APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

290 SW 43rd. Straet
Renton, WA 98055
206-251-6548

Apple IGs

Hardware
Reference

APDA Draft
21 Nov., 1986

APDA#: K2SHWR

Apple IIGcs
Hardware Reference

APDA Draft
21 November, 1986
Apple Technical Publications

This document contains preliminary material. It does not include

* final editorial corrections
s final artwork
* an index

It may not include final technical changes.

5 APPLE COMPUTER, INC,

Copvright © 1986 Apple Computer, Inc. All rights reserved.

Apple lIGS Hardware Reference

This manual is copyrighted by Apple or by Apple’s suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in part, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made for others, whether or not sold, but all of the maierial
purchased may be sold, given, or lent to another person. Under the law, copying includes translating into
another language.

Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

© 1986 Apple Computer, Inc.

Apple, the Apple logo, AppleTalk, DuoDisk, ImageWriter, LaserWriter and ProDOS are registered

trademarks of Apple Computer, Inc. Apple 1IGS, Apple DeskTop Bus, Macintosh, SANE and UniDisk are
trademarks of Apple Computer, Inc.

Simultaneously published in the United States and Canada.

APDA Draft | i 11/21/86

Apple lIGS Hardware Reference
Contents

iii Table of Contents
List of Illustrations and Tables
viii List of [llustrations
X List of Tables
xi Foreword

Chapter 1: Introduction to the Apple IIGS

1-1 Removing the cover
1-2 Peripheral expansion slots
1-2 Connectors
1-2 Two serial ports
1-3 Disk drive port
1-4 RGB video connector
1-4 Composite video conector
1-5 Apple DeskTop Bus
1-5 Game connector
1-6 A closer look
1-7 Apple II compatibility
1-8 New features
1-9 Terminology
1-9 Memory allocation
1-10 Summary '
Chapter 2: Mega II: Maintaining Apple II Compatibility
2-2 The Mega II custom IC
2-3 The Apple Ile
2-3 RAM upgrade
2-3 Apple /O
2-2 The keyboard
2-3 Reading the keyboard
2-6 Apple Il video
2-7 Video output
2-7 Text modes
2-9 Text character sets
2-10 40-column versus 80-column text
2-12 Graphics modes
2-12 Lo-Res graphics
2-13 Hi-Res graphics
2-15 Double Hi-Res graphics
2-16 Video display pages
2-18 Display mode switching
2-20 Addressing display pages directly
2-27 The text window
2-28 Secondary inputs and outputs
2-28 The speaker
2-29 Game 1/O
2-29 The hand control signals
2-30 Annunciator outputs
2-30 Switch inputs

APDA Draft iii 11/21/86

Apple IIGS Hardware Reference

2-31
2-31
2-32
2-33
2-34
2-35
2-35
2-36
2-36
2-36
2-36
2-37
2-38
2-40
2-41
2-42

1 1] 1 1 1 1]

1 i] 1 L} I

NNNMMNNMt'\)NMMMNNNNN
mmummmmumuh##h&hgt
NN BN == D00 00~

¥ ') '

1

1
e el l® B R VSRS S | 35]

]
ARAWNOOOO

wwuuwuwtﬁwwwwmm

&
N —

Analog inputs
Summary of secondary I/O locations
Standard Apple II memory
Main memory map
RAM memory allocation
Reserved memory pages
Page zero
The 6502 stack
The input buffer
Link-address storage
The display buffers
Bank-switched memory
Setting bank switches
Reading bank switches
The State register
Auxiliary memory
Memory mode switching
Peripheral expansion
Selecting a device
The Slot register
Peripheral-card memory spaces
Peripheral-card I/O space
Peripheral-card ROM space
Expansion ROM space
Peripheral-card RAM space

I/O programming suggestions

Finding the slot number with ROM switched in

I/O addressing

RAM addressing

Other uses of I/O memory space
Switching I/O memory
Developing cards for slot 3

Interrupts
What is an interrupt?

Chapter 3: The FPI: New Features
The FPI subsystem
Memory allocation
The State register
Shadowing
The Shadow register
The Speed register
RAM control
ROM
I/O processing
The Slot register
Synchronization
The Mega Il cycle
Mega II auxiliary bank access
Real-time clock IC interface

Chapter 4: Video
The Video Graphics Controller
Apple IT compatibility

APDA Draft iv

11/21/186

Apple IIGS Hardware Reference

New video display features
Text and background color
Border color
To color or not to color...
New graphics display modes
Super Hi-Res graphics
The Super Hi-Res graphics buffer
Scan-line control bytes ($9D00—3$9DC7)
Color palettes ($9E00-$9FFF)
Pixels
The New-Video register
Color-Fill mode
VGC interrupts
VGC Interrupt register
VGC Interrupt-Clear register

Graphics summary

1 1 1 [}

n—A—-lp—-—u»--—r-\Dmé\O‘\th-h-F‘hu

AN hAWW—O

Chapter 5: Peripheral Expansion Slots
The expansion slots
Apple II compatibility
Direct memory access
I/O in the Apple IIGS
Slot I/O cards
DMA cards
Expansion slot signals
The buffered address bus
The slot data bus
Interrupt and DMA daisy chains
Loading and driving rules
Summary

