 7127/87

Chapter 3 Shell le IIGS Programmer’s Workshop

This internal command, together with the ELSE IF, ELSE, and END staternents, provides
conditional branching in Exec files. See the section “Exec Files” later in this chapter for a
more complete discussion of this mmmand,

INIT
INIT [-C] device [name}l

This external command formats a disk as a ProPOS 16 volume.
= If you specify —C before the pathname, INIT does not prompt you before
~ destroying the current contents of the disk.

Warning: INIT destroys any files on the disk being formatted. Be very careful
when using the ~C parameter: it is possible to delete the entire contents of a hard
disk without warning by using this command.

device The device name (such as .D1) of the disk drive containing the disk to be
formatted. If the disk being formatted already has a volume name, you can
specify the volume name instead of a device name.

name The new volume name for the disk. The volume name must begin with a
slash (/). If you do not specify name, the name /BLANK is used.

APW recognizes the device type of the disk drive specified by device and uses the
appropriate format. INIT works for all disk formats supported by ProDOS 16.

If you do not include the ~C parameter and INIT finds a readable directory on the disk you
want to format, the following prompt appears on the screen:

Destroy /diskname (Y or N)?

Here diskname is the name of the volume you specified in the INIT command. Type ¥
and press Return to initialize the disk. Type N and press Return to cancel the command.

INSTALL

INSTALL volume
INSTALL /APW directory

This external command installs an APW distribution disk.
volume The name of the APW volume that you want to install.

direciory The name of the directory into which you want to install APW. This
parameter is used only when you are installing the /APW disk.

This command can be used to install any APW disk distributed by Apple. To install the
/APW and /APWU disks that came with APW, see the section “Installing APW on a Hard
Disk” in Chapter 2. (If you are using APW on floppy disks, these disks require no
installation.) To install any other APW disk, such as APWC, see the installation
instructions in the manual that came with that disk.

APDA Draft 130 7127/87

Apple IIGS Programmer’s Workshop Chapter 3: Shell

LINK
LINK [+L|=L] ([+S|=S] [+W|=H]) filel [file2] [...] [KEEP=outfile]

This internal command calls the APW Linker, which links object files to create a load file.
You can use this command to link object files created by APW assemblers or compilers and
to cause the linker to search library files. If any unresolved references remain after all the
specified object files and library files have been specified, the library files in prefix 2 are
searched in the order in which they appear in the directory.

The linker is described in detail in Chapter 5.

+L|-L If you specify +L, the linker generates a listing (called a link map) of the
segments in the object file, including the starting address, the length in bytes
(hexadecimal) of each segment, and the scgment type. If you specify —-L,
the link map is not produced.

+S|-S If you specify +5S, the linker produces an alphabetical listing of all global
references in the object file (called a symbol table). If you specify —S, the
symbol table is not produced.

+W|-Ww If you select +W, the linker stops and waits for a key press when a nonfatal
error occurs, to give you the opportunity to read the error message and to
- decide whether to continue the link. Press Apple-Period (G-.) to halt
execution, or press any character key or the Space bar to continue. If you
omit this option or select —W, execution continues without pausing when a
nonfatal error occurs. Execution terminates immediately when a fatal error
occurs, regardless of the setting of this option.

filel file2 ... The full pathnames or partial pathnames, minus filename extensions, of
all the object files to be included, plus the full or partial pathnames of any
library files you want to search. Separate the filenames with spaces. The
first file you list, filel, must have a . ROOQT file; for the other object files,
eithera . ROOT file or a . A file must be present. For example, the program
TEST might consist of object files named TEST1.ROOT, TEST1.A,
TEST1.B, TEST2.A, and TEST2.B, all in directory /APW/MYPROG/.
In this case, you would use /APW/MYPROG/TEST1
/APW/MYPROG/TEST2 for objectfile.

You can also specify one or more library files (ProDOS 16 file type $B2) to
be searched. Any library files specified are searched in the order listed. If a
library file is listed before an object file, the library file is searched before
that object file is linked. Only the segments needed to resolve references
that haven’t already been resolved are extracted from library files. See the
discussion of the MAKELIB command in this chapter for more information
on library files.

KEEP=outfile Use this parameter to specify the pathname or partial pathname of the
executable load file.

You can specify a default load filename by using the LinkName shell
variable. Shell variables are described in the section “Variables™ later in this

chapter. If you do not specify either the KEEP parameter or a LinkName
variable, the link is performed but the load file is not saved.

APDA Draft 131 7127/87

Chapter 3 Shell Apple IIGS Programmer's Workshop

Important: If you do not include any parameters after the LINK command, you
are prompted for an input filename, as APW prompts you for any required
parameters. Since the output pathname is not a required parameter, however, you
are not prompted for it. Consequently, the link is performed, but the load file is not
saved unless you have specified a LinkName variable. Note that you can include
the KEEP parameter following the pathname you enter in response to the File
name prompt.

As an example of the use of the LINK command, suppose you want to link /APW/TEST1,
consisting of object files TEST1 . ROOT, TEST1.A, and TEST1.B. The following
command creates the load file /APW/MYTEST; no link map or symbol table is produced:

LINK /APW/TEST1 KEEP=/APW/MYTEST

Suppose you want to link TEST1 consisting of object files TEST. 1 .ROOQT, TEST. 1.2,
and TEST.1.B, search the library file MYLIB, and link TEST. 2 consisting of object files
TEST.2.Aand TEST.2.B. The following command creates the load file MYTEST,
printing the link map but suppressing the symbol table. Note that the library file MYLIB is
searched before TEST. 2 is linked:

LINK +L -S TEST.1l MYLIB TEST.2 KEEP=MYTEST

To automatically link a program after assembling or compiling it, use one of the following
commands instead of the LINK command: ASML, ASMLG, CMPL, CMPLG, RUN,

If you need to take advantage of the advanced link capabilites provided by the APW Linker,
create a file of LinkEd commands and process it using the ALINK command (or by
appending it to the last source file when you compile or assemble your program). The
linker is described in detail in Chapter 5.

Important: The LINK command can be used only to process object files and
library files; do not try to process a LinkEd file with the LINK command.

LINKED
LINKED

This langnage command sets the default language type to the APW Linker command
language, LINKED. To process a file of LinkEd commands, use one of the following shell
commands: ALINK, ASSEMBLE, or COMPILE.

If you do not need to take advantage of the advanced link capabilities provided by LinkEd,
do not create a LinkEd file, and do not use the ALINK command. Instead, use one of the
following commands to link your program: LINK, ASML, ASMLG, CMPL, or CMPLG.
The linker is described in detail in Chapter 5.

LOOP

LOOP

APDA Draft 132 7127/87

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Together with the END statement, this internal command defines a loop that repeats
continuously until a BREAK or EXIT command is encountered. The loop is also terminated
if any command in the loop returns a nonzero error status while the value of the variable
Exit is not null (see the section “Variables™ later in this chapter for a discussion of Exit).
This statement is used primarily in Exec files. See the section “Exec Files” later in this
chapter for more information on loops in Exec files.

MACGEN
MACGEN [+C|—C] infile outfile macrofilel [macrofile2 ...)

The MacGen utility creates a custom macro file for an APW Assembler program by
searching one or more macro libraries for the macros referenced in the program and placing
the referenced macros in a single file.

+C|-C If you omit this parameter or specify +C, all excess spaces and all comments
are removed from the macro file to save space. If you use the GEN ON
directive (to include expanded macros in your source-file listing) or the
TRACE ON directive (to include conditional execution directives in your
source-file listing), then use the —C parameter with the MACGEN command
to improve the readability of the listing.

infile The full pathname or partial pathname (including the filename) of the APW
Assembler source file. MacGen scans infile for references to macros.

outfile The full pathname (including the filename) of the macro file to be created by
MacGen.

macroﬁlel macrofile2 ... The full pathnames or partial pathnames (including the
filenames) of the macro libraries to be searched for the macros referenced in
infile. At least one macro library must be specified. Wildcard characters
- can be used in the filenames. If you specify more than one filename,
separate the names with one or more spaces.

Since macro-library searches are time-consuming and any given program may use macros
from several macro libraries, it is often miore efficient to create a custom macro library
containing only those macros needed by your program. The MacGen utility generates such

a library.

MacGen scans infile, including all files referenced with COPY and APPEND directives, and
builds a list of the macros referenced by the program. Next, MacGen scans macrofilel for
macros referenced in infile. If there are still unresolved references to macros, MacGen then
scans macrofile2, and so on. MacGen can handle macros that call other macros. If there
are still unresolved references to macros after all the macro files you specified in the
command line have been scanned, MacGen lists the missing macros and prompts you for
the name of another macro library. Press Return without a filename to terminate the
process before all macros have been found. After all macros have been found (or you
press Return to end the process), outfile is created.

The following example scans the file /APW/MYPROG for macro names, searches the macro
libraries /LIB/MACROS and /LIB/MATHMACS for the referenced macros, and creates the

macro file / APW/MYMACROS:

MACGEN /APW/MYPROG /APW/MYMACROS /LIB/MACROS /LIB/MATHMACS

APDA Draft 133 7127187

Chapter 3 Shell | Apple IIGS Programmer’s Workshop

You can specify a previous version of outfile as one of the macro libraries to be searched.
For example, suppose the program MYPROG already has a custom macro file called
MYMACROS, but you want to add one or more macros from the file LIB.MACROS. In this
case, you could use the following command:

MACGEN MYPROG MYMACROS MYMACROS LIB.MACROS

Important: Before you assemble your program, make sure that the source code
contains the directive MCOPY outfile to cause the assembler to search outfile for the
macros.

MAKEBIN
MAKEBIN loadfile [binfile] [ORG=val]

The MakeBin utility converts a ProDOS 16 load file (file type $BS only) to a ProDOS 8
binary load file (file type $06).
loadfile The full or partial pathname of a load file that contains a single static load
segment.

binfile The full or partial pathname of the binary file you want to create. If you do
not specify binfile, loadfile is overwritten with the binary file.

ORG=val The binary file is given a fixed start location at val and all code is relocated
for execution starting at the address val. You can use a decimal number for
val or you can specify a hexadecimal number by preceding val with a dollar
sign ($). If you omit this parameter, loadfile is relocated to start at $2000.

The MakeBin utility does no checking to make sure that your program will run under
ProDOS 8. The load file must consist of a single static load segment. It can be absolute or
relocatable. If you include an ORG directive in the source file, that ORG is respected; if
there is a source-file ORG and you specify a conflicting ORG in the MAKEB IN command,
however, an error occurs and the the binary file is not created. See the ProDOS 8
Reference manual for the requirements for a binary load file.

APW does not launch or run binary load files (file type $06). You can use the BLOAD and
BRUN commands in Applesoft BASIC to run these programs. (Applesoft BASIC is the
program BASIC.SYSTEM on your Apple IIGS system disk.) See the BASIC
Programming with ProDOS manual for a description of the BLOAD and BRUN commands.

MAKELIB
MAKELIB [~F] [-D] libfile [+objectfile ...] [-objectfile ...] ["objectfile ...]

The MakeLib utility creates or modifies a library file.

-F If you specify -F, a list of the filenames included in /ibfile is produced. If
you leave this option out, no filename list is produced.

-D If you specify ~D, the dictionary of symbols in the library is listed. Each
symbol listed is a global symbol occurring in the library file. If you leave
this option out, no dictionary is listed.

APDA Draft 134 _ 7127187

Apple lIGS Programmer’s Workshop Chapter 3: Shell

libfile The full pathname or partial pathname (including the filename) of the library
file to be created, read, or modified.

+objectfilen The full pathname or partial pathname (including the filename) of an object
file to be added to the library. You can specify up to eight object files to
add. Separate object filenames with spaces.

-objectfilen The filename of a component file to be removed from the library. This
parameter is a filename only, not a pathname. You can specify up to eight
component files to remove. Separate filenames with spaces.

~objecifilen The full pathname or partial pathname (including the filename) of a
component file to be removed from the library and written out as an object
file. If you include a prefix in this pathname, the object file is written to
that prefix. You can specify up to eight files to be written out as object
files. Separate filenames with spaces.

Note: You must specify at least one object file and no more than eight object files.
If you do not specify at least one object file, the message No action
requested appears on the screen.

An APW library file (ProDOS 16 file type $B2) consists of one or more component files,
each containing one or more segments. Each library file contains a library dictionary
segment that the linker uses to find the segments it needs.

As illustrated in Figure 3.8, MakeLib creates a library file from any number of object files.
In addition to indicating where in the library file each segment is located, the library
dictionary segment indicates which object file each segment came from. The MakeLib
utility can use that information to remove any component files you specify from a library
file. MakeLib can even recreate the original object file by extracting the segments that made
up that file and writing them out as an object file. Use the —F and -D parameters to list the
contents of an existing library file.

Note: The MAKELIB command is for use only with APW object-module-format
(OMF) library files used by the linker. For information on the creation and use of
libraries used by language compilers, consult the manuals that came with those
compilers.

APDA Draft 135 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

Libflle |
Object] ' Ubrary | Ustof object files
gg?' Dictionary
il Segment
sZ;Z — Cross reference
. g between fillenames,
- — segments. and
- - symbol names
- - :
; q
H=TeTal List of symbol narmes{
[J
Object2 T
500 |
segq E
: o v
) g .
=]
- ® z i
- .
———
Oblect3
el . .
2 L]
. seqa /
: .
- -
" _/

Figﬁré 3.8. Creation of a Library File

To create an OMF library file using the APW Assembler, use the following procedure:

1.

Write one or more source files in which each library subroutine is a separate
segment. You might want to make the first segment of each file a dummy, to be
discarded later as explained in the next two steps.

. Assemble the programs, specifying a unique name for each program with the KEEP

parameter in the ASSEMBLE command. Each multisegment program is saved as two
object files: one with the extension .ROOT and one with the extension .A. The
.ROOT file contains the first segment and the . A file contains all the rest. If you .
made the first segment a dummy, then the . ROOT file contains only the dummy
segment.

. Run the MakeL.ib utility, specifying each object file to be included in the library file.

For example, if you assembled two files, creating the object files LIBOBJ1 . ROOT,
LIBOBJ1.A, LIBOBJ2 .ROOT, LIBOBJ2.A, and your library file is named
LIBFILE, then your command line should be as follows:

APDA Draft 136 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

MAKELIB LIBFILE +LIBOBJ1.ROOT +LIBOBJ1.A +LIBOBJZ2.RCOT +LIBOBJ2.A

If you made the first segment of each file a dummy, however, then you do not need
to include the . ROOT files, and your command line should be as follows:

MAKELIB LIBFILE +LIBOBJ1.A +LIBOBJZ.A

4. Place the new library file in the LIBRARIES/ subdirectory. (You can accomplish
this in step 3 by specifying /APW/LIBRARIES/LIBF ILE for the library file, or
you can use the MOVE command after the file is created.)

APW OMF library files and library-dictionary segments are described in the section “Object
Module Format” in Chapter 7. The APW Linker is described in Chapter 5.

MOVE

MOVE [-C] pathnamel [pathname2]
MOVE (-C] pathname [directory]

This internal command moves a file from one directory to another; it can also be used to
rename a file.

—~C If you specify —C before the first filename, then MOVE does not prompt you
if the target filename (pathname?2) already exists.

pathnamel The full pathname or partial pathname (including the filename) of the file to
be moved. Wildcard characters may be used in this filename.

pathname2 The full pathname or partial pathname of the file you wish to move the file
to. If you specify a target filename, the file is renamed when it is moved.
Wildcard characters cannot be used in this pathname. If the prefix of
pathname? is the same as that of pathnamel, then the file is renamed only.

pathname The full pathname or partial pathname (including the filename) of the file to
be moved. Wildcard characters may be used in this filename.

directory The pathname or partial pathname of the directory you wish to move the file
to. If you do not include a filename in the target pathname, the file is not
renamed. Wildcard characters cannot be used in this pathname.

If the file you wish to move and the target directory are on the same volume, APW calls
ProDOS 16 to move the directory entry (and rename the file, if a target filename is
specified). If the source and destination are on different volumes, the file is copied; if the
copy is successful, the original file is deleted. If the file specified in pathname? already
exists and you complete the move operation, then the old file named pathname? is deleted
and replaced by the file that was moved.

MU

MU

This command is an alias for PREFIX 6 /APWU/UTILITIES. You can use this
command when you are running APW from floppy disks to switch the utility prefix (prefix
6) to the utility subdirectory on the /APWU disk, which contains a full set of utility

APDA Draft 137 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

programs and help files. Use the UMU command to switch the utility prefix back to the
/APW disk.

Note: The MU and UMU commands are created by ALIAS commands in the LOGIN
file of the floppy-disk version of APW. These aliases are not included in the APW

command table and are not set by the hard-disk version of the LOGIN file (that is,
the LOGIN file put on a hard disk by the INSTALL command).

PREFIX

PREFIX [n] directory

This internal command sets any of the eight standard ProDOS 16 prefixes to a new
subdirectory.

n A number from 0 through 7, indicating the prefix to be changed. If this
parameter is omitted, O is used. This number must be preceded by one or
more spaces.

directory The pathname or partial pathname of the subdirectory to be assigned to
prefix n.

Prefix 0 is the current prefix; all shell commands that accept a pathname use prefix 0 as the
default prefix if you do not include a slash (/) at the beginning of the pathname. Prefixes 1
through 6 are used for specific purposes by ProDOS 16 and APW; see the section
“Standard Prefixes” earlier in this chapter for details. The default settings for the prefixes
are shown in Table 3.1, Use the SHOW PREFIX command to find out what the prefixes
are currently set to.

The prefix assignments are reset to the defaults each time APW is booted. To use a custom
set of prefix assignments every time you start APW, put the PREF IX commands in the
LOGIN file. (The LOGIN file is an Exec file that is executed automatically at load time if it
is present. See the section “Exec Files” later in this chapter for instructions on writing an
Exec file. See the section “Installing APW on a Hard Disk” in Chapter 2 for an example of
a LOGIN file that uses PREF IX commands.)

PRODOS

PRODOS

This language command sets the APW Shell default language to ProDOS 16 text. ProDOS
16 text files are standard-ASCII files with ProDOS 16 file type $04; these files are
recognized by ProDOS 16 as text files. APW text files, on the other hand, are standard-
ASCII files with ProDOS 16 file type $B0 and an APW language type of TEXT. The
APW language type is not used by ProDOS 16. See the Apple IIGS ProDOS 16 Reference
for a discussion of ProDOS 16 file types.

APDA Draft 138 7127187

Apple 1IGS Programmer’s Workshop Chapter 3: Shell

QUIT
QUIT

This internal command terminates the APW program and returns control to ProDOS 16. If
you called APW from another program, ProDOS 16 returns you to that program; if not,
ProDOS prompts you for the next program to load.

RENAME
RENAME pathnamel pathname2
This internal command changes the name of a file. You can also use this command to

move a file from one subdirectory to another on the same volume.

pathnamel The full pathname or partial pathname (including the filename) of the file to
be renamed or moved. If you use wildcard characters in the filename, the
first filename matched is used.

pathname2 The full pathname or partial pathname (including the filename) to which
pathnamel is to be changed or moved. You cannot use wildcard characters
in the filename.

If you specify a different subdirectory for pathname2 than for pathnamel, the file is moved
to the new directory and given the filename specified in pathname?2.

- Important: The subdirectories specified in pathname!l and pathname2 must be on
the same volume. To rename a file and move it to another volume, use the MOVE
command. '

RUN
RUN [option...] filel [file2] [..] [KEEP=outfile]

[NAMES= (seg! (seg2] [..1)]1 [languagel= (option ...)

[language2= (option ...)] [...]]
This internal command compiles (or assembles) one or more source files, links one or more
object and library files, and runs the resuiting load file. See the ASML command for a list
of options and a description of the parameters. See your compiler or assembler manual for
the default values of the parameters and the language-specific options available.

The RUN and CMPLG commands are aliases for ASMLG.

SEARCH
SEARCH [+C|=C] [+L|=L] [+P|=P] string pathname
The Search utility searches a file or files for the string you specify.

APDA Draft 139 7127187

Chapter 3 Shell Apple IIGS Programmer's Workshop

+C|-C If you specify +C, a match is found only if the string found matches the
search string exactly, including case. If you omit this option or specify —C,
searches are not case sensitive.

+L|-L If you specify +L, search lists the line number and the contents of the line in
which it found a match for the search string. If you omit this option or
specify —L, only the name of the file in which a match was found is listed.

+P |-P If you specify +P, search displays progress information. Progress.
information consists of brief messages that tell you what the utility is
currently working on; for example, which file is currently being searched.

If you omit this option or specify —P, no progress information is displayed.

string The string for which you wish to search. To specify a string that includes
spaces, enclose the string in double quotation marks (Y

pathname The full pathname or partial pathname, including filename, of the file you
want to search for string. You can include wildcard characters in this
filename.

You can use this utility to search a text or source file for all occurrences of a string, or, by
using wildcards in the filename, to search through several files to find out in which one the
string occurs.

For example, to search the file /APW/MYFILES/DONUT for all occurences of the word |
HOLE, you could use the following command:

SEARCH -1L HOLE /APW/MYFILES/DONUT

To search all files in the directory MYFILES to determine which files contain the string
Donut Hole, making the search case-sensitive, you could use the following command:

SEARCH ~-C 'Donut Hole' /APW/MYFILES/=

SET

SET [variable [value]]

This internal command allows you to assign a value to a variable name. You can also use
this command to obtain the value of a variable or a list of all defined variables.

variable The variable name you wish to assign a value to. Variable names are not
case-sensitive, and only the first 255 characters are significant. If you omit
variable, a list of all defined names and their values is written to standard
output.

value The string that you wish to assign to variable. Values are case sensitive and
are limited to 255 characters. All characters, including spaces, starting with
the first nonspace character after variable to the end of the line, are included
in value. If you include variable but omit value, the current value of
variable is written to standard output.

APDA Draft 140 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

The SET command can be used on a shell command line or in an Exec file. Use the

UNSET command to delete the definition of a variable. Variables are valid only within the
Exec file in which they are defined unless you use the EXPORT or EXECUTE commands.
See the section “Exec Files” later in this chapter for a more complete discussion of the SET,
EXPORT, and EXECUTE commands.

Important: Certain variable names are reserved. See the section “Variables” later
in this chapter for a list of reserved variable names.

SHOW

SHOW [LANGUAGE] [LANGUAGES] [PREFIX] [TIME] [UNITS]

This internal command provides information about the system.
LANGUAGE Shows the current system-default language.

LANGUAGES Shows a list of all languages defined in the command table, including -
their language numbers.

PREFIX Shows the current subdirectories to which the ProDOS 16 prefixes are set.
See the section “Standard Prefixes’ later in this chapter for a discussion of
APW prefixes.

TIME Shows the current time and date.

UNITS Shows the available units, including device names and volume names.
Only those devices that have formatted ProDOS volumes in them are
shown. To see the device names for all of your disk drives, make sure that
each drive contains a ProDOS disk.

More than one parameter can be entered on the command line; to do so, separate the
parameters by one or more spaces. If you enter no parameters, you are prompted for them.

TEXT
TEXT

This language command sets the APW Shell default language to APW TEXT. APW text
files are standard-ASCII files with ProDOS 16 file type $B0 and an APW language type of
TEXT. The TEXT language type is provided to support any text formatting programs that
may be added to APW. TEXT files are shown in a directory listing as SRC files with a
subtype of TEXT.

Use the PRODOS command to set the language type to ProDOS 16 text: that is, standard-
ASCII files with ProDOS 16 file type $04. ProDOS 16 text files are shown in a directory
listing as TXT files with no subtype. See the Apple IIGS ProDOS 16 Reference manual for
a discussion of ProDOS 16 file types.

APDA Draft 141 7127187

C hapier 3 Shell Apple 11GS Programmer’s Workshop

TYPE

TYPE [+N|=N] pathnamel [startlinel [endlinel]]
[pathname2 [startline2 [endline21]1 [...]1]

This internal command prints one or more text or source files to standard output (usually
the screen).

+N|-N If you specify +N, the shell precedes each line with a line number. The
default is —N: no line numbers are printed. If you type more than one file,
the line numbers are not reset at the start of each file.

pathnamel ... pathname? ... The full pathnames or partial pathnames (including the
filenames) of the files to be printed. You can use wildcard characters in
these filenames, in which case every text or source file matching the
wildcard filename specification is printed. If you specify more than one
pathname in the command, separate the pathnames with spaces.

startlinel The line number of the first line of pathnamel to be printed. If this
parameter is omitted, the entire file is printed.

endlinel The line number of the last line of pathnamel to be printed. If this
parameter is omitted, the file is printed from startline to the end of the file.

ProDOS 16 text files and APW source files (including APW TEXT files) can be printed
with the TYPE command. For example, to write lines 2 through 5 of sourcefile MYPROG
and 9 through 18 of text file RELEASE . NOTES, use the following command:

TYPE MYPROG 2 5 RELEASE.NOTES 9 18

To redirect output to a printer or file, use output redirection as described in the section
“Redirecting Input and Output” later in this chapter. For example, to send to the printer the
entire file MYFILE and the file YOURFILE from line 9 to the end of the file, preceding each
line with a line number, use the following command:

TYPE +N MYFILE YOURFILE 9 >.PRINTER

UMU .
UMU

This command is an alias for PREFIX 6 4/../UTILITIES. You can use this
command when you are running APW from floppy disks to switch the utility prefix (prefix
6) from the utility subdirectory on the /APWU disk, which contains a full set of utility
programs and help files, to the utility subdirectory on the /APW disk. Use the MU
command to switch the utility prefix to the /APWU disk.

Note: The MU and UMU commands are created by ALIAS commands in the LOGIN
file of the floppy-disk version of APW. These aliases are not included in the APW
command table and are not set by the hard-disk version of the LOGIN file (that is,
the LOGIN file put on a hard disk by the INSTALL command).

APDA Draft 142 7127187

Apple 1IGS Programmer’s Workshop Chapter 3: S}:ell

UNALITAS
UNALIAS alias] [alias2 ...}

This internal command deletes aliases for commands.
alias! alias2 ... The names of the aliases you wish to delete.

Use the ALIAS command to define an alias.

UNSET
UNSET variablel [variable2 ...}

This internal command deletes the definition of a variable.

variablel variable2 ... The names of the variables you wish to delete. Variable names -
are not case sensitive, and only the first 255 characters are significant.

Use the SET command to define a variable. See the next section, “Exec Files,” for a more
complete discussion of the SET command.

VERSION

VERSION

This external command displays the version number of the APW Shell program you are
using.

Exec Files

You can execute one or more APW Shell commands from a command file called an Exec
file. To create a command file, first set the system language to EXEC by typing EXEC and
pressing Return, and then open a new file with the editor. Any of the commands described
in this chapter can be included in an Exec file. The commands are executed in sequence, as
if you had typed them from the keyboard. '

To execute an Exec file, type the full pathname or partial pathname (including the filename)
of the Exec file and press Return. You can also execute an Exec file using the EXECUTE
command. The advantages of doing so are described in the section on the EXECUTE
command later in this chapter.

You can place an Exec file in the UTILITIES/ subdirectory (prefix 6) and add it to the
command table as a utility program. Then you can execute the program just by typing its
name on the shell’s command line (or by typing EXECUTE and the filename); in this case,
the full pathname of the Exec file is not needed. The command table is discussed in the
section “Command Types and the Command Table” earlier in this chapter.

When an Exec file terminates, it returns control to the Exec file that called it, or to the shell
if it was executed from a shell command line. If you execute an interactive utility, such as

APDA Draft 143 7127/87

Chapter 3 Shell Apple IIGS Programmer’s Workshop

the APW Editor, from an Exec file, the utility operates normally, accepting input from the
keyboard. If the utility name was not the last command in the Exec file, you are returned to
the Exec file when you quit the utility. '

Exec files are programmable: that is, APW includes several commands designed to be used
within Exec files that permit conditional execution and branching. You can also pass
parameters into Exec files by including them on the command line. These features are
described in the following sections.

Exec files can call other Exec files. The level to which Exec files can be nested and the
number of variables that can be defined at each level depend on the available memory.

You can put more than one command on a single line of an Exec file by separating the
commands with semicolons (;).

The commands described in this section are usually used in Exec files; note, however, that
any of these commands can also be used from a shell command line. For example, the
following command line would delete from a directory all files that ended in the extensions

.OLD, .BAK, and .TEST:
FOR EXT IN OLD BAK TEST ; DELETE =.{EXT)} ; END

FOR—END loops are described later in this section.

The following subsections explain how to write Exec files. You are told how to pass
parameters into Exec files, how to use variables in Exec files, and how to use each of the
shell commands that provide conditional execution, branching, and other functions useful
in Exec files.

Passing Parameters Into Exec Files

When you execute an Exec file, you can include the values of as many parameters as you
wish by listing them after the pathname of the Exec file on the command line. Separate the
parameters with spaces or tab characters. To specify a parameter value that has embedded
spaces or tabs, enclose the value in quotation marks (). Quotation marks embedded in a
parameter string must be doubled.

For example, suppose you want to execute an Exec file named FARM, and you want to pass
the following parameters to the file:

* cow

* chicken

*+ one egg

¢ "0ld"™ MacDonald

In this case, you would enter the following command on the command line:

FARM cow chicken "one egg"” """0ld"" MacDonald"

Parameters are assigned to variables inside the Exec file as described in the next section.

APDA Draft 144 7127187

Apple HIGS Programmer’s Workshop Chapter 3: Shell

Programming Exec Files

In addition to being able to execute any of the shell commands discussed in the “Command
Descriptions”™ section of this chapter, Exec files can use several special commands that
permit conditional execution and branching. This section discusses the use of variables in
Exec files and the logic operators used to form Boolean (logical) expressions.

Variables

Any alphanumeric string up to 255 characters long can be used as a variable name in an
Exec file. (If you use more than 255 characters, only the first 255 are significant.) All
variable values and parameters are ASCII strings of 255 or fewer characters. Variable

names are not case-sensitive, but the values assigned to the variables are case-sensitive.

To define values for variables, you can either pass them into the Exec file as parameters or
include them in a FOR command or a SET command as described in the sections on those
commands later in this chapter. To assign a null value to a variable (a string of zero
length), use the UNSET command.

Curly brackets ({ }) around a variable name indicate the value of the variable. For
example, if you execute the coommand SET ECHO ON, then {Echo} refers to the value
ON.

Variables included in an EXPORT command on a shell command line can be used within
any Exec file. Variables included in an EXPORT command within an Exec file are valid in
any Exec files called by that file; they can be redefined locally, however. Variables
redefined within an Exec file revert to their original values when that Exec file is terminated
unless the file was called with an EXECUTE command.

The following variable names are reserved. Several of these variables may have number
values; keep in mind that these values are literal ASCII strings. A null value (a string of
zero length) is considered undefined. Use the UNSET command to set a variable to a null
value. Several of the predefined variables are used to set up a printer. See the section
“Using a Printer” in Chapter 2 for a discussion of printer initialization.

Yariable Name Yalue
0 The name of the Exec file being executed.
) - - Parameters from the command line. Parameters are numbered

sequentially in the sequence in which they are entered.
The number of parameters passed.

CaseSensitive If you set this variable to any non-null value, string comparisons
are case-sensitive. The default value is null.

Command The name of the last command executed, exactly as entered,
excluding any command parameters. For example, if the
command was /APW/MYPROG, then Command equals
/APW/MYPROG, while if the command was EXECUTE
/APW/MYEXEC, then Command equals EXECUTE. The
Parameters variable is set to the value of any parameters.

APDA Draft 145 7127187

Chapter 3 Shell

Echo

Exit

KeepType

KeepName

APDA Draft

Apple IIGS Programmer’s Workshop

If you set this variable to a non-null value, then commands within
the Exec file are printed to the screen before being executed. The
default value for Echo is null (undefined); use the UNSET
command to set Echo to a null value (that is, to delete its
definition).

If you set this variable to any non-null value, and if any command
or nested Exec file returns a nonzero error status, then execution
of the Exec file is terminated. The default value for Exit is non-
null (it is the ASCII string t rue). Use the UNSET command to
set Exit to a null value (that is, to delete its definition).

A hexadecimal number (represented as an ASCII string)
corresponding to a load file type. If KeepType is undefined or
set to a nonvalid file type, $B5 (shell load file) is used. The most
common alternative is $B3 (system load file). Valid load file types
are $B3 through $BE.

If you set this variable to any non-null value and do not include a
KEEP parameter on the shell command line when you compile or
compile and link a program, then the shell uses this variable to
name the output files. If you set KeepName to a non-null value,
it overrides any KEEP directive in the source file. The default
value for KeepName is null (undefined); use the UNSET
command to set KeepName to a null value (that is, to delete its
definition).

The KeepName variable can include the wildcard characters % and
$. The percent sign (%) is replaced with the source filename. The
dollar sign ($) is replaced with the source filename with the last
extension removed. For example, if {KeepName} issetto %.0
and you execute the command CMPL MYF ILE, the shell uses the
name MYFILE.O.ROOT for the object file and the linker uses the
name MYFILE.O for the load file. Similarly, if KeepName is set
to $ and you execute the command CMPL MYFILE.C, the shell
uses the name MYFILE . ROOT for the object file and the name
MYFILE for the load file.

The KeepName variable is not used by the LINK command. See
the description of the LinkName variable, below, for a way to set
default load filenames.

Important: Because ProDOS does not allow filenames
longer than 15 characters, you must be careful not to use a
source filename that will create an output filename longer
than 15 characters. For example, if KeepName is set to

% .OUT and the source filename is LONGNAME, the compile
will fail when the shell tries to open the file

LONGNAME . OUT . ROOT, which has 17 characters.

Because the shell will not let you overwrite a source file
with a load file, you cannot set KeepName to % and use it
with a link. For example, if KeepName is set to % and you
try to execute the command CMPL MYF ILE, the link will

146 7127187

Apple 1IGS Programmer’s Workshop Chaprer 3: Shell

LinkName

Parameters

PrinterColumns

APDA Draft

fail when the linker tries to write a load file named
MYFILE.

If you set this variable to any non-null value and you do not
include a KEEP parameter on the shell command line, then the
shell uses this variable to name the load file. If you set
LinkName to a non-null value, it overrides any KEEP command
in the LinkEd source file. The default value for LinkName is null
(undefined); use the UNSET command to set LinkName to a null
value (that is, to delete its definition).

The LinkName variable can include the wildcard characters % and
$. The percent sign (%) is replaced with the object file’s root
filename. The dollar sign ($) is replaced with the object file’s root
filename with the last extension removed. For example, if
LinkName is set to % .0 and you execute the command LINK
MYF ILE, the shell uses the name MYFILE. O for the load file.
Similarly, if LinkName is set to $ and you execute the command
;’:‘II\JPL MYFILE.C, the shell uses the name MYF ILE for the load
ile.

If you name more than one object file on the command line and the
LinkName variable includes a wildcard character, the shell
applies the LinkName variable to the root name of the first object
file linked.

Important: Because ProDOS does not allow filenames
longer than 15 characters, you must be careful not to use a
value for LinkName that will create a load filename longer
than 15 characters. For example, if LinkName is set to

% . LOADF ILE and the root filename is LONGNAME . ROOT,
the compile will fail when the shell tries to open the file '
LONGNAME . LOADF ILE, which has 17 characters.

Because the shell will not let you overwrite a source file
with a load file, you cannot set {LinkName} to % when
the object file’s root filename is the same as the source
filename. For example, if {LinkName} is set to % and
you try to execute the command CMPL MYF ILE, the link
will fail when the linker tries to write a load file named
MYFILE.

The parameters of the last Exec file executed, exactly as entered,
excluding the Exec file’s pathname. For example, if you execute
an Exec file with the command /APW/FARM COW DUCK, then
{Parameters} equals COW DUCK.

An ASCII number indicating the number of characters on a line,
The printer driver assumes a new line has begun each time
'{PrinterColumns }+1 characters have been printed since the
last carriage return. The printer driver uses this parameter to count
lines on a page in case your printer automatically inserts a carriage
return and line feed to wrap lines that are too long. If your printer
stops printing at the end of the line, or returns to the start of the

147 7127187

Chapter 3 Shell

PrinterInit

PrinterLineFeed

PrinterLines

PrinterSlot

APDA Draft

Apple IIGS Programmer’s Workshop

line and overprints the line, then set {PrinterColumns} to 0
and the printer driver will count a new line only when a carriage
return is sent.

The initialization string to be sent to your printer each time you
send text to the printer. Use this string to set the printer options
you want to use, such as character pitch, print quality, line
spacing, or boldfacing. Precede a character with a tilde (~) to
indicate a control character. Precede a character with 2a number
sign (#) to indicate that the next character should have the most
significant bit set. Precede the tilde with a number sign to indicate
a control character with the most significant bit set.

To specify the number-sign character ($23), use the sequence ~#.
To specify the tilde character ($7E), use the sequence ~~. To
specify the tilde character with the most significant bit set ($FE),
use the sequence #~~. A space is interpreted as a space character
(%20).

Important: The shell does no error checking on the
initialization string; if you specify an illegal control
character, the shell subtracts $40 from the character and
sends it to the printer anyway. For example, if you specify
~g, the shell sends $27 to the printer.

The following command sends the string “Control-L Esc a 2" to
the printer (for an Apple ImageWriter II printer, this string feeds
the paper to the next top-of-form position and sets the printer to
near-letter-quality mode):

SET PRINTERINIT ~L~[a2

The following command sends the sequence $1B $44 $80 $00 to
the printer (for an Apple ImageWriter II printer, this sequence
adds an automatic line feed after every carriage return):

SET PRINTERINIT ~[D#~@~@

See the manual that came with your printer for the options
available and the codes necessary to set them.

If this variable is not defined, no line-feed character ($0A) is
inserted after a carriage return ($0D). If this variable is non-null,
the printer driver automatically inserts a line feed after every
carriage return. If no line feed is added when one is needed, the
printer overprints every line of text without advancing the paper.
If a line feed is added when one is not needed, the lines are double
spaced.

An ASCII number indicating the number of lines to be sent to the
printer before a form-feed character ($0C) is sent. If
{PrinterLines} = 0, no form-feed characters are sent.

An ASCII number from 1 through 7 indicating the number of the
slot containing your printer-driver PC board. The default value

for PrinterSlot is 1.

148 - 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

Important: If you specify the wrong slot number, the
printer initialization string and output data are sent to the
wrong slot, with consequences that depend on the device
assigned to that slot. For example. the system might hang
or reset.

Status The error status returned by the last command or Exec file
executed. This variable is the ASCII character 0 ($30) if the
command was executed successfully. For most commands, if an
error occurred, the error value returned by the command is the
ASCII string 65535 (representing the error code $FFFF).

Logic Operators

APW includes two operators that you can use to form Boolean (logical) expressions.
String comparisons are case sensitive if {CaseSensitive} is not null (the default is for
string comparisons to not be case sensitive). If an expression’s result is true, the
expression returns the character 1. If an expression’s result is not true, the expression
returns the character 0. There must be one or more spaces before and after the comparison
operator. ,

The two Exec file logic operators are defined as follows:

strl ==str2 String comparison: true if string s¢7] and string str2 are identical;
falseif not.

strl \=5str2 String comparison: false if string sir] and string s¢r2 are identical;
true if not.

Operations can be grouped with parentheses. For example, the following expression is
true if one of the expressions in parentheses is false and one is true; the expression is false
if both expressions in parentheses are true or if both are false:

IF (COWS == KINE) != (CATS == DOGS)

Important: Every symbol or string in a logical expression must be separated from
every other by at least one space. In the preceding expression, for example, there is
a space beween the string comparison operator ! = and the left parenthesis, and
another space between the left parenthesis and the string CATS.

Entering Comments
To enter a comment into an Exec file, use the COMMENT command (or its alias, an

asterisk (*)), followed by a space and the comment. See the section on the COMMENT
command, later in this chapter, for details.

LOGIN Files
Each time you start APW, it looks for an Exec file named LOGIN in the APW system

prefix (prefix 4). If it finds such a file, APW executes it before doing anything else. You
can use LOGIN to set system variables such as PrinterSlot, to change default prefix

APDA Draft 149 7127187

Chapter 3 Shell Apple 1IGS Programmer’s Workshop

assignments, or even to execute a utility program. Any APW command described in this —
chapter can be used in a LOGIN file. ;s

Any system variables set in a LOGIN file must be included'in an EXPORT command to be
exported to the shell command level and to other Exec files. To reexecute LOGIN without
reloading APW (to reset system parameters to your selected defaults, for example), use the
command EXECUTE 4/LOGIN.

Exec File Command Descriptions

The commands described in this section can be used in Exec files to control conditional
execution and branching and to assign values to variables.

The following notation is used to describe commands:

UPPERCASE ‘Uppercase letters indicate a command name or an optlon that must
- bespelled exactly as shown. The APW Shell command interpreter
is not case sensitive; that is, you can enter commands in any
combination of uppercase and lowercase letters.

italics Italics indicate a variable that you must replace with spcc1ﬁc
information, such as a pathname or file type.

[1 : Parameters enclosed in square brackets are optional.

Ellipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish. s

. Vertical ellipses indicate that any number of shell commands can be
, inserted between the two commands shown.

BREAK

BREAK

This internal command terminates the innermost FOR or LOOP statement currently
executing. For example, if a FOR loop is executing inside an IF statement and a BREAK
statement is encountered, control passes to the statement following the FOR loop’s END
statement. A BREAK statement can be used to terminate a LOOP loop.

APDA Draft 150 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

COMMENT
COMMENT [Zext]

This internal command, or an asterisk (*), is used to enter comments into Exec files.

text The comment that you want to include in the file. All characters starting
with the first nonspace character after the COMMENT or * command to the
end of the line are part of the comment. To include a semicolon (;), vertical
bar (1), greater-than sign (>), or less-than sign (<) in the comment, enclose
text in double quotation marks (). You must include a space after the
asterisk or COMMENT, or the shell interprets the line as a pathname.

The asterisk and the word COMMENT are included in the command table as null commands.
They are treated by the shell as commands that do nothing. Consequently, a semicolon
terminates the comment; the text following the semicolon is interpreted as another
command. If you include a redirection operator (> or <) or pipeline operator ([), the shell
attempts to redirect the comment as it would any command.

As an example of the use of this command, the following Exec file sends a catalog listing to
the printer:

CATALOG >.PRINTER
* Send a catalog listing to the printer

The following line uses a semicolon to place the comment on the same line as the
CATALOG command:

CATALOG >.PRINTER ;* Send a catalog listing to the printer

CONTINUE
CONTINUE

This internal command causes control to skip over following statements to the next END
statement that isn’t the END for an IF statement. It does not cause termination of the loop
(unless the last value has been used in a FOR loop).