Chapter 6: Apple IIGS Sound
Sound synthesis
Accessing the DOC
The Sound Control register
Address Pointer register
Write operation
Read operation
Playing back the sound
The DOC registers
The Oscillator Interrupt register ($EQ)
The Oscillator Enable register ($E1)
The A/D Converter register ($E2)
The Oscillator Control register ($A0—$BF)
The Data register ($60—3$7F)
The Volume register ($40—$5F)
The Frequency High and Frequency Low registers ($00—$3F)
The Waveform register ($CO—S$DF)
Sound input and output specifications
Summary

F-‘F-‘D-‘HJO\O\C'J\U'IMU'IU\N

(PSS RS

t

LthLthLhLiItMU‘IU‘IU‘ILth

P

T ran QR O Oh g

[1

omc\q\c\a\
=t OO DD ISR B B -

TR
5=

Chapter 7: Apple DeskTop Bus
7-1 Introduction
7-2 The input bus

APDA Draft y 11121186

Apple IIGS Hardware Reference

7-

\O\O\O\P\O\D\Q
AWWRN ==

0
0
1
1
1
1
; Error conditions
2
2
3
3

The ADB microcontroller
The keyboard GLU
Keyboard GLU registers
System Status register
Keyboard Data register
Modifier Key register
Mouse Data register
Command/Status register
Bus communication
Signals
Attention and sync
Reset
Service request
Reset '
Transactions
Apple DeskTop Bus peripheral devices
Commands
Talk
Listen
Device registers
Collision detection

Network layer (ADB types)
Nommal devices
Extended sddress devices

Register 3
Service request

Chapter 8: The Disk Port
Introduction
Apple II compatibility

The disk port connector
The IWM
The Disk Interface register

Chapter 9: The Memory Expansion Slot

Introduction

Extended RAM
Extended RAM Mapping
MSIZE
Ghosting

Extended ROM

Address multiplexing

APDA Draft

vi

11/21/86

Apple IIGS Hardware Reference

Chapter 10: Power Supply
10-1 Introduction
10-1 Function
10-1 Specifications
10-2 Power connector

Chapter 11: 65C816 Microprocessor
11-1 Introduction
11-2 65C816 Features
11-3 The 16-bit 65C816
11-4 Microprocessor differences
11-4 The registers

11-5 The accumulator

11-5 X Index register

11-5 Y Index register

11-5 Data bank register
11-5 Stack pointer

11-5 Program Status register
11-5 Program counter

11-5 Program bank register
11-6 Direct register

11-6 Emulating the 6502

11-6 The e bit

11-6 The m bit

11-6 The x bit

11-7 Operating speed

11-7 S

11-8 ﬁgxégrll%rydata sheets

A-1 Appendix A: Roadmap to the Apple IIGS Technical Manuals
B-1 Appendix B: International Keyboards

C-1 Appendix C: Character Generator

D-1 Appendix D: Schematic Diagrams

E-1 Appendix E: Conversion Tables

107 Appendix F: Frequently Used Tables

Glossary

APDA Draft Vil 11121186

Apple IIGS Hardware Reference

List of Illustrations and Tables

List of Ilustrations

Illustration Title Page
Figure 1-1 The Apple IIGS

Figure 1-2 Releasing the snaps to remove the cover
Figure 1-3 The Apple IIGS with cover removed
Figure 1-4 The Apple 1IGS connectors

Figure 1-5 Pin configuration of a serial port connector
Figure 1-6 Apple IIGS block diagram

Figure 1-7 Bank memory map

Figure 2-1 The Apple IIGS block diagram

Figure 2-2 40-column text display

Figure 2-3 80-column text display

Figure 2-4 Hi-Res display bits

Figure 2-5 Map of 40-column text display

Figure 2-6 Map of 80-column text display

Figure 2-7 Map of Lo-Res graphics display

Figure 2-8 Map of Hi-Res graphics display

Figure 2-9 Map of Double Hi-Res graphics display
Figure 2-10 Game I/O connector

Figure 2-11 Memory for bank $E0

Figure 2-12 RAM allocation map

Figure 2-13 Bank-switched memory map

Figure 2-14 State register

Figure 2-15 Memory map with auxiliary memory
Figure 2-16 Slot register

Figure 2-17 Expansion ROM enable circuit

Figure 2-18 ROM disable address decoding

Figure 2-19 /O memory map

Figure 3-1 The Apple IIGS block diagram and the FPI...
Figure 3-2 The Apple IIGS memory map

Figure 3-4 The Shadowed memory map

Figure 3-5 The Shadow register

Figure 3-6 The Speed register

Figure 3-7 The Slot register

Figure 3-8 @0 cycles, 14M cycles, and M-States
Figure 3-9 The Control register

Figure 4-1 Block diagram of the Apple IIGS and video...
Figure 4-2 Screen Color register

Figure 4-3 Border Color register

Figure 4-4 Color/Monochrome register

Figure 4-5 Super Hi-Res graphics display buffer
Figure 4-6 Scan-Line control byte format