ECHO
ECHO string

This internal command lets you write messages to the screen.

string The string that you wish to print to the screen. All characters starting with
the first nonspace character after the ECHO command to the end of the line
are printed to the screen. If you include variables in the string, they are
expanded—that is, their current value is substituted—before they are printed
to the screen. To include leading space characters, enclose string in double

quotation marks (").

APDA Draft ' £l 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

EXECUTE

EXECUTE pathname [paramlist)

This internal command executes an Exec file, treating the commands in the file as if they
were in the Exec file that contains the EXECUTE command. If this command is executed
from the APW Shell command line, any variables defined in the Exec file are treated as if
they were defined on the shell command line,

pathname The full or partial pathname of an Exec file. This filename cannot include
wildcards.

paramlist The list of parameters being sent to the Exec file. Separate the parameters
by one or more spaces.

Exec files can be nested: that is, one Exec file can include a statement that executes another
Exec file, that file can in turn call a third, and so on until your Apple IIGS runs out of
memory. Normally, variables defined within each Exec file are local to that file; that is, the
values are not valid in any other Exec file (see the discussion of the EXPORT command
later in this chapter for an exception to this rule). If you use an EXECUTE command,
however, any commands executed in the Exec file called by the EXECUTE command (the
nested file) are treated as if they were executed in the file that contains the EXECUTE
command (the calling file). Consequently, any variables defined in the calling Exec file are
valid in the nested Exec file, and any variables defined in the nested Exec file remain valid
after the nested Exec file finishes executing.

As illustrated in Figure 3.9, when you execute an Exec file with the EXECUTE command,
it’s as if the commands in the nested Exec file are inserted into the calling Exec file. The
Exec files illustrated in part B of this figure are exactly equivalent to those illustrated in part
A. Note that EXEC4 is not called with an EXECUTE command, and so it does not share
variable definitions with EXEC2 or EXEC1.

APDA Draft 152 7127187

Apple 1IGS Programmer’'s Workshop

EXEC1

SET Varl vall
SET Var2 val2
SET Var3 val3

EXEC2

EXECUTE EXEC2—1— P v vk
<

SET Var2z valB
SET Vard valD

Chapter 3: Shell

EXEC3

I

—_— /r SET Var5 valX
EXECUTE Exe:a/

EXEC4

EXECA

—_—

EXECI

SET Vard valQ
SET Vars valR

SET varl vall
SET Var2 val2
SET Vard vald

SET Varl valA
SET Var2 valB
SET Var4 valD

Figure 3.9. Effect of the EXECUTE Command

The definitions of variables resulting from the SET commands and Exec-file calling

SET Vars valX
EXEC4
EXEC4
SET Vard vala
— SET varé valR

sequence shown in part A of Figure 3.9 are illustrated in Figure 3.10.

APDA Draft

153

7127187

Chapter 3 Shell

Apple IIGS Programmer’s Workshop

EXEC1
EXEC2
SET Vart vall
SET Varz val2 {Varl}=vall EXEC3
SET Var3 vald {Var2}=val2
R {Var3d}=vall
Varl}=valA
— / Var2}=vo!B
EXECUTE EXEC2 SET Varl valA Vardj=val3
{Varl}=valA SET Var2 valB {Vard)=valD
{Vcr2}=quB SET Var4 valD ——
{(Var3}=val3 —_ SET VarS valX
[Vard}=valD
{VarS)}=valX m—"—x —
UTE EXEC3 {(Varl}=valA
{Varl}=valA d—— {var2)=valb
{Var2}=valB {Vard}=val3
{Var3}=val3 {Vard)=valD
Vor4]=vaID {Var5}=valX
Vars}=valX
EXEC4
(Var] }=volA EXECA
{var2)=valB ‘\ 5
{Vard}=val3
{Vard}=valD
{Var5}=valX T —
SET Vard valQ
SET Varé valR
{Vord}:val@
(Varé}=valR

Figure 3.10. Variable Definitions and EXECUTE commands

Similarly, if you use an EXECUTE command on the shell command line to execute an Exec
file, the variables defined in that Exec file are treated as if they were typed on the command
line. For example, suppose you write an Exec file called SETUP that contains the
following lines: ‘

SET ECHO ON
SET PRINTERSLOT {1}

You can excute this Exec file from the command line with the following command:
SETUP 2
In this case, the variable Echo is set to ON and PrinterSlot is set to 2 (the value

passed as a command-line parameter) only while the Exec file is executing. When the Exec
file finishes, Echo and PrinterSlot return to their default values. To make the values

APDA Draft 154 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

of Echo and PrinterSlot remain valid after the file SETUP has finished excuting, use
the following command:

EXECUTE SETUP 2

In this case, the shell acts as if the commands SET ECHQO ON and
SET PRINTERSLOT 2 were typed on the command line: that is, {Echo} is still set to
ONand {PrinterSlot} is still set to 2 after the Exec file returns control to the shell.

Note: When the APW Shell finds an Exec file named LOGIN in the APW system
prefix (prefix 4) during system load, the shell automatically executes LOGIN
immediately after loading APW. Use the EXPORT command in the LOGIN file to
make variable definitions valid at the shell command level and in other Exec files.
To reexecute LOGIN without reloading APW—to reset system parameters to your
selected defaults, for example—use the command EXECUTE 4/LOGIN froma
shell command line. '

EXIT
EXIT [nwmber]

This internal command terminates execution of the Exec file.

number This parameter is the error status with which the Exec file terminates. If
you specify a value for number and the Exec file was executed from another
Exec file, the predefined variable St atus is set to number. This
parameter is useful only for nested Exec files since it is used to terminate the
calling Exec file if a nested Exec file terminates with an error.

EXPORT
EXPORT [variable ...]
This internal command makes the specified variables available to Exec files called by the

current Exec file.

variable ... The names of the variables you wish to make available to enclosed Exec
files. Variable names are not case sensitive, and only the first 255
characters are significant. If you omit variable, a list of all exported
variables (for the current Exec file) is written to standard output.

APDA Draft 155 7127187

Chapter 3 Shell Apple IIGS Programmer's Workshop

The following statements describe the action of EXPORT commands: .

Variables included in EXPORT commands in a shell command line can be used within
any Exec file called from the command line.

Variables included in EXPORT commands in an Exec file can be used in any Exec file
called by that file.

Exported variable definitions are passed on to any Exec files enclosed at lower levels.

An EXPORT command does not affect the values of variables in an Exec file that
called the file that includes the EXPORT statement.

Variables defined within an Exec file and not exported are local to that file.

When a variable that has been exported is redefined, the new value is valid for all
Exec files enclosed at lower levels without the necessity of reexporting the variable.

Variables exported and redefined within an enclosed Exec file revert to their original
values when the enclosed Exec file is terminated.

Variables exported from the LOGIN file act as if they had been exported from the
command level.

For example, suppose that you execute the Exec file EXEC. 1 from the shell command line
and that EXEC. 1 calls EXEC. 2, and EXEC. 2 calls EXEC. 3. In this case, the followng
statements are true:

A variable defined on the command line and specified in an EXPORT statement is
valid in EXEC. 1, EXEC. 2, and EXEC. 3.

A variable specified in an EXPORT statement in EXEC. 1 is valid in EXEC. 2 and
EXEC. 3 but not on the command line. ,

A variable exported from EXEC . 2 is valid in EXEC. 3, but not in EXEC. 1 or on the
command line.

 If a variable is defined in EXEC. 1 and exported, and then redefined in EXEC. 2, its

value is changed in EXEC.2 and EXEC. 3 but not in EXEC. 1 or the command level.

The LOGIN file, which is executed at APW boot time, constitutes a special case of the use
of EXPORT commands. Variables included in an EXPORT command in the LOGIN file are
exported to the shell command level when the LOGIN file is executed at boot time. These
variable definitions are valid at all levels of nested Exec files.

Note that you do not need to use an EXPORT command to use variable definitions in an
Exec file that you call with an EXECUTE command. See the discussion of the EXECUTE
command for details.

FOR-END

FOR variable [IN valuel value2 ... }

END

APDA Draft 156 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

This command sequence creates a loop that is executed once for each parameter value
listed. ‘

variable The name of the variable whose value changes each pass through the loop.
If variable has not been previously defined, this statement defines it.

IN valuel value2 ... Each value or string listed after the optional parameter IN is
assigned to variable for one pass through the loop. That is, the first time
through the loop {variable} is equal to valuel; the second time through the
loop {variable} is equal to value2, and so forth. The values of value must
be separated by one or more spaces.

If IN is omitted, the parameters listed after the Exec file pathname (when the
Exec file is called) are used. The Exec file pathname itself (parameter 0) is
not used as a value for variable.

END Each of the commands between FOR and END is executed once for each
value of value (or for each parameter, if IN is not used). If variable appears
in any of these statements, it takes on the current value of value.

For example, the following Exec file, named ERASE, would delete from a directory all files
that ended in the extensions .OLD, .BAK, and . TEST. Note that the equal sign used here
is a wildcard character in the DELETE command, not an Exec-file logic operator:

ERASE

FOR EXT IN OLD BAK TEST
DELETE =. {EXT}
END

The same result could be obtained by including the extensions as parameters on the
command line and omitting them from the FOR command:

ERASE OLD BAK TEST

FOR EXT
DELETE =. {EXT}
END

IF-END

IF expression
L]

[ELSE IF expression)

[ELSE]

APDA Draft 157 , 7127187

Chapter 3 Shell Apple IIGS Programmer’s Workshop

This command sequence provides conditional branching in Exec files. The expressions are
tested until one evaluates as true, then the statements between that IF or ELSE IF and the
following ELSE IF, ELSE, or END are executed. All other statements between the IF
and END are skipped. If none of the expressions evaluate as true and if an ELSE statement
is included, the statements between the ELSE and the END are executed.

expression Any expression formed with one of the logical operators discussed in the
section “Logic Operators” earlier in this chapter.

LOOP-END

LOOP

END

This command sequence defines a loop that repeats continuously until a BREAK or EXIT
command is encountered. The loop is also terminated if any command in the loop returns a
nonzero error status while {Exit } is not null (see the section “Variables” in this chapter
for a discussion of Exit).

SET
SET [variable [valuel]

This internal command allows you to assign a value to a variable name. You can also use
this command to obtain the value of a variable or a list of all defined variables.

variable The variable name you wish to assign a value to. Variable names are not
case-sensitive, and only the first 255 characters are significant. If you omit
variable, a list of all defined names and their values is written to standard
output.

value The string that you wish to assign to variable. Values are case-sensitive and
are limited to 255 characters. All characters, including spaces, starting with
the first nonspace character after variable and continuing to the end of the
line, are included in value. If you include variable but omit value, the
current value of variable is writien to standard output.

Use the UNSET command to delete the definition of a variable. Variables defined within an
Exec file and not exported are local to that file. See the discussions of the EXPORT and
EXECUTE commands for ways to share variable definitions between Exec files.
Important: Certain variable names are reserved. See the section “Variables”
earlier in this chapter for a list of reserved variable names.

UNSET

UNSET variable

APDA Draft 158 7127187

Apple IIGS Programmer’s Workshop Chapter 3: Shell

This internal command deletes the definition of a variable.

variable The name of the variable you wish to delete. Variable names are not case-
sensitive, and only the first 255 characters are significant.

Use the SET command to define a variable. Variables defined within an Exec file and not
exported are local to that file. See the discussions of the EXPORT and EXECUTE
commands for ways to share variable definitions between Exec files.

Example

When the following Exec file is executed, it attempts to assemble and link a source file. If
the operation is unsuccessful, it attempts to assemble and link a different source file. If
neither program can be assembled and linked, the Exec file writes a message to the screen.
If either file can be assembled and linked, then that program is run.

UNSET EXIT ;*Don't abort the program if

* an assemble or link fails.
SET Message No luck! ;i *Message to send if we fail.
ASML. PROG1 KEEP=TEST1 ; *Attempt to assemble and link
* the first program.

IF {Status} == 0 ;*If first prog was successful
TEST1 ;*run the program and

EXIT ;*quit.

ELSE ;*If first prog failed

ASML PROG2 KEEP=TESTZ2 ;*attempt to assemble and link
* the second program.

IF {Status} == 0 ;*If second prog was successful
TEST2 ;*run the program and

EXIT ; *quit.,

ELSE ;*If both programs failed
ECHO {Message} ; *send message.

END ;*End of second IF statement
END i*End of first IF statement.

Note: When reading this example, remember that equal signs (=) can have three
different functions in Exec files. They can function 1) as a wildcard character in a
filename; 2) as part of an APW command parameter (for example, KEEP=TEST);
3) in the string-comparison operators == and !=.

APDA Draft 159 7127187

Chapter 3 Shell

APDA Draft

160

Apple IIGS Programmer’s Workshop

7127187

Apple 1IGS Programmer’s Workshop Chapter 4: Editor

Chapter 4

Editor

The APW Editor allows you to write and edit source and text files for use with APW
assemblers, compilers, and utility programs. A brief introduction to the use of the editor is
given in the section “Using the Editor” in Chapter 2. This chapter provides reference
material on the editor. All editing commands are described in detail.

The first section in this chapter, “Modes,” describes the different modes in which the editor
can operate. The second major section, “Command Descriptions,” describes each editor
command and gives the keys or key combinations assigned to the command. The third
major section, “Macros,” describes how to create and use editor macros, which allow you
to execute a string of editor commands with a single keystroke. The fourth section,
“Setting Editor Defaults,” describes how to set the defaults for editor modes and tab
settings for each language.

An on-line help facility is available for the editor. To see the help file, press Apple-Slash
(&-/) or Apple-Question Mark (¢3-?), then use the Up Arrow (T), Down Arrow ({),

Apple-Up Arrow (G-T), and Apple-Down Arrow ((3-4) keystrokes to scroll through the
help file. Press Esc, Return, or Enter to return to the file you are editing.

Modes

The behavior of the APW Editor depends on the settings of several modes, as follows:

* insert

* escape

* auto indent

« select

* automatic wrap
Each of these modes has two possible states; you can toggle between the states while in the
editor. All of these modes are described in this section. The commands for toggling

modes are described in the section “Command Descriptions” later in this chapter. For
example, to learn how to toggle wrap mode, look up “Toggle Wrap Mode.”

The default settings for the auto-indent, select, and word-wrap mode depend on the

language type of the file you are editing. You can change the default settings for a
language, as described in the section “Setting Editor Defaults” in this chapter.

APDA Draft 161 7127187

Chapter 4: Editor Apple IIGS Programmer’s Workshop

Insert

When you first start the editor, it is in overstrike mode; in this mode the characters you type
replace any characters the cursor is on. If you press Control-E or Apple-E to toggle to
insert mode, any characters you type are inserted at the left of the cursor while the cursor,
the character the cursor is on, and any characters to the right of the cursor are moved to the
right.

Although the editor can display only 80 columns of text, you can continue to insert
characters into an 80-column line when the cursor is in any column other than the last. If
you do so, the characters at the end of the line move off the screen to the right. The
maximum length of a line in the APW Editor is 255 characters (including spaces). If you
insert characters after the line is 255 characters long, the characters at the end of the line are
lost. To bring characters beyond column 80 back into view, insert a carriage return near
the end of the line; the characters are moved to the next line down.

Note: If the editor is in insert mode and you continue typing when the cursor
reaches column 80, each additional character is inserted at column 80 and the
characters to the right of the cursor move off the screen to the right. As a result, the
new characters you type are inserted in reverse order. For example, if you start
typing in column 76 and type 12345 when the editor is in insert mode, the 5 is in
column 80. If you then type 6, the 6 is inserted at column 80 and the 5 moves off
the screen to the right. If you continue with 789, and then insert a carriage return
before the 1 to move the string to the next line, you will find you have inserted
123498765 into the file.

If the editor is both in insert and automatic-wrap modes, when the cursor reaches the end-
of-line marker (usually at column 80 as explained in the section “Setting Editor Defaults”
later in this chapter), the editor inserts a carriage return before the word you are currently
typing. The result is that the word that included column 80 and all remaining characters on
the line (up to the 255th character) are moved to the next line down. See the section
“Automatic Wrap” later in this chapter for an example.

To toggle from insert mode to overstrike mode, press Control-E or Apple-E one more time.

Escape

When you press the Esc key or Control-Underscore (Control-_), the editor enters escape
mode. Escape mode has several special features:

» You can cause a command to be repeated automatically up to 32767 times while in
escape mode by typing the number of repetitions before you execute the command.
For example, the command Control-T deletes a line of text, so to delete 10 lines of
text (starting with the line the cursor is on), type Esc 10 Control-T.

» If it is impossible for the editor to repeat a command as many times as you specify, it
repeats it the maximum number of times possible. For example, if you type
Esc 50 Up Arrow when you are only 20 lines from the top of the file, the cursor
moves up 20 lines (to the top of the file) and stops.

+ Although you can type letters and punctuation in escape mode as you can in edit
mode, to type a numeral in escape mode you must hold down the Apple key.

APDA Draft 162 7127187

Apple IIGS Programmer's Workshop Chapter 4: Editor

To exit escape mode and return to edit mode, press Esc one more time or press
Control-Apple-Underscore (Control-G-_).

Auto Indent

You can set the editor so that pressing Return moves the cursor to the first column of the
next line (in this case, auto-indent mode is said to be off), or so that it follows indentations
already set in the text (auto-indent mode is on). When you press Return while auto-indent
mode is on, the editor puts the cursor on the first nonspace character in the next line. If the
line is blank, the cursor is placed in the same column as the first nonspace character in the
first nonblank line above the cursor. If the screen is blank, the cursor is placed in

column 1.

Auto-indent mode is convenient for writing programs in some high-level languages, such
as Pascal, in which lines are indented to help clarify the structure of the program.

Press Apple-Return, Apple-Enter, or Control-Apple-M to toggle auto-indent mode off or
on.

Select

The Cut, Copy, and Delete commands require that you first select a block of text. The
APW Editor has two modes for selecting text: line-oriented and character-oriented selects. -
As you move the cursor in line-oriented select mode, text or code is marked a line at a time.
In the character-oriented select mode, you can start and end the marked block at any
character. Line-oriented select mode is the default for assembly language; for text files and
most high-level languages, character-oriented select mode is the default.

While in either select mode, the following cursor-movement and screen-scrolling
commands are active:
» Bottom of Screen/Page Down
* Top of Screen/Page Up
Cursor Down
Cursor Up
Screen Moves

In addition, while in character-oriented select mode, the following cursor-movement
commands are active:

» Cursor Left
» Cursor Right
+ Start of Line
* End of Line
+ Tab

« Tab Left

* Word Right

APDA Draft 163 7127187

" Chapter 4: Editor Apple 1IGS Programmer’s Workshop

* Word Left

As you move the cursor, the text between the original cursor position and the final cursor
position is marked (in inverse characters). Press Return to complete the selection of text.
Press Esc to abort the operation, leave select mode, and return to normal editing.

Press Control-Apple-X to toggle between line-oriented and character-oriented select modes.

Automatic Wrap

For line-oriented computer languages like assembly language, each program statement must
fit on one line; for such languages, you may not want the editor to automatically break a
line of text and keep entering text on the next line. For other languages and for text files, it
is better if the editor continues entering text when you reach the end of the line by
automatically inserting a carriage return and moving the cursor to the next line down. You
can toggle the APW Editor between these two modes of operation by pressing
Control-Apple-W.

In nonwrap mode, when you reach the end-of-line mark (usually at column 80 as explained
in the section “Setting Editor Defaults” later in this chapter), any additional characters you
type overwrite the last character on the line. In automatic-wrap mode, when you type one
character too many to fit on the line, the entire word that that character is part of is wrapped
to the next line. For example, suppose you are typing the word pneumatolysis, and
the letter ¢ falls on column 79. In nonwrap mode, the additional characters overwrite the
last character on the line and the line ends with pneumat s; in automatic-wrap mode, on
the other hand, the entire word pneumatolysis is moved to the beginning of the next
line.

Note: The APW Editor does not have “soft” carriage returns; that is, once a line is
broken by the automatic-wrap feature, there is a permanent carriage return at the end
of the line. If you delete characters on the first line, the following line does not
move back up to maintain the length of the first line. To remove the carriage return
you must first enter insert mode, then move the cursor to the beginning of the
second line, and finally execute a Delete Character Left command.

If the editor is in automatic-wrap mode, when the cursor reaches the end of the line (usually
column 80), the editor inserts a carriage return before the word you are currently typing. If
the editor is both in insert and automatic-wrap modes, the characters to the right of the
cursor are pushed off the screen to the right until the cursor reaches the end of the line, and
then the word that included column 80 and all remaining characters on the line (up to the
255th character) are moved to the next line down.

Note that the line does not wrap when the last character in the line reaches column 80 but
when the cursor reaches column 80. For example, suppose you begin inserting characters
in the following line. The editor displays only the first 80 characters on the line. Column
numbers are shown above the line for purposes of illustration only. The cursor is shown
as a solid square (mw) at the end of the line.

......... Lo woiiin sonced@eails 3 waded wdnd Bawi smasdiies veii 500 Laien aBs iyes semn F 095 3 s o8

ted earlier, the minerals in this specimen appear to have pneumatolysis.B

APDA Draft 164 7127187

Apple IIGS Programmer’s Workshop , Chapter 4: Editor

Now, with insert and automatic-wrap modes active, you begin to type characters in column
60:

ted earlier, the minerals in this specimen appear to have formed as a result ofll

The fin of (the last character of the newly inserted text) has reached column 79, so the
cursor is in column 80 and the line wraps as follows:

erbesesas Loion varun s P . . §evivennne Sieieravnoe L T Tevesnnnas 8

ted earlier, the minerals in this specimen appear to have formed as a result
of pneumatolysis.B

If you paste characters into the line or insert spaces with the Insert Space command, the line
doesn’t wrap; instead, the characters at the end of the line move off the screen to the right.
The maximum length of a line in the APW Editor is 255 characters (including spaces). If
you insert text or spaces after the line is 255 characters long, the characters at the end of the
line are lost. To bring characters beyond column 80 back into view, insert a carriage return
near the end of the line; the characters are moved to the next line down.

Command Descriptions

This section describes the function of each of the editor commands. The keystrokes used
for each command are shown with the command description. Note that for many of the
commands, there is more than one keystroke that executes the command. You can use
whichever keystroke you prefer; there is no functional difference between alternate ways of
executing a given command.

If you are familiar with the commands and just need a summary of the keystrokes to use for
each command, see Appendix B.

Note: Screen-movement descriptions in this manual are based on the direction the
display screen moves through the file, not the direction the lines appear to move on
the screen. For example, if a command description says that the screen scrolls

down one line, it means that the lines on the screen move up one line, and the next
line in the file becomes the bottom line on the screen.

Beep the Speaker
Control-G

The ASCII control character BEL ($07) is sent to the output device. Normally, this causes
the speaker to beep. _

Begin Macro Definitions
See Define Macros.

APDA Draft 165 7127187

Chapter 4: Editor Apple IIGS Programmer’s Workshop

Beginning of Line

CS',
G-<

The cursor is placed in column 1 of the line it is in.

Bottom of Screen / Page Down

Control--J
a-4

The cursor moves to the last visible line on the screen, preserving the cursor’s column
position. If the cursor is already at the bottom of the screen, the screen scrolls down one
screen’s height. For example, if the screen is 22 lines high, the screen scrolls down 22
lines. : '

Change

See Search and Replace.

Clear

G-Delete

When you execute the Clear command, the editor enters select mode, as discussed in the
section “Select” earlier in this chapter. Use any-of the cursor-movement or screen-scroll
commands to mark a block of text (all other commands are ignored) and then press Return.
The selected text is deleted from the file. (To cancel the Clear operation without deleting
the block from the file, press Esc instead of Return.)

Important: The Undo Delete command does not work for text removed with the
Clear command. Use the Cut command to remove a block of text from the
document if you want to be able to restore it later.

Copy

Control-C
a-C

When you execute the Copy command, the editor enters select mode, as discussed in the
section “Select” earlier in this chapter. Use cursor-movement or screen-scroll commands to
mark a block of text (all other commands are ignored), and then press Return. The selected
text is written to the file SYSTEMP in the work prefix. (To cancel the Copy operation
without writing the block to SYSTEMP, press Esc instead of Return.) Use the Paste
command to place the copied material at another position in the file.

APDA Draft | 166 7/127/87

Apple HIIGS Programmer's Workshop Chapter 4: Editor

Cursor Down

Control-J
2

The cursor is moved down one line, preserving its column position. If it is on the last line
of the screen, the screen scrolls down one line.

Cursor Left

Control-H
—

The cursor is moved left one column. If it is in column 1, the command is ignored.

Cursor Right

Control-U
_)

The cursor is moved right one column. If it is on the end-of-line marker (usually column
80), the command is ignored.

Cursor Up

Control-K
T

‘The cursor is moved up one line, preserving its column position. If it is on the first line of
the screen, the screen scrolls up one line. If the cursor is on the first line of the file, the
command is ignored.

Cut

Control-X
a-X

When you execute the Cut command, the editor enters select mode, as discussed in the
section “Select” earlier in this chapter. Use cursor-movement or screen-scroll commands to
mark a block of text (all other commands are ignored) and then press Return. The selected
text is written to the file SYSTEMP in the work prefix and deleted from the file. (To cancel
the Cut operation without cutting the block from the file, press Esc instead of Return.) Use
the Paste command to place the cut text at another location in the file.

APDA Draft 167 7127187

Chapter 4: Editor Apple lIGS Programmer’s Workshop

Define Macros
A3-Esc
The editor enters the macro-definition mode. Press Option-Esc to terminate a definition,

and then press Option to terminate macro-definition mode. The macro-definition process is
described in the section “Macros” later in this chapter.

Delete

See Clear, Delete Character, Delete Character Left, Delete Line, Delete to EOL, Delete
Word.

Delete Character

Control-F
G-F

The character that the cursor is on is deleted and put in the Undo buffer (see the description

of the Undo Delete command). Characters to the right of the cursor are moved one space to
the left to fill in the gap. The last column on the line is replaced by a space.

Delete Character Left

Delete
Control-D

The cursor is moved left one column, and a Delete Character command is executed. If the
cursor is in column 1 and the overstrike mode is active, no action is taken. If the cursor is

in column 1 and the insert mode is active, the line the cursor is on is appended to the line
above and the cursor remains on the character it was on before the delete.

Delete Line

Control-T
G-T

The line that the cursor is on is deleted and the following lines are moved up one line to fill

in the space. The deleted line is put in the Undo buffer (see the description of the Undo
Delete command).

Delete to EOL |

Control-Y
a-Y

APDA Draft 168 7127187

Apple IIGS Programmer’s Workshop " Chapter 4: Editor

The character that the cursor is on and all the characters to the right of the cursor to the end .
of the line are deleted and put in the Undo buffer (see the description of the Undo Delete
command).

Delete Word

Control-W

a-W

When you execute the Delete Word command, the cursor is moved to the beginning of the
word it is on, then Delete Character commands are executed for as long as the cursor is on
a nonspace character. This command thus deletes the word plus all punctuation up to the
next space character or the end of the line, whichever comes first. If the cursor is on a
space when the command is executed, that space and all following spaces are deleted, up to

the start of the next word. All deleted characters, including punctuation and spaces, are put
in the Undo buffer (see the description of the Undo Delete command).

End Macro Definition
Option-Esc
When you are in macro definition mode, press Option-Esc to terminate a definition, and

then press Option to terminate macro-definition mode. The macro-definition process is
described in the section “Macros™ later in this chapter.

End of Line

G-e

G->

If the last column on the line is not blank, the cursor moves to the last column. If the last
column is blank, the cursor moves to the right of the last nonspace character in the line. If
the entire line is blank, the cursor is placed in column 1. '

Note: The editor automatically deletes any space characters at the end of a line, so
this command puts the cursor to the right of the last actual character on the line.

Enter Escape Mode
See Turm On Escape Mode.

Execute Macro

Option-letter

APDA Draft 169 7127187

Chapter 4. Editor Apple IIGS Programmer’s Workshop

Use this command to execute a macro that you have defined. The macro-definition process
is described in the section “Macros” later in this chapter.

Find

See Search.

Help

3-?
&/

A window containing the contents of the SYSHELP file in the system prefix appears on the
screen. Use the Up Arrow, Down Arrow, Apple-Up Arrow and Apple-Down Arrow to
scroll through the file. Press Return, Enter, or Esc to return to the editor window. Any
other key is ignored.

Insert Line

Control-B
4-B

A blank line is inserted at the cursor position, and the line the cursor was on and all
subsequent lines are moved down to make room. The cursor remains in the same position
on the screen.

Insert Space

G-Space bar

A space is inserted at the cursor position. Characters from the cursor to the end of the line
are moved right to make room. Any character in column 255 on the line is lost. The cursor
remains in the same position on the screen. Note that since spaces to the right of the last
character on the line are not significant, the Insert Space command has no effect when the
cursor is at the end of the line. Note also that the Insert Space command can extend a line
past the end-of-line marker.

Paste

Control-V
wAY

The contents of the SYSTEMP file are copied to the current cursor position. If the editor is

in line-oriented select mode, the line the cursor is on and all subsequent lines are moved
down to make room for the new material. The cursor's column position is unchanged.

APDA Draft 170 7127187

Apple 1IGS Programmer's Workshop Chapter 4: Editor

If the editor is in character-oriented select mode, the material is copied at the cursor’s
present position. The cursor remains in the same position on the screen. Characters from
the cursor to the end of the line are moved right to make room.

It is best to use the same mode for pasting in text as you used when you cut or copied the
text.

Warning: If enough characters are inserted to make the line longer than 255
characters, the excess characters are lost.

If you attempt to execute the Paste command when no Cut or Copy command was executed
(that is, there is no SYSTEMP file), the following error message appears on the screen:

ProDOS: File not found

Quit

Control-Q
aQ

Exit to the editor’s Quit menu. The following options are listed, followed by the prompt
Enter selection:

APDA Draft 171 7127187

Chapter 4: Editor Apple IIGS Programmer's Workshop

R Return control to the editor. Yon are returned to same editing mode and to the
same position in the file you were at when you quit it. .

S Save the file to the currént filename (showh at the top of the ménil) and return to
the Quit menu. . ‘ .

N Save the file to a new filename, You are prompted for anew ﬁlename, and the

file is saved to that filename; then you are returmed to the Quit menu. You can
enter a full or partial pathname for the file, and you can use device names and
prefix numbers as described in the section “Entering Commands™ in Chapter 2.

-~ If atext file or APW source file with the same name as the file you have -

- specified already exists, you are prompted for verification before the old version
is overwritten. If a file that is not a text or APW source file exists and has the
name you have specified, you are not allowed to overwrite it. Instead, the
following message appears at the bottom of the screen:

Incompatible file format.

Hit ESC to continue.

When you press Esc, the prompt Enter selection: reappears. Press N
again to enter another filename.

L Load a file. You are prorupted for a filename, and that file is loaded from disk.
If the filename you specify is not on the disk, a new file is opened with that
name. If you have not yet saved the changes to the file you just quit, you are
asked to verify that you don’t want to save those changes before the new file is
loaded.

You can enter a full or partial pathname for the file, and you can use device
names, prefix numbers, and wildcards as described in the section “Entering
Commands” in Chapter 2. If you specify a wildcard character, the first
filename matched is used. If this file is the wrong file type, the the following
message appears at the bottom of the screen:

Incompatible file format.

Hit ESC to continue.

When you press Esc, the prompt Enter selection: reappears. Press L
again to enter another filename.

When the file you specify is loaded, the editor places the cursor on the first
character in the file. If the new file has the same language type as the previous
one, the editor does not reset default modes and parameters; if you do change
languages, the editor is set to the default parameters in the SYSTARBS file for the
new file’s language. ,

E Leave the editor and return to the shell. If you have not yet saved the changes
to the file you just quit, you are asked to verify that you want to quit the editor
without saving changes.

Press the letter corresponding to the option you want and enter a pathname if prompted to
do so. If you press Return without entering any other data in response to a prompt, the
command is aborted and control returns to the menu.

APDA Draft 172 727187

Apple 1IGS Programmer’s Workshop Chapter 4: Editor

Quit Macro Definitions
Option

When you are in macro definition mode, press Option-Esc to terminate a definition, and
then press Option to terminate macro-definition mode. The macro-definition process is
described in the section “Macros” later in this chapter.

Remove Blanks

Control-R
G-R

If the cursor is on a blank line, that line and all subsequent blank lines up to the next
nonblank line are removed. If the cursor is not on a blank line, the command is ignored.

Repeat Count
1 to 32767

When in escape mode, you can enter any number from 1 to 32767 immediately before a
command, and the command is repeated as many times as you specify (or as many times as
is possible, whichever comes first). Escape mode is described in the section “Escape”
earlier in this chapter.

Return

Return
Control-M

The Return key works in one of two ways, depending on the setting of the auto-indent
mode toggle. Pressing the Return key can 1) move the cursor to column 1 of the next line;
or 2) place the cursor on the first nonspace character in the next line or, if the next line is
blank, move the cursor down one line and place it in the same column as the first nonspace
character in the first nonblank line on the screen above the cursor. If the screen is blank,
the cursor is placed on column 1 of the next line.

If the cursor is on the last line on the screen, the screen scrolls down one line.

Screen Moves

3-1to G-9

The file is divided by the editor into eight approximately equal sections. Each of the
screen-move commands Apple-2 (G-2) through Apple-8 (G-8) moves the display to one of

the boundaries between two of these sections, The cursor remains in the same position
(that is, the same line and column) on the screen. The command Apple-1 moves the cursor

APDA Draft 173 7127187

Chapter 4: Editor Apple IIGS Programmer’s Workshop

to the first character in the file, and Apple-9 moves the cursor to the last character in the
file.
Scroll Down One Line

Control-P
&-P

The editor moves down one line in the file, causing all of the lines on the screen to move up
one line. The cursor remains in the same position on the screen. Scrolling can continue
past the last line in the file.

Scroll Down One Page

See the Bottom of Screen/Page Down command.

Scroll Up One Line

Control-O
a0

The editor moves up one line in the file, causing all of the lines on the screen to move down
one line. The cursor remains in the same position on the screen. If the first line of the file
is already displayed on the screen, the command is ignored.

Scroll Up One Page
See the Top of Screen/Page Up command.

Search Down
S-L

This command allows you to search through a file for a character or string of characters.
When you execute this command, the prompt Search string appears at the bottom of
the screen. If you have previously entered a search string, the previous string appears after
the prompt as a default. Type in the string for which you wish to search, and press Return.
Searches are not case-sensitive, and they include all occurrences of the string, whether it is
embedded in a longer string or not. For example, if you search for the string NOT, any of
the following strings could be found:

APDA Draft 174 7127187

Apple IIGS Programmer’'s Workshop - Chapter 4: Editor

not

Note

prothonotary

Important: Any spaces at the end of the line in a search string are significant but

not visible. Press (3-> to move the cursor to the end of the line to see whether there
are any trailing spaces in the search string.

The following editing commands are active when you are entering the search string:

— Cursor Left

< Cursor Right

G-> or G-. End of Line

3-< or G-, Start of Line

Delete Delete Character Left
&-Y or Control-Y Delete to End of Line
G-Z or Control-Z Undo changes

&-E or Control-E Toggle Insert Mode

In addition, the following commands are used to terminate the search string:

Esc, Clear, or Control-X cancel command without saving changes
Return or Enter save changes and execute command

When you press Return, the editor looks from the cursor position toward the end of the file
for the search string. If the string is found, the screen is moved so that the next occurrence
of the string is on the top line. The cursor is placed on the first character of the target
string. The search stops at the end of the file. To search between the current cursor
location and the beginning of the file, use the Search Up command.

If the string is not found, the following message appears on the screen:

String Not Found

Search Up

G-K

This command operates exactly like Search Down, except that the editor looks for the
search string starting at the cursor and proceeding toward the beginning of the file. The

search stops at the beginning of the file. To search between the current cursor location and
the end of the file, use the Search Down command.

Search and Replace Down
3-J
This command allows you to search through a file for a character or string of characters and

to replace the search string with a replacement string. When you execute this command,
the prompt Search string appears at the bottom of the screen. If you have previously

APDA Draft 175 7127187

Chapter 4: Editor Apple IIGS Programmer’s Workshop

entered a search string, the previous string appears after the prompt as a default. Type in
the string for which you wish to search, and press Return. Searches are not case-sensitive,
and they include all occurrences of the string, whether it is embedded in a longer string or

not.

When you enter the search string and press Return, the prompt Replace string
appears at the bottom of the screen. If you have previously entered a replacement string,
the previous string appears after the prompt as a default. Enter the string with which you
want to replace the search string, and press Return.

If you press Return without entering any replace string, the prompt
Replace with null string (Y N Q) ? appears. Press Y to delete each
occurrence of the search string. Press N to return to the Replace string prompt.

Press Q to quit

the Search and Replace operation and return to editing the file.

After you enter a replace string and press Return, or press Y in response to the Replace
with null string prompt, the prompt Auto or Manual (A M Q) ? appears.

A

Q

Press A to cause all occurrences of the search string from the cursor
position to the end of the file to be replaced automatically. The cursor
returns to the starting point when the replacement is done.

If you Press M, then when the search string is found, it is highlighted on
the top line of the screen and the prompt Replace (Y N Q) ? appears at
the bottom of the screen. Press Y to replace the string and search for the
next occurrence; N to leave this occurrence of the string unchanged and
search for the next occurrence; or Q to leave the string unchanged and
terminate the search and replace operation. When the operation is finished,
the cursor returns to its starting point.

Press Q to terminate the search and replace operation and return to the file
you are editing.

Important: Any spaces at the end of the line in a search string or replacement
string are significant but not visible. Press 3-> to move the cursor to the end of the
line to see whether there are any trailing spaces in the search or replacement strings.

The following editing commands are active when you are entering text in response to the
Search Stringand Replace String prompts.

— Cursor Left

— Cursor Right

A-> or G-. End of Line

3-< or G-, Start of Line

Delete Delete Character Left
G-Y or Control-Y Delete to End of Line
G-Z or Control-Z Undo changes

G-E or Control-E Toggle Insert Mode

In addition, the following commands are used to terminate the search and replace strings:

APDA Draft

176 ' 7127187

Apple IIGS Programmer’s Workshop Chapter 4: Edirtor

Esc, Clear, or Control-X cancel command without saving changes
Return or Enter save changes and go on to next prompt

When you enter a replacement string and press A or M, the editor looks from the cursor
position toward the end of the file for the search string. The search stops at the end of the
file. To search between the current cursor location and the beginning of the file, use the
Search and Replace Up command.

Search and Replace Up

G-H

This command operates exactly like Search and Replace Down, except that the editor looks
for the search string starting at the cursor and proceeding toward the beginning of the file.

The search stops at the beginning of the file. To search between the current cursor location
and the end of the file, use the Search and Replace Down command.

Set and Clear Tabs

G-Tab
Control-G-1

If there is a tab stop in the same column as the cursor, this command clears it; if there is no
tab stop in the cursor column, this command sets one.

Tab settings remain in effect only as long as you are editing the current file. Tab settings
are not saved with a file. If you close the current file and open a new file, the default tab
settings are used.

Start of Line

See Beginning of Line.

Tab

Tab
Control-1

The cursor is moved to the next tab stop. If there are no more tab stops, the cursor is
moved to the end of the line. If the editor is in insert mode, space characters are inserted
from the cursor’s starting location to the tab stop; any characters to the right of the cursor
are moved to the right to make room. If the editor is in overstrike mode, on the other hand,
the tab acts only as a cursor-control command: no space characters are inserted.

Note that spaces to the right of the last nonspace character on the line are not significant;
that is, the editor never puts spaces at the end of a line.

APDA Draft 177 7127187

Chapter 4: Editor Apple IIGS Programmer’s Workshop

Tab Left

Control-A
G-A

The cursor is moved to the previous tab stop, or to the beginning of the line if there are no
?mre tab stops to the left of the cursor. This command does not enter any characters in the
ile.

Toggle Auto Indent Mode

&-Return
G-Enter
Control-&G-M

If the editor is set to put the cursor on column 1 when you press Return, it is changed to
put the cursor on the first nonspace character in the next line. If the editor is set to move
the cursor to the first nonspace character on the next line, it is changed to put the cursor on
column 1. The auto-indent mode is described in the section “Auto Indent” earlier in this
chapter.

Toggle Escape Mode
Esc
If the editor is in the edit mode, it is put in escape mode; if it is in escape mode, it is put in

edit mode. See also the Turn On Escape Mode and Turn Off Escape Mode commands.
Escape mode is described in the section “Escape” earlier in this chapter.

Toggle Insert Mode

Control-E
G-E

If insert mode is active, the editor is changed to overstrike mode. If overstrike mode is
active, the editor is changed to insert mode. Insert and overstrike modes are described in
the section “Insert” earlier in this chapter.

Toggle Select Mode
Control-&-X

If the editor is set to select text for the Cut, Copy, and Delete commands in units of one
line, it is changed to select individual characters instead; if it is set to character-oriented
selects, it is toggled to select whole lines. See the section “Select” earlier in this chapter for
more information on select mode.

APDA Draft 178 7127187

Apple IIGS Programmer’s Workshop Chapter 4: Editor

Toggle Wrap Mode
Control-G-W

If the editor is set to stop at the end of a line and ignore addtional characters, it is changed
to insert a carriage return after the last full word in the line and continue entering text on the
next line. If it is set to wrap lines, it is changed to stop at the end of the line. The wrap
mode is described in the section “Automatic Wrap” earlier in this chapter.

Top of Screen / Page Up

Control-3-K
a-T

The cursor moves to the first visible line on the screen, preserving the cursor’s horizontal
position. If the cursor is already at the top of the screen, the screen scrolls up one screen’s
height (for example, if the screen is 22 lines high, the screen scrolls up 22 lines). If the
cursor is at the top of the screen and less than one screen’s height from the beginning of the
file, then the screen scrolls to the beginning of the file.

Turn Off Escape Mode
Control-C3-

If the editor is in escape mode, it is put in edit mode. If the editor is in edit mode, this
command does nothing. This command is especially useful in editor macros, where you
can use it to assure that edit mode is turned on. See also the Turn On Escape Mode and
Toggle Escape Mode commands. Escape mode is described in the section “Escape” in this
chapter.

Turn On Escape Mode

Control-_

If the editor is in edit mode, it is put in escape mode. If the editor is in escape mode, this
command does nothing. This command is especially useful in editor macros, where you
can use it to assure that escape mode is turned on. See also the Turn Off Escape Mode and

Toggle Escape Mode commands. Escape mode is described in the section “Escape” earlier
in this chapter.

Undo Delete

Control-Z
A-Z

The last character or block of characters deleted using the Delete Character, Delete
Character Left, Delete Line, Delete to EQL, or Delete Word commands is inserted at the

APDA Draft 179 7127187

Chapter 4: Editor ' Apple IIGS Programmer's Workshop

cursor position. If the cursor has not been moved, the file is restored to its state before the
delete.

Important: The Undo Delete command does not work for blocks of text deleted
with the Cancel command. Use the Cut command to remove a block of text from
the document if you want to be able to restore it later.

The Undo buffer functions as a stack, so multiple undos are posmblc For example,
suppose you delete the errors (shown in boldface) in the following text, in the order in
which they appear (that is, first the e, then the 1, and so on):

Ite woulld appear that an appppeal to reason would not go
unAanswered.

When you execute the Undo Delete command one time, the text deleted last is restored—in
this case, an a. If you execute a second Undo Delete command, the text deleted before
that, pp, is restored, and so on. In this example, four Undo Deletc commands in a row
would put the followin g text on the screen:

Apple

A maximum of 10240 characters can be stored in the Undo buffer. No warning is issued if
you delete more than 10240 characters.

Word Left

G
Control-G-H

The cursor is moved to the beginning of the next nonblank sequence of characters to the left
of its current position. If there are no more words on the line, the cursor is moved to the
last word in the previous line, or if the previous is blank, to the last word in the first
nonblank line preceding the cursor.

Word Right

G-—
Control-G-U

The cursor is moved to the start of the next nonblank sequence of characters to the right of
its current position. If there are no more words on the line, the cursor is moved to the first
word in the next nonblank line.

Macros
You can define up to 26 macros for the APW Editor, one for each letter on the keyboard.

A macro allows you to substitute a single keystroke for up to 128 predefined keystrokes.
A macro can contain both editor commands and text and can call other macros.

APDA Draft ‘ 180 7127187

Apple IIGS Programmer’s Workshop Chapter 4: Editor

To define a macro, press Apple-Esc. The first ten of the current macro definitions appear
on the screen. To see the next ten macros, press the Right Arrow key. Press the Right
Arrow key again to see the final six macros, or press the Left Arrow key to see the
previous screen of macro definitions.

Before you can redefine a macro, you must first display the current definition of that macro
on the screen. After pressing Apple-Esc and using the arrow keys (as necessary) to display
the macro, press the letter key that corresponds to that macro and then type in the new
macro definition. Press Option-Esc to terminate the macro definition. You can include
Control-key combinations (where key represents any key), Apple-key combinations,
Option—key combinations, and the Return, Enter, Esc, Delete, and arrow keys. The
conventions in Table 4.1 are used by the editor to display keystrokes in macros:

Table 4.1. Conventions for Displaying Keystrokes in Editor Macros

Keystroke Convention Used to Display the Keystroke

Control-key The uppercase character corresponding to key is shown in
inverse video.

G—key An inverse A followed by key (for example,
K) .

Option—key An inverse B followed by key (for example,
K) .

Esc An inverse left bracket (this command is equivalent to
Control-{).

Return An inverse M (Control-M).

Enter An inverse M (Control-M).

T An inverse K (Control-K).

l An inverse J (Control-J).

«— An inverse H (Control-H).

- An inverse U (Control-U).

Delete A block (m).

Clear An inverse X (Control-X).

Note: Each G-key combination or Option-key combination counts as two
keystrokes in a macro definition. Although an -key combination looks (in the
macro definition) like a Control-A followed by key, and an Option-key combination
looks like a Control-B followed by key, you cannot enter Control-A when you

want an G or Control-B when you want an Option key.

If you make a mistake while entering a macro definition, press Option-Delete to delete the
character to the left of the cursor.

APDA Draft ‘ 181 7127187

Chapter 4: Editor Apple IIGS Programmer's Workshop

When you are finished entering macros, press Option-Esc to terminate the last option.
definition, and then press Option to end macro entry. The following prompt appears on the
screen:

Write macros to disk?

Press Y to save the new macro definitions on disk. Press N to return to the file without
saving the macros. Macros are saved on disk in the file SYSEMAC in the APW system
prefix (prefix 4).

The commands used to create and edit macro definitions are summarized in Table 4.2.

Table 4.2. Commands Used for Defining Editor Macros

G-Esc Begin macro definitions.

— Display the next screen of macro definitions.

— Display the previous screen of macro definitions.

letter Begin defining the macro corresponding to the letter-key letrer.
Note that Jetter must be displayed on the screen before you begin to
define it.

Option-Delete Delete the character to the left of the cursor.

Option-Esc Terminate the macro definition.

Option Stop defining macros and retumn to editing the file. If you are

currently defining a macro, press Option-Esc first to terminate the
macro definition, and then press Option to return to the file.

To execute a macro while in the editor, hold down Option and press the key corresponding
to that macro.

For example, assume you want to define a macro that draws a box such as the one in
Figure 4.1. The macro must insert the box into the file regardless of what text surrounds
it, and leave the cursor in the top left corner of the box.

Figure 4.1. Output of an Editor Macro

Use the following procedure to define this macro:

1. Open an editor file and press Apple-Esc to enter macro-definition mode. The current
definitions of macros A through J are now displayed on the screen. To see the
macros defined for the other letter keys, press the Right Arrow key.

2. We will assign macros to the letters A, B, and C to accomplish our task. Use the
Left- Arrow key. to return to macros A through J.

APDA Draft 182 7127187

Apple IIGS Programmer’s Workshop Chapter 4: Editor

3. Press A. The editor clears the macro definition for the letter A and places the cursor
just after the A: near the top of the screen.

4. Type in the following command sequence, being sure to include a space between the
Apple-< and the first hyphen. If you make a mistake while typing in the definition,
press Option-Delete to delete the character to the left of the cursor:

oL | DS, s

The macro definition for the letter A now should appear as shown in Figure 4.2.
This command sequence inserts a blank line in the file, moves the cursor to the left
margin, and inserts a space followed by 27 hyphens.

5. Press Option-Esc to terminate the definition of macro A.

6. Press B to begin definition of macro B and then type in the following command
sequence, being sure to include a space between the 27 and the Esc:
G-B G-< | Control-_ 27 Esc|

The macro definition for the letter B now should appear as shown in Figure 4.2.

This sequence inserts a blank line in the file, moves the cursor to the left margin,
inserts a vertical bar, enters escape mode, inserts 27 spaces, leaves escape mode,
and inserts another vertical bar.

We use the Control-_ command here to turn on escape mode because this command
will do nothing if escape mode is already on. If we used Esc instead and escape
mode were already on, the command would toggle escape mode off, and the macro
would not work. Note that when the macro is finished executing, escape mode will
be off, whether it was on or off when the macro was called.

7. Press Option-Esc to terminate the definition of macro B.

8. Press C to begin definition of macro C and then type in the following command
sequence:
Option-A Option-B Option-B Option-B Option-B Option-A ¢-<J —

The macro definition for the letter C now should appear as shown in Figure 4.2.
This sequence executes macro A to insert a line of dashes, executes macro B four
times to insert four blank lines bracketed by vertical bars, then executes macro A
again, and finally moves the cursor to the left margin, down one line, and one space
to the right.

9. Press Option-Esc to terminate the definition of macro C and then press the Option
key to terminate macro-definition mode. When the prompt Write macros to
disk? appears, press Y to save the macro definitions and return to the file you were
editing.

A: Bel< -
B: Asf</l27 B

c: BaBeE-E-B=0»B<Hl
Figure 4.2. Macro Deﬁnitions‘

Now when you press Option-C, the following sequence occurs:

APDA Draft 183 7127187

Chapter 4: Editor Apple 1IGS Programmer’s Workshop

1. The editor calls macro A, which inserts a blank line in the file, moving the line the —
cursor was on and all subsequent lines down to make room, and then puts a space in
column 1 followed by a string of hyphens.

2. The editor calls macro B four times in a row. Each time macro B is executed, the
last line written is pushed down out of the way and a new line is written consisting
of two vertical bars separated by a string of spaces.

3. The editor calls macro A again, which inserts another blank line at the top of the four
lines just written and then writes another string of hyphens.

4. The cursor moves down one line and right one column, to the first blank space in the
box just created (see Figure 4.1).

Setting Editor Defaults

When you start the APW Editor, it reads the file named SYSTAES, which is located in the
APW system prefix, and which contains the default tab-stop and editor-mode settings for
each language. Because the SYSTABS file is an ASCII text file that you can edit with the
APW Editor, you can change these defaults at any time. Note also that you can change tab
settings and toggle editing modes while in the editor; the defaults set by the SYSTAES file
only determine the configuration of the editor when a file is opened.

Each language recognized by APW is assigned a language number. The SYSTABS file has
three lines associated with each language:

1. The language number. ' —
2. The default settings for auto-indent, select, and word-wrap modes.
3. The default tab and end-of-line (EOL) settings.

For a discussion of APW languages, see the section “Command Types and the Command
Table” in Chapter 3. A complete hst of APW languages and language numbers is given in
Appendix B. _

The first line of each set of lines in the SYSTABS file specifies the language that the next
two lines apply to. APW languages can have numbers from 0 to 32767 (decimal). The
language number must start in the first column; leading zeros are permitted and are not
significant, but leading spaces are not allowed.

The second line of each set of lines in the SYSTARS file sets the defaults for various editor
modes, as follows:

1. The first column sets auto-indent mode. If the first column contains a 0, auto-indent
mode is off when the file is opened; if it’s a 1, auto-indent mode is on.

2. The second column sets select mode. If the second character is 0, the editor is set to
line-oriented selects; if 1, it is set to character-oriented selects.

3. The third column sets automatic wrap mode. If the Lhird character is 0, the cursor
stops when it reaches the end of a line; if 1, the editor inserts a carriage return and
wraps to the next line.

4. The fourth character is reserved for future enhancements. It should be blank or 0.
5. The fifth character is reserved for future enhancements. It should be blank or 0.

APDA Draft 184 7127187

Apple IIGS Programmer’'s Workshop Chapter 4: Editor -

6. The sixth and any additional characters are ignored. They should be blank or 0.

The third line of each set of lines in the SYSTABS file sets default tab stops. There are 80
zeros and ones in this line, representing the 80 columns on the screen. The ones indicate
the positions of the tab stops. A two in any column of this line sets the end of the line.
The column containing the two then replaces column 80 as the default right margin when
the editor is set to that language.

For example, the following lines define the defaults for APW 65816 assembly language
and APW C:

3

000 "
000000000100000100000000000000000000000010000001C0000001000000010000000100000002
10

101 .
00010001000100010001000100010001000100010001000100010001000100010001000100010002

The first three lines in this example set the defaults for the language with language number
3: that is, APW 65816 assembly language. The second line sets auto-indent mode off, sets
line-oriented selects, and sets word-wrap mode off. The third line sets tab stops in
columns 10, 16, 41, 48, 56, 64, and 72, and sets the end of the line at column 80. The
next three lines set the defaults for language number 10: APW C. The fifth line sets auto-
indent mode on, sets line-oriented selects, and sets word-wrap mode on. The sixth line
sets tab stops at every fourth column and the end of the line at column 80.

If no defaults are specified for a language (that is, there are no lines for that language in the
SYSTABS file), the editor assumes the following defaults:

» Auto-indent mode off.

* Line-oriented selects.

» No word wrapping: the cursor stops at the end of the line.

+» There is a tab stop every eighth column.

» The end of the line is at column 80.

APDA Draft 185 7127187

Chaprer 4. Editor Apple lIGS Programmer’s Workshop

APDA Draft 186 7127187

Apple 1IGS Programmer’s Workshop Chapter 5: Linker

Chapter 5

Linker

This chapter describes the APW Linker, including its input, output, options, and
commands.

A linker is a program that locates individual program segments, resolves references
between segments, and combines them into a complete, executable program. The APW
Linker is independent of source-code language. It is capable of extracting specific code
segments from multiple library and object files, and can create segmented load files.

The APW Linker works with any assembler or compiler that generates files conforming to
the Apple IIGS object module format (OMF). The linker can join separate files produced by
Apple IIGS-compatible assemblers and compilers and convert them into the form needed by
the System Loader for loading into the computer. Together, these three components
(assembler or compiler, linker, and loader) prowde a very powerful and flexible

programming facility.

Although the APW Linker is a single program, conceptually there are two APW linkers.
Normally, the linker is called directly by a shell command (such as LINK or ASML). These
commands provide a limited number of linker options; most linker options are either not
available or are set to default values. In this manual, this aspect of the linker is referred to
as the standard linker. Alternatively, all functions of the APW Linker can be controlled by
compiling a file of linker commands, called a LinkEd file. In this manual, the aspect of the
linker controlled by LinkEd files is referred to as the advanced linker.

The advanced linker is provided for programmers who require maximum flexibility from
the system; for most purposes, the standard linker is completely adequate. When a
statement in this book applies equally to the standard and advanced aspects of the APW
Linker, the terms APW Linker or linker are used.
Operations you can perform through LinkEd commands include the following:

» selecting specific segments from an object file

* assigning object-file segments to specific load-file segments

« assigning load-file segments as static or dynamic

« specifying the exact order in which to search libraries

« controlling the diagnostic output of the linker
Most users will never need the options provided by LinkEd. The first several sections of
this chapter describe features common to the standard linker and advanced linker, with

emphasis on the standard linker. The advanced linker is described in detail at the end of
this chapter.

APDA Draft 187 7127187

* Chapter 5: Linker Apple I1GS Programmer’s Workshop

The principal tasks of a linker are to bring together the segments needed for a program and
to resolve global references. Because most Apple IIGS code is relocatable, the APW Linker
must work together with the System Loader to resolve and relocate global references. The
linker provides the relocation information necessary for the loader to relocate all references
after loading. Much of the work of the linker therefore consists of constructing tables of
infonn:lltion for the loader to interpret, so that it may load and relocate the linker’s output
correctly.

Operation of the Linker

This section describes
» the formats and types of input files (object files) to the linker
* the formats and types of output files (load files) that it produces
 the diagnostic output from the linker

Object Files: Input to the Linker

Object files are the output from an assembler or compiler and the input to a linker.
Although both object files and load files conform to the Apple IIGS object module format
(OMF), only object files can be processed by the linker. Only object-file information
specifically related to the operation of the linker is discussed in this chapter; see Chapter 7
for more detailed information on the Apple IIGS object module format.

Object files (ProDOS 16 file type $B1) contain data or program code that has been

~ translated (assembled or compiled) into machine language but that may contain unresolved
references to external subroutines or data. The linker processes object files, resolves

external references, and produces load files. Load files contain all the information

necessary to relocate external references, and are ready to be loaded into the computer by
the System Loader.

Note: The default file type for the load files the linker creates is set by the APW
Shell’s KeepType variable; if KeepType is not set, the file type is $B5, shell
load file. If you are using the advanced linker, you can use the LinkEd
KEEPTYPE command to set the file type of the load file. To change the file type of
an existing load file, use the shell’s FILETYPE command. Use the shell’s SET
command to change the value of the KeepType variable.

Each object file consists of segments. Each segment is a separate entity that contains all the
information necessary to link it with other segments. A segment consists of a header
followed by a body; the header contains name, size, type, and other information about the
segment, while the body consists of sequential records, each one of which consists of
either program code or information for the linker or loader. Segments are discussed in the
section “Program Segmentation” in Chapter 1 and are fully described in Chapter 7.

Library Files
Library files (ProDOS 16 file type $B2) contain object segments useful to many programs.
The linker can search library files to resolve references unresolved within the program

APDA Draft 188 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

source code. Library files are normally kept in the APW library prefix (prefix 2). When
you use the standard linker, it first links the source code and any library files you specify,
and then if there are any remaining unresolved references, it automatically searches the files
in the library prefix until all references are resolved. The advanced linker searches only
those library files that you specify in the LinkEd file.

Library files differ from object files in that each library file includes a segment called the
library dictionary segment (segmenta-Rpe KIND = $08). The library dictionary segment
contains the names and locations of all segments in the library file. The linker can look
through the library dictionary segment for the names of segments it needs, so the library
dictionary segment allows the linker to find segments much mare quickly than if it had to
scan through the entire file. Library files are created from object files by the MakeLib
utility program (described in the section “Command Descriptions” in Chapter 3). Each
library file can be created from any number of object files.

Important: Once a library file has been searched, it is not returned to by the APW
Linker. Therefore, a reference in a library file cannot refer to a segment in a library
file that precedes it in the directory. You can, however, use the MAKELIB program
to combine as many object files into a single library file as you choose, and there
are no restrictions on segments referencing each other within a single library file.
The order of subroutines within a single library file can affect the time necessary to
complete a link but is otherwise not important.

Partial Assemblies and Filename Conventions

When you assemble or compile a program, you can use a KEEP directive (or the equivalent
for the language you are using) in the source code or the KEEP parameter in the command
line to specify a filename for the output. If you are assembling or compiling the entire
program, and the program consists of more than one segment, then the first segment to be
executed when the program is run is placed in one file and the remaining segments are
placed in a second file. If the filename you specify is MYPROG, the first file is named
MYPROG . ROOT and the second one is named MYPROG . A.

Important: The root filename cannot be longer than 10 characters for files to
which the . ROOT extension will be appended because ProDOS 16 limits the entire
filename to 15 characters. Using more than 10 characters in such a filename will
result in a fatal assembler or compiler error (Unable to open output
file).

There are two circumstances under which a file with a higher alphabetic suffix (. B, .C,
and so on) is created, as follows:

« If the compile involves more than one language, the first compiler or assembler
usually creates the . ROOT and . A files, the second compiler creates the . B file, and
SO on.

+ If you include a NAMES parameter on the command line, a partial assembly or compile
is performed. In this case, only the segments named are compiled, and they are
placed in a file with the next available alphabetic extension. Partial assemblies are
described in the section “Partial Assemblies or Compiles” in Chapter 3.

APDA Draft 189 7127187

Chapter 5: Linker Apple IIGS Pragrammer’s Workshop

Note: You can use the CRUNCE command described in Chapter 3 to combine all
the alphabetic-extension files into one . A file.

The advanced linker processes segments in the order specified by the LinkEd commands.
The standard linker selects the object files to process as follows:

1. The linker first scans the output disk for a filename with the proper extension
(MYPROG . ROOT in this example). The object segment in that file will become the
first segment in the output (load) file. ‘

2. The linker then looks for a . A file. If it finds one, the linker looks for a . B file, and
so on, until it locates the last object file created by finding the file (with name
MYPROG) with the alphabetically highest extension.

3. It takes subroutines from this file in the order encountered, links them, and places
them in the load file.

4. The linker then looks at the file with the next highest extension. If it finds a
subroutine that has not yet been linked, it adds it to the load file. Any subroutines
with the same labels as those of already linked subroutines are assumed to be older
versions and are ignored.

5. The linker continues in reverse alphabetical order through the files until they all have
been searched. If there are still unresolved references, the linker assumes that they
are references to library files.

6. The linker automatically searches the library directory for library files. Each library
file is searched in the order in which it appears in the directory. Any library segment
that corresponds to an unresolved reference is extracted, processed, and placed in the
load file.

Once all the necessary segments have been located, the linker proceeds to a second pass
through the file. The result of pass two is a load file (ProDOS 16 file type $B5 unless you
have set the shell KeepType variable to another value), ready for loading by the System
Loader. Load files are described in this section.

Load Files: Output From the Linker

Load files (types $B3 through $BE) are the result of the processing of object files by the
linker (and, optionally, the shell’s FILETYPE command). They contain segments that are
ready to be loaded into memory by the System Loader. Load files conform to a subset of
the Apple IIGS object module format and do not contain any unresolved symbolic
references. :

Both object files and load files are segmented, but a load segment may contain more than
one object segment. In assembly language, both the object-segment name and the name of
the load segment to which that object segment is to be assigned can be specified with a
START, DATA, PRIVATE, or PRIVDATA directive. APW C provides the overlay
function to allow you to assign subroutines to specific load segments. As a default, some
APW compilers assign one load-segment name (a string of spaces) to all code segments,
and another (~global) to all global variables.

When you call the linker by using an APW Shell command, the linker assigns object-file

segments to load-file segments based on the load-segment names. All object-file segments
with the same load-segment name are collected into a single static load segment.

APDA Draft 190 7127187

Apple IIGS Programmer’ s Workshop | Chapter 5: Linker

The linker may produce a single load file from a single object file or from several object
files, as described in the discussions of the LINK command in Chapter 3 and LinkEd
command files in this chapter.

For a complete description of load files and the function of the System Loader, see the
section “Object Module Format” in Chapter 7 and the description of the System Loader in
the Apple IIGS ProDOS 16 Reference manual.

Diagnostic Output

In addition to the load file itself, the linker produces diagnostic output to show what it has
done and to aid debugging. Output is sent to standard output (usually the screen). Most of
the output can be suppressed, if desired, with command-line parameters. Each of the types
of information output by the linker is described in the following sections. Figure 5.1
shows the sample output of a LinkEd command file.

Link Editor V1.0

KEEP LINKTEST
.SOURCE ON
SYMBOL ON
.LIST ON
LINK/ALL TEST
LIBRARY *

U WM

0 errors found in source file.

00000000 00000020 Code: MAIN
00000020 0000001B Code: SECOND
0000003B 0000001C Data: DATA
00000057 00000034 Code: ~COUT
0000008B 00000002 Code: STOUT

Global symbol table:

0000003B 01 DATA 00000000 00 MAIN 0000003B 01 MSG1
00000049 01 MsG2 00000049 01 MSG3 00000057 01 MSG4
00000020 00 SECOND 0000008B 00 sTOUT 00000057 00 ~COUT

Segment Information:
Number Type Length Org
1 500 $0000008D Relocatable
There is 1 segment, for a length of $0000008D bytes.

Figure 5.1. Sample Output of a LinkEd Command File

APDA Draft 191 7127187

Chapter 5: Linker - Apple IIGS Programmer’'s Workshop

Error Messages

Errors can be caused by source-code errors in a LinkEd file, by mistakes in the command
line, or by problems encountered whie trying to link an object file. Appendix C gives a full
list of error messages and their meanings. Error messages cannot be suppressed.

Link Map and Source Listing

If you use the +L command-line parameter or the LinkEd LIST ON command, as the
linker processes each segment or subroutine, it writes the starting address of the segment,
the length in bytes (hexadecimal) of the segment, the segment type (code or data), and the
name of the segment. If the program is relocatable, the starting-address calculation is based
on the assumption that the program starts at $000000.

If you call the linker from a LinkEd file and use the +L command-line parameter or the
LinkEd SOURCE ON command, the LinkEd source code is written to standard output. A
sample LinkEd output listing is shown in Figure 5.1.

Symbol Table

If you use the +S command-line parameter or the LinkEd SYMBOL ON command, an
alphabetized global-symbol table is printed. The table presents the following information
for each symbol:

+ assigned value (hexadecimal)
» classification number
» symbol name

The classification number is a pair of hexadecimal digits. If it is $00, the symbol is a
global label or subroutine name; if the number is nonzero, the symbol is a data label and the
value of the digit is the number of the data segment that defined it.

A sample symbol table is shown as part of the output in Figure 5.1.

Symbol Types: The Apple IIGS object module format defines three types of
symbols: global, private, and local. Global symbols can be referenced in any
segment. For APW assembly-language programs, for example, global symbols
include object-segment names defined by START and DATA directives and any
symbols defined in an ENTRY or GEQU directive. Private symbols are available to
any segment in the same object file, but not to segments in other object files that are
part of the same program. For APW assembly-language programs, private
symbols include object-segment names defined by PRIVATE and PRIVDATA
directives. Local symbols are labels that are defined only within individual code or
data segments.

Local symbols are normally accessible only within the segment in which they
appear. However, a segment may gain access to local symbols in another data
segment by issuing a US ING assembler directive. The USING directive cannot
refer to a code segment.

APDA Draft 192 7127187

Apple IIGS Programmer’ s Workshop Chapter 5: Linker

Be sure that no two global symbols (or local symbols in data segments) with the
same name appear anywhere in the program. Two private symbols with the same
name cannot appear in the same object file but can appear in separate object files that
are part of the same program.

The assembler or compiler resolves local references, so the linker never sees them.
Therefore, local symbols never appear in the symbol table, with the exception of
local labels in a data segment named in a USING directive.

Summary Table

When it finishes, the linker prints a summary giving the number of errors detected (if any)
and the highest error level encountered (see Appendix C). A table of load segments is
printed, indicating the segment number and type of each load segment created, along with
its length and absolute origin (if any; see Figure 5.1). The last line tells how many
segments there are, and how many bytes long the program is (in hexadecimal).

Using the Standard Linker

You can call the APW Linker by executing an APW Shell command. The following
commands allow you to call the linker without having to execute a LinkEd command file:

* ASML

* ASMLG
* CMPL

* CMPLG
* RUN

* LINK

The LINK command differs from the other five commands in several ways. First, the
LINK command lets you perform a link separate from the compile or assembly. The other
commands call the linker automatically after a successful assembly or compile has been
completed. Each of these commands lets you print the link map and symbol table; for all
but the LINK command, however, you can print the link map only if you also print the
source listing of the assembler or compiler. Finally, the LINK command lets you specify a
name for the load file, whereas the other commands let you specify a root filename for the
object files, which is then also used as the name of the load file.

Important: If you are linking object files with the root name rootname, make sure
there are no other files in the same prefix as rootname with the same rootname and
an alphabetic extension. For example, if you are linking MYF ILE . ROOT and
MYFILE . A, make sure there are no files named MYFILE.B or MYFILE.C in the
same directory before linking.

The following linker defaults are used when you execute one of these APW Shell
commands:

APDA Draft 193 7127187

Chapter 5: Linker Apple IIGS Programmer’s Workshop

* Load-segment names are used to determine which object segments to put in which
load segments: all object segments with the same load-segment name are placed in the
same load segment. In assembly language, for example, you can specify the load-
segment name as the operand of a START, DATA, PRIVATE, or PRIVDATA
directive. Most APW compilers use a string of spaces for the load-segment name of
all code segments, and thus put all global label definitions and data in segments with
the load-segment name ~global.

» Object segments are scanned in the sequence in which they appear in the object file.
Load segments are placed in the load file in the order of the load-segment name’s first
appearance in the object file. The LINK command lets you specify more than one
object file to be included in the link.

 If segment KINDs are specified in the source file and the KINDs of the object
segments placed in a given load segment are not all the same, the segment KIND of
the resulting load segment is unpredictable.

* Any library files specified on the command line are searched in the order in which
they are listed. If any references remain unresolved after all the object and library
files listed in the command line have been linked, the library files in the library prefix

(prefix 2) are searched.

» The load address of absolute code must be specified in the source file; there is no
command-line parameter to set a load address.

» No load file is saved to disk unless the KEEP parameter is used on the command line,
or the KEEP directive is used in the source file. (If you use the LINK command, you
must use the KEEP parameter on the command line to save the load file.)

If you need to have more control over the link, use a LinkEd file, as described in the
following section. All of the APW Shell commands are described in the section
“Command Descriptions” in Chapter 3. The file type of load files produced by the standard
linker is set by the KeepType shell variable; the default is ProDOS 16 file type $B5. You
can use the shell’s FILETYPE command to change the file type of an existing load file or
the shell’s SET command to change the value of the KeepType variable.

Using the Advanced Linker

You can control every aspect of a link by using a LinkEd command file. LinkEd files are
APW source files with a language type of LINKED (see the section “Language Types” in
Chapter 2 for instructions on assigning a language type to a source file). To execute a
LinkEd file, use one of the following APW Shell commands:

* ALINK
* ASSEMBLE
* COMPILE

Note: These are all aliases for the same command, which checks the language type
of the file and calls the linker for files with language type LINKED.

Alternatively, you can append the LinkEd file to the last source-code file; when the

compiler or assembler gets to the LinkEd file, it returns control to the APW Shell, which
calls the APW Linker. If you append the LinkEd file to the last file of the source code, the

APDA Draft 194 7/27/87

Apple 1IGS Programmer’'s Workshop Chapter 5: Linker

file is linked automatically every time the program is compiled or assembled. When the
linker finishes processing the file, it tells the APW Shell not to call another compiler or the
linker. For this reason, you can use the ASML, ASMLG, CMPL, CMPLG, and RUN
commands with a LinkEd file without causing any errors. This also means, however, that
LinkEd must be the last language called. All of the APW Shell commands are described in
the section “Command Descriptions” in Chapter 3.

The Structure of a LinkEd File

A LinkEd file is more than a set of linker parameters stored in a file; it is a set of commands
that give you a high degree of control over the link process. The following rules
summarize the structure of a LinkEd file:

+ LinkEd commands are processed sequentially from the beginning of the file. Because
only one pass is made through the LinkEd file by the linker, the order of the
commands is important.

» The name of the load file must be specified before any output is generated for it. If
you have not specified a name for the load file with a KEEP parameter on the
command line or by specifying a default load filename with the KeepName shell
variable, then you must include a KEEP command in the LinkEd file and it must be
placed before the first SEGMENT, LINK, or LIBRARY command.

+ The name of the load segment must be specified before any output is generated for it.
Load segment names are specified with the SEGMENT command.

« The commands that extract segments from object and library files (LIBRARY, LINK,
LOADSELECT, and SELECT) may leave label references unresolved; these references
can be resolved when segments are extracted by later commands. An error results
only if a label remains unresolved after all the commands in the file have been
executed.

LinkEd Command Descriptions

LinkEd source files consist only of LinkEd commands and comments. Each command
must be on a separate line. Comments consist of either blank lines or lines that start with

an asterisk (*) or semicolon (;).

LinkEd commands are case insensitive. Any combination of uppercase and lowercase
letters may be used when writing commands. In the examples shown here all commands
are in uppercase to help set them apart from comments and text.

Important: Segment names are case sensitive. For case-sensitive languages
(such as C), segment names must be entered in LinkEd commands exactly as they
are listed in the source code, including case. For case-insensitive languages, the
compiler normally writes all segment names to object files as all uppercase, so for
such languages, segment names must be entered in uppercase.

The linker can produce diagnostic output to show what it has done and to aid debugging.
Output is sent to standard output (usually the screen). Except for error messages, the
output can be tumed on or off with LinkEd commands. Where conflicting command-line
parameters and LinkEd commands are used, the command line takes precedence.

APDA Draft 195 7127187

Chapter 5: Linker Apple IIGS Programmer’s Workshop

The following notation is used to describe commands:
UPPERCASE Uppercase letters indicate a command name or an option that must

be spelled exactly as shown.

italics Italics indicate a variable that you must replace with specific
information, such as a pathname or address.

pathname This parameter indicates a full pathname, including the prefix and

filename, or a partial pathname, in which the current prefix is
assumed. For example, if a file is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, the pathname parameter
would be: /VOLUME/DIRECTORY/FILE. If the current prefix
were /VOLUME/, you could use DIRECTORY/FILE for
pathname. A full pathname (including the volume name) must begin
with a slash (/); do not, however, precede pathname with a slash if

you are using a partial pathname. .

The device names .D1, .D2,Dn can be used for volume
names and ProDOS 16 prefix numbers or double periods (..) can be
used instead of a prefix.

I A vertical bar indicates a choice. For example, LIST ON|OFF
indicates that the command can be entered as either LIST ON or as

LIST OFF.
AlBR An underlined choice is the default value.
[1 Parameters enclosed in square brackets are optional.
e Elipses indicate that a parameter or sequence of parameters can be

repeated as many times as you wish.

APPEND

APPEND linkedname

LinkEd appends the LinkEd file with the pathname J/inkedname to the present LinkEd
source file. Any statements after the APPEND command in the present LinkEd file are
ignored.

linkedname The full or partial pathname of the LinkEd file you want to append.

COPY

COPY linkedname
LinkEd stops processing the present LinkEd file temporarily and processes all statements in

the LinkEd file specified by linkedname. LinkEd then resumes processing the present file
at the statement immediately following the COPY command.

APDA Draft 196 7127187

Apple 1IGS Programmer’s Workshop Chapter 5: Linker

linkedname The full or partial pathname of the LinkEd file to which you want to
transfer control.

Copied files can copy other files, with no fixed limit to the number of nested levels. The
only constraint is the amount of avallable memory; it is generally safe to assume that you
may copy eight levels deep.

EJECT
EJECT

This command controls printer output. If output is to a printer, EJECT causes the printer
to skip to the top of the next page. If output is to a CRT screen, EJECT has no effect.

KEEP

KEEP loadname

The typical output file produced by LinkEd is a relocatable load file, ready for loading and
executing at any free memory location. A load file may contain several segments (see the

discussion of the SEGMENT command, later in this chapter), each of which can be loaded
independently and automatically during program execution.

loadname The full or partial pathname of the load file you want to create.

The KEEP command opens the output file (load file) specified by loadname. All segments
subsequently processed by LinkEd are placed in loadname, in the order in which they are
encountered. The XKEEP command must be placed before the first statement that creates
output: that is, before the first SEGMENT, LINK, or LIBRARY command.

The load filename is determined first by the KEEP parameter on the command line. If there
is no KEEP parameter, the KeepName shell variable is used. The LinkEd KEEP command
is used only if neither the KEEP parameter nor the KeepName shell variable is specified.
Notice that the LinkName shell variable is used only by the LINK command and has no
effect on LinkEd files.

Important: You cannot use a LinkEd KEEP command if you append the LinkEd
file to your source code and the source code includes a KEEP directive (or
equivalent).

Use the KEEPTYPE command to set the file type of a load file.

KEEPTYPE
KEEPTYPE filetype

This command sets the file type of the load file produced by the linker.

filetype The ProDOS 16 file type to which you want to set the load file. Use one of
the following three formats for filetype:

APDA Draft 197 . 7127187

Chapter 5: Linker Apple IIGS Programmer's Workshop

+ A decimal number 179-191.
» A hexadecimal number $B3-$BF.
 The three-letter abbreviation for the file type used in disk directories, as
shown in Table 5.1.
The position in the LinkEd file of the KEEPTYPE command is not important.

The default file type of load files produced by the APW Linker is set by the KeepType
shell variable; if this variable is null, the default is ProDOS 16 file type $B5. You can use
the shell’s FILETYPE command to change the file type of an existing load file or the
shell’s SET command to change the default file type.

Table 5.1. File Types of ProDOS Load Files
Decimal Hex Abbreviation File Type

179 $B3 S16 ProDOS 16 system load

180 $B4 RTL Run-time library

181 $BS5 EXE Shell load

182 $B6 STR Startup load

184 $B8 NDA New desk accessory

185 $B9 CDA Classic desk accessory

186 $BA TOL Tool set file
LIBRARY

LIBRARY libname
LIBRARY/LOADSELECT libname Iseg

A library file is a file of ProDOS 16 file type $B2 containing object segments, such as
general utilities, that may be called by other programs. The LIBRARY command causes the
linker to search the library file specified by /ibname for segments that have been referenced
by a source file; any that are found are included in the output load file. See the discussion
of the MakeLib utility in Chapter 3 for instructions on creating your own library files.

APDA Draft 198 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

libname The full or partial pathname of the library file you want to search. If you
use an asterisk (*) for /ibname, the linker scans all the files in the current
APW library prefix (prefix 2).

/LOADSELECT If you include the /LOADSELECT parameter, only those segments
with the load-segment name specified by /seg are searched. If the
/LOADSELECT parameter is omitted, the linker ignores load segment
names in library files. There cannot be any spaces between the LIBRARY
command and the /LOADSELECT parameter.

iseg - The load-segment name of the object segments that you want to search. To
search all object segments with a blank load segment name, use an asterisk
(*) for Iseg. In case-sensitive languages, segment names must be entered
exactly as they appear in the source code. Segment names in case-
insensitive languages must be entered as all uppercase characters.

For example, suppose your library file MYL IB contains the object segments PETER,
PAUL, and MARY, and each of these object segments is assigned either to the load segment
WHITE or the load segment BLACK, as follows:

0. Object-segment name: PETER
Load-segment name: WHITE

1. Object-segment name: PAUL
Load-segment name: BLACK

2. Object-segment name: MARY
Load-segment name: WHITE

The following LIBRARY command searches the file MYLIB. Tf an unresolved reference
exists to any of the segments in MYLIB or to any of the labels in those segments, the
referenced segments are extracted and linked into load segment GRAY.

SEGMENT GRAY
LIBRARY MYLIB

Suppose, on the other hand, that you use the following commands in your LinkEd file:

SEGMENT GRAY
LIBRARY/LOADSELECT MYLIB WHITE

In this case, only the object segments PETER and MARY are searched, since each of these
segments has the load-segment name WHITE. If an unresolved reference exists to either of

these segments or to any of the labels in these segments, that segment is extracted and
linked into load segment GRAY.

The following command causes a search of all the segments with blank load-segment
names in all of the files in the library prefix:

LIBRARY/LOADSELECT * *

APDA Draft 199 7127187

Chapter 5: Linker Apple IIGS Programmer’s Workshop

LINK

LINK[/ALL] objname

This command causes the object file specified by objname to be included in the output file.
All segments of the file specified by objname not already included are added to the
program. If the LINK command follows a SEGMENT command, all the object segments in
objname are placed in the load segment defined by the SEGMENT command. If the LINK
command does not follow a SEGMENT command, all object segments are placed in a load
segment whose name consists of ten space characters. The LINK command ignores
source-code load-segment names, such as those specified by the operand of an APW
Assembler START directive. '

Use the SELECT command to Jink individual object segments from a given file.

/ALL If you use the /ALL qualifier, all files with the root filename specified by
objname and . ROOT or alphabetic filename extensions are searched to make
sure the most recently assembled version of each file segment is included
(see the section “Partial Assemblies and Filename Conventions” earlier in
this chapter). There cannot be any spaces between the LINK command and
the /ALL parameter.

objname The full or partial pathname of the object file you want to include.
For example, suppose you use the following command:
LINK/ALL MYFILE

If files MYFILE A and MYF ILE . B are in the current directory, the linker first searches
MYFILE.ROOT, then MYFILE . B, and finally MYFILE.A.

Important: If you are linking object files with the root name rootname, make sure
there are no other files in the same prefix as rootname with the same rootname and
an alphabetic extension. For example, if you are linking MYFILE .ROOT and
MYFILE.A, make sure there are no files named MYFILE.B or MYFILE.C in the
same directory before linking.

If you do not include the /ALL qualifier, you must specify the full pathname (including
filename extension, if any).

Note: The LinkEd LINK command does not automatically search library files in
the library prefix (prefix 2). If any of the references in your program refer to labels

in library files, you must use LinkEd LIBRARY commands to specify which
libraries to search.

LIST

LIST ON|QEF

The LIST command controls the output of the link map.

APDA Draft 200 | 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

ON|OFF LIST ON causes all subsequent segment names to be sent to standard
output; LIST OFF suppresses output (unless an error occurs).

The link map is a listing of each segment, with its starting address and length, followed by
a summary table showing the segment number, segment type (the KIND field in the
segment header), the length of the segment, and the origin address (if any). This command
is overridden by the L option in the shell’s ASSEMBLE and COMP ILE command lines.

LOADSELECT
LOADSELECT[/SCRN] objname Iseg

This command causes the object segments that have the load segment name Iseg in the
object file specified by objname to be included in the output file. If the LOADSELECT
command follows a SEGMENT command, the object segments are placed in the load
segment defined by the SEGMENT command. If the LOADSELECT command does not
follow a SEGMENT command, all object segments are placed in a load segment with a blank
segment name (its name consists of ten space characters).

If the LOADSELECT command is not used, the linker ignores source-code load-segment
names, such as those specified by the operand of an APW Assembler START directive.

/SCAN If you include the /SCAN parameter, all files with the root filename of the
file specified by objname and . ROOT or alphabetic filename extensions are
searched to make sure the most recently assembled version of each file
segment is included (see the section “Partial Assemblies and Filename
Conventions” earlier in this chapter). There cannot be any spaces between
the SELECT command and the /SCAN parameter.

objname The full or partial pathname of the object file you want to search. If you do
not include the /SCAN parameter in the command, you must use the
complete filename, including the filename extension. If you do include the
/SCAN parameter, do not include the filename extension in objname.

Iseg The load-segment name of the object segments that you want to extract. To
select all object segments with a blank load-segment name, use an asterisk
(*) for Iseg. In case-sensitive languages, segment names must be entered
exactly as they appear in the source code. Segment names in case-
insensitive languages must be entered as all uppercase characters.

For example, suppose your object file MYFILE . A contains the object segments PETER,
PAUL, and MARY, and each of these object segments has either the load-segment name
WHITE or the load-segment name BLACK, as follows:

0. Object-segment name: PETER
Load-segment name: WHITE

1. Object-segment name: PAUL
Load-segment name: BLACK

2. Object-segment name: MARY
Load-segment name: WHITE

APDA Draft 201 7127187

 Chapter 5. Linker Apple I1GS Programmer’s Workshop

Furthermore, suppose you use the following commands in your LinkEd file:

SEGMENT GRAY
LOADSELECT MYFILE.A WHITE

This command extracts the object segments PETER and MARY, each of which has the load-
segment name WHITE, and places them in the load segment GRAY. Note that the object:
segments with the load-segment name WHITE are not actually put in a load segment named
WHITE unless you also use that load-segment name in the SEGMENT command, as in the
following set of commands:

SEGMENT WHITE
LOADSELECT MYFILE.A WHITE

As an example of the use of the /SCAN parameter, suppose files MYFILE .ROOT,
MYFILE.A, and MYFILE.B are in the current directory and you use the following
command:

LOADSELECT/SCAN MYFILE WHITE

In this case, the linker first searches MYFILE . ROOT, then MYFILE . B, and finally
MYFILE. A for object files that have the load-segment name WHITE.

OBJ
OBJ val

OBJ sets the value of the program counter (PC, a pseudo-address for the next line of code),
so that subsequent lines of code will be linked as if the sequence had started at the address

val.
val The value to which you want to set the program counter.

Unlike ORG, OBJ has no effect on the actual physical location at which the code is initially
loaded; instead, OBJ is used when part of a program must be moved (to val) before
execution.

Code produced in this way is not relocatable by the System Loader because references
within it are to absolute addresses, starting at val. Such code may, however, be included in
a segment that is relocatable. Use the OBJEND command to end the effect of the OBJ
command.