Figure 4-7 Color palette format

Figure 4-8 Pixel data byte format

Figure 4-9 Color selection in 640 mode

Figure 4-10 New Video register

Figure 4-11 Scan-Line interrupt

Figure 4-12 VGC Interrupt register

APDA Draft viii

11121186

Figure 4-13
Figure 4-14
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 8-1
Figure 8-2
Figure 8-3
Figure 9-1
Figure 9-2
Figure 9-3
Figure 10-1
Figure 11-1
Figure 11-2

Apple IIGS Hardware Reference

VGC Interrupt-Clear register

Drawing pixels on the screen

Apple 1IGS block diagram

Peripheral expansion slot pin dia

The data buses within the Apple IIGS

Input/output clock and control signal timing

Slot I/O read and write timing

Read and write timing with /INH active

/DMA read and write timing

Block diagram showing relationship of the sound...
The Sound Control register

The Address Pointer registers

The Oscillator Interrupt register

The Oscillator Control register

The Waveform register

An example of a two-channel demultiplexer circuit
The ADB within the Apple IIGS

The ADB bus

Mini-DIN connector pin configuration used in the ADB
System Status register

The Keyboard register

The Modifier Key register

The Mouse Data register

The Command/Status register

Bit representation via duty-cycle modulation
Attention and sync pulses

Service Request

Register 3

Keyboard register 3

Mouse register 3

Apple 1IGS block diagram

The disk port connector

Disk Interface register

Apple IIGS block diagram

Extended RAM mapping

Example circuit for decoding extended memory card...
Power supply connector

Apple IIGS block diagram and the 65C816
65C816 registers

APDA Draft ix 11/21/86

Apple IIGS Hardware Reference

List of tables

Illustration Title Page
Table 2-1 Apple [I-compatible features

Table 2-2 Standard Apple I Video display specifications
Table 2-3 Display character sets

Table 2-4 Lo-Res graphics colors

Table 2-5 Hi-Res graphics colors

Table 2-6 Double Hi-Res grphics colors

Table 2-7 Video display page locations

Table 2-8 Display soft switches

Table 2-9 Text window memory locations

Table 2-10 Annunciator memory locations

Table 2-11 Secondary I/O memory locations

Table 2-12 Language Card bank select switches

Table 2-13 Auxiliary memory select switches

Table 2-14 Peripheral card I/O memory locations enabled by...
Table 2-15 Peripheral card I/O memory locations enabled by...
Table 2-16 Peripheral card RAM memory locations :
Table 2-17 Peripheral card I/O bse addresses

Table 2-18 ° I/O memory switches

Table 5-1 Expansion slot signals

Table 6-1 GLU registers

Table 6-2 Sound input and output electrical specifications
Table 6-3 DOC register addresses

APDA Draft x

11/121/86

N

Apple IIGS Hardware Reference

Chapter 4, Video, goes in depth into how to make the new Super Hi-Res graphics work for
you.

Chapter 5, Peripheral Expansion, provides descriptions of the I/O slots and the signals
available at an expansion slot. DMA and interrupts are described here also.

Chapter 6, Sound, shows you how to control the 32 digital oscillators and generate sound.
Chapter 7, Apple DeskTop Bus, provides details of the hardware and protocol required to
design and connect an input device (keyboard, mouse, graphics tablet, and so on) to this
input device.

The built-in disk drive port is described in Chapter 8.

Chapter 9 goes into detailed description of the memory expansion slot and how to design
and access a memory expansion card for this special slot.

Chapter 10 briefly describes the Apple IIGS power supply and lists its specifications.
The new 65C816 microprocessor is covered in Chapter 11.

Appendix A contains a roadmap to the Apple IIGS technical suite of manuals. Read this
appendix to determine which books will help you to learn more about a programming
language, the Apple IIGS firnware, or other aspect of the computer.

Appendix B has all nine international keyboard layouts.

Appendix C shows you the contents of the character generator—all the characters the Apple
IIGS can display.

Appendix D contains the schematic diagrams showing all of the electrical components of
the main circuit board.

Appendix E has tables that show what a bit and a byte can represent. Conversion tables
between hexadecimal, decimal, and negative decimal, as well as 8-bit ASCII, are provided.

Appendix F contains some of the most frequently used tables taken from throughout the
manual,

A glossary follows the appendixes.

Some terminology

The Apple IT and Apple® II plus are standard Apple Il computers. In this manual,
reference is made to the Apple IIGS’s compatibility with standard Apple I computers. This
means that the Apple IIGS will software written for an Apple II or Apple II plus computer.
A particular function of the Apple IIGS that is in common with the Apple® Ile or Apple®
IIc, for instance, will be mentioned specifically as such.

Words that appear in boldface in the text are defined in the glossary, located at the back of
this manual.

APDA Draft xii | 11/21/86

T

Apple lIGS Hardware Reference

Chapter 1

Introduction to the Apple IIGS

The Apple IIGS is a new computer in the Apple I family. While maintaining its roots in
the Apple Ile and Apple Ilc, this processor also provides new features that make it the most
powerful Apple II yet. This first chapter describes generally how the Apple IIGS fits into
the Apple II family and tells what sets it apart from previous Apple II computers. Figure 1-
1 shows a photograph of the Apple IIGS.

PHOTOGRAPH OF THE APPLE IIGS

Figure 1-1. The Apple 1IGS

Removing the cover

The Apple IIGS uses a two-piece case. The cover is hinged at the front and is secured at the
rear where the upper and lower halves meet. A snap lock is located at each side of the rear
panel as shown in Figure 1-2. To remove the cover, press in on each snap lock while
lifting up at the rear of the cover. Pivot the cover at the front and remove it completely.
The main logic board is now exposed for access to the expansion slots. Figure 1-3 shows
the major components of the Apple IIGS.

PHOTO OF SNAP-LOCCKS AT THE REAR OF THE CCOVER.

Figure 1-2. Releasing the snap locks to remove the cover

APDA Draft ful

11/21/86

Apple [IGS Hardware Reference

AERIAL PHOTO OF APPLE IIgs, COVER REMCVED. CALLOUTS.

Figure 1-3. The Apple IIGS with cover removed

Peripheral expansion slots

The Apple IIGS, like the Apple Ile, has seven expansion slots at the rear of the main
logic board. These will accept most Apple II-compatible peripheral cards designed
for any of the Apple II computers. Note that the Apple 1IGS does not have an auxiliary
slot as is found in the Apple Ile. For more information on the peripheral expansion slots,
see Chapter 5, “Peripheral Expansion Slots.”

Connectors

At the rear of the computer are several connectors. These connectors allow the computer to
be connected to an input device such as a keyboard or a mouse, or a peripheral device
such as a disk drive, a printer, a modem, a network, or the like. Figure 1-4 shows the
connectors.

PHOTC OF REAR PANEL OF APPLE IIgs WITH CALLOUTS

Figure 1-4. The Apple IIGS connectors

Two serial ports: The two RS-232-C and RS-422 compatible serial ports use mini-
DIN (Deutsche Industrie Normal) 8-pin connectors. To transmit and receive data to and
from a device connected to a serial port, use the firmware calls in the system read-only
memory (ROM), Figure 1-5 shows the pin configuration of the serial ports.

To read about how to use the firmware in the Apple
IIGS ROM, rcfer 1o the Apple I1IGS Firmware

Reference manual.

APDA Draft 1-2 11121186

Apple IIGS Hardware Reference

Figure 1-5. Pin configuration of a serial port connector

Pin Description

1 DTR Data terminal ready

2 HSKI Handshake in

3 TX Data — Transmit data -

4 Ground Ground reference and supply
5 RX Data— Receive data —

6 TX Data+ Transmit data +

7 GPI General purpose input

8 RX Data+ Receive data +

Table 1-1. Serial port signal description

Disk drive port: This connector will accept either 5.25-inch or 3.5-inch Apple disk -
drives made for the Apple II. This 19-pin connector is similar in function to the one on the
Apple Ilc. For more information on the disk drive port, see Chapter 8, “The Disk Port”.

RGB video connector: This connector provides analog red, green, and blue (RGB)
video signals for an analog-input RGB video monitor. Use only an analog input RGB
monitor with this 15-pin connector. See Chapter 4, “Video,” for more information.

Composite video connector: Composite color video is available at this connector.
A standard Apple composite color monitor can be used to display video. A television may
be used to display 40-column text or graphics: This requires a video modulator to connect
the Apple IIGS to a television. See Chapter 4, “Video” for a description of composite
video.

Apple DeskTop Bus: Connect Apple DeskTop Bus™ (ADB) devices to this
connector. These devices may be ADB keyboards, ADB mouse devices, ADB graphics
tablets, or any other input device designed to the ADB specification. Do not attempt to
adapt input devices not designed for ADB to this connector. See Chapter 7, “Apple
DeskTop Bus,” for more information on using this connector.

Game connector: Connect a standard Apple II game paddle or joystick to this
connector. Do not adapt an ADB device to this connector. ADB devices are completely
different, and should not be used. See chapter 2 for more information on game connectors
and signals.

A closer look
You can think of the Apple IIGS system as containing two separate and unique subsystems.

These subsystems are not mutually exclusive; on the contrary, the subsystems share several
components without which they could not function. In particular, both share the

APDA Draft 1-3

11/121:56

Apple 11GS Hardware Reference
microprocessor, input/output (I/O), memory, video, and expansion support T
circunry.
The first subsystem consists of the parts of the computer that make the Apple IIGS
compatible with other Apple II products. These are
« the 65C816 microprocessor
» the Mega II custom integrated circuit (1C)
« 128K of standard Apple II memory
« the Video Graphics Controller (VGC) and video generation circuitry
» built-in peripheral devices and external 1/O slots

This subsystem is referred to as the Mega II portion of the system, after the controlling
device. ;

While the Digital Oscillator Chip (DOC) sound synthesizer and support circuitry are
new to the Apple Il family of computers, they fall under control of the Mega II side of the
computer.

The second subsystem consists of components of the computcr-that are new to the Apple 11
family. These are

» the 65C816 microprocessor

» the Fast Processor Interface (FPI) custom IC o
« 256K (expandable to 8Mb) of dynamic random-access memory (RAM)

» 128K (expandable to 1Mb) of read-only memory (ROM)

This subsystem is referred to as the FPI portion of the system, because of the controlling
device, the FPL

Note that the 65C816 microprocessor is listed as a component of both subsystems. Being
a new microprocessor, it has many new instructions that provide this computer with new
capabilities. Also, the 65C816 emulates the 6502 microprocessor and will recognize the
6502 instruction set, which means it will run most existing Apple II software.