Note: This command is provided for those programs that have their own routines
to move segments to specific absolute addresses. We strongly recommend that you
not use this command, but take advantage of the capabilites of the Apple IIGS
System Loader and Memory Manager instead. Programs that do their own loading
and memory management are very unlikely to work successfully with any other
Apple IIGS routines.

APDA Draft 202 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

OBJEND
OBJEND

OBJEND resets the program counter to the current physical address in the file. The
program counter and the physical address always match unless an OBJ command has been
given.

ORG
ORG val

The ORG command sets the value of the program counter.
val The value at which you want to set the program counter.

The operation of ORG depends on where it is used, as follows:

« If the ORG command is used before any code segments in the current load segment
have been processed, the load segment is given a fixed start location equal to val, and
all code is linked for execution starting at the address val.

» If the ORG command is used after a code segment has been processed, LinkEd inserts
zeros from the present location until the specified location is reached. If val is smaller
than the current value of the program counter, the bytes between val and the program
counter are deleted. If val is smaller than the program-counter value at the start of the
code segment, an error is returned. An ORG command cannot be used within a load
segment unless another ORG command was used at the beginning of the load
segment.

Important: An ORG command in a LinkEd file does not override an ORG directive
in the source code; rather, the linker processes all ORGs in the order in which it
encounters them.

The parameter val can be specified as either a decimal number (for example, 126720) ora
hexadecimal number (for example, $01EF00).

Note: We strongly recommend that you not use this command, but take advantage
of the capabilites of the System Loader and Memory Manager instead. Programs
that do their own loading and memory management are very unlikely to work
successfully with any other Apple IIGS routines.

PRINTER

PRINTER ON|QFF

The PRINTER command controls output to the printer.

APDA Draft | 203 7127187

Chapter 5: Linker Apple IIGS Programmer’s Workshop

ON|OFF PRINTER ON sends the LinkEd source listing and symbol table to the
printer; PRINTER OFF stops output. The default value is OFF.

This command overrides any output redirection used in the APW Shell’s ASSEMBLE,
COMP ILE, or AL INK command line.

SEGMENT
SEGMENT[/DYNAMICI/kind] segname

The SEGMENT command defines the beginning of a new load segment in the current load
file, giving it the load-segment name segname. You can use the LINK, LOADSELECT,
and SELECT commands to put any number of object segments in a load segment. Load-
file segments may be loaded independently by the System Loader, as required.

Note: If the LINK or SELECT commands are used before any SEGMENT
command, all object segments are placed in a load segment whose name consists of
ten space characters. LinkEd ignores any load-segment assignments in your source
code unless you use the LOADSELECT command.

Important: Some languages (such as C) are case sensitive; segment names for
such a language must be entered in LinkEd commands exactly as they are listed in
the source code, including case. For case-insensitive languages, segment names

- must be entered in uppercase.

- /DYNAMIC The linker automatically flags segments as static. However, adding the
/DYNAMIC qualifier to the SEGMENT command makes the segment
dynamic. There cannot be any spaces between the SEGMENT command
and the /DYNAMIC parameter. You cannot use both the /DYNAMIC
and /kind qualifiers in the same SEGMENT command.

Note: Dynamic segments are supported so that you can write programs that make
highly efficient use of memory. Keep in mind, however, that any code that is
needed at all times (or frequently) by the program cannot be dynamic. See the
following note on load segments.

APDA Draft 204 : 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

/kind

segname

The Apple IIGS object module format defines several segment types in
addition to static, dynamic, code, and data. The segment type is specified in
the KIND field of the segment header. You can use the /kind qualifier to
specify a special segment type for a load segment. There cannot be any
spaces between the SEGMENT command and the /kind parameter. Precede
the number with a dollar sign ($) to indicate a hexadecimal number.

The linker presently generates files that conform to OMF Version 1.0, so
you must enter a 1-byte Version 1.0 KIND in this parameter. In OMF
Version 2.0, the KIND field is 2 bytes long. OMF Version 1.0 and 2.0
KIND fields are described in Chapter 7. You can convert the load file to
OMF 2.0 by using the Compact utility, as described in Chapter 3. The
Version 1.0 KIND field does not define the No Special Memory and Reload
segment types; however, the Compact utility adds the appropriate bits to the
Version 2.0 KIND field if you set the Version 1.0 segment type as follows:

KIND Segment Type
$1E cannot be loaded in special memory
$1F reload segment

You cannot use both the /DYNAMIC and /kind qualifiers in the same
SEGMENT command.

The name of the load segment into which you want to link object segments.
Segment names are case sensitive.

Examples of SEGMENT commands are shown in the section “Sample LinkEd Files” at the
end of this chapter.

The end of a load segment is marked by

» another SEGMENT command

« the end of the source file

Load Segments: Each load file has at least one segment—the main
segment—which, along with all other static segments, is loaded first by the System
Loader and is never removed from memory. It is usually the first segment in the .
file. Segments may directly access data in themselves and in any static segment,
but they cannot directly access data in dynamic segments.

APDA Draft

205 : 7127187

Chapter 5: Linker Apple IIGS Programmer’s Workshop

If a segment calls a subroutine in a dynamic segment, and that segment is not in
memory, then the System Loader loads that segment. If there is riot enough
memory to hold the segment, the Memory Manager attempts to free memory by
unloading dynamic segments that an application has made purgeable (if this attempt
fails, a system error is returned). Note that this means that the values of variables
in dynamic segments may not be preserved between calls. Intersegment calls must
be made with a long subroutine jump (JSL), which uses a 3-byte address, rather
than the “regular™ subroutine jump (JSR), which uses a 2-byte address; because the
loader may put a segment into any bank of memory, the JSR instruction would be
useless because it can access only the current bank. For more information on
segment loading and dynamic segment referencing, see the Apple IIGS ProDOS 16
Reference manual.

Both static and dynamic segments are automatically considered by the linker to be
relocatable, unless they contain an ORG assembler directive or are preceded by an ORG
LinkEd command.

SELECT
SELECT[/SCAN] objname (segl [,seg2(,...]11])

This command causes the named segment(s) (seg!, seg2,...) from the object file specified
by objname to be included in the output file. The segments are added in the order listed in
the command. If the SELECT command follows a SEGMENT command, the object
segments specified in objname are placed in the load segment defined by the SEGMENT

-~ command. If the SELECT command does not follow a SEGMENT command, all object
segments are placed in a load segment whose name consists of ten space characters. The
SELECT command ignores source-code load-segment names, such as those specified by
the operand of an APW Assembler START directive.

~ Use the LINK command to link all the segments in a file.

/SCAN If you include the /SCAN parameter, all files with the root filename of the
file specified by objname and . ROOT or alphabetic filename extensions are
searched to make sure the most recently assembled version of each file
segment is included (see the section “Partial Assemblies and Filename
Conventions” in this chapter). There cannot be any spaces between the
SELECT command and the /SCAN parameter.

obfname The full or partial pathname of the object file you want to search. If you do
not include the /SCAN parameter in the command, you must use the
complete filename, including the filename extension. If you do include the
/ SCAN parameter, do not include the filename extension in objname.

segl,seg2, . .. The names of the object segments that you want to extract. To extract
all the object segments from an object file, use the LINK command. In
case-sensitive languages, segment names must be entered exactly as they
appear in the source code. Segment names in case-insensitive languages
must be entered as all uppercase characters.

For example, suppose you use the following command:

SELECT/SCAN MYFILE (main,globals)

APDA Draft 206 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

If files MYFILE .ROOT, MYFILE.A, and MYFILE.B are in the current directory, the
linker first searches MYFILE , ROOT, then MYFILE .B, and finally MYFILE.A. It extracts
only the most recent versions of the object segments main and globals from these files.

SOURCE

SOURCE ON|QFF

This command controls the output of LinkEd source code.

ON |OFF SOURCE ON causes all subsequent lines of LinkEd source code to be sent
to standard output. SOURCE OFF suppresses output, unless an error is
encountered.

This command is overridden by the L option in the shell’s ASSEMBLE and COMPILE
command lines and by the LIST assembler directive.

SYMBOL

SYMBOL ON|QFF

The SYMBOL command controls output of the symbol table.

ON|OFF SYMBOL ON causes the symbol table to be sent to standard output;
SYMBOL OFF suppresses output.

The symbol table is an alphabetical listing of all symbolic references (labels). All segments
share the same symbol table. This command is overridden by the S option in the shell’s
ASSEMBLE and COMP ILE command lines.

Sample LinkEd Files

The listings below are all valid LinkEd files. Here all commands are written in uppercase
to follow the convention used in this book. Note, however, that segment names for
languages (such as C) that are case sensitive must be entered exactly as they are listed in the
source code. For case-insensitive languages, segment names must be entered in uppercase.

1. The following routine opens an output file called OUTF ILE, includes all files within
the current subdirectory that have the root filename MYF ILE, and performs a library
search on the current system library. It is equivalent to calling the linker with the
APW Shell command LINK MYFILE KEEP=OUTF ILE, except that any source-
code load-segment names are ignored.

KEEP OUTFILE
LINK/ALL MYFILE
LIBRARY *

2. This routine creates an object file with three segments, one of which is dynamic.
The first load segment is created by the LINK statement that precedes the first
SEGMENT statement and has a load segment name consisting of ten space characters.

APDA Draft 207 7127187

Chapter 5: Linker . Apple IIGS Programmer's Workshop

The second static load segment is created by the first SEGMENT command. The =
dynamic load segment is created by the SEGMENT /DYNAMIC command.

KEEP MYPROG
LINK/ALL MAINSUBS
LIBRARY *

SEGMENT SEG1
LINK/ALL SUBS1
LIBRARY *

SEGMENT /DYNBMIC SEG2
LINK/ALL SUBS2
LIBRARY *

3. In this routine, both the library file MYFILE2 and the system libraries are searched
for needed subroutines.

KEEP MYPROG
LINK MYFILE
LIBRARY MYFILEZ
LIBRARY *

4. In this example we assume we have written a program in two parts, one part in C
called DEMO. C, and one in assembly language called DEMO . ASM. The object file
START.ROOT, which is located in the library prefix (prefix 2), must be linked first,
as it contains initialization routines that we use for all our C programs. We want to
include routines from the standard C libraries in the library prefix, but we have
created two additional library files, called NEWLIB1 and NEWLIB2, that modify
some of the standard library routines. If we link those libraries before the standard
C libraries, the linker will have already resolved any references to the routines in
NEWLIB1 and NEWLIB2 and will ignore any routines with the same names in the
standard C libraries. NEWLIB1 and NEWLIB2 are in the current prefix.

Each of the object segments in the C libraries has one of the following load-segment
names in its segment header:

main
~globals
~arrays
(all space characters)

In addition, the file START . ROOT contains object segments with the load-segment
name main, and the files DEMO.C .ROOT, DEMO.ASM, ROOT, and DEMO.ASM. A
contain object segments with the load-segment names LSegl, LSeg2, and LSeg3.

Before looking at a LinkEd file to link this program, first consider the effect of using
the following command:

LINK 2/START DEMO.C DEMO.ASM NEWLIB1 NEWLIB2 KEEP=SAMPLE

When this LINK command is executed, the file START . ROOT is linked first,
followed by DEMO . C . ROOT, DEMO . ASM. ROOT, and DEMO . ASM. A. Next, the
library files NEWLIB1 and NEWLIB2 are searched for any unresolved references.
Finally, if any unresolved references remain, the library files in prefix 2 are

APDA Draft 208 7127187

Apple IIGS Programmer’s Workshop Chapter 5: Linker

searched. The resulting load file (named SAMPLE) contains the following segments
(in the sequence in which segments with these load-segment names were first found
in the object files). All these segments are static.

main
(all space characters)
~globals
~arrays
LSegl
LSeg2
LSeg3

Now, consider what happens when we link the program with the following LinkEd
file:

*
*

* %

KEEP SAMPLE
The following command starts the first load segment, named LSEGI1.
This is a static load segment.
SEGMENT LSEG1
The following commands extract object segments with the load-
segment names main and LSegl from the object files:
LOADSELECT/SCAN 2/START main
LOADSELECT/SCAN DEMO.C LSegl
LOADSELECT/SCAN DEMO.ASM LSegl
The following commands extract object segments, with the load-
segment name main from the library files:
LIBRARY/LOADSELECT NEWLIB1l main
LIBRARY/LOADSELECT NEWLIB2 main
LIBRARY/LOADSELECT * main
The following command extracts object segments with blank load-
segment names from the standard library files:
LIBRARY/LOADSELECT * *
The fellowing command starts the second load segment, named LSEGZ2.
This is a dynamic load segment.
SEGMENT/DYNAMIC LSEG2
The following commands extract object segments with the load-
segment name LSeg2 from the object files:
LOADSELECT/SCAN DEMO.C LSeg2
LOADSELECT/SCAN DEMO.ASM LSeg2
The following command starts the third load segment, named LSEG3.
This is a dynamic load segment.
SEGMENT/DYNAMIC LSEG3
The following commands extract object segments with the load-
segment name LSeg3 from the object files:
LOADSELECT/SCAN DEMO.C LSeg3
LOADSELECT/SCAN DEMO.ASM LSeg3
The following command starts the fourth load segment, named GLOBALS.
This is a static load segment.
SEGMENT GLOBALS
The following commands extract object segments with the load-
segment name ~glcobals from the object files. These object segments
contain global variables called with short addresses in C routines:
LOADSELECT/SCAN 2/START ~globals ‘
LOADSELECT/SCAN DEMO.C ~globals
LIBRARY/LOADSELECT NEWLIB1 ~globals
LIBRARY/LOADSELECT NEWLIB2 ~globals

APDA Draft 209 7127187

Chapter 5: Linker Apple IIGS Programmer’s Workshop

LIBRARY/LOADSELECT * ~globals ‘
* The following command starts the fifth load segment, named ARRAYS.
* This is a static load segment.

SEGMENT ARRAYS

* The following commands extract object segments with the load-
* segment name ~arrays from the object files. These object segments
* contain global arrays called with long addresses in C routines:

LOADSELECT/SCAN 2/START ~arrays

LOADSELECT/SCAN DEMO.C ~arrays

LIBRARY/LOADSELECT NEWLIBl ~arrays

LIBRARY/LOADSELECT NEWLIB2 ~arrays

LIBRARY/LOADSELECT * ~arrays

When this LinkEd routine is executed, the object and library files are searched in the
sequence specified by the commands in the file, as indicated by the comments in the
file. The file DEMO. C, for example, is opened and searched five separate times: first
for object segments with the load-segment name 1.Seg1, then for object segments
with the load-segment name LSeg2, then LSeg3, ~globals, and finally
~arrays. The final load file (also named SAMPLE) includes the following
segments:

LSEG1
LSEG2
LSEG3
GLOBALS
ARRAYS

Segments LSEG2 and LSEG3 are dynamic. Unlike the segments created by the
standard linker, these segments are placed in the load segment in the sequence you
specified. The object segments with load-segment names ma in and blank (all space
characters) are incorporated into segment LSEG1. '

In contrast to the standard linker, LinkEd files let you control the order in which object and
library files are searched for each object segment and the sequence in which load segments
are placed in the load file. LinkEd files let you specify whether a segment is static or
dynamic, regardless of any segment-type specifications in the source file. LinkEd lets you
extract only the object segments you want, so you can exclude segments you don't need for
a particular application. It lets you specify object segments by object-segment name or by
load-segment name, whether those segments are in object files or load files.

The price you pay for this additional control and flexibility is that you must specify every
file to be searched and every segment to be included. You must be familiar with the
contents, not only of the source files you write, but also of any other object files and library
files you wish to link. If you need the power provided by LinkEd, however, you will find
the time spent in learning how to use it and in writing the command files well worth the
effort.

APDA Draft 210 7127187

Part I1I
Inside the Apple IIGS Programmer's Workshop

Apple IIGS Programmer’s Workshop Chapter 6: Adding a Program

Chapter 6

Adding a Program to APW

This chapter describes how to add a utility program or compiler to the Apple IIGS
Programmer’s Workshop. None of the information in this chapter is essential for writing
programs that are independent of APW.

Note that when you add a utility or language to APW, you should update the APW
command table to include it. APW will execute a program that is not listed in the command
table, but it does not automatically search the utility or language prefix for the program if it
is not listed in the command table. The command table is described in the section
“Command Types and the Command Table” in Chapter 3, and a list of language numbers
currently assigned is given in Appendix B.

To get started as an Apple developer, write to

Developer Relations
Mail Stop 27 S

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Types of APW Programs

ProDOS 16 supports two principal kinds of executable load files: ProDOS 16 file types
$B3 and $B5. These two file types have the following characteristics:

» Programs of file type $B3 take over complete control of the computer; they do not
operate under a shell program. APW itself is an example of such a program. When a
program of file type $B3 is called, the calling program executes a ProDOS 16 QUIT
call, shutting itself down. When the called program finishes and executes a QUIT
call, ProDOS 16 reboots the calling program (assuming the calling program instructed
ProDOS 16 to do so). The ProDOS 16 QUIT call is described in the Apple IIGS
ProDOS 16 Reference.

« Programs of file type $B5 run under a shell program,; they do not remove the shell
from memory. The shell calls a program of file type $BS5 in full native mode via a
JSL instruction. When the program terminates, it returns control to the shell via an
RTL instruction (or, if the shell supports it, through a ProDOS 16 QUIT call).

APW utility programs are programs of file type $BS designed to be run under the APW
Shell program. They perform operations too complex to be performed by the shell itself,
but appear to the user to be shell commands. APW compilers and assemblers are also
programs of file type $B5, but they make use of special APW Shell calls (described in
Chapter 8) to pass parameters to and from the shell, and they are distinguished from

APDA Draft 211 7127187

Chapter 6: Adding a Program Apple IIGS Programmer’s Workshop

utilities in the command table (see the section “Command Types and the Command Table” ~
in Chapter 3). Since the requirements for compilers and assemblers are different from
those for utility programs, they are discussed separately in this chapter.

You can write a program of file type $B3 and use it with APW; APW launches any
executable load file it finds on disk when you type in the program’s pathname. Since APW
quits and ProDOS 16 clears the desktop when a type $B3 program is called, however,
there are no special requirements for the program (other than those required by the Apple
IIGS system in general), and so these programs are not discussed in this chapter.

Note: Any $BS file that runs under the APW Shell can be made into a $B3 file,
provided that it makes no calls to the APW Shell and that it terminates with a
ProDOS 16 QUIT call. Use the Shell’s FILETYPE command to change the file
type of a $BS5 file to $B3.

See the Programmer’s Guide to the Apple IIGS for guidance in writing an event-driven
program for the Apple IIGS computer.

Important: Before writing any programs to run under the APW Shell, you should
become familiar with the shell calls described in Chapter 8. These calls help you to
implement a variety of APW features, such as wildcard expansion and early
termination of the program in response to an Apple-Period (G-.) key press.

APW Utilities

APW utilities are applications designed to run under the APW Shell. They must be
ProDOS 16 file type $BS. By following the guidelines described in this section, you can
write a utility that can be executed from the APW Shell with APW remaining resident in
memory.

Note: Although many of the rules listed in this section for APW utilities apply to
any utility written to run under any shell, the purpose of this section is to describe
how to add a utility to APW only. To write a utility to run under another shell, you
will have to know the specific requirements of that shell.

APW Exec files can be installed as utility programs by placing the file in the utility
subdirectory (prefix 6) and adding the name of the file to the command table. This
section describes $BS5 load files only, not Exec files. Exec files are discussed in the
section “Exec Files” in Chapter 3.

When you enter an APW command, the APW Shell looks for the command name in the
command table (see the section “Command Types and the Command Table” in Chapter 3).
If the command is listed in the command table as a utility, the shell loads it from the utility
prefix (prefix 6); if the command is not in the command table, then the shell looks for a file
with that name in the current prefix. In either case, the shell strips any 1/O redirection
information from the command line and places the command line (together with the shell
identifier string) in a buffer in memory. The shell then places the address of the command-
line buffer in the X and Y registers. The shell requests a user ID for the program from the
User ID Manager and places this ID in the accumulator.

If the utility program does not have a direct-page/stack segment, then when the APW Shell
calls the program, it provides a 1024-byte memory block in bank 00 for the utility to use

APDA Draft 212 7127/87

Apple lIGS Programmer’s Workshop Chapter 6: Adding a Program

for its direct page and stack. The shell places the address of the start of the memory block
in the direct-page (D) register and sets the stack pointer (S register) to point to the last byte
of the block. If it finds a direct-page/stack segment, the shell sets the D register to point to
its first byte and the stack pointer to its last.

Requirements

Any utility must obey the following rules in order to execute successfully under the APW
Shell.

Warning: If a program with ProDOS 16 file type $BS does not obey the
following rules, you must quit APW before calling it. Executing such a program
from the APW Shell can cause the system to crash. In fact, such a program should
not be given the file type $BS.

« The utility must be designed to be called in full native mode via a JSL instruction.

+ As soon as the utility is called, it should check the X and Y registers for the address
of the command-line buffer, which contains the following information:

1. An 8-byte ASCII string containing the APW Shell identifier string BYTEWRKS.
The utility should check this identifier to make sure that it has been launched by
the APW Shell, so that the environment it needs is in place. If the shell
identifier is not correct, the shell load file should write an error message to
standard error output (normally the screen) and exit with an RTL instruction or
a ProDOS 16 QUIT call.

2 A null-terminated ASCII string containing the input line for the utility. The
APW Shell strips any I/O redirection or pipeline commands from the input line,
since those commands are intended for the shell itself, but passes on the
command name and all input parameters intended for the utility.

» All input must come from standard input, which provides a sequential character
stream. Standard input is discussed in the section “Redirecting Input and Output” in
Chapter 3. You can use Apple IIGS Text Tool Set calls to read the next input
character. Tool calls are described in the Apple I1GS Toolbox Reference manual.

Important: Your utility should not read the keyboard directly, because in that case
the shell input redirection command would not work, contrary to the expectations of
the user. For the same reason, your utility should not initialize or reset the Text
Tool Set.

« All output must go to standard output, which appears to the program as a sequential,.
write-only ASCII output device. Standard output is discussed in the section
“Redirecting Input and Output” in Chapter 3. You can use Apple IIGS Text Tool Set
calls to send output to standard output.

+ The utility must handle its own errors. You can use standard output or standard error
output as you prefer. The utility should place an error-condition code in the
accumulator before returning control to the shell. If no error has occurred, the error
code should be $0000; otherwise, the code should be $FFFF. When the program
returns control to an Exec file, the error code is placed in the {Status} variable. If
{Exit} is non-null, the Exec file terminates. Exec files are discussed in the section
“Exec Files” in Chapter 3.

APDA Draft 213 7127187

Chapter 6: Adding a Program Apple 1IGS Programmer's Workshop

+ The udlity must use the Memory Manager to request memory; since several programs
can be resident in memory at one time, there is no way to predict what areas of
memory will be free for the utility to use.

* The utility should use the APW Shell calls described in Chapter 8 whenever possible
to perform a necessary operation. For example, use the Execute call to pass a
command on to the shell command interpreter rather than duplicating the function in
your program.

+ If appropriate, the utility should use the APW Shell STOP call described in Chapter 8
to detect a request for an early termination of the program. Note that it should call
STOP frequently in order for this function to be effective.

Important: If your utility uses APW Shell calls, it will not run if called by
ProDOS 16 or by another shell.

» If the utility launches another program, it must request a User ID from the User ID
Manager. The utility is then responsible for intercepting ProDOS 16 QUIT calls and
system resets, so that it can remove from memory all memory buffers with that user
ID before passing control back to the APW Shell.

* A utility should use the following procedure to quit:

1. If the utility has requested any User IDs, it must release all memory buffers
with those User IDs.

2. The utlity must place an error code in the accumulator. If no error occurred,
the error code should be $0000; otherwise, the code should be $FFFF.

3. The utility should execute an RTL instruction or a ProDOS 16 QUIT call. If .
the utility is not restartable, the APW Shell releases all memory buffers
associated with it

Important: Do not add any utility to APW that writes to or modifies
directory files, as such a utility would interfere with any file servers added in
the future and may be incompatible with new operating systems.

Conventions

The following features are not required for an APW utility to work, but they are
recommended in order to provide a consistent appearance and manner of operation of all
utilities.

+ Utlities should take any input as command-line parameters, rather than prompting for
input, although the utility should prompt for any required parameter that is omitted by
the user. There are two kinds of parameters: pathnames and options. Options begin
with a minus sign (-) to distinguish them from pathnames. Each option is a single
letter or a single word, but some options may require additional parameters, which are
separated from the option name with a space. If more than one parameter is required
following the option name, the usual separators between them are commas and equal
signs; for example

COMMAND -DEFINE TURN='ON' -PAGE 84,110

Options and pathnames may appear in any order. All of the options apply to the
processing of all of the files, regardless of the order in which the options and
pathnames appear on the command line.

APDA Draft 214 7127187

Apple IIGS Programmer’ s Workshop

Chapter 6: Adding a Program

Notice that a somewhat different convention is used for options for APW compilers
and linkers. See the description of the ASML command in Chapter 3 for a discussion
of compiler options.

« If your utility can generate more output than can fit on a single screen, the user will
expect to be able to pause the output by pressing any character key on the keyboard.
To implement this feature, call the following procedure frequently; for example, after
every line of output. This procedure returns a 1 in the accumulator if Apple-Period
was pressed; therefore, for languages that pass parameters in the accumulator, you
can also use this procedure to replace the Shell’s STOP call.

; STOP_PAUSE:

s Ne wa e

PAUSE

~

e

key
loop

stopset
out
done

4

Ll

START
LDA

LONGA
LONGI
SEP

PHB
PHA
PLB

BIT
BPL
BIT
BPL
LDA
CMP
BEQ

LDA
BIT
BIT
BPL

BIT

- BPL

LDA
CMP
BEQ

LDA
BRA
LDA
BIT
PLB

REP
LONGI
LONGA

APDA Draft

Example of use from C:

main

#50000

QFF
OFF
#3530

$C000
done
$C025
key
#SAE
$C000
stopset

#3500
$c010
5C000
loop

$C025
out
#SAE
$C000
stopset

#3500
out
#501
$C010

#3530
ON
ON

Handles key press pause and resume. Returns TRUE for
open-Apple/period, FALSE otherwise.
To use, assemble, and add object file name to linker command line.

if (STOP_PAUSE()) exit(0);

preset default result in all 16 bits

change to 8 bit mode

save data bank on stack
set data bank to 0
so we can read the key-board strobe and data

test strobe
done if strobe not set
test for open apple modifier

test for period (high bit still set)

restore default result

reset strobe

test strobe

until next key press

test for open apple modifier

test for period (high bit still set)

restore default result
set return value for stop
reset strobe

restore data bank

back to 16 bit mode

215 7127187

Chapter 6: Adding a Program Apple lIGS Programmer’s Workshop

RTL
END

* When you add a utility program to APW, you should provide a help file to go with it.
Help files are ASCII text files (APW language type PRODOS) that have the same
name as the command and that are kept in the /APW/UTILTIES/HELP/
subdirectory. To see an example of a help file for an APW utility, enter the following
command:

HELP MAKELIB
Notice that the user cannot scroll through a help file; the text should fit on one screen.

» If you wish, you can make your utility program restartable, so that it does not have to
be reloaded from disk each time it is run. For a program to be restartable, it must
reinitialize all variables and arrays each time it starts. OMF Version 2.0 provides the
following special segment types that support restartable programs: initialization
segments, which are reloaded from disk and executed each time a program is restarted
from memory; and reload segments, which are reloaded from disk each time a

program is restarted.

The APW Linker creates OMF Version 1.0 files. You can use the Compact utility to
convert an OMF Version 1.0 load file to OMF Version 2.0. See the description of the
COMPACT command in Chapter 3 and the description of the SEGMENT command in
Chapter 5 for ways to create reload and initialization segments. Versions 1.0 and 2.0
of the OMF are defined in Chapter 7.

To indicate to the APW Shell that the program is restartable, put an asterisk (*) in the
command table in front of the command type (the U). If you precede the command
type with an asterisk, the shell assumes that the program can be restarted and does not
remove static segments from memory as long as that memory is not needed for other

purposes.

Compilers and Assemblers

Compilers, assemblers, and interpreters are implemented in nearly identical ways in APW.
In this section, the term compiler is used generically to include compilers, assemblers, and
interpreters, unless an explicit distinction is made.

Source File Format

Your compiler must be capable of accepting files that conform to the Apple IIGS text-file
format, as specified in Chapter 7. In this format, lines are separated by carriage return
characters ($30D). The form-feed character ($0C) should be accepted, and used to generate
a form feed in printed output. Your compiler should handle tabs as discussed in Chapter 7.

All lines in APW source files are assumed to be no more than 255 characters long.

APDA Draft 216 7/127/87

Apple IIGS Programmer's Workshop Chapter 6: Adding a Program

Identifying the Language Type

Each language used by the Apple IIGS Programmer’s Workshop has a unique language
number. Language numbers are discussed in the section “Command Types and the
Command Table” in Chapter 3, and a list of the language numbers currently assigned is
given in Appendix B. If you are a certified Apple developer and you need a new language
number for your compiler, write to

Developer Technical Support
Mail Stop 27 T

Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, CA 95014

Each source file must have one of these language numbers as the first byte of the
aux_type field in the file entry of the subdirectory. The APW Editor automatically
includes this language number when it writes a file to disk; if the program is written with a
different editor, the user must use the APW Shell’s CHANGE command to assign the
appropriate language type to the file. The format of directory entries is described in the
Apple IIGSProDOS 16 Reference manual.

Your compiler should include a command that corresponds to the APW Assembler
APPEND directive, which transfers control from the file being processed to a new file.
When this command is used, your compiler must check the language type of the new file; if
the language type does not match that of your compiler, the compiler must close the object
file it is generating and transfer control back to the shell by executing a SET _LINFO call
(described in Chapter 8). _

Entry and Exit

Compilers and assemblers that operate under APW should have ProDOS 16 file type $BS5.
When a user enters the COMP ILE command (or one of its aliases), the shell checks the
language type of the source file and uses a JSL instruction to pass control to the
appropriate compiler. The first thing the compiler should do is to execute 2 GET_LINFO
call (described in Chapter 8) to read the input parameters. Upon complcuon the compiler
should execute a SET_LINFO call and return control to the APW Shell via an RTL or a
ProDOS 16 QUIT call. The system is in full native mode when it calls the compiler, and it
should be in full native mode when control is returned to the shell.

The compiler should use the APW Shell STOP call described in Chapter 8 to detect a
request for an early termination of the program. If it receives such a request, the compiler
should treat it like a fatal error (see the following discussion of the SET _LINFO call).

The compiler is responsible for reading and using the parameters passed to it via the

GET LINFO call, updating any values that have changes, and returning them via the

SET LINFO call when the compile is complete. These parameters are all described in
Chapter 8. In order to make your compiler fully consistent with other APW compilers, you
should keep the following points about these parameters in mind:

APDA Draft 217 7127187

Chapter 6: Adding a Program Apple IIGS Programmer’s Workshop

+ If the compile completes with a nonfatal error, the compiler should return the error
level in the merrf field of the SET_LINFO call. If merrf is greater than merr, the
shell stops processing the program, even if CMPL, CMPLG, or an equivalent
command was used. Use the following error levels for nonfatal errors:

Error
Level Meaning

$02 Warning. An anomaly has been found in the code. It may execute
successfully.

$04 Error. The compiler may be able to correct this error. Examples include
misspellings or omitted keywords.

$08 Error. The compiler cannot correct the error but knows how much space to
leave. This error level is usually restricted to assemblers.

$10 Error. The compiler cannot correct the error, but only the segment
containing the error is affected. An example would be an undeclared local
variable. '

$20 Syntax error. The entire result of the compile is suspect. This error would
occur, for example, when a syntax checker had to skip symbols in an
attempt to resynchronize with the code stream. In some languages, such as
FORTRAN, the syntax checker can resynchronize with the beginning of the
next line, in which case this type of syntax error should never occur. In
free-format languages such as Pascal, on the other hand, an entire
subroutine could be discarded before the compiler resynchronizes; in this
case, a syntax error should be flagged.

« If the compile terminates prematurely due to a fatal error, the compiler should return
an $FF in the merrf field of the SET LINFO call.

« All memory buffers pointed to by parameters in the SET LINFO call should be in
static segments loaded when your program was launched. The APW Shell does not
unload your program’s static segments until after it has processed the SET LINFO
call. '

* Your compiler can read any special parameters passed to it in the buffer pointed to by
the istring field of the GET LINFO call. There is no need to pass those
parameters back to the shell when your compiler exits via a SET_LINFO call.

« If the compile terminates prematurely and the +E flag is set, the compiler should place
the pathname of the source file in which the error occurred into a buffer and set the
sfile parameter of the SET _LINFO call to point to that buffer.

« If the compile terminates prematurely and the +E flag is set, the compiler should place
the text of the error message into a buffer and set the parms parameter of the
SET_ LINFO call to point to that buffer.

« If the compile terminates prematurely and the +E flag is set, the compiler should place
in the org field of the SET LINFO call the displacement into the source file of the
last line processed. When the APW Shell receives control, it calls the APW Editor,
which displays the source file indicated by the sfile parameter; the line containing
the error as indicated by the displacement in the org field is placed at the fifth line on
the screen and the error message pointed to by the parms parameter is displayed at
the bottom of the screen.

APDA Draft 218 7127187

Apple IIGS Programmer’s Workshop Chapter 6: Adding a Program

» The least significant bit (bit 0) of the operations-flags (Lops) field in the
GET LINFO call is always set (1) when a comp1ler is called; this bit indicates that a
compile is to be performed. If the next bit (bit 1) is set, it indicates that a link should
be performed after a successful compile; if bit 2 is also set, it indicates that the
finished program is to be executed immediately after the link.

» If the compile completes normally, the compiler should clear the least significant bit of
the lops field of the SET_LINFO call.

» If a compile completes with merrf>merr, or terminates prematurely with a fatal
error, then no further processing is done regardless of the setting of the operations
flags.

» If the compile stops because a file was appended that had a language type different
from the language type of the compiler, the compiler should not clear the least
significant bit of the 1ops field of the SET _LINFO call. This indicates to the shell
that the compile is not complete so that it can then call the compllcr appropriate to the
new file.

* The kflag parameter of the GET_LINFO call is used by the compiler to determine
the names and number of output files to generate. The kflag parameter is discussed
in detail in the section “Ouput Files” in this chapter.

« If any segment names are listed in the buffer pointed to by the parms parameter of
the GET LINFOcall,a partlal compile is to be performcd Partial compiles are
discussed in detail in the section “Partial Compiles™ later in this chapter.

» There is a set of standard options that are passed by the mflags and pflags
parameters of the GET LINFO call. The purpose of each of these options is
described in the section on the ASML command in Chapter 3 and in the section
“Compiling (or Assembling) and Linking a Program” in Chapter 2. If your compiler
does not support any of these options, or responds in a manner differently from that
described in this manual, your manual should clearly state so.

If you wish, you can make your compiler restartable so that it does not have to be reloaded
from disk each time it is run. For a program to be restartable, it must reinitialize all
variables and arrays each time it starts. To indicate to the APW Shell that the program is
restartable, put an asterisk (*) in the command table in front of the command type (the L).
If you precede the command type with an asterisk, the shell assumes that the program can
be restarted and does not remove static segments from memory as long as that memory is
not needed for other purposes.

Command Precedence

If your compiler includes source-file commands that control functions that can also be
controlled from the command line, the command-line input should take precedence. For
example, if the source code includes a command that suppresses a listing of the source file,
but the user requests a listing by specifying +L on the command line, then a listing should
be generated.

APDA Draft 219 7127/87

Chapter 6: Adding a Program Apple IIGS Programmer’s Workshop

Output Files

Every compiler under APW must be capable of producing one or more object files that
conform to APW object module format (described in Chapter 7). These files are then
processed by the APW Linker to produce an executable load file.

Both object files and load files are segmented, but a load segment can contain more than
one object segment. In assembly language, the object-segment name is in the label field of
a START or DATA directive, and the name of the load segment to which that object segment
is to be assigned is specified in the operand field of the directive.

In order to make it easier for users to link together object files made with your compiler,
you can assign one default load-segment name (such as a string of spaces) to all code
segments and another (~globals) to all global variables. You might want to place all
global variables that are called with short addresses in one segment (~globals) and all
global variables called with long addresses in another segment (~arrays), as is done by
APW C (notice that these segment names are all lowercase characters). In order to aid
users in linking together routines written in different languages, your manual should state
clearly what segment-naming conventions you have adopted and how to use these segment
names to gain access to global variables.

The APW Linker normally assigns all object segments with the same load-segment name to
the same load segment. The user has the option of using a LinkEd file to instruct the linker
'to place any object segment in any load segment.

See the section “Object Module Format™ in Chapter 7 for a description of segments,
segment types, and segment headers.

When the CMPL, CMPLG, or COMPILE command (or an alias) is executed, the user can
specify the name of the output file with the KEEP parameter.

Important: Nommally in APW, parameters listed on the command line take
precedence over those set in the source file. Therefore, your compiler should use
the name given in the KEEP parameter in preference to any output filename given in
the source file. If for some reason your compiler does not support the KEEP
parameter, or an output filename in the source file takes precedence, your manual
should clearly explain that this is the case.

The shell checks the directory for filenames that match the KEEP filename, excluding
extensions, and sets the k f 1lag parameter in the GET LINFO call accordingly. The shell
places the object filename in a buffer and puts the address of the buffer in the dfile
parameter of the GET LINFO call. The kflag parameter can be equalto 0, 1, 2, or 3, as
follows.

Note: An object filename assigned by the shell from a KeepName shell variable is
passed to the compiler in exactly the same way as one specified with the KEEP
parameter. There is no way for your compiler to tell whether the name was
specified with a KEEP parameter or with a KeepName variable.

» If xflag =0, no KEEP parameter was used in the command line. If a KEEP
directive (or the equivalent) was used in the source code, the compiler must perform

APDA Draft 220 7127187

Apple IIGS Programmer’s Workshop Chapter 6: Adding a Program

its own check for filenames that match the KEEP filename. If no KEEP directive was
used, do not save the output. ‘ :

+ If kflag = 1, no output files have been previously generated with this filename. The
compiler should place the first segment to be executed in a file with the filename
specified with the KEEP parameter and with the extension . ROOT. For example, if
kflag=1 and if the COMP ILE command included the parameter KEEP=MYF ILE,
then the compiler should place the first segment to be executed in a file named
MYFILE.ROQOT. If there are additional segments in the source file, they may be put
in a file named MYFILE. A.

« If kflag =2, afile with the KEEP filename and the extension . ROOT already exists.
In this case, the compiler should start by creating a file with the extension .A. If the
main program segment was written in assembly language and a subroutine was
written in C, for example, then the assembler would create the . ROOT file, and the C
compiler would create the . A file.

« Ifkflag =3, at least two files with the KEEP filename already exist: one with the
extension .ROOT and one with the extension .A. In this case, files with other
alphabetic extensions might also exist; these files are created by partial compiles, as
discussed in the following section. The compiler should start by searching the
directory of the KEEP filename to determine the highest alphabetic suffix on the disk,
and then use the next higher suffix. For example, if the files MYFILE . ROOT,
MYFILE.A, and MYFILE.B all exist, the compiler should start with the filename .
MYFILE.C. Multiple output files can be created by a multilanguage compile (the first
language creates the . ROOT and . A files, the second language the . B file, and so on)
or by partial assemblies.

The paradigm followed by the APW Assembler is to first look for the . ROOT file, then the
. Afile, then the . B file, and so on. The search is terminated as soon as one file in the
sequence is not found. Therefore, if the files MYFILE.A, MYFILE.B, and MYFILE.D
were in the subdirectory, but MYFILE . C was not, the assembler would never find
MYFILE.D. The next file created by the assembler, then, would be MYFILE . C.

Notice that in this example, the linker would start the link with the file MYF ILE . D.
Because MYF ILE . C was the last file created, it is unlikely that this is what the user
expected.

Your compiler must follow certain conventions when writing names to object files:

« If the source langunage is case-insensitive, always use uppercase letters in identifiers.
If the source language is case-sensitive, retain the case of all characters. The linker
retains the case of labels.

« For fixed-length names (as specified by the LABLEN field in the OMF segment
header), use space characters ($20) to pad names to the required length.

Partial Compiles

The Apple IIGS object module format, the System Loader, and the Memory Manager are all
designed to support program code that is organized in segments that can be loaded
independently. If your compiler is going to work well in the Apple IIGS Programmer’s
Workshop environment, it should be capable of creating segments that can be linked to

APDA Draft 221 7127187

Chapter 6: Adding a Program Apple IIGS Programmer’s Workshop

segments output by other compilers and also of using segments created by other compilers.
The use of segmented code provides two additional benefits: first, it facilitates the use of
libraries, since the entire library file need not be linked to each program, and second, it
allows for partial compiles.

In a partial compile, a list of segments to be compiled is passed to the compiler by the
GET_LINFO call; the compiler searches through the source code for the named segments
and compiles them. Other segments need not be compiled. Any segments compiled (other
than the first segment to be executed when the program is run) are placed in a file with the
next available alphabetic suffix, as discussed in the previous section, “Output Files.” If
one of the segments compiled is the first code segment that will be executed when the
program is run, the compiler deletes the old . ROOT file and creates a new one.

When the linker links the program, it uses the following procedure:

1. It starts with the . ROOT file, and links that segment.

2. Itlooks for a .A file, If it finds one, the linker looks for a . B file, and so on.
3. It links the file with the highest alphabetic suffix it has found.
4

. It works its way back through the alphabet to the . A file, ignoring any segments
with names identical to those it has already found, and linking the rest.

For example, suppose you have compiled a program that has four segments, SEG1, SEG2,
SEG3, and SEG4. SEG1 is the first segment that will be executed when the program is
run. The compiler places SEG1 in the file MYPROG . ROOT, and the remaining three
segments in the file MYPROG . A. Now suppose that, in testing the program, you have to
make changes to segments SEG2 and SEG4, so you perform a partial compile. In this
case, the compiler places segments SEG2 and SEG4 in the file MYPROG. B. Finally, to fix
the one remaining bug in the program, you do another partial compile on SEG2. The
compiler places the latest version of SEG2 in the file MYPROG.C. Now when you link the
program, the linker operates as follows:

1. It finds MYPROG .ROOT and links it.

2. It finds MYPROG. A, then finds MYPROG . B, and then MYPROG cC. It does not find
MYPROG.D, so it links MYPROG . C.

3. It searches MYPROG. B and finds that it has already linked SEG2, so it ignores the
SEGZ2 in MYPROG . B and links SEG4.