Figure 1-6 shows the Apple IIGS computer in block form. Note the dotted division
separating the two subsystems. Although this is a logical division, it is not absolute: The
FPI portion has access to the expansion slots, the Video Graphics Controller and other
components on the Mega II side.

APDA Draft 14 11721186

MIGA 11

Apple IIGS Hardware Reference

[yeny
el
= | 1 -
= =
Slotmaker
Gama VO
r-l : ?"‘ilkm}:ﬂ'l
4. AT - - o .]
']Ej- l e O wad Jiamxd [eanzs Joamza | somas jan j ®) 2 %
n ! premmet kAM fRAM [rAM | mAM ct:rmu- 4 s |
'IEL } OB, FYHC
rl = [NTSC vided
u i E emaraier
Burier | _
; [ree
I
L i S — —————
1
| Kerburd ___,E‘ i
I cLu
|
= ” I Enredt _— T
: I S g keypad RAM
' L]
§ Retrefit =1 ram
Rapbeard I
.@%‘ﬂ Erssnlq DOC
14K :

aowl

Ir

i
P
- External
iy oy 8 E Isreaxea

Figure 1-6. Apple IIGS system block diagram

The rest of this chapter describes the FPI and Mega II subsystems in more detail and
explains how they function together.

Apple II compatibility

The Apple IIGS is compatible with the Apple II family of processors. Here are some of the
features the Apple IIGS shares with the Apple Ile and IIc:

APDA Draft

6502 processor compatibility, which is maintained by the 65C816 microprocessor
used by the Apple IIGS

Apple II graphics, which includes Lo-Res mode, Hi-Res mode, and Double
Hi-Res mode color video graphics

128K of main RAM memory

built-in Applesoft BASIC

two built-in serial ports

seven peripheral expansion slots, compatible with the Ile

a built-in disk interface port that will accept either 5.25-inch or 3.5-inch disk drives

1-5

11/21/86

Apple lIGS Hardware Reference
» built-in Apple II Monitor firmware

+ 40-column and 80-column text display capability

« a game I/O port for joysticks and game controllers like the [Ie

New Apple IIgs features

Although the Apple TIGS has many features in common with previous Apple II products, it
has several new features that enhance its performance. Here are a few examples:

« The 16-bit CMOS 65C816 microprocessor, which uses a superset of the 6502
instruction set, includes 11 new address modes and 36 new instructions, and is

compatible with 6502 code.

Complementary Metal Oxide
Semiconductor (CMOS) is the silicon material
that this microprocessor is made from. This material
allows Lhe device to be faster and to require less

power.

To learn more about the 6502 and the 65C02
microprocessors, refer to the Apple Ile Technical
Reference manual and the Apple Ilc Technical
Reference manual, respectively.

+ high processing speed, which is selectable between 1.024 MHz or 2.8 MHz

» Super Hi-Res video graphics mode, which offers either 320- or 640-pixel
horizontal resolution, displaying 16 colors per line; these colors may be chosen

from a possible 4096

» analog RGB color video outputs

» 128K of RAM, which may be expanded to a maximum of 8Mb that can be achieved
by using an optional expansion card in the memory expansion slot; a maximum of
IMb of ROM can be utilized by using an expansion card

* built-in AppleTalk® network firmware

* built-in real-time clock (RTC) with a backup battery, which is accessible through

the Control Panel

+ selectable display border, text, and background colors
» a sound synthesizer IC with 32 independant oscillators and 64K of dedicated RAM
» adetachable, full international keyboard with keypad

+ Apple DeskTop Bus, whose protocol provides for input devices such as graphics

pads, mouse devices, and keyboards

+ enhanced Monitor firmware which supports the 65C816 microprocessor

APDA Draft

1-6

11/121/86

Apple IIGS Hardware Reference

« acontrol panel screen, which provides users with means for setting system
parameters

Terminology

The terms Mega Il subsystem and Apple I1-side refer to the portion of the Apple IIgs that
provides the Apple II compatibility. The terms FPI subsystem and 16-bit side refer to the
portion of the computer system that provides those features which are new to the Apple II
family: Everything that makes the Apple IIGS not an Apple Ile or Ilc.

Important: Throughout this manual you will need to manipulate bits within
registers and soft switch locations in order to achieve some result. Some bits in
these registers or soft switches must be left alone, or the system could crash. These
bits are labeled “Reserved; do not modify.” In order to manipulate the desired bits
and leave those reserved ones untouched, you must use a read-modify-write
technique. Either of two assembly-language commands can be used to accomplish.
this: the test-and-set-bit (TSB) command or the test-and-reset-bit (TRB) command.
Both of these allow you to modify any one bit and leave the others untouched.

To read about using the TSB and TRB instructions,
refer to “Programming the 65816™ by David Eyes.

Memory allocation

Note that the Apple IIGS has three separate quantities of RAM: 256K available to the FPI;
128K (half of the on-board RAM) available to the Mega II; 64K dedicated to the DOC.
Figure 1-7 shows the system memory map.