4. It searches MYPROG . A and finds that it has already l1nked SEG2 and SEG4; it
ignores those two segments and links SEG3.

Important: Keep in mind that for partial compiles to work, the order in which
segments are linked must not be significant.

Note: You can use the CRUNCH command, described in Chapter 3, to combine all

of the alphabetic-extension files for a program into a single . A file. The CRUNCH
command scans the files for the latest version of each segment and restores the
segments to their original order.

APDA Draft ‘ 222 7127187

Apple IIGS Programmer’s Workshop Chapter 6: Adding a Program

Help Files

When you add a new language to APW, you should provide a help file to go with it. Help
files are ASCII text files (APW language-type PRODOS) that have the same name as the
command, and that are kept in the APW/UTILTIES/HELP/ subdirectory. To see an
example of a help file for an APW language, enter the following command:

HELP ASM65816

If your language includes language-specific parameters for the COMPILE, CMPL, and
CMPLG commands, you should provide replacement help files for those commands (and
their aliases) as well.

Notice that the user cannot scroll through a help file; the text should fit on one screen.

Interpreters

Installing an interpreter under APW is almost identical to installing a compiler, with the
following exceptions:
* Interpreted code is not linked. An interpreter cannot make calls to code compiled by a
compiler, because the linker cannot be used to combine interpreted and compiled
code.

» An interpreter should clear all three operations flags of the 1ops parameter in the
SET_LINFO call when returning control to the shell. Since the interpreter executes
the program, linking and separate execution are not needed.

APDA Draft 223 7127187

Chapter 6: Adding a Program Apple IIGS Programmer’s Workshop

APDA Draft 224 7127187

Apple HIGS Programmer’s Workshop Chapter 7: File Formats

Chapter 7

File Formats

This chapter describes and defines two standard file formats used on the Apple IIGS: the
text-file format, which is used for standard ASCII text files and program source files by all
APW programs; and the object module format, which is used for all APW object files,
library files, and load files. The Apple IIGS System Loader requires that a load file
conform to object module format.

Text-File Format

Under ProDOS 8, each application defines its own format for text and data files. On the
Apple IIGS, there is a standard format for text files, so that any program that conforms to
the standard can read text files written by any other standard program. This format does
not preclude the use of files in other formats by these programs; however, to be considered
a standard application on the Apple IIGS, it is required that a program be capable of reading
and writing files in the standard text-file format.

An Apple IIGS text file contains ASCII codes representing printable characters, plus a few
specific control characters. When displayed on a screen or printed out, a text file can be
read by humans; that is, there are no binary codes that specify printing formats, printer
controls, graphics patterns, and so forth. Related file types, such as word processor files
that contain representations of ASCII text but include formatting information, should be
assigned unique file types.

Text-File Specifications

An Apple IIGS text file has the following attributes:
» It consists of zero or more lines.
» Each line consists of zero or more ASCII character codes in the range $00 to $FF.

» Each line ends with the ASCII code $0D (carriage return); every time the character
code $0D appears, it indicates the end of a line. Even the last line of the file must end
with $0D.

» There are no gaps in the file; that is, every character code is part of a line.

» The end of a text file is determined by the ProDOS 16 end-of-file (EOF) pointer.
EOF is part of the file descriptor maintained by ProDOS 16, not part of the file itself.

A line with zero characters contains only the end-of-line code, $0D. A text file of length
zero contains no lines, characters, carriage returns, or anything else.

APDA Draft 225 7127187

Chapter 7: File Formats Apple IIGS Programmer's Workshop

This file format includes no provision for file compression or for including descriptive
information about the file. Information about the file can be encoded in publicly available
file descriptor fields or in another file associated with the given file. For example, a text
editor might store the tab stop values for the file TEXTFILE in the associated file
TEXTFILE.TABS. Such file associations must be defined by the individual application.

The following characters require special handling:

HT ($09): Horizontal Tab

A program reading the file should interpret HT as a field delimiter, where the definition
of field delimiter is left to the individual application. A field delimiter usually denotes a
definite separation between characters, whether or not there are space characters between
the characters or white space when the line is printed out. A program writing out a line that
contains an HT character should insert enough spaces to get to the next tab stop before
writing out subsequent characters. The definition of tab stop is left to the individual
application.

LF ($0A): Line Feed
A program writing out a line that contains a line-feed character should move the cursor to
the next line without changing its horizontal position. A carriage-return/line-feed sequence

should be handled on the screen like a carriage return: the cursor should be moved to the
beginning of the next line.

CR ($0D): Carriage Return

The carriage-return character indicates the end of a line. A program writing out a line that
contains a CR character should move the cursor to the beginning of the next line. When a
CR character is sent to a printer, it may or may not also cause a line feed, depending on the
printer and the settings of dip switches and printer options.

FF ($12): Form Feed

The form-feed character usually causes a printer to scroll to the beginning of the next page.
When writing a line to the screen, your program can treat an FF like a carriage return, or it
can add blank lines to fill out the page of text. If your program has a convention to indicate
page breaks, the FF character should be interpreted as a page break.

SP ($20): Space

A character that prints as a blank space.
High ASCII ($80-$FF)

These codes are used by some programs on Apple IIGS for special characters, such as
Greek letters and block graphics (depending on the character font in use). Your program

APDA Draft 226 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

can display these characters on the screen in any way you choose. If you elect to strip the
high bit, be sure to handle characters $80 through $9F and $FF carefully, because the low-
ASCII equivalents of these codes ($00 through $1F and $7F) represent special codes to
some programs and printers.

Other Characters

Other characters have no specific interpretation in this specification. It is recommended that

you limit text files to printable characters ($21 through $7E and $80 through $FF) plus CR,
LF, FF, HT, and SP.

Examples

Let the symbols [and] represent the beginning and end of the file, respectively. Then the
following text files store the specified text:

Text consisting of no characters:

[1]

Text consisting of one line with no characters:

[$0D]

Texf consisting of two lines with no characters in either line:
[$OD $0D]

Text consisting of the line Hi there!:

[$548 $69 $20 $74 $68 $65 $72 $65 $21 $0D]
Text consisting of the two lines

Hi
there!

[$48 $69 $S0D $20 $74 $68 $65 $72 $65 $21 $0D]

APDA Draft ' 227 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

Object Module Format

Important: This section describes Version 2.0 of the Apple IIGS object module
format (OMF). The System Loader supports files written in either Version 2.0 or
Version 1.0 of the OMF. The APW Linker, however, creates load files that
conform to Version 1.0 of the OMF. Notes in this section describe the differences
between Version 1.0 and Version 2.0 of the OMF. The Compact utility program,
described in Chapter 3, converts load files from Version 1.0 to Version 2.0.

Under ProDOS 8 on the Apple Ile and Apple Ilc, there is only one loadable file format,
called the binary file format, which consists of one absolute memory image along with
its destination address. ProDOS 8 does not have a relocating loader, so that even if you
write relocatable code, you must specify the memory location at which the file is to be
loaded. The Apple IIGS uses a more general format that allows dynamic loading and
unloading of file segments while a program is running and that supports the various needs
of many languages and assemblers. The APW Linker and System Loader fully support
relocatable code; in general, you do not specify a load address for an Apple IIGS program,
but let the loader and Memory Manager determine where to load the program.

The Apple IIGS object module format (OMF) supports language, APW Linker, library, and
System Loader requirements, and it is extremely flexible, easy to generate, and fast to load.

There are four kinds of files that use object module format: object files, library files, load
files, and run-time library files.

» Object files are the output from an assembler or compiler and the input to a linker.
Object files must be fast to process, easy to create, independent of the source
language, and able to support libraries in a convenient way. In APW, object files also
support segmentation of code and partial assemblies and compiles. They support
both absolute and relocatable program segments.

Apple IIGS object files contain both machine-language code and relocation
information for use by the linker. Object files cannot be loaded directly into memory;
they must first be processed by the linker to create load files.

« Library files contain general object segments that a linker can find and extract to
resolve references unresolved in the object files. Only the code needed during the link
process is extracted from the library file.

« Load files, which are the output of a linker, contain memory images that a loader
loads into memory. Load files must be very fast to process. Apple IIGS load files
contain load segments that can be relocatable, movable, dynamically loadable, or have
any combination of these attributes. Shell load files are load files that can be run from
a shell program without requiring the shell to shut down. Startup load files are load
files that ProDOS 16 loads during its startup.

Load files are created by the linker from object files and library files. Load files can
be loaded into memory by the System Loader; they cannot be used as input to the
linker.

« Run-time library files are load files containing general routines that can be shared
between applications. The routines are contained in file segments that can be loaded
as needed by the System Loader and then purged from memory when they are no
longer needed. Run-time library files are not currently supported by the APW Linker
but are defined in the OMF to allow for future enhancements to the system.

APDA Draft 228 7127187

Apple 1IGS Programmer’'s Workshop : Chapter 7: File Formats

All four types of files consist of individual components called segments. Each file type
uses a subset of the full object module format. Each compiler or assembler uses a subset of
the format depending on the requirements and complexity of the language.

The ProDOS 16 file types used by APW are as follows:

File Type Name Mnemonic
$B0O source SRC
$B1 object OBJ
$B2 library LIB
$B3 load S16
$B4 run-time library RTL
- $BS shell load EXE
$B6 startup load STR

$B7-$BE other load file types

An APW source file has an auxiliary type that represents the programming language for
which it is to be used.

The rest of this chapter defines object module format. First, the general format
specification for all OMF files is described. Then, the unique characteristics of each of the
following file types are discussed:

« object files

* library files

* load files

run-time library files
shell load files

General Format for OMF Files

Each object-module-format (OMF) file contains one or more segments. Figure 7.1
represents the structure of an OMF file. Each segment in an object file is a separate entity
that contains all the information needed to link it with other segments (and to relocate it if it
is relocatable code). Each segment in a load file is a separate entity that contains all the
information needed to load it into memory. Load file segments on the Apple IIGS are
usually relocatable.

APDA Draft 229 - 7127/87

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

" Segment 1 Header

Segment- 1.

Segment 2 Header

Segment 2
[L []

Segment. n - Header

Segment n

Figure 7.1. The Structure of an OMF File

Each segment in an OMF file contains a set of records that indicate relocation information
or contain code or data. If the file is an object file, the linker processes each record and
generates a load file containing load segments. Object code includes the information the
linker needs to generate a relocatable load segment. Load files consist of a memory image
followed by a relocation dictionary; the System Loader loads the memory image and then
processes the information in the relocation dictionary. Relocation dictionaries are discussed
in the section “Load Files” later in this chapter.

Segments in object files can be combined by the linker into one or more segmerits in the
load file (see the discussion of the LOADNAME field in the section. “Segment Header” later
in this chapter). For instance, each subroutine in a program can be placed in a separate
code segment and compiled independently; then thc linker can be told to place all the code
segmcnts into one load scgment. su, , o

Segment Types and Attributes

Each OMF segment has a segment type and can have several attributes. The following
segment types are defined by the object module format:

APDA Draft 230 - 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

+ code
+ data
+ jump table segment
= pathname segment
» library dictionary segment
+ initialization segment
» direct-page/stack segment
The following segment attributes are defined by the object module format:
« reloadable or not reloadable
+ absolute-bank or not restricted to a particular bank
+ loadable in special memory or not loadable in special memory
« position-independent or position-dependent
 private or nonprivate

L]

static or dynamic

Code and data segments are object segments provided to support languages that
distinguish program code from data. A segment specified by using a START assembler
directive is flagged as a code segment; if you use a DATA directive instead, the segment is a
data segment.

Jump table segments and pathname segments are load segments that facilitate the
dynamic loading of segments; they are described in the section “Load Files” later in this
chapter. :

Library dictionary segments allow the linker to quickly scan library files for needed
segments; they are described in the section “Library Files” later in this chapter.

Initialization segments are optional parts of load files that are used to perform any
initialization required by the application during an initial load. If used, they are loaded and
executed immediately when they are found by the System Loader and are reloaded any time
the program is restarted from memory. Initialization segments are described in the section
“Load Files” later in this chapter.

Direct-page/stack segments are load segments used to preset the direct-page and stack
registers for an application. See the section “Direct-Page/Stack Segments” later in this
chapter for more information.

Reload segments are load segments that the loader must reload even if the program is
restartable and is restarted from memory.

Version 1.0: Reload segments do not exist in Version 1.0 of the OMF.

Absolute-bank segments are load segments that are restricted to a specified bank but
that can be relocated within that bank. The ORG field in the segment header specifies the
bank to which the segment is restricted.

APDA Draft 231 - 7127/87

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

Loadable in special memory means that a segment can be loaded in banks $00, $01,
$EO, and $E1. Because these are the banks used by programs running under ProDOS 8 in
standard-Apple 1I emulation mode, you may wish to prevent your program from being
loaded lsn é;Lhese banks so that it can remain in memory while programs are run under
ProDOS 8.

Version 1.0: The loadable-in-special-memory attribute for segments does not
exist in Version 1.0 of the OMF.

Position-independent segments can be moved during program execution.

A private code segment is a segment in an object file whose name is available only to
other object-code segments within the same object file. (The labels within a code segment
are local to that segment.)

A private data segment is a segnient in an object file whose labels are available only to
object-code segments in the same object file.

Static segments are load segments that are loaded at program execution time and are not

unloaded during execution; dynamic segments are loaded and unloaded during program

execution as needed. A segment can be designated as dynamic with the /DYNAMIC

~ qualifier to the SEGMENT command in a LinkEd file. If you do not use a LinkEd file, all
segments in your program are static

A segment can have only one segment type but can have any combination of attributes.
The segment types and attributes are specified in the segment header by the KIND segment-
header field, described in the next section.

- Segment Header

Each segment in an OMF file has a header that contains general information about the
segment, such as its name and length. Segment headers make it easy for the linker to scan
an object file for the desired segments, and they allow the System Loader to load individual
load segments. The format of the segment header is illustrated in Figure 7.2.

Version 1.0: Figure 7.3 illustrates the format of the segment header in Version
1.0 of the OMF.

Following the figures is a detailed description of each of the fields in the segment header.

Important: In future versions of the OMF, additional fields may be added to the
segment header between the DISPDATA and LOADNAME fields. In order to assure
that future expansion of the segment header does not affect your program, always
use DISPNAME and DISPDATA instead of absolute offsets when referencing
LOADNAME, SEGNAME, and the start of the segment body.

APDA Draft 232 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

$00 | —
— BYTECNT -
$04 -
L RESSPC -
m p— o
o LENGTH —
.- =
$0C ungetned
TABLEN
EN
VERSION
$10 L -
- BANKSIZE —_
$14 KIND =
— undefined -
s18 = —
- ORG -
$20 NUMSER
unaetined
— SEGNUM
$24 []
= ENTRY -
528 L DISPNAME]
; DISPDATA -
rd Vd
DISPNAME [nt
= LOADNAME -
DISPNAME + $0A | —
’ SEGNAME 7

DISPDATA

Figure 7.2. The Format of a Version 2.0 Segment Header

Version 1: In version 1 of the OMF, the segment header is as shown in Figure
7.3,

APDA Draft 233 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

$00 =]
- BLKCNT/BYTECNT =
sm o
= RESSPC =
sm bora
L LENGTH -
$0C
LA N
NUMCE
VERSION
$10 = -
- BANKSIZE -
$14 =
— undefined -
P rem—ct
$18 [
- ORG -
sice -
[ALIGN -
. ,
i
- SEGNUM
s2a [=
ENTRY .
I =
28 | DISPNAME -
- DISPDATA)
A
DISPNAME [~ =
i LOADNAME i
i -
DISPNAME + $0A | =
} SEGNAME P4

DISPDATA

Figure 7.3. The Format of a Version 1.0 Segment Header

BYTECNT: A 4-byte field containing the number of bytes in the file that the segment
requires. This number includes the segment header, so you can calculate the starting Mark
of the next segment from the starting Mark of this segment plus BYTECNT. Segments need
not be aligned to block boundaries.

APDA Draft 234 7127/87

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

Version 1.0 In Version 1.0, this field is described as follows. For object files
and load files, BLKCNT is a 4-byte field containing the number of blocks in the file
that the segment requires. Each block is 512 bytes. The segment header is part of
the first block of the segment. Segments in an object file or load file start on block
boundaries. For library files (ProDOS 16 file type $B2), this field is BYTECNT,
indicating the number of bytes in the segment. Library-file segments are not
aligned to block boundaries.

RESSPC: A 4-byte field containing the number of bytes of zeros to add to the end of the
segment. This field can be used in an object segment instead of a large block of zeros at the
end of the segment. Using this field can thus significantly reduce the block size of an
object segment when the source code ends with a DS directive that reserves a large block of
memory.

LENGTH: A 4-byte field containing the memory size that the segment will require when
loaded. Itincludes the extra memory specified by RESSPC.

LENGTH is followed by one undefined byte, reserved for future changes to the segment
header specification.

LABLEN: A 1-byte field indicating how long each name or label record in the segment
body is in bytes. If LABLEN is 0, it indicates that the length of each name or label is
specified in the first byte of the record (that is, the first byte of the record specifies how
many bytes follow). LABLEN also specifies the length of the SEGNAME field of the
segment header. (The LOADNAME field always has a length of 10 bytes.) Fixed-length
labels are always left-justified and padded with spaces.

NUMLEN: A 1-byte field indicating how long each number field in the segment body is in
bytes. This field is 4 for the Apple IIGS.

VERSION: A I-byte field indicating the version number of the object module format with
which the segment is compatible. This field is 2 for the current specification of the object
module format.

BANKSIZE: A 4-byte binary number indicating the maximum memory-bank size for the
segment. If the segment is in an object file, the linker assures that the segment is not larger
than this value (the linker returns an error if the segment is too large). If the segmentisina
load file, the loader ensures that the segment is loaded into a memory block that does not
cross this boundary. For Apple IIGS code segments, this field must be $00010000,
indicating a 64K bank size. A value of 0 in this field indicates that the segment can cross
bank boundaries. Apple IIGS data segments can use any number from $00 to $00010000

for BANKSIZE.
KIND: A 2-bytefield specif ying the type and attributes of the segment. The bits are

defined as follows. The column labeled Where Described indicates the section in this
chapter where the particular segment type or attribute is discussed:

APDA Draft 235 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

Bit Meaning Where Described
04 ~ Segment Type
$00 code Segment Types and Attributes
$01 data Segment Types and Attributes
$02 jump table segment Load Files
$04 pathname segment Segment Types and Attributes
$08 library dictionary segment Library Files
$10 inidalization segment Load Files
$12 direct-page/stack segment Direct-Page/Stack Segments
10-15 Segment Attribute
10 1 = reload segment Segment Types and Attributes
11 1 = absolute-bank segment Segment Types and Attributes
12 0 = can be loaded in special memory Segment Types and Attributes
13 1 = position-independent Segment Types and Attributes
14 1 = private Segment Types and Attributes
15 0 = static; 1 = dynamic Segment Types and Attributes

A segment can have only one type but any combination of attributes. For example, a
position-independent dynamic data segment has KIND = ($A001).

Important: If segment KINDs are specified in the source file and the KINDs of
the object segments placed in a given load segment are not all the same, the segment
KIND of the resulting load segment is unpredictable.

KIND is followed by two undefined bytes, reserved for future changes to the segment
header specification.

Version 1.0 In Version 1.0 of the OMF, the KIND field is 1 byte long, defined
as follows:

Bit Meaning
0-4 Segment Type

$00 code
$01 data
. §02 jump table segment
304 pathname segment
$08 library dictionary segment
$10 initialization segment
$11 absolute-bank segment
$12 direct-page/stack segment

5-7 Segment Attribute
1=position-independent
1=private

(k=static; 1=dynamic

~] &\ Lh

ORG: A 4-byte field indicating the absolute address at which this segment is to be loaded
in memory, or, for an absolute-bank segment, the bank number. A value of 0 indicates that
this segment is relocatable and can be loaded anywhere in memory. A value of 0 is normal
for the Apple IIGS.

APDA Draft 236 7127187

Apple IIGS Programmer's Workshop Chapter 7: File Formats

ALIGN: A 4-byte binary number indicating the boundary on which this segment must be
aligned. For example, if the segment is to be aligned on a page boundary, this field is
$00000100; if the segment is to be aligned on a bank boundary, this field is $00010000. A
value of 0 indicates that no alignment is needed. For the Apple IIGS, this field must be a
power of 2, less than or equal to $00010000. Currently, the loader supports only values of
0, $00000100, and $00010000; for any other value, the loader uses the next higher
supported value.

NUMSEX: A 1-byte field indicating the order of the bytes in a number field. If this field is
0, the least significant byte is first. If this field is 1, the most significant byte is first. This
field is O for the Apple IIGS.

NUMSEX is followed by one undefined byte, reserved for future changes to the segment
header specification.

Version 1.0: In Version 1.0 of the OMF, the NUMSEX field is followed by the
LCBANK field. The LCBANK field is described as follows. A 1-byte field
indicating the bank of the language card into which the segment is to be loaded: if 0,
bank 1; if 1, bank 2. L,CBANK is meaningful only if the ORG field contains an
address in the language card area ($D000 through $E000) of banks 0, 1, EO, or E1.
The System Loader does not support the loading of segments into alternate banks of
the language card.

SEGNUM: A 2-byte field specifying the segment number. The segment number
corresponds to the relative position of the segment in the file (starting with 1). This field is
used by the System Loader as a check while searching for a specific segment in a load file.

ENTRY: A 4-byte field indicating the offset into the segment that corresponds to the entry
point of the segment.

DISPNAME: A 2-byte field indicating the displacement of the LOADNAME field within
the segment header. Currently, DISPNAME =44. DISPNAME is provided to allow for
future additions to the segment header; any new fields will be added between DISPDATA
and LOADNAME. DISPNAME allows you to reference LOADNAME and SEGNAME no
matter what the actual size of the header.

DISPDATA: A 2-byte field indicating the displacement from the start of the segment
header to the start of the segment body. Currently, DISPDATA = 54 + LABLEN.
DISPDATA is provided to allow for future addtions to the segment header; any new fields
will be added between DISPDATA and LOADNAME. DISPDATA allows you to reference
the start of the segment body no matter what the actual size of the header.

LOADNAME: A 10-byte field specifying the name of the load segment that will contain the
code generated by the linker for this segment. More than one segment in an object file can
be merged by the linker into a single segment in the load file. This field is unused in a load

segment. The position of LOADNAME may change in future revisions of the OMF;
therefore, you should always use DISPNAME to reference LOADNAME.

SEGNAME: A field LABLEN bytes long, specifying the name of the segment. The

position of SEGNAME may change in future revisions of the OMF; therefore, you should
always use D ISPNAME to reference SEGNAME.

APDA Draft 237 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

Segment Body

The body of each segment is composed of sequential records, each of which starts with a
1-byte operation code. Each record contains either program code or information for the
linker or System Loader. All names and labels included in these records are LABLEN bytes
long, while all numbers and addresses are NUMLEN bytes long (unless otherwise specified
in the following definitions). For the Apple IIGS, the least significant byte of each number
field is first, as specified by NUMSEX.

Several of the OMF records contain expressions that have to be evaluated by the linker.
The operation and syntax of expressions are described in the next section, “Expressions.”
If the description of the record type does not explicitly state that the opcode is followed by
an expression, then an expression cannot be used. Expressions are never used in load
segments.

The operation codes and segment records are described in this section, listed in order of the
opcodes. Table 7.1 provides an alphabetical cross-reference between segment record types
and opcodes. Library files consist of object segments, and so can use any record type that
can be used in an object segment. Table 7.1 also lists the segment types in which each
record type can be used.

Table 7.1. Segment-Body Record Types

Record Opcode Segment Types
Type

ALIGN $EO object
BEXPR $ED object
cINTERSEG $F6 load
CONST $01-$DF object
cRELOC $F5 load
DS $F1 all
END $00 all
ENTRY - $F4 run-time library
EQU $FO object
EXPR $EB object
GEQU $E7 object
GLOBAL $E6 object
INTERSEG $E3 load
LCONST $F2 load
LEXPR $F3 object
LOCAL $EF object
MEM $E8 object
ORG $E1 object
RELEXPR $EE object
RELOC $E2 load
STRONG $ES object
SUPER $F7 load
USING $E4 object
ZEXPR $EC object

APDA Draft 238 7127187

Apple lIGS Programmer’s Workshop Chapter 7: File Formats

The rest of this section defines each of these record types. The record types are listed in

order of their opcodes.
Record Opcode
Type

END $00
CONST $01-SDF
ALIGN $SEO

ORG $E1
RELOC $E2

APDA Draft

Description

This record indicates the end of the segment.

This record contains absolute data that needs no relocation. The
operation code specifies how many bytes of data follow.

This record contains a number that indicates an alignment factor.
The linker inserts as many zero bytes as necessary to move to
the memory boundary indicated by this factor. The value of this
factor is in the same format as the ALIGN field in the segment
header and cannot have a value greater than that in the ALIGN
field. ALTIGN must equal a power of 2.

This record contains a number that is used to increment or
decrement the location counter. If the location counter is
incremented (ORG is positive), zeros are inserted to get to the
new address. If the location counter is decremented (ORG is a
twos complement negative number), the location counter is
decremented and subsequent code overwrites the old code.

This is a relocation record, which is used in the relocation
dictionary of a load segment. Itis used to patch an address in a
load segment with a reference to another address in the same
load segment. It contains two 1-byte counts followed by two
offsets. The first count is the number of bytes to be relocated,
and the second count is a bit-shift operator, telling how many
times to shift the relocated address before inserting the result into
memory. If the bit-shift operator is positive, the number is
shifted to the left, filling vacated bit positions with zeros (logical
shift left). If the bit-shift operator is (two’s complement)
negative, the number is shifted right (logical shift right).

The first offset gives the location (relative to the start of the
segment) of the (first byte of the) number that is to be patched
(relocated). The second offset is the location of the reference
relative to the start of the segment; that is, it is the value that the
number would have if the segment it’s in started at address
$000000. For example, suppose the segment includes the
following lines:

239 7127187

Chapter 7: File Formats

Apple IIGS Programmer’s Workshop

35 LABEL =« « »

»

3

400 LDA LABEL+4

LABEL is a local reference to a location 53 ($35) bytes after the
start of the segment. When this segment is loaded into memory,
the value of LABEL+4 depends on the starting location of the
segment, so the linker creates a RELOC record in the relocation
dictionary for this value. LABEL+4 is two bytes long; that is,
the number of bytes to be relocated is 2. No bit-shift operation
is needed. The number to be calculated during relocation is
1025 ($401) bytes after the start of the segment (immediately
after the LDA, which is one byte). The value of LABEL+4
would be $39 if the segment started at address $000000.

The RELOC record for the number to be loaded into the A
register by this statement would therefore look like this (note that
the values are stored low-byte first, as specified by NUMSEX):
E2020001 04000039 000000

This sequence corresponds to the following values:

$E2 operation code
$02 number of bytes to be relocated
$00 bit-shift operator

$00000401 offset of value from start of segment
$00000039 value if segment started at $000000

Note: Certain types of arithmetic expressions are illegal in a relocatable segment;
specifically, any expression that cannot be evaluated (relative to the start of the
segment) by the assembler cannot be used. The expression LAB | 4 can be
evaluated, for example, since the RELOC record includes a bit-shift operator. The
expression LAB | 4+4 cannot be used, however, because the assembler would have
to know the absolute value of LAB in order to perform the bit-shift operation before
adding 4 to it. Similarly, the value of LAB*4 depends on the absolute value of
LAB, and cannot be evaluated relative to the start of the segment, so multiplication
is illegal in expressions in relocatable segments.

APDA Draft

240 7127187

Apple HIGS Programmer’s Workshop Chapter 7: File Formats

INTERSEG $E3

APDA Draft

This record is used in the relocation dictionary of a load segment
and contains a patch to a long call to an external reference. The
INTERSEG record is used to patch an address in a load segment
with a reference to another address in a different load segment.
It contains two 1-byte counts followed by an offset, a 2-byte file
number, a 2-byte segment number, and a second offset. The
first count is the number of bytes to be relocated, and the second
count is a bit-shift operator, telling how many times to shift the
relocated address before inserting the result into memory. If the
bit-shift operator is positive, the number is shifted to the left,
filling vacated bit positions with zeros (logical shift left). If the
bit-shift operator is (two’s complement) negative, the number is
shifted right (logical shift right).

The first offset is the location (relative to the start of the
segment) of the (first byte of the) number that is to be relocated.
If the reference is to a static segment, the file number,
segment number, and second offset correspond to the
subroutine referenced. (The linker assigns a file number to each
load file in a program. This feature is provided primarily to
support run-time libraries. In the normal case of a program
having one load file, the file number is 1. The load segments in
a load file are numbered by their relative location in the load file,
where the first load segment is number 1.) If the reference is to
a dynamic segment, the file and segment numbers correspond to
the jump table segment, and the second offset corresponds to the
call to the System Loader for that reference.

For example, suppose the segment includes an instruction like
JSL EXT

The label EXT is an external reference to a location in a stafic
segment.

If this instruction is at relative address $720 within its segment
and EXT is at relative address $345 in segment $000A in file
$0001, the linker creates an INTERSEG record in the relocation
dictionary that looks like this (note that the values are stored
low-byte first, as specified by NUMSEX):

E3030021 07000001 000A0045 030000

This sequence corresponds to the following values:

$E3 operation code

$03 number of bytes to be relocated
$00 bit-shift operator

$00000721 offset of instruction’s operand
$0001 file number

$000A segment number

$00000345 offset of subroutine referenced

241 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

When the loader processes the relocation dictionary, it uses the
first offset to find the JSL and patches in the address
corresponding to the file number, segment number, and offset of
the referenced subroutine.

If the JSL is to an external reference in a dynamic segment, the
INTERSEG records refer to the file number, segment number,
and offset of the call to the System Loader in the jump table
segment.

If the jump table segment is in segment 6 of file 1, and the call to
the System Loader is at relative location $2A45 in the jump table
segment, then the INTERSEG record looks like this (note that
the values are stored low-byte first, as specified by NUMSEX):

E3030021 07000001 00060045 2A0000

This sequence corresponds to the following values:

$E3 operation code

$03 number of bytes to be relocated

$00 bit-shift operator

$00000721 offset of instruction’s operand

$0001 file number of jump table segment
$0006 segment number of jump table segment

$00002A45 offset of call to System Loader

The jump table segment entry that corresponds to the external
reference EXT contains the following values:

User ID
$0001 file number
$0005 segment number
$00000200 offset of instruction
call to System

Loader

INTERSEG records are used for any long-address reference to a
static segment. :

See the section “Jump Table Segment” in this chapter fora
discussion of the function of the jump table segment.

USING $E4 This record contains the name of a data segment. After this
record is encountered, local labels from that data segment can be
used in the current segment.

STRONG SES This record contains the name of a segment that must be

included during linking even if no external references have been
made to it.

APDA Draft 242 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

GLOBAL $E6
GEQU $E7
MEM $E8

APDA Draft

This record contains the name of a global label followed by three
attribute fields. The label is assigned the current value of the
location counter. The first attribute field is 2 bytes long and
gives the number of bytes generated by the line that defined the
label. If this field is $FFFF, it indicates that the actual length is
unknowrt but that it is greater than or equal to $SFFFF. The
second attribute field is 1 byte long and specifies the type of
operation in the line that defined the label. The following type
attributes are defined:

address-type DC statement
Boolean-type DC statement
character-type DC statement
double-precision floating-point-type DC statement
floating-point-type DC statement
EQU or GEQU statement
hexadecimal-type DC statement
integer-type DC statement
reference-address-type DC statement
soft-reference-type DC statement
instruction

assembler directive

ORG statement

ALIGN statement

DS statement

arithmetic symbolic parameter
Boolean symbolic parameter
character symbolic parameter

NHKXWWOZREHPRHIOEOOQOW M

The third attribute field is 1 byte long and is the private flag
(1 = private). This flag is used to designate a code or data
segment as private (see the section “Segment Types and
Attributes” in this chapter for a definition of private segments).

This record contains the name of a global label followed by three
attribute fields and an expression. The label is given the value of
the expression. The first attribute field is 2 bytes long and gives
the number of bytes generated by the line that defined the label.
The second attribute field is 1 byte long and specifies the type of
operation in the line that defined the label, as listed in the
discussion of the GLOBAL record. The third attribute field is 1
byte long and is the private flag (1 = private). This flagis
used to designate a code or data segment as private (see the
section “Segment Types and Attributes” earlier in this chapter for
a definition of private segments).

This record contains two numbers that represent the starting and
ending addresses of a range of memory that must be reserved.

243 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

EXPR $EB This record contains a 1-byte count followed by an expression.
The expression is evaluated, and its value is truncated to the
number of bytes specified in the count. The order of the
truncation is from most significant to least significant.

ZEXPR $EC This record contains a 1-byte count followed by an expression.
ZEXPR is identical to EXPR, except that any bytes truncated
must be all zeros. If the bytes are not zeros, the record is
flagged as an error.

BEXPR SED This record contains a 1-byte count followed by an expression.
BEXPR is identical to EXPR, except that any bytes truncated
must match the corresponding bytes of the location counter. If
the bytes don’t match, the record is flagged as an error. This
record allows the linker to make sure that an expression
evaluates to an address in the current memory bank.

RELEXPR $EE This record contains a 1-byte length followed by an offset and
an expression, The offset is NUMLEN bytes long. RELEXPR is
used to generate a relative branch value that involves an external
location. The length indicates how many bytes to generate for
the instruction, the offset indicates where the origin of the
branch is relative to the current location counter, and the
expression is evaluated to yield the destination of the branch.
For example, a BNE LOC instruction, where LOC is external,
generates this record. For the 6502 and 65816 microprocessors,
the offsetis 1. ;

LOCAL $EF This record contains the name of a local label followed by three
1-byte attribute fields. The label is assigned the value of the
current location counter. The first attribute byte gives the
number of bytes generated by the line that defined the label. The
second attribute byte specifies the type of operation in the line
that defined the label, as listed in the discussion of the GLOBAL
record. The third attribute byte is the private flag (1 =
private). This flag is used to designate a code or data segment as
private (see the section “Segment Types and Attributes” earlier in
this chapter for a definition of private segments). Note that the
linker ignores local labels from code segments and that it
recognizes local labels from other data segments only if a
USING record was processed (see the discussion of the USING
statement).

APDA Draft 244 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

EQU $FO
DS $F1
LCONST $F2
LEXPR $E3
ENTRY $F4

APDA Draft

This record contains the name of a local label followed by three
1-byte attribute fields and an expression. The label is given the
value of the expression. The first attribute byte gives the
number of bytes generated by the line that defined the label. The
second attribute byte specifies the type of operation in the line
that defined the label, as listed in the discussion of the GLOBAL
record. The third attribute byte is the private flag (1 =
private). This flag is used to designate a code or data segment as
private (see the section “Segment Types and Attributes™ earlier in
this chapter for a definition of private segments).

This record contains a number indicating how many bytes of
zeros to insert at the current location counter.

This record contains a 4-byte count followed by absolute code or
data. The count indicates the number of bytes of data. The
LCONST record is similar to CONST except that it allows for a
much greater number of data bytes. Each relocatable load
segment consists of LCONST records, DS records, and a
relocation dictionary. See the discussions on INTERSEG
records, RELOC records, and the relocation dictionary for more
information.

This record contains a 1-byte count followed by an expression.
The expression is evaluated, and its value is truncated to the
number of bytes specified in the count. The order of the
truncation is from most significant to least significant. If the
expression evaluates to a single label with a fixed, constant
offset, and if the label is in another segment and that segment is
a dynamic code segment, then the linker is allowed to create an
entry for that label in the jump table segment. (The jump table
segment provides a mechanism to allow dynamic loading of
segments as they are needed—see the section “Load Files” later
in this chapter.) Only a JSL instruction should generate an
LEXPR record.

This record is used in the run-time-library entry dictionary; it
contains a 2-byte number and an offset followed by a label. The
number is the segment number. The label is a code-segment
name or entry and the offset is the relative location within the
load segment of the label. Run-time library entry dictionaries are
described in the section “Run-Time Library Files” in this
chapter.

245 7127187

Chaprer 7: File Formats

cRELOC $FS

CINTERSEG $F6

SUPER $F7

APDA Draft

Apple IIGS Programmer’s Workshop

This record is the compressed version of the RELOC record. It
is identical to the RELOC record, except that the offsets are 2
bytes long rather than 4 bytes. The cRELOC record can be used
only if both offsets are less than $10000 (65536). The
following example compares a RELOC record and a cRELOC
record for the same reference (for an explanation of each line of
these records, see the discussion of the RELOC record):

RELOC cRELOC
$E2 $F5

$02 $02

$00 $00
$00000401 $0401
$00000039 $0039

(11 bytes) (7 bytes)

This record is the compressed version of the INTERSEG record.
It is identical to the INTERSEG record, except that the offsets
are 2 bytes long rather than 4 bytes, the segment number is 1
byte rather than 2 bytes, and it does not include the 2-byte file
number. The cINTERSEG record can be used only if both
offsets are less than $10000 (65536), the segment number is
less than 256, and the file number associated with the reference
is 1 (that is, the initial load file). References to segments in run-
time library files must use INTERSEG records rather than
cINTERSEG records.

The following example compares an INTERSEG record and a
cINTERSEG record for the same reference (for an explanation
of each line of these records, see the discussion of the
INTERSEG record):

INTERSEG c¢INTERSEG

$E3 $F6
$03 $03
$00 $00
$00000720 30720
$0001

$000A $0A

$00000345 $0345

(15 bytes) (8 bytes)

This is a supercompressed relocation-dictionary record. Each
SUPER record is the equivalent of many cRELOC,
cINTERSEG, and INTERSEG records. It contains a 4-byte
length, a 1-byte record type, and one or more subrecords of
variable size, as follows:

246 7127187

Apple 11GS Programmer’s Workshop Chapter 7: File Formats

opcode $F7

length number of bytes in the rest of the record (4
bytes)

type 0-37 (1 byte)

subrecords (variable size)
Version 1.0: SUPER records do not exist in Version 1.0 of the OMF.

When SUPER records are used, some of the relocation
information is stored in the LCONST record at the address to be
patched.

The length field indicates the number of bytes in the rest of the
SUPER record (that is, the number of bytes exclusive of the
opcode and the length field).

The type byte indicates the type of SUPER record. There are 38
types of SUPER record, as follows:

Type SUPER record

0 RELOC?2

1 RELOC3

2-37 INTERSEG1-INTERSEG36

SUPER RELOC2: This record can be used instead of
CcRELOC records that have a bit-shift count of 0 and that
relocate 2 bytes.

SUPER RELOC3: This record can be used instead of
cRELOC records that have a bit-shift count.of 0 and that
relocate 3 bytes.

SUPER INTERSEGL1: This record can be used instead of
CINTERSEG records that have a bit-shift count of 0 and that
relocate 3 bytes.

SUPER INTERSEG2 through SUPER INTERSEG12: The
‘number in the name of the record refers to the file number of
the file in which the record is used. For example, to relocate
an address in file number 6, use a SUPER INTERSEG6
record. These records can be used instead of INTERSEG
records that meet the following criteria:

APDA Draft 247 7127187

Chapter 7: File Formats

APDA Draft

Apple IIGS Programmer’s Workshop

« Both offsets are less than $10000.

» The segment number is less than 256.
* The bit-shift count is 0.

» The record relocates 3 bytes.

» The file number is from 2 through 12.

SUPER INTERSEGIL3 through SUPER INTERSEGZ24:
These records can be used instead of cINTERSEG records
that have a bit-shift count of 0, that relocate 2 bytes, and that
have a segment number of n-12, where n can be from 13 to
24. For example, to replace a cINTERSEG record in
segment number 6, use a SUPER INTERSEGI18 record.

SUPER INTERSEGZ25 through SUPER INTERSEG36:
These records can be used instead of cINTERSEG records
that have a bit-shift count of $FQ (—16), that relocate 2 bytes,
and that have a segment number of n — 24, where n can be
from 25 to 36. For example, to replace a cINTERSEG
record in segment number 6, use a SUPER INTERSEG30
record.

Each subrecord consists either of either a 1-byte offser count
followed by a list of 1-byte offsets, or a 1-byte skip count.

Each offset count indicates how many offsets are listed in this
subrecord. The offsets are 1 byte each. Each offset
corresponds to the low byte of the first (2-byte) offset in the
equivalent INTERSEG, cRELOC or cINTERSEG record. The
high byte of the offset is indicated by the location of this offset
count in the SUPER record: each subsequent offset count
indicates the next 256 bytes of the load segment. Each skip
count indicates the number of 256-byte pages to skip; that is, a
skip count indicates that there are no offsets within a certain
number of 256-byte pages of the load segment.

For example, if patches must be made at offsets 0020, 0030,
0140, and 0550 in the load segment, the subrecords would
include the following fields:

22030 the first 256-byte page of the load segment has two
patches: one at offset 20 and one at offset 30

140 the second 256-byte page has one patch at offset 40
skip-3 skip the next three 256-byte pages
1 50 the sixth 256-byte page has one patch at offset 50

In the actual SUPER record, the patch count byte is the number
of offsets —1 and the skip count byte has the high bit set. A
SUPER INTERSEGI record with the offsets in the above
example would look like this:

248 7/27/87

Apple 1IGS Programmer’s Workshop Chapter 7: File Formats

$F7 opcode

$00000009 number of bytes in the rest of the record
$02 INTERSEGI1-type SUPER record

$01 the first 256-byte page has two patches
$20 patch the load segment at offset $0020
$30 patch the segment at $0030

$00 the second page has one patch

$40 patch the segment at $0140

$83 skip the next three 256-byte pages

$00 the sixth page has one patch

$50 patch the segment at $0550

A comparison with the RELOC record shows that a SUPER
RELOC record is missing the offset of the reference. Similarly,
the SUPER INTERSEG1 through SUPER INTERSEG12
records are missing the segment number and offset of the
subroutine referenced. The offsets (which are 2 bytes long) are
stored in the LCONST record at the “to be patched” location. For
the SUPER INTERSEGI through 12 records, the segment
number is stored in the third byte of the “to be patched” location.

For example, if the example given in the discussion of the
INTERSEG record were instead referenced through a SUPER
INTERSEG1 record, the value $0345 (the offset of the
subroutine referenced) would be stored at offset $0721 in the
load segment (the offset of the instruction’s operand) and the
segment number ($0A) would be stored at offset $0723, as
follows:

4503 0OA

Experimental $FB-$FF These record types are reserved for use in system development
by Apple.

Expressions

Several of the OMF records contain expressions. Expressions form an extremely flexible
reverse-Polish stack language that can be evaluated by the linker to yield numeric values
such as addresses and labels. Each expression consists of a series of operators and
operands together with the values on which they act.

An operator takes one or two values from the evaluation stack, performs some
mathematical or logical operation on them, and places a new value onto the evaluation
stack. The final value on the evaluation stack is used as if it were a single value in the
record. Note that this evaluation stack is purely a programming concept and does not relate
to any hardware stack in the computer. Each operation is stored in the object module file in
postfix form; that is, the value or values come first, followed by the operator. For
example, since a binary operation is stored as Valuel Value2 Operator, the operation

Numl - Num2 is stored as

NumlNum2-

APDA Draft 249 7127187

Chapter 7: File Formats Apple lIGS Programmer’s Workshop

The operators are as follows:

Binary Math Operators: These operators take two numbers as two’s-complement
signed integers from the top of the evaluation stack, perform the specified operation, and
place the single-integer result back on the evaluation stack. The binary math operators
include -

$01 addition (+)
$02 subtraction (=)
$03 multiplication (*)
$04 division (/)
$05 integer remainder (MOD)
$07 bit shift (1)

The subtraction operator subtracts the second number from the first number. The division
operator divides the first number by the second number. The integer-remainder operator
divides the first number by the second number and returns the unsigned integer remainder
to the stack. The bit-shift operator shifts the first number by the number of bit positions
specified by the second number. If the second number is positive, the first number is
shifted to the left, filling vacated bit positions with zeros (logical shift left). If the second
number is negative, the first number is shifted right, preserving the sign bit (arithmetic shift

right).

Unary Math Operator: A unary math operator takes a number as a two’s-complement
signed integer from the top of the evaluation stack, performs the operation on it, and places
the integer result back on the evaluation stack. The only unary math operator currently

available is

$06

negation

)

Comparison Operators: These operators take two numbers as two’s-complement
signed integers from the top of the evaluation stack, perform the comparison, and place the
single-integer result back on the evaluation stack. Each operator compares the second
number in the stack (TOS — 1) with the number at the top of the stack (TOS). If the
comparison is true, a 1 is placed on the stack; if false, a 0 is placed on the stack. The
comparison operators include

$0C less than or equal to (<=)

$0D greaterthanorequalto (>=)

$0E notequal (<>or !=)
$OF less than (<)

$10 greater than >)

$11 equalto (= or ==)

Binary Logical Operators: These operators take two numbers as Boolean values from
the top of the evaluation stack, perform the operation, and place the single Boolean result
back on the stack. Boolean values are defined as being FALSE for the number 0 and TRUE

APDA Draft 250 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

- for any other number. Logical operators always return a 1 for true. The binary logical
operators include

$08 AND (logical AND)
$09 OR (inclusive OR)
$0A EOR (exclusive OR)

Unary Logical Operator: A unary logical operator takes a number as a Boolean value
from the top of the evaluation stack, performs the operation on it, and places the Boolean
result back on the stack. The only unary logical operator currently available is

$0B NOT (complement)
Binary Bit Operators: These operators take two numbers as binary values from the top

of the evaluation stack, perform the operation, and place the single binary result back on the
stack. The operations are performed on a bit-by-bit basis. The binary bit operators include

$12 Bit AND (logical AND)
$13 BitOR (inclusive OR)
$14 BitEOR (exclusive OR)

Unary Bit Operator: This operator takes a number as a binary value from the top of the
evaluation stack, performs the operation on it, and places the binary result back on the
stack. The unary bit operator is

$15 BitNOT (complement)
Termination Operator: All expressions end with the termination operator $00.

An operand causes some value, such as a constant or a label, to be loaded onto the
evaluation stack. The operands are as follows:

Location Counter Operand ($80): This operand loads the value of the current
location counter onto the top of the stack. Because the location counter is loaded before the
bytes from the expression are placed into the code stream, the value loaded is the value of
the location counter before the expression is evaluated.

Constant Operand ($81): This operand is followed by a number that is loaded on the
top of the stack.

Label Reference Operands ($82-$86): Each of these operand codes is followed by
the name of a label, and is acted on as follows:

APDA Draft 251 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

$82 Weak reference (see the note below).
$83 The value assigned to the label is placed on the top of the stack.
$84 The length attribute of the label is placed on the top of the stack.

$85 The type attribute of the label is placed on the top of the stack. (Type attributes
are listed in the discussion of the GLOBAL record in the section “Segment
Body” earlier in this chapter).

$86 The count attribute is placed on the top of the stack. The count attribute is 1 if
the label is defined and 0 if it is not.

Note: The operand code $82 is referred to as the weak reference. The weak reference
is an instruction to the linker that asks for the value of a label if ir exiszs. It is not an
error if the linker cannot find the label. However, the linker does not load a segment
from a library if only weak references to it exist. If a label does not exist, a 0 is loaded
onto the top of the stack. This operand is generally used for creating jump tables to
library routines that may or may not be needed in a particular program.

Relative Offset Operand ($87): This operand is followed by a number that is treated
as a displacement from the start of the segment. Its value is added to the value that the
location counter had when the segment started, and the result is loaded on the top of the

stack.

Example

Assume your assembly-language program contains the following line where MSG4 and
MSG3 are global labels: ' :

LDX #MSG4-MSG3

This line would be assembled into two OMF records:

CONST (501) A2
EXPR (SEB) 02 : MSG4MSG3-

In hexadecimal format, these records appear as follows:

01 A2
EB 02 83 04 4D 53 47 34 83 04 4D 53 47 33 02 00 k...MSG4..MSG3..

The initial $01 is the OMF opcode for a 1-byte constant. The $A2 is the 65816 opcode for
the LDX instruction. The $EB is the OMF opcode for an EXPR record, which is followed
by a 1-byte count indicating the number of bytes to which the expression is to be truncated
($02 in this case). The next number, $83, is a label-reference operand for the first label in
the expression, indicating that the value assigned to the label (MSG4) is to be placed on top
of the evaluation stack. Next is a length byte ($04), followed by MSG4 spelled out in
ASCII codes. -

The next sequence of codes, starting with $83, places the value of MSG3 on the evaluation

stack. Finally, the expression-operator code $02 indicates that a subtraction is to be
performed, and the termination operator ($00) indicates the end of the expression.

APDA Draft 252 7127187

Apple HIGS Programmer’s Workshop | Chapter 7: File Formats

Note: You can use the DumpOB]J utility program to examine the contents of any
OMF file. DumpOBJ can list the header contents of each segment, and can list the
body of each segment in OMF format, 65816 disassembly format, or as
hexademical codes. DumpOB] is described in the section “Command Descriptions™
in Chapter 3.

Object Files

Object files (ProDOS 16 file type $B1) are created from source files by a compiler or
assembler. Object files can contain any of the OMF record types except INTERSEG,
cINTERSEG, RELOC, cRELOC, SUPER, and ENTRY. Object files can contain unresolved
references, because all references are resolved by the linker. If you are writing a compiler
for the Apple IIGS, you can use the DUMPOBJ utility to examine the contents of a variety of
object files in order to get an idea of their content and structure.

Library Files

Library files (ProDOS 16 file type $B2) contain object segments that the linker can search
for external references. Usually, these files contain general routines that can be used by
more than one application. Any object segment that contains a global definition that was
referenced during the link process is extracted from the library file; this segment is then
added to the load segment that the linker is currently creating.

Library files differ from object files in that each library file includes a segment called the
library dictionary segment (segment-type KIND = $08). The library dictionary segment
contains the names and locations of all segments in the library file. This information allows
the linker to scan the file quickly for needed segments. Library files are created from object
files by the MakeLib utility program (described in Chapter 3). The format of the library
dictionary segment is illustrated in Figure 7.4.

APDA Draft 253 7127187

Chapter 7: File Formats Apple 1IGS Programmer’s Workshop

‘ _ - — 2%
- BYTECNT - : - COUNT |
-) = : .)
i’ 4 Name —

v ’ i: Displacement —

‘l R
= SEGNAME 3 SbjecT FIeNber T
= - PRIVATE 1]
—_ Segment =1
’ - i =
- SF2 Header L Dsplqc.ement 1 [
[COUNT :[. : .
SnUMbe L. “Name _.
AlerRiTieet | - - Displacementn -
I =i T3 =T i A — .
-+ — : ‘ =
,7- S —— P File Names Object FleNumber n
£ .{ PRIVATE N -
O 0 r . Segmem _1
3 - * — Displacement n ~
= Fil bern ;
enumber Symbol
- HEname Tenary - Table
7
Filenamen ‘ - i< -
‘f- = COUNT .
Symbol YyMbol Name Lengm
Key: Names = =
/ mbol Name 1
)’ Indeterminate number of o 4
,(bytes omitted from diagram -E ‘T
' ; : :
: Sequence repeated . . .
« indeterminate number of times m Qme Lend
e
> 3 Symbol Name n
/7

Figure 7.4. The Format of a Library Dictionary Segment

The library dictionary segment begins with a segment header, which is identical in form to
other segment headers. The BYTECNT field indicates the number of bytes in the library
dictionary segment, including the header. The body of the library dictionary segment
consists of three LCONST records, as follows:

1. Filenames

2. Symbol Table

3. Symbol Names
The Filenames record consists of one or more subrecords, each consisting of a 2-byte file
number followed by a filename. The filename is in Pascal-string format: thatis, a length
byte indicating the number of characters, followed by an ASCII string. The filenames are

the full pathnames of the object files from which the segments in this library file were
extracted. The file numbers are assigned by the MAKELIB program and used only within

APDA Draft 254 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

the library file. These file numbers are not related to the load-file numbers in the pathname
table.

The Symbol Table record consists of a cross-reference between the symbol names in the
symbol-names record and the object segments in which the symbol names occur, For each
global symbol in the library file, the Symbol Table record contains the following:

1. A 4-byte displacement into the Symbol Names record indicating the start of the
symbol name.

2. The 2-byte file number of the file that the name occurred in. This is the file number
assigned by the MakeLib utility and used in the Filenames record of this library
dictionary segment.

3. A 2-byte flag, the private flag. If this flag equals 1, the symbol name is valid
only in the object file in which it occurred (that is, it was in a private segment). If
this flag equals 0, the symbol name is not private.

4. A 4-byte displacement into the library file indicating the beginning of the object
segment in which the symbol occurs. The displacement is to the beginning of the
segment even if the symbol occurs inside the segment; the location within the
segment is resolved by the linker.

The Symbol Names record consists of a series of symbol names; each symbol name
consists of a length byte followed by up to 255 ASCII characters. All global symbols that
appear in an object segment, including entry points and global equates, are placed in the
library dictionary segment. Duplicate symbols are not allowed.

Library dictionary segments are created by the MakeLib utility program,which also changes
the file type of the file from $B1 to $B2 (see Chapter 3 for a discussion of the MakeLib
utility).

Load Files

Load files (ProDOS 16 file types $B3 through $BE) contzin the load segments that are
moved into memory by the System Loader. They are created by the APW Linker from
object files and library files. Load files conform to the object module format but are
restricted to a small subset of that format. Because the segments must be quickly relocated
and loaded, they cannot contain any unresolved symbolic information. This section
discusses the following components of load files:

« The format of each load segment is a loadable binary memory image that is followed
by a relocation dictionary. The memory image consists of long-constant (LCONST)
records and define-storage (DS) records that can be located anywhere in memory.
The relocation dictionary contains relocation (RELOC, cRELOC, or SUPER RELOC)
records and intersegment (INTERSEG, cINTERSEG, or SUPER INTERSEG)
records only. These records provide the information needed to modify the memory
image according to its location in memory.

» The jumnp table segment, when used, is the segment of a load file that contains the
calls to the System Loader to load dynamic segments. Each time the linker comes
across a statement that references a label in a dynamic segment, it generates an entry
in the jump table segment for that label (it also creates an enuy in the relocation
dictionary). The entry in the jump table segment contains the file number, segment
number, and offset of the reference in the dynamic segment, plus a call to the System

APDA Draft 255 7127187

Chapter 7: File Formats ‘ Apple 1IGS Programmer’s Workshop

Loader to load the segment. The relocation dictionary entry provides the information
the loader needs to patch a call to the jump table segment into the memory image.

» The pathname segment, when used, is the segment of a load file that contains a cross-
reference between file numbers and pathnames that the System Loader needs in order
to reference load segments.

* An initialization segment, when used, is executed by the System Loader to perform
any initialization required by the application.

The load segments in a load file are numbered by their relative location in the load file,
where the first load segment is number 1. The segment number is used by the System
Loader to find a specific segment in a load file.

Memory Image and Relocation Dictionary

Each load segment consists of two parts:

1. A memory image consisting of LCONST records and DS records containing all of the
code and data that do not change with load address (with space reserved for location-
dependent addresses). The DS records are inserted by the linker (in response to DS
records in the object file) to reserve large blocks of space, rather than putting large
blocks of zeros in the load file.

2. A relocation dictionary that provides the information necessary to patch the LCONST
records at load time.

When the segment is loaded into memory, each LCONST record or DS record is loaded in
one piece, and then the relocation dictionary is processed. The relocation dictionary
includes REL.OC (or cRELOC or SUPER RELOC) and INTERSEG (or cINTERSEG or
SUPER INTERSEG) records only: the RELOC records provide the information necessary
to recalculate the values of location-dependent local references, and the INTERSEG records
provide the information necessary to transfer control to external references. See the
discussions of the RELOC and INTERSEG records in the section “Segment Body” earlier in
this chapter for more information. The sequence of events that occurs when a JSI. to an
external dynamic segment is executed is described in detail in the “System Loader” chapter
-of the Apple IIGS ProDOS 16 Reference manual.

Jump Table Segment

The jump table segment is a segment in a load file that is created by the linker to allow
dynamic loading of code segments as they are needed during program execution. The
segment type of the jump table segment is KIND = $02. There is one jump table segment
per load file; it is a static segment, and it is loaded into memory at program boot time at a
location determined by the Memory Manager at that time. The System Loader maintains a
list, called the jurnp table list (or just the jump table), of the jump table segments in
memory.

Each entry in the jump table segment corresponds to a call to an external (intersegment)
routine in a dynamic segment. The jump table segment initially contains entries in the
unloaded state. When the external call is encountered during program execution, a jump to
the jump table segment occurs. The code in the jump table segment entry, in turm, jumps to
the System Loader. The System Loader figures out which segment is referenced and loads

APDA Draft 256 7127187

Apple IIGS Programmer's Workshop Chapter 7: File Formats

it. Next, the System Loader changes the entry in the jump table segment to the loaded
state. The entry stays in the loaded state as long as the corresponding segment is in
memory. If the application tells the System Loader to unload a segment, all jump table
segment entries that reference that segment are changed to their unloaded states.

Unloaded State

The unloaded state of a jump table segment entry contains the code that calls the System
Loader to load the needed segment. An entry contains the following fields:

User ID (2 bytes)

load-file number (2 bytes)

load-segment number (2 bytes)
load-segment offset (4 bytes)

JSL to jump-table load function (4 bytes)

The User ID field is reserved for the identification number assigned to the program by the
UserID Manager; until initial load time, this field is 0. The Joad-file number, load-segment
number, and load-segment offset refer to the location of the external reference. The rest of
the entry is a call to the System Loader jump-table load function. The User ID and the
address of the load function are patched by the System Loader during initial load. See the
Apple IIGS ProDOS 16 Reference manual for information on the jump-table load function.
A load-file number of 0 indicates that there are no more entries in this jump table segment
(there may be other jump table segments for this program, however—each load file that is
part of a program has its own jump table segment).

Loaded State

The loaded state of a jump-table segment entry is identical to the unloaded state except that
the JSL to the System Loader jump-table load function is replaced by a JML to the external
reference. A loaded entry contains the following fields:

User ID (2 bytes)

load-file number (2 bytes)
load-segment number (2 bytes)
load-segment offset (4 bytes)

JML to external reference (4 bytes)

Note: In Versions 1.0 and 2.0 of the OMF, the jump table segment starts with
eight bytes of zeros. In future versions of the OMF, these zeros may be eliminated.

Pathname Segment

The pathname segment is a segment in a load file that is created by the linker to help the
System Loader find the load segments of run-time library files that must be loaded
dynamically. It provides a cross-reference between file numbers and file pathnames. The
segment type of the pathname segment is KIND = $04. When the loader processes the load
file, it adds the information in the pathname segment to the pathname table that it maintains
in memory. Pathname tables are described in the Apple IIGS ProDOS 106 Reference
manual.

APDA Draft 257 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

The pathname segment contains one entry for each load file and run-time library file
referenced in the load file. The format of each entry is as follows:

file number (2 bytes)

file date (2 bytes)

file time (2 bytes)

file pathname (length byte and ASCII string)

File number: A number assigned by the linker to a specific load file. File number 1 is
reserved for the load file in which the pathname segment resides (usually the load file of the
application program). A file number of 0 indicates that there are no more entries in this
pathname segment.

File date and file time: ProDOS 16 directory items retrieved by the linker during the
link process. The System Loader compares these values with the ProDOS 16 directory of
the run-time library file at run time. If they are not the same, the System Loader does not
load the requested load segment, thus ensuring that the run-time library file used at link
time is the same as the one loaded at execution time.

File pathname: The pathname of the load file. The pathname is listed as a Pascal-type
string: that is, a length byte followed by an ASCII string. A pathname segment created by
the linker may contain partial pathnames. A partial pathname begins with one of the eight
prefixes supported by ProDOS 16; these prefixes have the form n/, where n is a number
from 0 to 7. The first three prefixes have fixed definitions, as follows:

o/ system prefix (initially the volume from which ProDOS 16 was booted)

1/ application subdirectory (the subdirectory out of which the application is
running)

2/ system library subdirectory (initially /boot volume/SYSTEM/LIBS/)
ProDOS 16 prefixes are described in the Apple 11GS ProDOS 16 Reference manual.

Important: Currently, run-time library files and multiple load files are not
supported by the linker. The pathname table is created, but it contains only one
pathname—that of the single load file.

Initialization Segment

The initialization segment is an optional segment in a load file. When the System Loader
encounters an initialization segment during the initial loading of segments, it transfers
control to the initialization segment. After the initialization segment returns control to the
System Loader, the loader continues the normal initial load of the remaining segments in
the load file. The segment type of the initialization segment is KIND = $10.

One way in which the initialization segment might be used is to initialize the graphics
environment of an application and to display a “splash screen” (such as a copyright
message and company logo) for the duration of the program load.

The initialization segment must obey the following rules:
» It must not reference any segments not yet loaded.

APDA Draft 258 7127187

Apple 1IGS Programmer’s Workshop ' Chapter 7: File Formats

« It must exit with an RTL instruction.
+ It must not change the stack pointer.

It must not use the current direct page. To avoid writing over a portion of the direct
page being used by the loader, the initialization segment must allocate its own direct
page if it needs direct-page space.

Note: Initialization segments are reexecuted during a restart of an application from
memory. -

Direct-Page/Stack Segments

The Apple IIGS stack can be located anywhere in the lower 48K of bank $00 and can be
any size up to 48K. The direct page is the Apple IIGS equivalent of the zero page of 8-bit
Apple II's; the direct page can also be located anywhere in the lower 48K of bank $00.
Like the zero page, the direct page occupies 256 bytes of memory; on the Apple IIGS,
however, a program can move its direct page while it is running. Consequently, a given
program can use more than 256 bytes of memory for direct-page functions.

Each program running on the Apple IIGS reserves a portion of bank $00 as a combined
direct-page/stack space. Since more than one application can be loaded in memory at one
time on the Apple IIGS, there may be more than one stack and one direct page in bank $00
at a given time. Furthermore, some applications may place some of their code in bank $00.
A given program should therefore probably not use more than about 4K for its direct-
page/stack space.

When an instruction uses one of the direct-page addressing modes, the effective address is
calculated by adding the value of the operand of the instruction to the value in the direct-
page register. The stack pointer, on the other hand, is decremented each time a stack-push
instruction is executed. The convention used on the Apple IIGS, therefore, is for the direct
page to occupy the lower part of the direct-page/stack space, while the stack grows
downward from the top of the space.

Important: ProDOS 16 provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your program must be
carefully designed to make sure those conditions cannot occur.

If you do not define a direct-page/stack segment in your program, ProDOS 16 assigns a
1024-byte direct page/stack when the System Loader INITIAL LOAD or RESTART call is
executed. To specify the size and contents of the direct-page/stack space, use the following
procedure:

1. Create a data segment in your source file with the size and contents you want for
your initial direct page and stack. Start the segment with a DATA directive, use DS
and DC directives to define the contents of the segment, and end it with an END
statement.

2. Assemble the program.

3. Use a LinkEd file to link the program. Place the direct-page/stack segment in a load
segment by itself, and specify the segment-type KIND=$12 for the segment. For
example, suppose you have created the data segment DEFPAGE, and assembled it so
that it is now in the object file MYOBJ . A. To make that segment a direct page/stack

APDA Draft 259 7127187

Chapter 7: File Formats Apple IIGS Programmer’s Workshop

segment with the load-segment name DIRSTACK in the load file MYPROG, use the
following LinkEd commands:

KEEP MYPROG
SEGMENT/$12 DIRSTACK
SELECT MYOBJ.A (DEFPAGE)

LinkEd is described in Chapter 5.

Run-Time Library Files

Run-time library files (ProDOS 16 file type $B4) contain dynamic load segments that the
System Loader can load when these segments are referenced through the jump table.
Usually, run-time library files contain general routines that can be used by more than one
application.

Run-time library files are scanned by the linker during the link process. When the linker
finds a referenced segment in the run-time library file, it generates an INTERSEG reference
to the segment in the relocation dictionary and adds an entry to the jump table segment for
that file. It does not extract the segment from the file and place it in the file that referenced
it, as it does for ordinary library files. In other words, references to segments in run-time
library files are treated by the linker like references to any other dynamic segments.

The last load segment of the run-time library file contains all the information the linker
needs in order to find referenced segments; it is not necessary for the linker to scan through
every subroutine in every segment each time a subroutine is referenced. The last segment
contains a table of ENTRY records, each one corresponding to a segment name or global
reference in the run-time library file.

Run-time library files are created from corresponding object files. When you create a run-
time library file, you specify the location of the source file and the pathname at which the
run-time library file will be located at load time. The location of the run-time library file is
stored in the pathname segment in the load file of the application program. At load time,
the run-time library file must reside in the specified subdirectory.

Cun‘ehtly, run-time library files are not supported by the linker. This specification is |
provided to allow for future enhancements to the system.

Shell Load Files

Shell load files (ProDOS 16 file type $BS5) are executable load files that are run under a
shell program, such as the APW Shell. The shell calls the System Loader’s Initial Load
function and transfers control to the shell load file by means of a JSL instruction, rather
than launching the program through the ProDOS 16 QUIT function. Therefore, the shell
does not shut down, and the program can use shell facilities during execution. The
program returns control to the shell with an RTL, or with a ProDOS 16 QUIT call if the
shell intercepts and acts on ProDOS 16 calls. (The APW Shell is an example of a shell that

APDA Draft 260 7127187

Apple IIGS Programmer’s Workshop Chapter 7: File Formats

intercepts ProDOS QUIT calls.) Shell load files should use standard Text Tool Set calls for
all nongraphics I/O. The shell program is responsible for initializing the Text Tool Set
routines.

Note: A load file of file type $B5 can be launched by ProDOS 16 via the QUIT
call if it requires no support other than standard input from the keyboard and output
to the screen. ProDOS 16 initializes the Text Tool Set to use the Pascal I/O drivers
(see the Apple IIGS Toolbox Reference) for the keyboard and 80-column screen.
Only $BS files that end in a ProDOS 16 QUIT call can be run in this way.

As soon as a shell load file is launched, it should check the X and Y registers for a pointer
to the shell-identifier string and input line. The X register holds the high word and the Y
register holds the low word of this pointer. The shell program is responsible for loading
this pégnter into the index registers and for placing the following information in the area
pointed to:

1. An 8-byte ASCII string containing an identifier for the shell (the identifier for the
APW Shell, for example, is BYTEWRKS). The shell load file should check this
identifier to make sure that it has been launched by the correct shell, so that the
environment it needs is in place. If the shell identifier is not correct, the shell load
file should write an error message to standard error output (normally the screen) and
then exit with an RTL instruction (or a ProDOS QUIT call if the shell intercepts
ProDOS calls).

2 A null-terminated ASCII string containing the input line for the shell load file. The
shell program can strip any I/O redirection or pipeline commands from the input line,
since those commands are intended for the shell itself, but must pass on all input
parameters intended for the shell load file.

The shell program must request a User ID for the shell load file; the User ID is passed in
the accumulator. The shell must set up a direct-page and stack area for the shell load file.
The shell places the address of the start of the direct-page/stack space in the direct-page (D)
register and sets the stack pointer (S register) to point to the last byte of the block. If the
shell application does not have a direct-page/stack segment, the shell should follow the
same conventions used by ProDOS 16 for default direct-page/stack allocation. See the
section “Direct-Page/Stack Segments’ in this chapter and the Apple 1IGS ProDOS 16
Reference manual for more information on direct-page and stack allocation.

Note: ProDOS 16 does not support the identifier string or input line. If the shell
load file is launched by ProDOS 16, the X and Y registers contain zeros.

Some shell load files may launch other programs; for example, a shell nested within
another shell would be a shell load file. When a shell load file requests a User ID for a
program, the calling program is responsible for intercepting ProDOS QUIT calls and
system resets, so that it can remove from memory all memory buffers with that User ID
before passing control to the shell.

A shell load file should use the following procedure to quit:

1. If the shell load file has launched any programs, it must call the System Loader’s
User Shutdown function to shut down those programs.

2. The shell load file should release any memory buffers that it has requested and
dispose of their handles.

APDA Draft 261 7127187

Chapter 7: File Formats Apple T1GS Programmer’s Workshop

3. The shell load file must place an error code in the accumulator. If no error occurred,
the error code should be $0000. The error code $FFFF is used as a general
(nonspecific) error code. You can define any other error codes you want to use for a
shell program you write and can handle them in any way you wish.

4. The shell load file should execute an RTL or a ProDOS 16 QUIT call. If the
program ends in a QUIT call, the shell program that launched the shell load file is
responsible for intercepting the QUIT call, releasing all memory buffers associated
with that shell load file, and performing any other system tasks normally done by
ProDOS 16 in response to a QUIT.

Important: When a shell launches a shell load file, the address of the shell
program is not pushed onto the ProDOS 16 QUIT stack; therefore the shell must
handle the shell load file’s QUIT call itself, or control is not returned to the shell.
In order to do this, the shell program must intercept all ProDOS 16 calls. The shell
may pass any other ProDOS 16 calls on to ProDOS, but it must handle QUIT calls
itself. If the shell you are using does not handle ProDOS 16 QUIT calls in this
fashion, the shell load file must end in an RTL.

APDA Draft 262 7127187

Apple lIGS Programmer’s Workshop Chapter 8: Shell Calls

Chapter 8

Shell Calls

The Apple IIGS Progammer’s Workshop Shell acts as an interface and extension to
ProDOS 16. The shell provides several functions not provided by ProDOS 16; these
functions are called exactly like ProDOS 16 functions. Every time a program running
under the APW Shell issues a ProDOS-16-like call, the shell intercepts the call; if itis a
shell call, the shell interprets it and acts on it. If it is a ProDOS 16 call, the shell passes it
on to ProDOS 16. This chapter describes all of the shell’s ProDOS-16-like calls, here
referred to as shell calls.

The shell calls that are provided are listed in Table 8.1 in the order of their call numbers.
The calls are described in alphabetical order in the section “Call Descriptions” later in this
chapter.

Table 8.1. Summary of Shell Calls

Call Name Call Use

Number
GET LINFO ($0101) Passes parameters from the shell to a program
SET LINFO ($0102) Passes parameters from a program to the shell
GET_LANG ($0103) Reads the current language number
SET LANG ($0104) Sets the current language number
ERROR ($0105) Prints error message for an Apple IIGS tool call
SET_VAR ($0106) Sets the value of a shell variable
VERS ION (30107) Returns the version number of the APW Shell

READ_INDEXED ($0108) Reads variable table
INIT_WILDCARD ($0109) Provides a filename that includes a wildcard character

to the shell

NEXT WILDCARD ($010A) Causes the shell to find the next filename that matches
the wildcard filename

GET VAR ($010B) Reads the value of a shell variable

EXECUTE ($010D) Sends a command or list of commands to the shell
command interpreter

DIRECTION ($010F) Indicates whether I/O redirection has occurred

REDIRECT ($0110) Sets device and file for [/O redirection

STOP (50113) Detects a request for an early termination of the
program

WRITE_CONSOLE ($011A) Sends output to the console

APDA Draft 263 7127187

Chapter 8: Shell Calls Apple II GS Programmer’s Workshop

Warning: Call numbers $0100 through $01FF are reserved. Be careful to use
only the call numbers documented here. Making calls to other, undocumented call
numbers may have unpredicatable results.

Making a Shell Call

An assembly-language calling program makes a shell call by executing a set of instructions
and directives referred to as a shell-call block. The shell-call block contains a pointer to
a parameter block. The parameter block is used for passing information between the
calling program and the shell. Each APW language provides an easy way to execute shell
calls; in APW Assembly Language, for example, the shell-call block is normally executed
by an assembler macro. The following sections discuss these aspects of shell calls.

Note: Although shell calls are made exactly like ProDOS 16 calls, this section
does not provide all of the information relevant to making ProDOS 16 calls.
ProDOS 16 calls are described in the Apple IIGS ProDOS 16 Reference manual.

This chapter assumes that you are using the APW Assembler to make shell calls. See the
Apple IIGS Programmer’s Workshop Assembler Reference for more information on the
APW Assembler. To access shell calls from a program written in another language, see the
manual that came with the language.

The Call Block

A shell-call block consists of a JSL to the ProDOS 16 entry point, followed by a 2-byte
system call number and a 4-byte parameter block pointer. The APW Shell intercepts the
call and determines whether it is an APW Shell call or ProDOS 16 call. If a shell call, it
performs the requested function, if possible, and returns execution to the instruction
immediately following the call block. If a ProDOS 16 call, the shell passes it on to
ProDOS 16. l

When making the call, the the processor should be in full native mode. The call block
looks like this:

JSL. PRODOS ; Dispatch call to ProDOS 16 entry
pc I2'CALLNUM!' ; 2-byte call number

DC I4*PARMBLCCK' ; 4-byte parameter block pointer
BCS ERROR ; If carry set, go to error handler

; otherwise, centinue. . .

ERROR ; errcr handler

PARMBLOCK ; parameter block

The call block itself consists of only the JSL instruction and the DC assembler directives.
The BCS instruction in this example is a conditional branch to an error handler called
ERROR.

APDA Draft 264 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

Shell-Call Macros

For each call listed in Table 9-1, there is an APW Assembler macro that you can use to
make the call. The macro call consists of the name of the call (as shown in Table 9-1), with
the address of the parameter block in the operand field. For example, to call the
GET_LINFO function, use the following sequence:

MCOPY 2/AINCLUDE/M16.SHELL ; Make the macro file available
GET_LINFO PARMBLOCK ; The macro call
BCS ERROR : If carry set, go to error handler

; otherwise, continue. . .

ERRCR ; error handler

PARMBLOCK ; parameter block

The Parameter Block

A parameter block is a specifically formatted tabie that occupies a set of contiguous bytes in
memory. It consists of a number of fields that hold information that the calling program
supplies to the shell, as well as information returned by the shell to the caller.

Every shell call requires a valid parameter block (PARMBLOCK in the above examples),
referenced by a 4-byte pointer in the call block or by the operand of the macro call. You are
responsible for constructing the parameter block for each call you make; the block may be
anywhere in memory. Formats for individual parameter blocks accompany the detailed
system call descriptions in this chapter.

Types of Parameters

Each field in a parameter block contains a single parameter. There are three types of
parameters used by the shell: values, results, and pointers. Each is either an input to the
shell from the caller or an output from the shell to the caller.

A value is a numeric quantity, one or more bytes long, that the caller passes to the
shell through the parameter block. It is an input parameter.

A result is a numeric quantity, one or more bytes long, that the shell places into the
parameter block for the caller to use. Itis an output parameter.

» A pointer is the 4-byte address of a location containing data, code, an address, or
buffer space in which the shell can receive or place data. The pointer itself is an
input; that is, you always provide the pointer and reserve space for the data. The data
pointed to may be either input by your program, returned by the shell, or both.

A given parameter may be both a value and a result.

APDA Draft 265 7127187

Chapter 8: Shell Calls Apple II GS Programmer’s Workshop

Important: Unless noted otherwise, each string in a parameter block or pointed to
by a parameter block consists of a length byte, which is a binary number indicating
the number of characters in the string, followed by ASCII characters.

Setting Up a Parameter Block in Memory
Each APW Shell call references a parameter block, which may be anywhere in memory.
Because all applications must obtain needed memory from the Memory Manager, an

application cannot know in advance where the memory segment holding such a parameter
block will be.

There are two ways to set up a parameter block in memory. Either

1. Code the block directly into the program, referencing it with a label. The parameter
block will always have the same relative location in the program code.

or
2. Use Memory Manager and System Loader calls to place the block in memory.

The first method is by far the simplest and most typical way to do it. For instructions on
using the second method, see the Apple IIGS ProDOS 16 Reference manual.

Register Values

There are no register requirements on entry to a shell call. The APW Shell saves and
restores all registers except the accumulator (A) and the processor status register (P); those
two registers store information on the success or failure of the call. On exit, the registers
have the following values:

A zero if the call is successful; if nonzero, the number is the error code
X unchanged

¥ unchanged

S unchanged

D unchanged

P (see below)

DB unchanged

PB unchanged

PC address of location following the parameter block pointer

Unchanged means that APW initially saves, and then restores when finished, the value the
register had just before the shell call.

APDA Draft 266 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

On exit, the processor status register (P) bits are

undefined

undefined

unchanged

unchanged

Zero

unchanged

undefined

zero if the call is successfull, 1 if not
Zero

(‘bON"“D-NB*:':ﬂ

Call Descriptions

This section describes each call, including its use and the contents of its parameter block.
The possible errors returned by a call are listed at the end of each call description. The calls
are listed here in alphabetical order. Table 8.1 lists all the calls in order of their call
numbers.

DIRECTION ($010F)

A program can use this function to find out whether command-line I/O redirection has
occurred. This information can be used by a program, for example to determine whether
to send form feeds to standard output.

Parameter Block:

?L- . device _t
2
. direct —
3
Offset Label Description

$00-301 device parameter name: device number
size and type: 2-byte value
range of values: $0000-$0002

This parameter indicates which type of input or output you are
inquiring about, as follows:

$0000 standard input
$0001 standard output
$0002 error output

$02-$03 direct parameter name: direction

size and type: 2-byte result
range of values: $0000-$0002

APDA Draft 267 7127187

Chapter 8: Shell Calls Apple I GS Programmer’s Workshop

This parameter indicates the type of redirection that has occurred,
as follows:
$0000 console (default)
$0001 printer
$0002 disk file
Possible Errors

$53 Parameter out of range

APDA Draft 268 | 7127187

Apple IIGS Programmer’'s Workshop Chapter 8: Shell Calls

ERROR ($0105)

When an Apple IIGS tool call returns an error, your program can use this function to print
out the name of the tool and the appropriate error message. This function makes it
unneccessary for your program to store a complete table of error messages for tool calls.
The error number is placed in the accumulator by the tool; you need only store the
accumulator value in the parameter block and execute this call to print the error message to
- standard error output.

Parameter Block:

o]
1

error —_

Offset Label Description
$00-$01 error parameter name: error number

size and type: 2-byte value
range of values: $0000-$FFFF

This parameter specifies the error number returned by the tool
call.

Possible Errors

None

APDA Draft 269 7127187

Chapter 8: Shell Calls Apple Il GS Programmer’s Workshop

EXECUTE ($010D)

This function sends a command or list of commands to the APW Shell command
interpreter.

Parameter Block:

0
1 flag -
2
A -
comm —
4 r-
5
Offset Label Description
$00-301 flag parameter name: echo command flag

size and type: 2-byte value
range of values: $0000 or $8000 -

If you set the most significant bit of this flag to 1 (binary), a new
variable table is not defined when the commands are executed.
Setting this flag is similar to executing an Exec file with an
EXECUTE command: if no new variable table is defined, the
variables defined by the list of commands modify the current
variable table. If this flag is set to $0000, a new variable table is
defined for the list of commands being executed; the current
variable table is not modified. Exec files, variables, and the
EXECUTE command are described in the section “Exec Files” in
Chapter 3.

$02-$05 comm parameter name: address of command string
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

The address of the buffer in which you place the commands. If
you include more than one command, separate the commands
with semicolons (;) or carriage return characters ($0D). The last
ASCII character in the command string must be a carriage return.
The command string has no length byte; terminate the command
string with a null character ($00). Any output is sent to standard
output.

If the shell variable {Exit} is not null and any command returns
a nonzero error code, any remaining commands are ignored.
Error codes and variables are described in the section “Exec
Files” in Chapter 3.

APDA Draft 270 7127187

Apple 1IGS Programmer’s Workshop Chapter 8: Shell Calls
Possible Errors

Any error returned from the last command or program executed by the list
of commands executed.

APDA Draft 271 7127187

Chapter 8: Shell Calls Apple Il GS Programmer’s Workshop

GET_LANG ($0103)

This function reads the current language number. Language numbers are described in the
section “Command Types and the Command Table” in Chapter 3 and are listed in
Appendix B.

Parameter Block:

L lang -

Offset Label Description
$00-$01 1lang parameter name; language number
size and type: 2-byte result
range of values: $0000-$7FFF
This parameter specifies the current APW language number. The
current language number is set by the APW Editor when it opens
an existing file or by the user with an APW Shell command.
Possible Errors

None

APDA Draft 272 7127187

Apple 1IGS Programmer’s Workshop Chapter 8: Shell Calls

GET LINFO ($0101)

This function is used by an assembler, compiler, linker, or editor to read the parameters
that are passed to it. When you make this call, you reserve the specified amount of space
for each parameter in the parameter block; then when the APW Shell returns control to your
program, you can read the parameter block to obtain the information you need.

Use the SET_LINFO call when your program finishes before executing an RTL to return
control to the shell.

Parameter Block:

0
[-
9 e sfile o
o -
4
o -
. L dfile -
N -
8
o -
& parms -
al~ -
g
- | -
el istting -
" -
10 merr
1 merrf
12 lops
13 kflag
vl |
15
" = mflags 7
v]
18
v -
A — pflags —
B[n
C
o[7
€l g 7
k[7

APDA Draft 273 7127187

Chapter 8: Shell Calls

Offset Label
$00-$03 sfile

$04-$07 dfile

$08-0B parms

$O0C-$0F istring

APDA Draft

Apple Il GS Programmer’s Workshop

Description

parameter name: address of source filename
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

The address of a 65-byte buffer into which the shell will put the
filename of the source file: that is, the file that the compiler or
assembler is to process. The filename can be any valid ProDOS
16 filename and can be either a partial or full pathname.

If the +E flag is set and the compiler exits due to an error, the
compiler places the pathname of the source file in which the error
occurred into a buffer and sets the sfile parameter in the
SET_LINFO call to point to that buffer. An editor can then use
this pathname to open the source file and display it on the screen.

parameter name: address of output filename
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

The address of a 65-byte buffer into which the shell puts the
filename of the output file (if any): that is, the file that the
compiler or assembler writes to. The filename can be any valid
ProDOS 16 filename and can be either a partial or full pathname.

parameter name: address of parameter list
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

The address of a 256-byte buffer into which the shell puts the list
of names from the NAMES parameter list in the APW Shell
command that called the assembler or compiler. If there was no
NAMES parameter list, the buffer pointed to by parms begins
with the length byte $00.

If the +E flag is set and the compiler exits due to an error, the
compiler places the text of the error message into a buffer and set
the parms parameter in the SET LINFO call to point to that
buffer. An editor can then display the error message at the
bottom of the screen.

parameter name: address of input strings
size and type: 4-byte result
range of values: $0000 0000-$00FF FFFF

The address of a 256-byte buffer into which the shell puts the
string of commands to be passed on to a specific language
compiler. For example, if the COMPILE command includes the
parameter CC=(-I/CINCLUDES/), the string enclosed in
parentheses is found in that buffer when the C compiler is called.

274 7127187

Apple 1IGS Programmer’ s Workshop Chapter 8: Shell Calls

$10 merr
$11 merrf
$12 lops
$13 kflag

APDA Draft

parameter name: maximum error level allowed
size and type: 1-byte result
range of values: $00-3510

If the maximum error level found by the assembler, compiler, or
linker (merrf) is greater than merr, the APW Shell does not
call the next program in the processing sequence. For example, if
you use the ASML command to assemble and link a program, but
the assembler finds an error level of 8 when merr equals 2, then
the linker is not called when the assembly is complete.

parameter name: maximum error level found
size and type: 1-byte result
range of values: $00-$FF

This field is used by the SET LINFO call to return the maximum
error level found. In the case of a multilanguage compile, this
field contains the error level returned by the last compiler. The
shell sets this field to $00 before the first compile.

parameter name: operations flags
size and type: 1-byte result
range of values: $00-$10

This field is used to keep track of the operations that are to be
performed by the system. The format of this byte is

Bit: |7 |sls5|4 |3]|2]|1]|0
Value: |0 j0O |0 |O0OJO |E|L

where C = Compile
L =Link
E = Execute

When a bit is set (to 1), the indicated operation is to be done. For
example, the COMP ILE command sets bit 0, while the CMPLG
command sets bits 0, 1, and 2. When a compiler finishes its
operation and returns control to the APW Shell, it clears bit 0
unless a file with another language is appended to the source.

parameter name: keep flag
size and type: 1-byte result
range of values: $00-$03

This flag indicates what should be done with the output of a
compiler, assembler, or linker, as follows:

275 7127187

Chapter 8: Shell Calls

$14-317 mflags

$18-$1B pflags

APDA Draft

Apple II GS Programmer’s Workshop

Kflag Meaning

Value

$00 Do not save output.

$01 Save to an object file with the root filename

pointed to by dfile. For example, if the output
filename pointed to by df1 le is PROG, the first
segment to be executed should be put in PROG or
PROG . ROOT and the remaining segments should
be put in PROG. A. For linkers, save to a load
file with the name pointed to by dfile (for
example, PROG).