APDA Draft 17

11/21186

Apple 1IGS Hardware Reference

$00 64K
On-board 128K RAM and IO
$01 64K
1
$02—7F !I 8Mb i Memory expansion card, RAM area
[1
$80—DF . 6Mb v Reserved——currently unused
L |
$EO 64K
On-board Mega Il 128K RAM
$E1 64K
[|
$E2-EF ; 886K v Reserved——currently unused
|
|
$FO-FD il 896K J' Memory expansion card, ROM area
$FE 64K
: Main board fast ROM area
$FF 64K i

Figure 1-7. Bank memory map

A minimum Apple IIGS system includes 256K of RAM and 128K of ROM. The 128K
ROM space is expandable to 1 megabyte.

Note: 128K of the main RAM (banks $00 and $01) correspond to the main 64K and
auxiliary 64K memory banks of the Apple lle and Apple Ilc with some exceptions: they
lack the standard Apple II language-card space, I/O space, and video display buffers. To
provide these memory spaces, the Apple IIGS shadows, or duplicates, accesses to the
language-card, I/O, and video locations in banks $00 and $01 into the equivalent locations
in banks $E0 and $E1. For more information on how shadowing works, see Chapter 3,
“New Features.”

APDA Draft -8 11121186

Apple IIGS Hardware Reference

Chapter 2

Maintaining Apple II Compatibility

The Apple IIGS maintains compatibility with the rest of the Apple II computers by virtue of
the Mega II custom IC. This chip contains most of the components from the Apple Ile (and
many from the IIc) and makes it possible for the Apple IIGS to run application programs
written for the Ile.

This chapter describes the function of the Mega II IC and therefore the Apple Ile. Although
each topic (video, I/O, memory, and so forth) can also be found elsewhere in this manual,
only those standard Apple II-compatible features are covered in this chapter. To read about
the new features of the Apple IIGS, see the chapter for each feature.

This chapter also contains detailed descriptions of all of the hardware and firmware that make

up the Apple Ile, and therefore, all that makes the Apple IIGS compatible with the Apple Ile.

Table 2-1 lists come comparisons of the features found on the Apple IIGS, Apple Ile, and the

Apple Ilc.

This chapter contains a lot of information about the way
the Apple 1IGS works, but it doesn’t tell you how to use
a Apple IIGS. For that information, you should read the
other Apple IIGS manuals, especially the Apple IIGS
Owner's Guide.

To read about the new Apple IIGS sound synthesizing
capability, see Chapter 6, “Apple IIGS Sound.”

To read about the new Apple IIGS Super Hi-Res
graphics, see Chapter 4, “Video.”

APDA Draft 2-1

11/21:86

Apple IIGS Hardware Reference
Table 2-1. Apple II-compatible features

Feature Apple Ile Apple Ilc Apple IIGS
Memory 64K 128K 256K*
Serial ports Expansion card only 2 built in 2 builtin
Disk port Expansion card only 1 built in 1 built in

Text display 40-column (80 optional) 40- and 80-column 40- and 80-column

Graphics Standard Apple II Standard Apple I Standard and new

graphics modes graphics modes graphics modes
Keyboard Built-in Built in Detachable input bus device
Peripheral Seven none seven
expansion slots
Memory One, for use with none _ one, for use with
expansion slot ~ with 80-column card/ memory expansion card

*while the Apple IIGS has 256K on-board memory, programs written for previous Apple II
models will utilize a maximum of 128K.

The Mega II Custom IC

The Mega II is a custom integrated circuit made up of several circuits previously found in the
Apple Ile. The following make up the Mega II:

» memory management unit (MMU) custom IC

« input/output unit (IOU) custom IC

» character generator ROMs (eight character sets)

* video circuitry
The Mega II has virtually all the functions of an Apple Ile on a chip; it supports a slotted
microcomputer architecture as well as the new peripheral devices built into the Apple [IGS.
Apple II system components not found on the Mega II are the microprocessor, RAM and

ROM memory, the slots, and the 16-pin game I/O connector. Figure 2-1 shows the Mega II
and its relationship to the other parts of the Apple IIGS.

APDA Draft 2-2 1121186

Apple IIGS Hardware Reference

AP
Vides nmed
INT3C W
genurater
G} Compenits Mdes
An s
RaM
G4Kza
RAM
Seybasrd I
i Ememly BOC

Figure 2-1. Relationship of the Mega II within the Apple IIGS

The Apple Ile

¢ The Apple IIGS emulates many features of the Apple Ie:
 the 6502 microprocessor running at 1.024 MHz
e 128K of RAM
e 40-column text and 80-column text display
e video graphics, including:
- Lo-Res graphics
- Hi-Res graphics
- Double Hi-Res graphics
» peripheral card /O including direct memory access (DMA)
Although the Apple IIGS is capable of running the
processor at a higher clock speed, some standard Apple

II application programs must be executed at the
1.024MHz clock speed for timing reasons.

APDA Draft 2-3 11121186

Apple [IGS Hardware Reference

To read more about built-In I/O
routines in the Apple lics, see
the Apple lles Firmware
Reference manual,

APDA Draft

RAM upgrade

The Apple Ile is a 64K machine, expandable 10 128K through the
use of auxiliary memory cards like the Extended 80-Column
Text Card. The Apple IIGS has 256K of main memory,
mounted on the circuit board.