$02 The . ROOT file has already been created (by
another language compiler, for example). In this
case, the first file created by the compiler or
assembler should end in the . A extension.

$03 At least one alphabetic suffix has already been
used. In this case, the compiler or assembler
must search the directory for the highest
alphabetic suffix that has been used, and then use
the next one. For example, if PROG . ROOT,
PROG.A, and PROG. B already exist, the
compiler should put its output in PROG. C.

See the section “Compilers and Assemblers” in Chapter 6 for
more information on object-file naming conventions.

parameter name: flags with a minus sign
size and type: 4-byte result
range of values: binary string

This parameter passes command-line-option flags such as —L or
—C. The first 26 bits of these four bytes represent the letters A
through Z, arranged with A as the most significant bit of the most
significant byte. The bytes are ordered least significant byte first.
The bit map is as follows:

11000000 11111111 11111111 11111111
YZ QRSTUVWX TIJKLMNOP ABCDEFGH

For each flag set with a minus sign in the command, the
corresponding bit in this parameter is set to 1. See the
discussions of the ALINK and ASML commands in Chapter 3 for
descriptions of these option flags.

parameter name: flags with a plus sign

size and type: 4-byte result
range of values: binary string

276 7127187

Apple 1IGS Programmer’s Workshop Chapter 8: Shell Calls

This parameter passes command-line-option flags such as +L or

+C. The first 26 bits of these four bytes represent the letters A

through Z; the bit map for this parameter is the same as for the

mflags parameter. See the discussions of the ALINK and

gSML commands in Chapter 3 for descriptions of these option
ags.

$1C-$1F org parameter name;: origin
size and type: 4-byte result
range of values: $0000 0000-$FFFF FFFF

This parameter specifies the absolute start address of a
nonrelocatable load file, if one has been specified. The origin is
used only by a linker. If the +E flag is set and the compiler exits
due to an error, the compiler puts the offset of the line containing
the error into the org field of the SET_LINFO call. An editor
can then place that line on the fifth line of the screen.

Possible Errors

None

APDA Draft . 277 7127187

Chapter 8: Shell Calls Apple II GS Programmer’s Workshop

GET_VAR ($010B)

This function reads the string associated with a variable (that is, the value of the variable).
The value returned is the one valid for the currently executing Exec file, or for the
interactive command interpreter (if that is the command level in use). Variables and Exec
files are described in the section “Exec Files” in Chapter 3. Use the SET VAR call to set
the value of a variable.

Parameter Block:

0

B 4
p— varname -

2

ol —

4 il

5 |
- vaiue —

6

o

Offset Label Description

$00-$03 varname parameter name: pointer to name of variable
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This is a pointer to a buffer that contains the name of the variable
whose value you wish to read. The variable name consists of a
length byte and a string of up to 255 ASCII characters.

$04-$07 wvalue parameter name: pointer to value of variable
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This is a pointer to a 256-byte buffer into which the shell places
the value of the variable. The value consists of a length byte and
a string of ASCII characters. For an undefined variable, the
value consists of a null string (that is, the length byte is $00).

Possible Errors

None

APDA Draft 278 7127187

Apple 1IGS Programmer’s Workshop Chapter 8: Shell Calls

INIT WILDCARD ($0109)

This function provides to the APW Shell a filename that can include a wildcard character.
The shell can then search for filenames matching the filename you specified when it
receives a NEXT WILDCARD command. This function accepts any filename, whether it
includes a wildcard or not, and expands device names (such as .D1), prefix numbers, and
the double-period (..) before the filename is passed on to ProDOS 16. Therefore, you
should call this function every time you want to search for a filename. Doing so will
ensure that your routine supports all of the conventions for partial pathnames that the user

expects from APW.

Parameter Block:

Offset Label
$00-$03 file

$04-305 flags

APDA Draft

e flle —

e flags

N B W N = O

Description

parameter name: address of pathname
size and type: 4-byte pointer
range of values: $0000 0000—$00FF FFFF

This parameter specifies the address of a buffer containing a
pathname or partial pathname that can include a wildcard
character. Examples of such pathnames are

A=
/APW/MYPROGS/? .ROOT
.D2/HELLO

When you execute a NEXT WILDCARD call, the shell finds the
next filename that matches the filename pointed to by file. If
the wildcard character you specified was a question mark (?), the
filename is written to standard output and you are prompted for
confirmation before the file is acted on or the next filename is
found. The use of wildcard characters is described in the section
“Using Wildcard Characters” in Chapter 2.

parameter name: prompting flags
size and type: 2-byte value
range of values: $0000, $4000, $8000 or $C000

If the most significant bit is set, prompting is not allowed; that is
a question mark (?) is treated as if it were an equal sign (=). If
the next-most significant bit is set and prompting is being used,
only the first choice accepted by the user (that is, the first choice

279 7127187

Chapter 8: Shell Calls Apple Il GS Programmer’s Workshop

for which the user types a Y in response to the prompt) is acted
on. The second flag is for use with commands that can act on
only one file, such as RENAME or EDIT.

Possible Errors

Errors for the following ProDOS 16 and Memory Manager calls. See the Apple |
IIGS ProDOS 16 Reference manual and the Apple IIGS Toolbox Reference manual
for descriptions of these errors.

Open

Read

Close

Dispose

Get info

Get end of file

Lock

Allocate new memory

APDA Draft 280 - 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

NEXT WILDCARD (8010A)

Once a filename that includes a wildcard has been suppled to the shell with an

INIT WILDCARD call, the NEXT WILDCARD call causes the shell to find the next
filename in the directory that matches the wildcard pathname. For example, if the wildcard
pathname specified in INIT WILDCARD were /APW/LIBRARIES/AINCLUDE/M16.?,
then the first pathname returned by the shell in response to a NEXT WILDCARD call might
be /APW/LIBRARIES/AINCLUDE/M16.UTIL.

Parameter Block:

— nextfile -

w N — O

Offset Label Description

$00-$03 nextf ile parameter name: address of next filename
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFEF

This parameter specifies the address of the buffer to which the
shell has returned the next filename that matches a wildcard
filename. The wildcard filename is the last one specified with an
INIT WILDCARD call. If there are no more matching filenames,
orif INIT_WILDCARD has not been called, then the shell returns
a null string (that is, a string with a length of zero). See also the
description of INIT WILDCARD.

Possible Errors

None

APDA Draft 281 | 7127187

Chapter 8: Shell Calls

Apple IT GS Programmer’s Workshop

READ_INDEXED ($0108)

You can use this function to read the contents of the variable table for the command level at
which the call is made. To read the entire contents of the variable table, you must repeat
this call, incrementing the index number by 1 each time, until the entire contents have been

returned.

Parameter Block:

Offset Label
$00-%303 varname

$04-307 wvalue

$08-%$09 index

Possible Errors

APDA Draft

i varname —

— value —

© O N A WN — O
g
|

r— index =

Description

parameter name: pointer to name of variable
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This is a pointer to a 256-byte buffer into which the shell is to
place the name of the next variable in the variable table. The
variable name consists of a length byte and a string of ASCII
characters. A null string is returned when the index number
exceeds the number of variables in the variable table.

parameter name: pointer to value of variable
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This is a pointer to a 256-byte buffer into which the shell is to
place the value of the variable. The value consists of a length
byte and a string of ASCII characters. For an undefined variable,
the value consists of a null string (that is, the length byte is $00).

parameter name: index number
size and type: 2-byte value
range of values: $0000-$FFFF

This is an index number that you provide. Start with $01 and
increment the number by 1 with each successive
READ_INDEXED call until there are no more values in the
variable table.

282 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

Errors for the following Memory Manager calls. See the Apple IIGS Toolbox
Reference manual for descriptions of these errors.

Lock
Unlock

APDA Draft 283 7127187

Chapter 8: Shell Calls Apple II GS Programmer’s Workshop

REDIRECT ($0110)

This function instructs the shell to redirect input or output to the printer, console, or a disk
file. '

Parameter Block:

0 :
s device -
4 end
L o
a4
5
- file —
6 |
N

Offset Label Description

$00-301 device parameter name: device number

size and type: 2-byte value
range of values: $0000-$0002

This parameter indicates which type of input or output you wish
to redirect, as follows:

$0000 standard input
$0001 standard output
$0002 error output

$02-$03 append parameter name: append flag
size and type: 2-byte value
range of values: $0000-$FFFF

This flag indicates whether redirected output should be appended
to an existing file with the same filename, or the existing file
should be deleted first. If append is 0, the file is deleted; if it is
any other value, the output is appended to the file.

$04-307 file parameter name: address of filename
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This parameter specifies the address of a 65-byte-long buffer
containing the filename of the file to or from which output is to be
redirected. The filename can be any valid ProDOS 16 filename, a
partial or full pathname, or the device names .PRINTER or
.CONSOLE.

Possible Errors

$53 Parameter out of range

APDA Draft 284 7127/87

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

Errors for the following ProDOS 16 calls. See the Apple IIGS ProDOS 16
Reference manual and the Apple IIGS Toolbox Reference manual for descriptions
of these errors.

Open
Close
Read
Write
Get end of file

APDA Draft 285 7127187

Chapter 8: Shell Calls Apple Il GS Programmer’s Workshop

SET_LANG ($0104)

This function sets the current language number. Language numbers are described in the
section “‘Command Types and the Command Table” in Chapter 3 and are listed in
Appendix B.

Parameter Block:

0

; e lang -
Offset Label Description
$00-$01 1lang parameter name: language number

size and type: 2-byte value
range of values: $0000-$7FFF

This parameter specifies the APW language number to which the
current APW language should be set. If the language specified is
not installed (that is, not listed in the command table), the
“Language not available™ error is returned.

Possible Errors

$80 Language not available

APDA Draft 286 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

SET_LINFO (80102)

This function is used by an assembler, compiler, linker, or editor to pass parameters to the
APW Shell before returning control to the shell. It can also be used by a shell program
under which you are running APW to pass parameters to the APW Shell.

Use the GET_LINFO call to read parameters passed to your assembler, compiler, linker, or
editor.

Important: Memory buffers pointed to by parameters in the SET LINFO
parameter block must be in static segments that are loaded when your program is
launched. The APW Shell does not unload your program’s static segments until
after it has processed the SET_LINFO call.

Parameter Block:

APDA Draft 287 7127187

Chapter 8: Shell Calls

Offset Label
$00-303 sfile

APDA Draft

Apple IT GS Programmer’s Workshop

0 =
; - sflle —
% L]
4 . —
:l_. dfile -
of -
? —
:— porms j
B - 7
d
o -
E p— istring -
- —
10 mert
N merrf
12 lops
13 kfiag
14 - _
: - mflags —
i =
17
18
19
-, — pfiags -
B[7]
C - e
Low o
W[7
Description

parameter name: address of source filename
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This parameter specifies the address of a buffer into which the
compiler has placed the pathname of the next source file, if any:
that is, the next file that a compiler or assembler is to process.
Your compiler may have obtained this pathname from an
APPEND directive, for example. The filename can be any valid
ProDOS 16 filename and either a partial or full pathname.

288 7127187

Apple IIGS Programmer's Workshop Chapter 8: Shell Calls

$04-$07 dfile

$08-0B parms

$0C-$0F istring

$10 merr

APDA Draft

If the +E flag is set and the compiler exits due to an error, the
compiler should place the pathname of the source file in which the
error occurred into a buffer and set the sfile parameter to point
to that buffer. The editor uses this pathname to open the source
file and display it on the screen.

parameter name: address of output filename
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This parameter specifies the address of a buffer into which your
program has placed the pathname of the output file (if any): that
is, the file that the compiler or assembler writes to. The filename
can be any valid ProDOS 16 filename and either a partial or full
pathname.

parameter name: address of parameter list
size and type: 4-byte pointer
range of values: $0000 0000—$00FF FFFF

This parameter specifies the address of a buffer containing the list
of names from the NAMES= parameter list in the APW Shell
command that called the assembler or compiler. Because the
compiler can remove or modify these names as it processes them,
this list can be different from the one received through the
GET LINFO call.

If the +E flag is set and the compiler exits due to an error, the
compiler should place the text of the error message into a buffer
and set the parms parameter to point to that buffer. The editor
can then display the error message at the bottom of the screen.

parameter name: address of input strings
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This parameter is a placeholder for the address of a buffer
containing the string of commands passed to the compiler.
Because this command string is not reused by the shell, it is not
necessary to pass it back to the shell with the SET LINFO call.

parameter name: maximum error level allowed
size and type: 1-byte value
range of values: $00-$10

If the maximum error level found by the assembler, compiler, or
linker (merrf£) is greater than merr, the shell does not call the
next program in the processing sequence. For example, if you
use the ASML command to assemble and link a program, but the
assembler finds an error level of 8 when merr equals 2, then the
linker is not called when the assembly is complete.

289 7127187

Chapter 8: Shell Calls Apple 11 GS Programmer’s Workshop

$11 merrf parameter name: maximum error level found
size and type: 1-byte value
range of values: $300-$FF

This field is used by the SET LINFO call to return the maximum
error level found. If merrf is greater than merr, no further
processing is done by the shell. If the high bit of merrf is set,
merrf is considered to be negative; a negative value of merrf
indicates a fatal error (normally, all fatal errors are flagged as
merrf = 3$FF). In this case, processing terminates
immediately. See also the discussion of the org parameter.

$12 lops parameter name: operations flags
size and type: 1-byte value
range of values: $00-$10

This field is-used to keep track of the operations that have been
performed by the system. The format of this byte is

Bit: {7 |6 514 |32 }1]0
Value: |[O |0 |O|Oo O JE|L|C

where C = Compile
L =Link
E = Execute

“When a bit is set (to 1), the indicated operation is to be done.
When a compiler finishes its operation and returns control to the
shell, it clears bit O unless a file with another language is
appended to the source. When a linker returns control to the
shell, it clears bit 1. When you execute the APW Linker by
compiling a LinkEd file, the linker clears bits 0 and 1.

$13 kflag parameter name: keep flag
size and type: 1-byte value
range of values: $00-$03

This flag indicates what should be done with the outputof a
compiler, assembler, or linker, as follows:

APDA Draft 290 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

$14-$17 mflags

APDA Draft

Kflag Meaning

Value

$00 Do not save output.

$01 Save to an object file with the root filename

pointed to by dfile. For example, if the output
filename pointed to by dfile is PROG, the first
segment to be executed should be put in PROG or
PROG . ROOT and the remaining segments should
be put in PROG . A. For linkers, save to a load
file with the name pointed to by dfile (for
example, PROG). A compiler or assembler will
never set kflag to $01, but a shell program
calling APW might use this value.

$02 The .ROOT file has already been created. In this
case, the first file created by the next compiler or
assembler should end in the . A extension.

$03 At least one alphabetic suffix has been used. In
this case, the compiler or assembler must search
the directory for the highest alphabetic suffix that
has been used, and then use the next one. For
example, if PROG . ROOT, PROG.A, and
PROG . B already exist, the compiler should put
its output in PROG. C.

When the compiler or assembler passes control back to the shell,
it should reset kf1ag to indicate which object files it has written;
for example, if it found only one segment and created a . ROOT
file but no . A file, then k£ 1ag should be $02 in the
SET_LINFO call. See the section “Compilers and Assemblers”
in Chapter 6 for more information on object-file naming
conventions.

parameter name: flags with a minus sign
size and type: 4-byte value
range of values: binary string

This parameter passes command-line-option flags such as ~L or
—C. The first 26 bits of these four bytes represent the letters A
through Z, arranged with A as the most significant bit of the most
significant byte. The bytes are ordered least significant byte first.
The bit map is as follows:

11000000 11111111 11111111 11111111
YZ QRSTUVWX IJKLMNOP ABCDEFGH

For each flag set with a minus sign in the command, the
corresponding bit in this parameter is set to 1. See the
discussions of the ALINK and ASML commands in Chapter 3 for
descriptions of these option flags.

291 7127187

Chapter 8: Shell Calls

$18-$1B pflags

$1C-$1F org

Possible Errors

None

APDA Draft

Apple Il GS Programmer’s Workshop

parameter name: flags with a plus sign
size and type: 4-byte value
range of values: binary string

This parameter passes command-line-option flags such as +L or
+C. The first 26 bits of these four bytes represent the letters A
through Z; the bit map for this parameter is the same as for the
mflags parameter. See the discussions of the ALINK and
ASML commands in Chapter 3 for descriptions of these option
flags.

parameter name: origin
size and type: 4-byte value
range of values: $0000 0000-$FFFF FFFF

This parameter specifies the absolute start address of a
nonrelocatable load file, if one has been specified. The origin is
used only by the linker. If the +E flag is set and the compiler
exits due to an error, the compiler should put the offset of the line
containing the error into the org field. The editor can then place
that line on the fifth line of the screen.

292 7127187

Apple IIGS Programmer’s Workshop Chapter 8: Shell Calls

SET VAR ($0106)

This function sets the value of a variable. If the variable has not been previously defined,
this function defines it. Variables are described in the section “Exec Files™ in Chapter 3.
Use the GET_VAR call to read the current value of a variable and the READ INDEXED call
to read a varable table.

Parameter Block:

0
F |
2 d varname]
oF
4
N -
— value -t
6
7 —— m——tp
Offset Label Description

$00-$03 varname parameter name: pointer to name of variable
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This is a pointer to a buffer in which you place the name of the
variable whose value you wish to change. The name is an ASCII
string.

$04-$07 value parameter name: pointer to value of variable
size and type: 4-byte pointer
range of values: $0000 0000-$00FF FFFF

This is a pointer to a buffer in which you place the value to which
the variable is to be set. The value is an ASCII string.

Possible Errors

Errors for the following Memory Manager calls. See the Apple IIGS Toolbox
Reference manual for descriptions of these errors.

Lock
Unlock
Grow
New

APDA Draft 293 7127187

Chapter 8: Shell Calls Apple Il GS Programmer's Workshop

STOP ($0113)

This function lets your application detect a request for an early termination of the program.
The stop flag is set when the keyboard buffer is read after the user presses Apple—Period
(3-.).

Parameter Block:

0
— stop —
1
Offset Label Description
$00-$01 stop parameter name: stop flag

size and type: 2-byte result
range of values: $0000-$0001

This flag is set ($0001) by the shell when it finds an
Apple—Period in the keyboard buffer. When an APW utility
reads from the keyboard as standard input, the shell reads the
keyboard buffer and passes the keys on to the utility. When
standard input is not from the keyboard, the shell still checks the
keyboard buffer for Apple—Period whenever a STOP call is
executed. The flag is cleared ($0000) when the STOP call is
executed, when the utility program is terminated, or when
windows are switched so that the utility program is no longer
active. ,

See the section “Conventions” in Chapter 6 for a routine that both
checks for Apple-Period and pauses output to the screen when a
key is pressed.

Possible Errors

None

APDA Draft 294 7127187

Apple IGS Programmer’s Workshop Chapter 8: Shell Calls

VERSION ($0107)
This function returns the version of the APW Shell that you are using.

Parameter Block:

- varsion .

W N - O

Offset Label Description

$00-3$03 version parameter name: version number
size and type: 4-byte result
range of values: $0000 0000-$3939 3939
A four-byte ASCII string specifying the version number of the
APW Shell that you are using. The initial release returns 10
followed by two space characters ($3130 2020), to indicate
Version number 1.0.

Possible Errors

None

APDA Draft 295 7127187

Chapter 8: Shell Calls Apple Il GS Programmer’s Workshop

WRITE CONSOLE ($011A)

This function writes a character 1o the Pascal console driver. The resulting output is not
redirectable, so you can use this function to echo keyboard input and to send messages that
must appear on the screen.

Parameter Block:

0
| ochar -
1
Offset Label Description
$00-%01 ochar parameter name: output character

size and type: 2-byte value
range of values: $0000-$00FF

A two-byte value specifying a character to write on the screen.
The low byte of the value is sent to the Pascal console driver.

Possible Errors

None

APDA Draft 296 7127187

Appendixes

Apple IIGS Programmer's Workshop Appendix A: Contents of an APW Disk

Appendix A

Contents of the APW Disks

The following files should all be present on your APW system disks.

/APW Disk
Directory or File Description
/BAPW/ APW directory,
PRODOS ProDOS system startup.
SYSTEM/ Operating system subdirectory.
P8 ProDOS 8 operating system
Pl6 ProDOS 16 operating system and System Loader,
START The Program Launcher.

SYSTEM.SETUP/

A subdirectory containing system programs to be executed at
system startup time.

TOOLS/ A subdirectory containing all the RAM-based Apple TGS tool
sets.
DESK.ACCS/ A subdirectory containing Apple IIGS desk accessories.
DRIVERS/ A subdirectory containing device drivers.
FONTS/ A subdirectory containing fonts.
APW/ A subdirectory containing APW files.
SYSTEM/ A subdirectory containing APW system files.
LOGIN APW command file executed on startup.
SYSHELP Help screen far the editor.
EDITOR APW Editor.
SYSCMND List of APW command names and command numbers. You can
edit this file to add ar delete commands.
SYSTABS Editor defaults file. You can edit this file to set editor defaults
for any APW language.
SYSEMAC Editor macro file.
LANGUAGES/ APW languages subdirectory. All compilers must be installed
in this subdirectory.
LINKED APW Linker.
ASM65816 APW Assembler.
WORK/ Subdirectory for APW temporary work files.
LIBRARIES/ Subdirectory for library files. Linker librarics made with the
MakeLib program should go in here.
AINCLUDE/ Subdirectory of assembler macro files and global equates files.
RPW,.S5YS16 The APW Shell program.
UTILITIES/ APW utilities subdirectory.
INIT Formats disks,
INSTALL Installs APW on a hard disk.
CRUNCH Combines object files into a single file.
DO Used during APW installation.
MACGEN Makes custom macro files.
XDo Used during APW installation.
INSTALL2 Installation routine.
INSTALLHD Installation routine.

APDA Draft 297 7127187

/APWU Disk

JUTILITIES

HELP/

DO

XDO
MAKEBIN
INIT
DUMPOBJ
MAKELIB
CRUNCH
MACGEN
COMPACT
CANON
EQUAL
FILES
SEARCH
CANON.DICT
INSTALL
DEBUG
VERSION

INSTALLHD
INSTALLZ2

APDA Draft

Appendix A: Contents of an APW Disk Apple 1IGS Programmer’s Workshop

APW utilities volume.

APW utilities subdirectory.

Help-file subdirectory. This directory contains one help file for
each APW command.

Installation routine.

Instaliation routine.

Creates BIN files from load files.

Formats disks.

APW object-module-format file dump routine.

Creates library files.

Combines object files into a single file.

Makes custom macro files.

Makes load files more compact.

Canonical spelling checker.

Compares files and directories.

Lists directories.

Searches for specified character string.

Dictionary for Canon utility.

Installation routine.

Message about debugger.

Displays version number of APW.

Installation routine.

Installation routine.

298 7127187

Apple lIGS Programmer’s Workshop Appendix B: Command Summary

Appendix B

Command Summary

This appendix lists the currently defined APW language types and summarizes the
commands used in the APW Shell, Exec files, APW Editor, and LinkEd files.

The following notation is used to describe commands:

The following notation is used to describe commands:

UPPERCASE

italics
directory

filename

pathname

AlB
[]

APDA Draft

Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The shell is not case sensitive; that is,
you can enter commands in any combination of uppercase and
lowercase letters. Segment names are case-sensitive. In case-
sensitive languages, segment names must be entered exactly as they
appear in the source code. Segment names in case-insensitive
languages must be entered in uppercase.

Italics indicate a variable, such as a filename or address.

This parameter indicates any valid directory pathname or partial
pathname. It does not include a filename. If the volume name is
included, directory must start with a slash (/); if directory does not
start with a slash, the current prefix is assumed.

The device names .D1, .D2, .. .,.Dn can be used for volume
names. ProDOS 16 prefix numbers can be used for directory
prefixes. If you use a device name or prefix number, do not precede
it with a slash,

This parameter indicates a filename, not including the prefix. The
unit names . CONSOLE and . PRINTER can be used as filenames.

This parameter indicates a full pathname, including the prefix and
filename, or a partial pathname, in which the current prefix is
assumed. A full pathname (including the volume name) must begin
with a slash (/); do not precede pathname with a slash if you are
using a partial pathname.

The device names . CONSOLE and . PRINTER can be used as
filenames, the device names .D1, .D2,Dn can be used for
volume names, and ProDOS 16 prefix numbers can be used for
prefixes.

A vertical bar indicates a choice. For example, +L | -L indicates
that the command can be entered as either +L or as - L.

An underlined choice is the default value.

Parameters enclosed in square brackets are optional.

Ellipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

299 7127187

Appendix B: Command Summary Apple 11GS Programmer’s Workshop

. Vertical ellipses indicate that any number of commands can be —
. inserted between the two commands shown.

Language Types

The following language types are currently assigned. The inclusion of a language on this
list does not necessarily imply that the language compiler exists or ever will exist for APW.
For a complete list of currently-assigned language types, see Apple IIGS Technical Note
#20.

Language Number Use

ASM6502 2 6502 Assembler

ASM65816 3 65816 Assembler

BASIC 4 APW BASIC

BWBASIC 9 Byte Works BASIC

BWC 8 Byte Works C

BWPASCAL 5 Byte Works Pascal

cC 10 APW C

COMMAND 12 APW command-processor window

EXEC 6 command file

LINKED 9 APW Linker command language

PASCAL 11 APW Pascal .
PRODOS 0 ProDOS 16 text file (ProDOS 16 file type $04)
SMALLC 7 Byte Works small C

TEXT 1 APW text file

TMLPASCAL 30 TML Pascal

If you are a certified Apple developer and you need a new language number for your
compiler, write to

Developer Technical Support
Mail Stop27 T

Apple Computer, Inc.

200525 Mariani Avenue
Cupertino, CA 95014

Shell

*

Null command, used to add comments to Exec files.

ALIAS [alias [command]]
Create an alias for a command.

APDA Draft 300 7127187

Apple IIGS Programmer’s Workshop Appendix B: Command Summary

ALINK [+E|-E] [+L|=L] (+S|=8] [+TI=T]1 [+WI|=H] filel [file2 ..]
[KEEP=oulfile]
Compile a linker command file.

ASM65816
Change default language to 65816 assembly language.

ASML [+E|-E] [+L|zL] (+S|=8] [+TI[=T] [+W|=W]
filel (file2 1 [..] [KEEP=oulfile]
[NAMES=(segl [seg2] [..1)] [languagel= (option ...)
[language2= (option ...)] [...]1]

Assemble and link the program.

ASMLG [+E|-E] [+LI=L] [+S]|=8] [+T[=T] [+WI=H]
filel (file2] [..1 [KEEP=outfile]
[NAMES= (segl [seg2] [...]1)] [languagel= (option ...)
[language2= (option ...) 1 [..]]

Assemble, link, and go (run the program).

ASSEMBLE [+E|-E] [+L|=L] [+S|=8] [+T|=I] [+W|=W]
filel ([file2] [..] [KEEP=outfile]

[NAMES= (segl [seg2] [...1)] [languagel= (option ...)
[language2= (option ...)] [...]]
Assemble the program.

BREAK
Terminate the innermost FOR, LOOP, or IF statement currently executing.

CANON [+A|=A] [+C n] [+S|=8] dictionary [inputfile]
Compare the spelling of words in the input file with words in the dictionary file and replace
with canonical spelling in the dictionary file.

CAT [pathname)
List the specified directory.

CATALOG [pathname]
List the specified directory.

cc
Change default language to APW C.

CHANGE pathname language
Change the language type of an existing source file.

CMPL [+E|-E] [+L{=L] [+S|=8] [+TI=T] [+W|=W]
filel [file2] [..] [KEEP=ouffile] ;

[NAMES=(segl [seg2] [...]1)] [languagel= (option ...)
[language2= (option ...)] [...]11]
Compile and link the program.

APDA Draft 301 7127187

Appendix B: Command Summary Apple IIGS Programmer’s Workshop

CMPLG [+E|-E] [+L|=L] [+S[|=8] (+T{=T1 [+W|=HW]
filel [file2 1 [...] [KEEP=ouftfile]
[NAMES= (segl {seg2] [..]1)] [languagel= (option ...)
[language2= (option ...}] [...]1]

Compile, link, and go (run the program).

COMMANDS pathname
Read the command table.

COMMENT
Null command, used to add comments to Exec files.

COMPACT infile [-O outfile] [{-P] [-R] [-8]
Convert a load file to the most compact form provided for by the object module format.

COMPILE [+E|-E] [+L|=L] [+S]=8] [+T[=I) [+W|=H]
filel [file2] [..] [KEEP=ouffile]
[NAMES= (seg! [seg2]1 [...]1)] [languagel= (option ...)
{language2= (option ...)] [...]]

Compile the program.

CONTINUE
Cause control to skip over following statements to the next END statement.

COPY [-C] pathnamel [pathnameZ2]
COPY [-D] volumel volumeZ2

Copy a file to a file, a file to a directory, a directory to a directory, or do a block copy of a
disk.

CREATE directoryl [directory? ...]
Create one or more new subdirectories.

CRUNCH rootname
Combine object modules formed by partial compiles or assemblies into a single file.

DEBUG
Execute the Apple IIGS Debugger program, if available.

DELETE [-C] pathnamel [pathname? ...]
Delete a file or files.

DISABLE D |N|W|R pathnamel [pathname2 ...]
Disable file attributes.

DUMPOBJ [+X] ([+D] [-H] [-O] ([-F] ([-M] [-I] {-A] [-L] [-S]

pathame [NAMES= (segl seg2 ...)]
List the contents of an OMF file to standard output.

APDA Draft 302 7127187

Apple 1IGS Programmer’s Workshop Appendix B: Command Summary

ECHO string
Write a message to the screen.

EDIT pathname
Edit an existing file or open a new file.

ELSE
Part of an IF-END command sequence.

ELSE IF
Part of an IF-END command sequence.

ENABLE D|N|B|W|R pathnamel [pathnameZ2 ...)
Enable file attributes.

END
Terminate a FOR, IF, or LOOP command sequence,

EQUAL [4D|-D] [+M|~M] [+N n] [+P|=R] [+£I|-T] pathamel pathname2
Compare two files or directories for data equality and show differences in file dates or
types.

EXEC
Change default language to EXEC command language.

EXECUTE pathname [paramlist]
Execute an Exec file at present command level.

EXIT [number]
Terminate execution of an Exec file.

EXPORT [variable]
Make the specified variable available to Exec files called by the current Exec file.

FILES [+Cn] [+F string] [+L|=L] [+P|=R] [+R|=R] directory
List the contents of a directory.

FILETYPE pathname filetype
Change file type to the type specified.

FOR variable [IN valuel value? ... }
Together with END, create a loop that is executed once for each parameter value listed.

HELP [commandname)
Provide on-screen help for commands or list all available commands.

HISTORY
List the last 20 APW commands entered on the command line.

APDA Draft 303 7127187

Appendix B: Command Summary Apple HGS Programmer’s Workshop

IF expression
Provide conditional branching in an Exec file.

INSTALL volume
INSTALL /APW directory

Install an APW distribution disk or install the /APW disk.

INIT [-C] device [name]

Initialize a disk.

LINK [+L|=L] [+S|=8] [+W|=W] filel [file2] [..] [KEEP=outfile]
Link an object module.

LINKED

Change default language to the LinkEd command language, LINKED.

LOOP

Together with END, define a loop that repeats continuously until a BREAK or EXIT
command is encountered.

MACGEN [£C|—C] infile outfile macrofilel [macrofile? ...]
Generate a macro Library for a specific program.

MAKEBIN loadfile [binfile] [ORG=val]

Convert a ProDOS 16 load file (file type $BS5 only) to a ProDOS 8 binary load file (file type
$06). '

MAKELIB [-F] [-D] libfile [+objectfile ...] [-objectfile ...] [objectfile ...]
Generate or edit a library file. ‘

MOVE [—C] pathnamel [pathname?]
Move a file and rename it.

MOVE [-C] pathname [directory]
Move a file without renaming it.

MU
An alias for PREFIX 6 /APWU/UTILITIES; defined in the LOGIN file for running
APW on floppy disks.

PREFIX ([n} directory[/]
Change the default prefixes.

PRODOS
Change default language to ProDOS 16 text (file type $04).

QUIT
Quit APW.

APDA Draft 304 7127187

Apple 1IGS Programmer’s Workshop Appendix B: Command Summary

RENAME pathnamel pathname2
Change a filename.

RUN [+E|-E] [+LIz=L] [+S|=8] [+T|=T) [+W|=M]
filel [file2 1 {..] [KEEP=outfile]
[NAMES= (segl [seg2] [..])] [languagel=(option ...)
[language2=(option ...}] [...1]

Compile, link, and run a program; same as ASMLG or CMPLG.

SEARCH [+C|=C] [+LI|=L] [+P|=R] string pathname
Search a file or files for the string you specify.

SET [variable [value]]
Assign a value to a variable name.

SHOW [LANGUAGE] [LANGUAGES] [PREFIX] [TIME] [UNITS]
Show languages, system default language, prefixes, time, volumes on line.

TEXT
Change default language to TEXT.

TYPE [+N|=N] pathnamel {startlinel {endlinel]}
[pathname2 [startline2 [endline2]] {...])
Type a file to standard output.

UMU
An alias for PREFIX 6 4/../UTILITIES, defined in the LOGIN file for running APW
on floppy disks.

UNALIAS alias! [alias2 ...]
Delete aliases for commands.

UNSET variablel [variable2 ...]
Delete the definition of a variable,

VERSION
Display the version number of the copy of APW that you are using.

Exec Files

BREAK
Terminate the innermost FOR ar LOOP statement currently executing.

CONTINUE
Cause control to skip over following statements to the next END statement.

APDA Draft 305 7127187

Appendix B: Command Summary Apple 1IGS Programmer’s Workshop

ECHO string
Write messages to the screen.

EXECUTE pathname (paramlist]
Execute an Exec file at present command level.

EXIT [number]
Terminate execution of the Exec file.

EXPORT (variable]
Make the specified variable available to Exec files called by the current Exec file.

FOR variable [IN valuel value2 ...]

.
.

-

END
Create a loop that is executed once for each parameter value listed.

IF expression

[ELSE IF expression]

[ELSE]

END
Provide conditional branching in Exec files.

LOCP

-

END

Define a loop that repeats continuously until a BREAK or EXIT command is encountered.
The loop is also terminated if any command in the loop returns a nonzero error status while
the variable {EXIT} has a non-null value.

SET [variable [(value]]
Assign a value to a variable name.

UNSET variable! [variable? ...]
Delete the definition of a variable.

APDA Draft 306 7127187

Apple IIGS Programmer’ s Workshop

Editor
Beep the Speaker

Beginning of Line
Bottom of Screen / Page Down
Change

Clear
Copy

Cursor Down

Cursor Left

Cursor Right

Cursor Up

Cut

Define Macros
Delete Block

Delete Character
Delete Character Left
Delete Line

Delete to EOL

APDA Draft

Control-G

O"
3-<

Control-&-J
-4

See Search and Replace.

G-Delete

Control-C
a-C

Control-J
1

Control-H
=

Control-U
4

Control-K
1

Control-X
a-X

G-Esc
See Clear

Control-F
&-F

Delete
Control-D

Control-T
a-T

Control-Y
&Y

307

Appendix B: Command Summary

7127187

Appendix B: Command Summary

Delete Word

End of Line

End Macro Definition
Enter Escape Mode
Execute Macro

Find

Help

Insert Line

Insert Space

Paste

Quit

Quit Macro Definitions
Remove Blanks

Repeat Count

Return

Screen Moves

Scroll Down One Line

Scroll Down One Page
Scroll Up One Line

Scroll Up One Page

Search Down

APDA Draft

Control-W
a-W

3-.
G->

Option-Esc

See Turn On Escape Mode

Option-letter
See Search.

&/
3-?

Control-B
G-B

3-Space bar

Control-V
«AY

Control-Q
3-Q

Option

Control-R
G-R

1 to 32767

Return
Control-M

&-1to G-9

Control-P
a-P

See Bottom of Screen/Page Down

Control-O
3-0

See Top of Screen/Page Up

aG-L

308

Apple 1IGS Programmer's Workshop

Apple IIGS Programmer’s Workshop

Search Up

Search and Replace Down
Search and Replace Up
Set and Clear Tabs

Start of Line

Tab

Tab Left

Toggle Auto Indent Mode

Toggle Escape Mode

Toggle Insert Mode

Toggle Select Mode
Toggle Wrap Mode

~ Top of Screen / Page Up

Tum Off Escape Mode
Turn On Escape Mode
Undo Delete

Word Left

Word Right

APDA Draft

a-K
a-J
a-H

G-Tab
Control-&-1

G-!
G-<

Tab
Control-1

Control-A
G-A

G-Return
G-Enter
Control-G-M
Esc

Control-E
A-E

Control-(&-X
Control-&-W

Control-G-K
&-T

Control-G-_
Control-_

Control-Z
a-Z

G-«
Control-&-H

G-— ‘
Control-G-U

309

Appendix B: Command Summary

7127187

Appendix B: Command Summary Apple IIGS Programmer’s Workshop

Defining Macros

3-Esc Begin macro definitions.

— Display the next screen of macro definitions.

- Display the previous screen of macro definitions.

letter Begin defining the macro corresponding to the letter-key lerter.
Note that /etfer must be displayed on the screen before you begin to
define it.

Option-Delete Delete the character to the left of the cursor.

Option-Esc Terminate the macro definition.

Option Stop defining macros and return to editing the file. If you are

currently defining a macro, press Option-Esc first to terminate the
macro definition, and rhen press Option to return to the file.

APDA Draft 310 7127187

Apple I1GS Programmer’ s Workshop

Keystroke Summary

Appendix B: Command Summary

Key Conirol G Conirol- &
A tab left . fab left
B Insert line Insert line
C copy copy
D del char left
E toggle Insert toggle insert
F del char del char
G beep speaker
H cursor left replkace up word left
| tab sot fabs
J cursor down repiace down bot scm/pg down
K CUTsOr Up search up top sem/page up
L search down
M Retum toggie auto indent
N
O up one line up ohe line
P downoneline downoneline
Q quit quit
R remove blanks remove blanks
S
T del line del line
U cursor right word right
\' paste paste
w del word del word toggle wrap
X cut cut toggle select
Y del to eol del to eol
z undo delete undo delefe
? help
Delete clear |
Esc define macros
0
1
2 n*
s ¢
4
5 £
é
7
- ¥
< start of ine
> end of ine
_ tum on escope tum off escape
il bot secm/pg down
T top scm/page up
— word left
- word right
Tab sat tabs
Retum foggle auto indent
Enter toggle auto indent
Space bar insert a space
APDA Draft 311

7127187

Appendix B: Command Swummary Apple IIGS Programmer’s Workshop

LinkEd

APPEND linkedname
Append a LinkEd source file.

COPY linkedname
Copy a LinkEd source file.

EJECT
Skip to a new page if printer is on.

KEEP loadname
Open a file for output.

KEEPTYPE filetype :
Set the file type of the load file produced by the linker.

LIBRARY libname
Search a library by object-segment names.

LIBRARY/LOADSELECT libname Iseg
Search a library by load-segment names.

LINK[/ALL] objname
Link an object file.

LIST ON|QFF
Control link-map listing.

LOADSELECT [/SCAN] objname Iseg
Include object segments with a specific load-segment name in the object file.

OBJ val
Set phantom program counter.

OCBJEND
Tum off previous OBJ.

ORG val
Set program counter.

PRINTER ON|QFF
Control printed output.

SEGMENT [/DYNAMIC] [/kind) segname
Start load segment. '

SELECT [/SCAN] objname (segl [,seg2(,...1])
Choose specific object segments.

APDA Draft 312

7127187

Apple IIGS Programmer’s Workshop Appendix B: Command Summary

SOURCE ON |QFE
Control LinkEd source program listing.

SYMBOL ON |QFF
Control symbol table output.

APDA Draft 313 7127187

Appendix B: Command Summary Apple 1IGS Programmer’s Workshop

APDA Draft 314 7127187

Apple 1IGS Programmer’s Workshop Appendix C Error Messages

Appendix C

Error Messages

Shell Errors

When you are using the APW Shell, you can receive two types of errors: errors generated
by the shell itself, and errors returned to the shell by another program. In the latter case,
the error is preceded by the name of the program that returned it. For example, if the shell
calls ProDOS 16 to open a file and ProDOS cannot find the file, the following error is
printed on the screen:

ProDQS: File not found

Since the APW Shell interacts with both the user and with a variety of other programs, both
outside of APW (such as ProDOS and the Memory Manager) and within APW (such as the
editor), the variety and possible causes of errors are too great to allow all possibilities to be
listed here. If the message itself does not provide you with sufficient information to solve
the problem, read the section of this manual that describes the operation you were trying to
perform. A few hints are given here, however, for specific errors for which the cause may
not at first be clear.

File Not Found

When you type a command and press Return, APW first checks the command table to see
if it is a standard command. If the command is not in the command table, APW assumes it
is the name of an executable file and asks ProDOS 16 to open a file by that name in the
current prefix. If ProDOS 16 does not find a file by that name, the message

ProDOS: File not found is printed on the screen. This message indicates that
ProDOS 16 could not find a file with the name of the command you typed. Check the
prefix and spelling of your command and try again.

The File not found error can be confusing when you have also typed a pathname as a
parameter for the command. For example, suppose you want to edit the file MYFILE, so
you enter the following command:

ED MYFILE

Unfortunately, ED is not a valid APW command (unless you have added it to the command
table yourself). APW looks in the command table for ED, doesn’t find it, and calls
ProDOS 16 to try to open a file named ED. ProDOS can’t find the file, and the message
File not found is printed on the screen. When you see this message, it is important
to realize that the file that ProDOS 16 couldn’t find is ED, not MYF ILE.

APDA Draft 315 7127187

Appendix C: Error Messages Apple IIGS Programmer’s Workshop

The File not found message is also printed when you attempt to execute the Paste
command in the editor without first executing a Copy or Cut command. When you execute
the Paste command, the Editor looks for the file SYSTEMP in the work prefix; this file does
not exist unless a Copy or Paste command has been executed first.

The ALIAS command can disable any command in the command table, resulting in a
File not found message when you try to execute the command. See the discussion
of the ALTAS command in Chapter 3 for details.

Volume Not Found

A similar problem can occur if you remove your APW disk from the disk drive or change a
APW prefix (such as the utility prefix, prefix 6) and then try to execute an external
command (such as INIT) or to read a help file. In this case, ProDOS 16 cannot find the
directory containing the utility program or help ﬁle, and the message

Volume not foundorPath not found is printed to the screen. Agam it is
important to realize that the volume or path that could not be found is the one containing the
utility or help file, not one used in a parameter to the command.

For example, if you remove the APW disk from the disk drive and then enter the command
EDIT MYFILE, ProDOS 16 cannot find the volume /APW in order to load the editor
(/APW/SYSTEM/EDITOR), 50 it prints the messagé Volume not found.

Unable to Ojien File |

ProDOS may be unable to open a file for a variety of reasons: the disk may be write-
protected, you may have specified a name for the file that exceeds the maximum allowed
length (15 characters), the disk may be full, or the directory may be full (too many
filenames in thc directory), for Cxamplc

When you name an output file using the KEEP parameter on a command line or a KEEP
directive in the source file, you must restrict the filename to ten characters so that APW ¢an
append the extension: , ROOT to the filename. Using more than ten characters in such a
filename will result i ina fatal assembler or compiler error (Unable to open output
file). :

Linker Errors

In producing object modules, compllers and assemblers are incapable of detectmg certain
programming errors, partlcularly those involving conflicts among global labels, missing
global labels, and incorrect memory allocation. It is the responsibility of the hnker to find
and report those errors.

This section lists and describes the error messages returned by the APW Linker. They are
divided into two groups: nonfaral (the linker continues processing), and fatal (the linker
stops). For nonfatal errors, the linker also returns an error-lcvel number as an indication of
the severity of the problem that caused the error.

APDA Draft 316 7127187

Apple IIGS Programmer’s Workshop Appendix C Error Messages

When the linker finds an error in a LinkEd source file, it continues to check the entire
LinkEd source file for errors, reports the errors, and then stops. In this case, none of the
LinkEd commands are executed.

Nonfatal Errors

When the linker detects a nonfatal error, it prints
1. the number of bytes from the beginning of the segment to the error
2. the name of the segment that contained the error
3. the value of the program counter where the error was detected

4. an error message

At the end of the link an error summary is printed, listing the number of nonfatal errors and
the highest error level found.

The following error levels are recognized. Refer to individual error message listings for
further illustration of the significance of error levels.

Level Meaning

2 General warning. There may be a problem, but no corrective action has
been taken.

4 Corrected error. The linker detected an error and has corrected it according
to its own interpretation (Check the results of this correction carefully!)

8 Uncorrected error. The linker detected an error that it could not correct, but
it understood enough about it to leave the proper space for correction.

16 Uncorrected error. The linker detected an error and could not even tell how
much space to leave. Relinking will be required when the problem is
corrected.

The following errors are nonfatal. The error message as it appears on the screen is printed
in boldface, followed by the error level; an explanation and advice for correcting the error
follow in normal text. The listing is in alphabetical order by the first word of the message.

Addressing error [16]:
A label could not be placed at the same location on pass two as it was on pass one.

This error is almost always accompanied by another error, which caused this one to
occur; correcting the other error will correct this one. If there is no accompanying
error, check for disk errors by doing a full assembly and link. If the error still occurs,

report the problem as a bug.

APDA Draft 317 7127187

Appendix C: Error Messages Apple IIGS Programmer’s Workshop

Address is not in current bank [8]
The (most-significant-truncated) bytes of an expression did not evaluate to the value of
the current location counter.

For short-address forms (6502-compatible), the truncated address bytes must match the
current location counter. This restriction does not apply to long-form addresses (65816
native-mode addressing).

This error occurs when you use a JSR or JMP instruction to jump to a label that is not
in the current load segment. Because in general the linker cannot know in which bank
the target load segment will be loaded, it assumes that it will be loaded in a different
bank from the current segment and that therefore a long address is needed. If you
know that the two segments will be loaded into the same bank, you can prevent the
linker from flagging this error by using the CODECHK OFF directive.

Similarly, references to labels in a data segment named in a USING directive cause this
error unless: a) the data segment is linked into the same load segment as the code
segment containing the reference, b) a long address is used to reference the label, or

c) you use a DATACHK OFF directive.

The CODECHK, USING, and DATACHK directives are described in the Apple IIGS
Assembler Reference.

Address is not zero page [8]
The most significant bytes of the evaluated expression were not zero, but they were
required to be zero by the particular statement in which the expression was used.

This error occurs only when the statement requires a zero-page address operand (range
= 0 to 255).

Alignment factor must be a power of two [8]
An alignment factor that was not a power of 2 was used in the source code. In APW

Assembly Language, the ALIGN directive is used to set an alignment factor.

Alignment factor must not exceed segment align factor [8]

An alignment factor specified inside the body of an object segment is greater than the
alignment factor specified before the start of the segment. For example, if the segment
is aligned to a page boundary (ALIGN = 256), you cannot align a portion of the
segment to a larger boundary (such as ALIGN = 1024).

Code exceeds code bank size [4]

The load segment is larger than one memory bank (64K). You have to divide your
program into smaller load segments.

Data area not found [2]

A USING directive was issued in a segment, and the linker could not find a DATA
segment with the given name.

Ensure that the proper libraries are included, or change the USING directive.

APDA Draft 318 ' 7127187

Apple IIGS Programmer’s Workshop Appendix C Error Messages

Duplicate label [8]
A label was defined twice in the program.

Remove one of the definitions.

Expression operand is not in same segment [8] _

An expression in the operand of an instruction or directive includes labels that are
defined in two different relocatable segments. The linker cannot resolve the value of
such an expression.

Evaluation stack overflow [8]
(a) There may be a syntax error in the expression being evaluated.

Check to see if a syntax error has also occurred; if so, correct the problem that caused
that error.

(b) The expression may be too complex for the linker to evaluate.

Simplify the expression. An expression would have to be extremely complex to
overflow the linker’s evaluation stack, particularly if the expression passed the
assembler without error.

Expression syntax error [16]
The format of an expression in the object module being linked was incorrect.

This error should occur only in company with another error; correct that error and this
one should be fixed automatically. If there are no accompanying errors, check for disk
errors by doing a full assembly and link. If the error still occurs, report the problem as
a bug.

Invalid operation on relocatable expression [8]

The APW Linker can resolve only certain expressions that contain labels that refer to
relocatable segments. The following types of expressions cannot be used in an
assembly-language operand involving one or more relocatable labels:

a bit-by-bit NOT

a bit-by-bit OR

a bit-by-bit EOR

a bit-by-bit AND

a logical NOT, OR, EOR, or AND

any comparison (<, >, <, <=, >=, ==
mulitplication

division

integer remainder (MOD)

® ® & & @ * & o e

The following types of expressions involving a bit-shift operation cannot be used:

» The number of bytes by which to shift a value is a relocatable label.

» A relocatable label is shifted more than once.

» A relocatable label is shifted and then added to another value.

» You cannot use addition where both values being added are relocatable (you can
add a constant to a relocatable value).

APDA Draft 319 7127187

Appendix C: Error Messages | Apple IIGS Programmer’s Workshop

* You cannot subtract a relocatable value from a constant (you can subtract a constant
from a relocatable value).

* You cannot subtract one relocatable value from another defined in a different
segment (you can subtract two relocatable values defined in the same segment).

Only JSL can reference dynamic segment [8]
You referenced a dynamic segment in an instruction other than a JSL. Only a JSL can
be used to reference a dynamic segment.

You can suppress this error by using the DYNCHK OFF directive, as described in the
Apple IIGS Assembler Reference.

ORG Location has been passed [16]
The linker encountered an ORG directive for a location it had already passed.

Move the segment to an earlier position in the program. This error applies only to
absolute code, and should therefore be rarely encountered when writing for the
Apple 1IGS.

Relative address out of range [8]
The given destination address is too far from the current location.

Change the addressing mode or move the destination code closer.

Segment header MEM directive not allowed [16]
The MEM directive cannot be used in a relocatable segment.

Segment header ORG not allowed [16]

If there is no ORG specified in the LinkEd file or at the beginning of the source code,
you cannot include an ORG within the program. The linker generates relocatable code
unless it finds an ORG before the start of the first segment. Once some relocatable code
has been generated, the linker cannot accept an ORG.

Shift operator is not allowed on JSL to dynamic segment [§]

The operand to a JSL includes the label of a dynamic segment that is acted on by a bit-
shift operator. You probably typed the wrong character, or used the wrong label by
mistake.

Undefined opcode [16]
The linker encountered an instruction that it does not understand. There are four
possible reasons:

1. The linker is an older version than that required by the assembler or compiler; in
this case, a Linker Version Mismatch error should have occurred also. Update
the linker. ‘

2. An assembly or compilation error caused the generation of a bad object module.
Check and remove all assembly/compilation errrors.

3. The object module file has been physically damaged. Recompile to a fresh disk.

APDA Draft 320 7127187

Apple IIGS Programmer’s Workshop Appendix C Error Messages

4. There is a bug in the assembler, compiler, or linker. Please report the problem for
correction. '

Unresolved reference [8]
The linker could not find a segment referenced by a label in the program.

If the label is listed in the global symbol table after the link, make sure the segment that
references the label has issued a USING directive for the segment that contains the
label. Otherwise, correct the problem by (1) removing the label reference, (2) defining
it as a global label, or (3) defining it in a data segment.

Fatal Errors

There are two kinds of fatal errors: for many fatal errors, the linker continues processing.
It prints the error message, waits for a keypress, and then quits. For some others, the
linker prints the error message, continues to process the file to search for other errors, and
then quits without writing a load file.

The following errors are fatal. The error message as it appears on the screen is printed in
boldface; an explanation follows in normal text. The listing is in alphabetical order by the
first word of the message.

Cannot change languages.
An APPEND or COPY command in a LinkEd file has called a file that is not a LinkEd
file.

LinkEd has to be the last language processed in an assembly or compile; you cannot
append a source file to a LinkEd file.

Could not open file filename.
ProDOS 16 could not open the file filename, which you specified in the command line
or LinkEd command.

Check the prefix and the spelling of the filename you specified. Make sure the file is
present on the disk and that the disk is not write-protected.

Could not overwrite existing file filename.

The linker is only allowed to replace an existing output file if the file type of the output
file is one of the executable types. It is not allowed to overwrite a TXT, SRC, or OBJ
file.

Could not write the Keep file filename.
A ProDOS error occurred while the linker was trying to write the output file filename.

This error is usually caused by a full disk. Otherwise, there may be a bad disk or disk
drive.

APDA Draft 321 7127187

Appendix C: Error Messages Apple IIGS Programmer’s Workshop

Dictionary file could not be opened.
The dictionary file is a temporary file on the work prefix that holds information destined
for the load file’s relocation dictionary. For some reason, this file could not be opened.

Use the SHOW PREFIX command to find out what the work prefix is. Perhaps you
have assigned the work prefix to a RAM disk, but do not have a RAM disk on-line.
Have you removed the volume containing the work prefix from the disk drive? Is the
disk write-protected?

Expected '('.
The left parenthesis is missing from the list of segments in the LinkEd SELECT
command.

Expression recursion level exceeded.

It is possible for an expression to be an expression itself; therefore, the expression
evaluator in the linker is recursive. Generally, this error occurs when the recursion nest
level exceeds ten. This should not happen very frequently. If it does, check for
expressions with circular definitions, or reduce the nesting of expressions.

File name expected.
A filename is missing from a parameter or command that requires one, such as the
KEEP parameter in the ASML command or the L. INK command in a LinkEd file.

File read error.
An I/O error occurred when the linker tried to read a file that was already open.

This error should never occur. There may be a problem with the disk drive or with the
file. You might have removed the disk before the link was complete.

File not found filename .
The file filename could not be found.

Check the prefix and spelling of the filename in both the KEEP directive and the LINK
command. Make sure the .ROOT or .A file has the same prefix as the file specified in
those commands.

Iliegal command.
The linker does not recognize a command in your LinkEd file.

The offending LinkEd source line is printed out with an arrow pointing to the command
in question. Check the spelling and syntax of the commands in your LinkEd file.

Illegal header value.
The linker checks the segment headers in object files to make sure they make sense.
This error means that the linker has found a problem with a segment header.

This error should not occur. Your file may have been corrupted, or the assembler or
compiler may have made an error.

APDA Draft 322 7127187

Apple IIGS Programmer’s Workshop Appendix C Error Messages

Illegal segment structure.
There is something wrong with an object segment.

This error should not occur. Your file may have been corrupted, or the assembler or
compiler may have made an error.

Invalid file name filename.
There is an illegal character in a filename, or you have used a filename that is longer
than 15 characters.

Check the shell command or LinkEd file you used to call the linker and any KEEP
directive in the source file to find the bad filename.

Invalid file type filename .
The file filename is not an object file or library file.

Check the shell command line or LinkEd file to make sure you didn’t list any files that
are not object files or library files. Check your disk directory to make sure there isn’t a
nonobject file with the same root filename as a file you are linking. For example, if you
are linking object files named MYFILE .ROOT and MYFILE . A, make sure there is no

~ (unrelated) file on the disk with the name MYFILE.B.

Invalid keep type.

The linker can generate several kinds of output files. The type of the output file must
be one of the executable types. Since it is possible to set the keep type with a shell
variable, this error can occur from a command-line call as well as from a LinkEd
command.

Invalid segment name.
A segment name in your source file or named in a LinkEd SELECT command is not
valid.

Object-segment names can be up to 255 characters long and must start with a letter, an
underscore (), or a tilde (~). The remaining characters must be alphanumeric or an
underscore or tilde. Load-segment names follow the same rules as object-segment
names, but they cannot be longer than ten characters.

Linker version mismatch.
The object-module-format version of the object segment is more recent than the version
of the linker you are using.

Get the latest version of APW from the A.P.D.A.

Must be an object file filename.
The file filename is not an object file or a library file.

Multiple KEEP's not allowed.
Only one KEEP directive or parameter is allowed per link.

Make sure there is only one KEEP in your LinkEd file, and that there is not a KEEP
both in your shell command line and the LinkEd file.

APDA Draft 323 7127187

Appendix C: Error Messages Apple 1IGS Programmer’s Workshop

Must be an object file. e
A file you specified for linking is not an object file.

Check the LINK commands in your LinkEd file to make sure that every file named is an
object file (ProDOS 16 type $B1).

Number expected.
A number was missing for a parameter in your shell command or LinkEd file.

Object module read error.
A ProDOS error occurred while the linker was trying to read from the currently opened
object module.

This error may occur after a nonfatal error; correcting the nonfatal errors may correct
this one. Otherwise, it may be caused by a bad disk or disk drive.

OBJ not currently active,
You used an OBJEND command without first using an OBJ command.

'ON' or 'OFF' exp-ected. .
A command you used takes an ON or OFF as a parameter. This paramter is missing.

ORG location has been passed.
You specified a location in an ORG command that is before the beginning of the file.

Out of memory.
All free memory has been used; the memory needed by the linker is not available.

Output error.
A ProDOS error occurred while the linker was trying to write to the (output) load file.

This error is usually caused by a full disk. Otherwise, there may be a bad disk or disk
drive.

Output file could not be opened.
A ProDOS error occurred while the linker was trying to open the (output) load file.

This error may be caused by trying to write to a full disk, a write-protected disk, or an
unformatted disk. Otherwise, there may be a bad disk or disk drive.

Segment is not in module.
A segment you named in a SELECT command is not in the file you are linking.

Segment name expected.) S
A command you used takes a segment name as a parameter. This parameter 1S missing.

Segment name is too long.
A segment name you used is too long. Object-segment names must be 255 characters
or less in length. Load-segment names must be ten characters or less in length.

Selected segment is already defined.

The segment you named in a SELECT command has already been linked. You cannot
insert the same segment twice in the same load file.

APDA Draft 324 7127187

Apple IIGS Programmer’s Workshop Appendix C Error Messages

Symbol table overflow
The symbol table could not hold all of the symbols needed by the program.

This error should occur only very rarely. If it does occur, decrease the number of
global labels in the program. The START, DATA, ENTRY, and GEQU directives all
create and pass global symbols to the linker. Labels inside data areas are also passed to
the linker.

Value is out of range.

A number specified as a parameter is bigger than is permitted. For example, you may
have specified a segment KIND larger than 255.

APDA Draft 325 7127187

Appendix C: Error Messages Apple IIGS Programmer’s Workshop

APDA Draft 326 7127187

Apple 1IGS Programmer’s Workshop Glossary
Glossary

absolute-bank segment: A load segment that is restricted to a specified bank but that
can be relocated within that bank..

absolute code: Program code that must be loaded at a specific address in memory and
never moved.

absolute segment: A segment that can be loaded only at one specific location in
memory. Compare with relocatable segment.

access byte: An attribute of a ProDOS 16 file that determines what types of operations,
such as reading or writing, may be performed on the file.

accumulator: The register in the 65C816 microprocessor of the Apple IIGS used for
most computations. _

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal or hexadecimal integers. The Apple IIGS has addresses ranging
from 0 to 16,777,215 (in decimal) or from $00 00 00 to $FF FF FF (in hexadecimal). A

complete address consists of a 4-bit bank number ($00 to $FF) followed by a 16-bit
address within that bank ($00 00 to $FF FF).

Apple key: A modifier key on the Apple IIGS keyboard, marked with an Apple icon. It
performs the same functions as the Open Apple key on standard Apple II machines.

Apple II: A family of computers, including the original Apple II, the Apple II Plus, the
Apple Ile, the Apple Ic, and the Apple TIGS.

application prefix: The prefix of the last application launched.
APW Linker: The linker supplied with APW.

APW Shell: The shell program of APW. The APW Shell provides the interface between
APW programs and ProDOS and between the user and APW.

assembler: A program that produces object files from source files written in assembly
language.

bank: A 64K (65,536-byte) portion of the Apple IIGS internal memory. An individual
bank is specified by the value of one of the 65C816 microprocessor’s bank registers.

BIN file: A file in binary file format.

binary file format: The ProDOS 8 loadable file format, consisting of one absolute
memory image along with its destination address. A file in binary file format has ProDOS
file type $06 and is referred to as a BIN file. The System Loader cannot load BIN files.
block: (1) A unit of data storage or transfer, typically 512 bytes; (2) a contiguous, page-
aligned region of computer memory of arbitrary size, allocated by the Memory Manager.
Also called a memory block.

boot prefix: The volume name of the disk from which the computer was started up.

APDA Draft 327 7127187

Glossary Apple I1GS Programmer’s Workshop
catalog: See directory. '

character: Any symbol that has a widely understood meaning and thus can convey
information. Some characters—such as letters, numbers, and punctuation—can be
displayed on the monitor screen and printed on a printer. Most characters are represented
in the computer as 1-byte values.

code segment: An object segment that contains program code. Code segments are
provided for programs that differentiate between code and data segments.

command line: See shell command line.

command table: A text file containing a list of command names, command types
(internal or command, external or utility, and language), and command or language
numbers. The APW Shell checks the command table each time you execute a command. If
it finds the command in the command table, it executes that command; if it doesn't find the
command in the command table, the shell looks for a program with that name and attempts
to run that program.

compiler: A program that produces object files from source files written in a high-level
language such as C.

conditional assembly: A feature of an assembler that allows the programmer to define
macros or other pieces of code such that the assembler assembles them differently under
different conditions.

conditional compile: In a high-level language such as C, the use of preprocessor
commands to vary the output depending on compile-time conditions.

controlling program: A program that loads and runs other programs, without itself
relinquishing control. A controlling program is responsible for shutting down its

subprograms and freeing their memory space when they are finished. A shell, for
example, is a controlling program.

Control Panel: A desk accessory that lets you change certain system paramctérs,
such as speaker volume, display colors, and configuration of slots and ports.

current application: The application program currently loaded and running. Every
application program is identified by a User ID number; the current application is defined
as that application whose User ID is the present value of the USERID global variable.

current language: The APW language type that is assigned to a file opened by the APW
Editor. If an existing file is opened, the current language changes to match that of the file.

current prefix: The prefix that is used by the APW Shell if a partial pathname is used.

data segment: An object segment that consists primarily of data. Data segments are
provided for programs that differentiate between code and data segments.

default prefix: See current prefix.

APDA Draft 328 7127187

Apple IIGS Programmer's Workshop Glossary

i
desk accessory: A small, special-purpose program that is available to the user
regardless of which application is running. The Control Panel is an example of a desk
accessory. _

dispose: To permanently deallocate a memory block. The Memory Manager disposes of
a memory block by removing its master pointer. Any handle to that pointer will then be
invalid. Compare purge

directory: A file that contains a list of the names and locations of other files stored on a
disk. Directories are either volume directories or subdirectories. A directory is
- sometimes called a catalog.

direct page: A page (256 bytes) of bank $00 of Apple IIGS memory, any part of which
can be addressed with a short (1-byte) address because its high-address byte is always $00
and its middle-address byte is the value of the 65C816 processor’s direct register.
Coresident programs or routines can have their own direct pages at different locations. The
direct page corresponds to the 6502 processor’s zero page. The term direct page is often
used informally to refer to the lower portion of the direct-page/stack space.

direct-page/stack segment: A load segment used to preset the direct-page and stack
registers and to set the initial contents of the direct-page/stack space for an application.

dlrect-page/stack space: A portion of bank $00 of Apple IIGS memory reserved for a
program's direct page and stack. Initially, the 65C816 processor’s direct register
contains the base address of the space, and its stack register contains the highest
address. In use, the stack grows downward from the top of the direct-page/stack space,
and the lower part of the space contains direct-page data.

direct register: A hardware register in the 65C816 processor that specifies the start of
the direct page.

dormant: Said of a program that is not being executed, but whose essential parts are all in
the computer’s memory. A dormant program may be quickly restarted because it need
not be reloaded from disk.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare with static segment.

emulation mode: For the Apple IIGS’s 65C816 processor, the state in which it
functions like a 6502 processor in all respects except clock speed. For the Apple IIGS
computer, the state in which the computer functions like an 8-bit Apple II.

Exec file: A file of APW Shell commands that when executed, executes each command
in turn as if it had been entered from the keyboard. You can pass parameters into Exec files
and can include them in the command table as utilities.

external command: An APW utility program that functions like an APW Shell
command.

external reference: A reference to a symbol that is defined in another segment.
External references must be to global symbols.

fatal error: an error serious enough that the computer must halt execution.

APDA Draft 329 7127187

Glossary Apple IIGS Programmer’s Workshop

field: A string of ASCII characters or a value that has a specific meaning to some
program. Fields may be of fixed length, or they may be separated from other fields by
field delimiters. For example, each parameter in a segment header constitutes a field.

field delimiter: A character or value that designates the start or end of a field. For
example, in a BASIC file each field begins and ends with a Return character.

filename: The string of characters that identifies a particular file within a disk directory.
ProDOS 16 filenames can be up to 15 characters long and can specify directory files,
subdirectory files, text files, source files, object files, load files, or any other ProDOS 16
file type. Compare with pathname, :

file number: A reference number assigned to a specific file. The loader assigns a file
number to each load file in a program; the MakeLib utility program assigns a file number to
each object file incorporated into a Library file.

file number cross-reference: The part of the pathname table that contains load-file
numbers and pointers to their corresponding pathnames.

file type: An attribute in a ProDOS 16 file’s directory entry that characterizes the contents
of the file and indicates how the file may be used. On disk, file types are stored as
numbers; in a directory listing, they are often displayed as three-character mnemonic codes.

finder: A program that performs file and disk utilities (formatting, copying, renaming,
and so on) and also starts applications at the request of the user.

full pathname: The complete name by which a file is specified. A full pathname
always begins with a slash (/), because a volume directory name always begins with a
slash. See pathname.

global symbol: A label in a code segment that is either the name of the segment or an
entry point to it. Global symbols may be referenced by other segments. Compare with
local symbol.

handle: See memory handle.

hexadecimal: The base-16 system of numbers, using the ten digits O through 9 and the
six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary form, because each hexadecimal digit corresponds to a sequence of 4 bits. In Apple
manuals hexadecimal numbers are usually preceded by a dollar sign ($).

high-level language: A programming language that is relatively easy for people to
understand. A single statement in a high-level language typically corresponds to several
instructions of machine language. Compare low-level language.

image: A representation of the contents of memory. A code image consists of machine-
language instructions or data that may be loaded unchanged into memory.

index register: A register in a computer processor that holds an index for use in indexed

addressing. The 6502 and 65C816 microprocessors used in the Apple II family of
computers have two index registers, called the X register and the Y register.

APDA Draft 330 7127187

Apple IIGS Programmer’s Workshop Glossary

initial load file: The first file of a program to be loaded into memory. It contains the
program’s main segment and the load file tables (jump table segment and pathname
segment) nceded to load dynamic segments and run-time libraries.

initialization segment: A segment in an initial load file that performs any initialization
that the program may require

internal command: An APW Shell command that is executed by the shell program
itself, rather than by a utility program.

INTERSEG record: A part of a relocation dictionary. It contains relocation
information for external (intersegment) references.

jump table: A table contructed in memory by the System Loader from all Jump Table
segments encountered during a load. The jump table contains all references to dynamic
segments that may be called during execution of the program. '

jump table directory: A master list in memory, containing pointers to all segments that
make up the jump table.

jump table segment: A segment in a load file, created by the linker, that provides the
information the loader needs to locate dynamic segments as they are needed during program
execution. The loader creates a linked list in memory, called the jump table, that indicates
the location of all jump table segments in memory.

K: 1024 bytes
kind: See segment kind.

language card: Memory with addresses between $D000 and $FFFF on any Apple II-
family computer. It includes two RAM banks in the $Dxxx space, called bank-switched
memory. The language card was originally a peripheral card for the 48K Apple II or
Apple II Plus that expanded its memory capacity to 64K and provided space for an
additional dialect of BASIC.

' language command: A command that changes the APW current language.

launch: To cause a program to be loaded into memory and to begin execution.

library dictionary segment: The first segment of a library file. It contains a list of all
the symbols in the file together with their locations in the file. The linker uses the library
dictionary segment to find the segments it needs.

library file: An object file containing object segments, each of which can be used in any
number of programs. The linker can search through the library file for segments that have
been referenced in the program source file. A library contains a library dictionary
segment.

LinkEd: A command language that can be used to control the APW Linker.

linker: A program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

APDA Draft 331 7127187

Glossary Apple IIGS Programmer’s Workshop

link map: A listing, produced by the linker, that gives the name, length, and starting
location of each segment in a load file.

load file: The output of the linker. Load files contain memory images that the system
loader can load into memory, together with relocation dictionaries that the loader uses
to relocate references.

load segment: A segment in a load file. Any number of object segments can go into the
same load segment,

local symbol: A label defined only within an individual segment. Other segments
cannot access the label. Compare with global symbol.

loop: A section of a program that is executed repeatedly until a limit or condition is met,
such as an index variable’s reaching a specified ending value.

low-level language: A programming language, such as assembly language, that is
relatively close to the form the computer’s processor can execute directly. One statement in
a low-level language corresponds to a single machine-language instruction. Compare
high-level language. _

main segment: The first segment in the initial load file of a program. It is loaded first
and never removed from memory until the program terminates.

macro: A single keystroke or command that a program replaces with several keystrokes
or command. For example, the APW Editor allows you to define macros that execute
several editor keystroke commands; the APW Assembler allows you to define macros that
execute instructions and directives. APW also provides a library of predefined assembler
macros.

macro assembler: A type of assembler that allows the programmer to define sequences
of several assembly—language instructions as single pseudo—instructions called macros.

main segment: The first static segment (other than initialization segments) in the initial
load file of a program. It is loaded first and never removed from memory until the program
terminates.

MakeLib utility: A program that creates library files from object files.

Mark: The current position in an open file. It is the point in the file at which the next read
or write operation will occur.

memory block: See block.

memory handle: The identifying number of a particular block of memory. A memory
handle is a pointer to a master pointer to the memory block.

memory image: A portion of a disk file or segment that can be read directly into
memory.

Memory Manager: A program in the Apple IIGS Toolbox that manages memory use.
The Memory Manager keeps track of how much memory is available and allocates memory
blocks to hold program segments or data.

APDA Draft 332 7127187

Apple IIGS Programmer's Workshop Glossary

memory-resident: (1) Stored permanently in memory as firmware (ROM). (2) Held
continually in memory even while not in use. For example, ProDOS is a memory-resident
program.

memory segment table: A linked list in memory, created by the loader, that allows the
loader to keep track of the segments that have been loaded into memory.

Monitor: A program built into the firmware of Apple II computers, used for directly
inspecting or changing the contents of main memory and for operating the computer at the
machine-language level.

movable: A memory block attribute, indicating that the Memory Manager is free to move
the block. Opposite of fixed. Only position-independent program segments may be in
movable memory blocks. A block is made movable or fixed through Memory Manager
calls.

native mode: The 16-bit operating state of the 65C816 processor.

object file: The output from an assembler or compiler, and the input to the linker. In
APW an object file contains both machine-language instructions and instructions for the
linker. Compare with load file.

object module format (OMF): The general format used in object files, library files, and
load files.

object segment: A segment in an object file or in a library file.

OMF: Object module format.

OMF file: Any file in object module format.

op code: See operation code.

open: To allow access to a file. A file may not be read from or written to until it is open.

operand: In assembly language, a value used by an instruction or directive as an address
or to calculate an address. In object module format, an operation code that is followed by a
single value that constitutes part of an expression. The value following the operand opcode
is acted on by an operator.

operation code: The part of an instruction or command that specifies the operation to be
performed. Often called op code . In machine language, the operation code precedes the
value to be acted on by the processor. In OMF, operation codes are used to identify types
of records and types of operations in instructions.

operator: In object module format, an operation code that specifies an arithmetic or
logical operation in an expression to be performed on one or two variables that precede it.
The variables acted on by an operator are identified by operand opcodes that precede
them.

page: (1)A portion of Apple IIGS memory that is 256 bytes long and that begins at an
address that is an even multiple of 256. A memory block whose starting address is an even
multiple of 256 is said to be page aligned. (2) An area of main memory containing text or
graphical information being displayed on the screen.

APDA Draft 333 7127187

Glossary Apple 1IGS Programmer’s Workshop
parameter: A value passed to or from a command, function, or other routine.

parameter block: A set of contiguous memory locations, set up by a calling program to
pass parameters to and receive results from an operating system or shell function that the
program calls. Every ProDOS 16 and APW Shell call must include a pointer to a properly
constructed parameter block.

partial assembly: A procedure whereby only specific segments of a program are
assembled. If you have performed one full assembly followed by one or more partial
assemblies on a program, the linker extracts only the latest version of each object segment
to be included in the load file.

partial compile: A procedure whereby only specific segments of a program are
compiled. If you have performed one full assembly followed by one or more partial
compiles on a program, the linker extracts only the latest version of each object segment to
be included in the load file.

partial pathname: A pathname that includes the filename of the desired file but
excludes the volume directory name (and possibly one or more of the subdirectories in the
path). It is the part of a pathname following a prefix; a prefix and a partial pathname
together constitute a full pathname. A partial pathname does not begin with a slash
because it has no volume directory name.

patch: To replace one or more bytes in memory or in a file with other values. The
address to which the program must jump to execute a subroutine is parched into memory at
load time when a file is relocated.

pathname: The complete name by which a file is specified. A pathname is a sequence of
filenames separated by slashes, starting with the filename of the volume directory file and
including every subdirectory file that the operating system must search to locate the file, in
descending sequence of the subdirectory hierarchy. . A full pathname always begins with a
slash (/) to indicate that the first name is a volume directory. See also full pathname,
partial pathname, prefix.

pathname list: The part of the pathname table that contains the file pathnames.

pathname segment: A segment in a load file that contains the cross-references between
load files referenced by number (in the jump table segment) and their pathnames (listed in
the file directory). The pathname segment is created by the linker.

pathname table: A table constructed in memory by the loader from all individual
pathname segments encountered during loads. It contains the cross-references between
load files referenced by number (in the jump table) and their pathnames (listed in the file
directory).

PC: See program counter.
pipeline: (1)To automatically execute two or more programs in sequence, where the
output of the first file is the input to the next file and so on. (2)The entire sequential set of

programs executed in this way; a program or file being processed by this sequence of
programs is said to be in the pipeline or in the pipe.

APDA Draft 334 7127187

Apple IIGS Programmer’s Workshop Glossary

pointer: A memory address at which a particular item of information is located. For
example, the 65C816 stack register contains a pointer to the next available location on the
stack.

position-independent: Code that is written specifically so that its execution is
unaffected by its position in memory. It can be moved without needing to be relocated.

position-independent segment: A load segment that is movable when loaded in
memory.

prefix: A portion of a pathname starting with a volume name and ending with a
subdirectory name. It is the part of a full pathname that precedes a partial pathname; a
prefix and a partial pathname together constitute a full pathname. A prefix always starts
with a slash (/) because a volume directory name always starts with a slash.

prefix number: A code used to represent a particular prefix. Under ProDOS 16, there
are eight prefix numbers, each consisting of a numeral followed by a slash: 0/, 1/,...,7/.

private code segment: A segment in an object file whose name is available only to
other object-code segments within the same object file. The labels within a private code
segment are local to that segment.

private data segment: A segment in an object file whose labels are available only to
object-code segments in the same object file.

ProDOS: A family of disk operating systems developed for the Apple II family of
computers. ProDOS stands for Professional Disk Operating System and includes both
ProDOS 8 and ProDOS 16,

ProDOS 8: A disk operating system developed for standard Apple II computers. It
runs on 6502-series microprocessors. It also runs on the Apple IIGS when the 65C816
processor is in 6502 emulation mode.

ProDOS 16: A disk operating system developed for 65C816 native mode
operation on the Apple IIGS. It is functionally similar to ProDOS 8 but more powerful.

program counter: A number, usually expressed in hexadecimal, that indicates the
position of a byte in a machine-language program, counting sequentially from the
beginning of the program.

purge: To temporarily deallocate a memory block. The Memory Manager purges a block
by setting its master pointer to 0. All handles to the pointer are still valid, so the block can
be reconstructed quickly. Compare dispose.

purge level: An attribute of a memory block that sets its priority for purging. A purge
level of O means that the block is unpurgeable.

purgeable: A memory block attribute, indicating that the Memory Manager may purge the

block if it needs additional memory space. Purgeable blocks have different purge levels,
or priorities for purging; these levels are set by Memory Manager calls.

APDA Draft 335 ' 7/27/87

Glossary Apple HIGS Programmer’s Workshop

RAM disk: A portion of memory (RAM) that appears to the operating system to be a
disk volume. Files in a RAM disk can be accessed much faster than the same files on a
floppy disk or hard disk.

record: A component of an object module segment. All OMF file segments are composed
of records, some of which are program code and some of which contain cross-reference or

relocation information. Each record begins with an operation code that indicates the type of
information to follow. -

RELOC record: A part of a relocation dictionary that contains relocation information for
local (within-segment) references.

relocate: To modify a file or segment at load time so that it will execute correctly at the
location in memory at which it is loaded. Relocation consists of patching the proper
values into address operands. The loader relocates load segments when it loads them into
memory. See also relocatable code.

relocatable code: Program code that includes no absolute addresses, and that can
therefore be relocated at load time.

relocatable segment: A segment that can be loaded at any location in memory. A
relocatable segment can be static, dynamic, or position independent. A load segment
contains a relocation dictionary that is used to recalculate the values of location-
dependent addresses and operands when the segment is loaded into memory. Compare
with absolute segment.

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image immediately preceding it. When the memory image
part of the segment is loaded into memory, the relocation dictionary is processed by the
loader to calculate the values of location-dependent addresses and operands. Relocation
dictionaries also contain the information necessary to transfer control to external references.

reference: (1)The name of a segment or entry point to a segmentl; same as symbolic
reference. (2)To refer to a symbolic reference or to use one in an expression or as an

address.

resolve: To find the segment and offset in a segment at which a symbolic reference is
defined. When the linker resolves a reference, it creates an entry in a relocation
dictionary that allows the loader to relocate the reference at load time.

restart: To reactivate a dormant program in the computer’s memory. The System
Loader can restart dormant programs if all their static segments are still in memory. If any
critical part of a dormant program has been purged by the Memory Manager, the program
must be reloaded from disk instead of restarted.

restartable: Said of a program that reinitializes its variables and makes no assumptions
about machine state each time it gains control. Only restartable programs can be resurrected
from a dormant state in memory. :

root filename: The filename of an object file minus any filename extensions added by
the assembler or compiler. For example, a program that consists of the object files
MYPROG.ROOT, MYPROG. A, and MYPROG. B has the root filename MYPROG.

APDA Draft 336 7127187

Apple IIGS Programmer’ s Workshop Glossary

run-time library file: A load file containing program segments—each of which can be
used in any number of programs—that the system loader loads dynamically when they are
needed.

segment: A component of an OMF file, consisting of a header and a body. In object
files, each segment incorporates one or more subroutines. In load files, each segment
incorporates one or more object segments.

segment body: That part of a segment that follows the segment header and that
contains the program code, data, and relocation information for the segment.

segment header: The first part of a program segment, containing such information as
the segment name and the length of the segment.

segment Kkind: See segment type.

segment number: A number corresponding to the relative position of the segmentin a
file, starting with 1.

segment type: A classification of a segment based on its purpose, contents, and internal
structure, as defined in the object module format. The segment type is specified by the
KIND field in the segment header.

shell: A program that provides an operating environment for other programs and that is
not removed from memory when the those programs are running. For example, the APW
Shell provides a command processor interface between the user and the other components
of APW, and it remains in memory when APW utility programs are running.

shell call: A request from a program to the APW Shell to perform a specific function.

shell-call block: A set of instructions and directives used to make a shell call from an
assembly-language program.

shell command line: The line on the screen where the number-sign (#) prompt appears
when you are in the APW Shell. When you enter a command, the characters you type
appear to the right of the prompt on the command line.

shell load file: A load file designed to be run under a shell program. Shell load files are
ProDOS 16 file type $B5.

65C816: The microprocessor used in the Apple IIGS.

source file: An ASCII file consisting of instructions written in a particular language,
such as C or assembly language. An assembler or compiler converts source files into
object files.

stack: A list in which entries are added (pushed) and removed (pulled) at one end only
(the top of the stack), causing them to be removed in last-in, first-out (LIFO) order. The
term the stack usually refers to the top portion of the direct-page/stack space; the top of
this stack is pointed to by the 65C816’s stack register.

stack pointer: The contents of the 65C816°s stack register, consisting of a memory
address pointing to the next available location on the 65C816’s stack.

APDA Draft 337 7127187

Glossary Apple IIGS Programmer’s Workshop

standard Apple II: Any computer in the Apple II family except the Apple IIGS. That
includes the Apple II, the Apple II Plus, the Apple Ile, and the Apple Ilc.

standard input: The default file or device (such as the keyboard) from which input is
taken. If your program uses Text Tool Set calls or APW macros and libraries to get input,
standard input is used.

standard output: The default file or device (such as the screen) to which output is sent.
If your program uses Text Tool Set calls or APW macros and libraries to control output,
standard output is used.

static segment: A segment that is loaded at program boot time and is not unloaded or
moved during execution. Compare with dynamic segment.

string: An item of information consisting of a sequence of text characters (a character
string) or a sequence of bits or bytes.

subdirectory: A directory within a directory; a file (other than the volume directory) that
contains the names and locations of other files. Every ProDOS 16 directory file is either a
volume directory or a subdirectory.

symbol: A character or string of characters that represents an address or numeric value; a
symbolic reference or a variable.

symbolic reference: A name or label that is used to refer to a location in a program,
such as the name of a subroutine. When a program is linked, all symbolic references are
resolved; when the program is loaded, actual memory addresses are patched into the
program to replace the symbolic references.

symbol table: A table of symbolic references created by the linker when it links a
program. The linker uses the symbol table to keep track of which symbols have been
resolved. At the conclusion of a link, you can have the linker print out the symbol table.

System Loader: The program that relocates load segments and loads them into Apple
[IGS memory. The System Loader works closely with ProDOS 16 and the Memory
Manager.

System Monitor: See Monitor.

system program: (1) A software component of a computer system that supports
application programs by managing system resources such as memory and I/O devices.
Also called system software. (2) Under ProDOS 8, a stand-alone and potentially self-
booting application. A ProDOS 8 system program is of file type $FF; if it is self-booting,
its filename has the extension . SYSTEM.

text-file format: The Apple IIGS standard format for text files and program source files.

token: The smallest unit of information processed by a compiler or assembler. In C, for
example, a function name and a left bracket ({) are tokens.

Toolbox: A collection of built-in routines on the Apple IIGS that programs can call to
perform many commonly-needed functions. Functions within the toolbox are grouped into
tool sets.

APDA Draft 338 7127187

Apple 1IGS Programmer’s Workshop Glossary

tool set: arelated group of (usually firmware) routines, available to applications and
system software, that perform necessary functions or provide programming convenience.
The Memory Manager, the System Loader, and QuickDraw II are tool sets.

top of form: The position on the paper in the printer to which the printer scrolls when it
receives a form feed (Control-L) command.

unload: To remove a load segment from memory. To unload a segment, the System
Loader does not actually “unload” anything; it calls the Memory Manager to either purge
or dispose of the memory block in which the code segment resides. The loader then
madifies the memory segment table to reflect the fact that the segment is no longer in
memory.

User ID: An identification number that specifies the owner of every memory block
allocated by the Memory Manager. User IDs are assigned by the User ID Manager.

utility: In general, an application program that performs a relatively simple function or set
of functions such as copying or deleting files. An APW utility is a program that runs under
the APW Shell and that performs a function not handled by the shell itself. MakeLib is an
example of an APW utility.

volume: An entity that stores data; the source or destination of information. A volume
has a name and a volume directory with the same name. Volumes typically reside in
devices; a device such as a floppy disk drive may contain one of any number of volumes
(on disks).

volume directory: The main directory file of a volume. It contains the names and
locations of other files on the volume, any of which may themselves be directory files
(called subdirectories). The name of the volume directory is the name of the volume.
The pathname of every file on the volume starts with the volume directory name.

wildcard character: A character that may be used as shorthand to represent a sequence
of characters in a pathname. In APW, the equal sign (=) and the question mark (7) can be
used as wildcard characters.

word: A group of bits that is treated as a unit. For the Apple IIGS, a word is 16 bits (2
bytes) long.

zero page: The first page (256 bytes) of memory in a standard Apple I computer (or in
the Apple IIGS computer when running a standard Apple II program). Because the high-
order byte of any address in this part of memory is zero, only a single byte is needed to
specify a zero-page address. Compare direct page.

APDA Draft 339 7127187