The RAM ICs on the Ile circuit board have been replaced by ten
64K x4 1Cs on the 1IGS main logic board. This memory is divided
into the 128K accessable by the Mega I in which standard Apple
Il programs are run, and 128K of fast system memory available
for programs that were developed for the Apple 1IGS. Also note
that there is 64K of RAM dedicated to sound generation that is not
directly accessable by application programs.

Apple I I/O

This section describes the 1/O devices built into the Apple 1IGS in
terms of their functions and the way they are used by programs.
The built-in I/0 devices are:

® the keyboard

u the video-display generator
® the speaker

m the game input and cutput

At the lIowest level, programs use the built-in I/O devices by
reading and writing to dedicated memory locations. This
section lists these locations for each 1/0 device. It also gives the
locations of the internal soft-switches that select the different
display modes of the 1IGs.

< Built-in /O routines: This method of input and
output—Iloading and storing directly to specific locations in
memory—is not the only method you can use. For many of
your programs, it may be more convenient to call the built-
in I/0 routines stored in the Apple 1IGS firmware,

The keyboard

The keyboard uses the Apple DeskTop Bus (ADB) to
communicate with the processor. All input devices are
connecled to the ADB and are controlled by the keyboard
microcontroller. This controller supports reading of the
keyboard by standard Apple II application programs.

The Apple 1IGS keyboard has automatic repcat, which means that
if you press any key longer than you would during normal typing,
the character code for that key will be sent continuously until you

24 11/21/86

Apple IIGS Hardware Reference

release the key. You may also hold down any number of keys
and still press another key; this is known as N-key rollover.

Apple IIGS computers manufactured for sale outside the United
States have a slightly different standard keyboard arrangement.
The different keyboards are shown in Appendix B.

Reading the keyboard

The keyboard encoder and ROM generate all 128 ASCII
(American Standard Code for Information Interchange) codes,
so all the special character codes in the ASCII character set are
available from the keyboard. Application programs oblain
character codes from the keyboard by reading a byte from the
keyboard data location shown in Table 2-2.

Table 2-2
Keyboard memory locations

Locatlon
Hex Decimal Description
$C000 49152 -16384 Keyboard data and strobe
$C010 40168 -16368 Any-key-down flag and clear-strobe switch

. Your programs can get the code for the last key pressed by
reading the keyboard data location. Table 2-2 gives this
location in two different forms: The hexadecimal value,
indicated by a preceding dollar sign ($), is used in assembly
language; the decimal value is used in Applesoft BASIC. The
low-order seven bits of the byte at the keyboard location
contain the character code; the high-order bit of this byte is the
strobe bit, described below.

Your program can find out whether any key is down, except the
Reset, Control, Shift, Caps Lock, Apple, and Option keys, by
reading from location 49152 ($C000). The high-order bit (bit 7)
of the byte you read at this location is called any-key-down; it is
1ifa key is down and 0 if no key is down. The value of this bit is
128; if a BASIC program gets this information with a PEEK, the
value is 128 or greater if any key is down, and less than 128 if no
key is down.

The strobe bit is the high-order bit of the keyboard dara byte.
After any key has been pressed, the strobe bit is high. 1t remains
high until you reset it by reading or writing at the clear-surobe
location. This location is a combination flag and switch; the flag
tells whether any key is down, and the switch dlears the strobe

bit. The switch function of this memory location is called a soft
switch because it is controlled by software. In this case, it
doesn’t matter whether the program reads or writes, and it
doesn’t matter what data the program writes: the only action

APDA Draft 2-5 11/21/86

Apple IIGS Hardware Reference

that occurs is the resetting of the kevboard strobe. Similar solt
switches, described later, are used for controlling other
functions in the Apple computer.

See the Apple IIGS Firmware
Reference manual for
information on firmware for
reading the keyboard.

Important Any time you read the any-key-down flag, you also clear
the keyboard strobe. If your program needs to read both
the flag and the strobe, it must read the strobe bit first.

After the keyboard strobe has been cleared, it remains low until
another key is pressed. Even after you have cleared the strobe,
you can still read the character code at the keyboard location.
The data byte has a different value, because the high-order bit is
no longer set, but the ASCII code in the seven low-order bilts is
the same until another key is pressed. Appendix C contains the
ASCII codes for the keys on the keyboard.

There are several special function keys that do not generate
ASCII codes. For example, pressing the Control, Shift, or Caps
Lock key directly alters the character codes produced by the
other keys. In the Apple IIGS, the state of these modifier keys is
available by reading a register within the ADB microcontroller.

To learn how to read the registers
within the ADB microcontroller,
see Chapter 7, “Apple DeskTop
Bus.”

The Control-Apple-Reset key combination is different from all
other keys on the ADB keyboard only in that it generates a
special key code. When the ADB microcontroller detects the
reset code, the program currently running in memory is halted.
If the Conuol-Reset-Esc key combination are pressed, the
system halts whatever program it's running, asserts the RESET
line, and restarts the computer. This restarting process is called
the reset rottine.

To read about the reset routine,
see the Apple IIGS Firmware
Reference manual.

To read more about the ADB, see
Chapter 8, “Apple DeskTop
Bus.”

Apple I video

The Apple 1IGS can display video in several different ways,
displaying text as well as color graphics. The standard Apple II
text and graphics modes are discussed here, while the new
graphics mode, Super Hi-Res graphics, is discussed in Chapter
4, “Video.”

APDA Draft 2-6 11/21/86

Important

Apple [IGS Hardware Reference
Video output

The primary output device is the video display. You can use any
ordinary video monitor, either color or biack and white, Lo
display video information [rom the Apple IIGS. An ordinary
monitor is one that accepts composite video compatible with
the standard set by the National Television Standards
Commitee (NTSC). If you use standard Apple II color graphics
with 2 monochrome (single-color) monitor, the display will
appear as that color (black, for example) and various patterns
made up of shades of that color.

If you are using only 40-column text and graphics modes, you
can use a television set for your video display. If the TV set has
an input connector for composite video, you can connect it
directly to your computer; if it does not, you’ll need to attach a
radio frequency (RF) video modulator between the Apple I1GS
and the television set.

The Apple lics can produce an 80-column text
display. However, If you use an ordinary color or
black-and-white television set, 80-column text will be
too biumy to read. For a clear 80-column display. you

must use a high resolution video monitor with a
bandwidth of 7 MHz or greater.

The specifications for the video display are summarized in
Table 2-3.

The video signal produced by the Apple 1IGS is NTSC-
compatible composite color video. It is available at two places:
the RCA-type phono jack and at the RGB video connector, both
on the back of the computer. Use the RCA-type phono jack to
connect a composite video monitor or an external video
modulator; use the RGB video connector to connect an analog
input RGB monitor.

The Apple Ilgs can also display Super Hi-Res
graphics, although it is not a standard Apple II
video display mode. To read about Super Hi-Res

graphics, see Chaper 4, “Video.”

APDA Draft

11121186

Apple IIGS Hardware Reference
Table 2-3

standard Apple Il Video display specifications

Display modes:

Text capacity:
Character set:

Display tormats:
Lo-Res color graphics:

Hi-Res color graphics:

Double Hi-Res color graphics:

APDA Draft

40-column text; map: Figure 2-5

80-column text; map: Figure 2-6

Low-Res color graphics; map: Figure 2-7
Hi-Res color graphics; map: Figure 2-8
Double Hi-Res color graphics; map: Figure 2-9

24 lines by 80 columns (character positions)

128 ASCII characters (see Appendix C for a list of display characters)
Normal, inverse, flashing, MouseText (Table 2-4)

16 colors (Table 2-5) 40 horizontal by 48 vertical, map: Figure 2-7

6 colors (Table 2-6) 140 horizontal by 192 vertical (restricted);
Black and white: 280 horizontal by 192 vertical, map: Figure 2-8

16 colors (Table 2-7) 140 horizontal by 192 vertical (no restrictions);
Black and white: 560 horizontal by 192 vertical; map: Figure 2-8

The Apple 11GS can produce seven different kinds of standard
Apple 11 video display:

text, 24 lines of 40 characters

text, 24 lines of 80 characters

Lo-Res graphics, 40 by 48, in 16 colors

Hi-Res graphics, 140 by 192, in 6 colors

Hi-Res graphics, 280 by 192, in black and white
Double Hi-Res graphics, 140 by 192, in 16 colors
Double Hi-Res graphics, 560 by 192, in black and while

The two text modes can display all 128 ASCII characters:
uppercase and lowercase letters, numbers, and symbols. The
Apple 1IGS can also display MouseText characters.

Any of the graphics displays can have 4 lines of text at the
bottom of the screen. The text may be either 40-column or 80-
column, except that Double Hi-Res graphics may have only 80-
column text at the bottom of the screen. Graphics displays with
text at the bottom are called mixed-mode displays.

The Lo-Res graphics display is an array of colored blocks, 40
wide by 48 high, in any of 16 colors. In mixed mode, the 4 lines
of text replace the bottom 8 rows of blocks, leaving 40 rows of 40
blocks each.

The Hi-Res graphics display is an array of dots, 280 wide by 192
high. There are 6 colors available in Hi-Res displays, but a given
dot can use only 4 of the 6 colors. 1f color is used, the display is
140 dots wide by 192 high. In mixed mode, the 4 lines of text
replace the bottom 32 rows of dots, leaving 160 rows of 280 dots
each.

2-8 11121/86

Apple IIGS Hardware Reference

The Double Hi-Res graphics display uses main and auxiliary
memory to display an array of dots, 560 wide by 192 high. All
the dots are visible in black and white. If color is used, the
display is 140 dots wide by 192 high with 16 colors available. In
mixed mode, the 4 lines of text replace the bottom 32 rows of
dots, leaving 160 rows of 560 (or 140) dots each. In mixed
mode, the text lines can be 80 columns wide only.

Text modes

The text characters displayed include the uppercase and
lowercase letters, the ten digits, punctuation marks, and special
characters. Each character is displayed in an area of the screen
that is seven dots wide by eight dots high. The characiers are
formed by a dot matrix five dots wide, leaving two blank columns
of dots between characters in a row, except for MouseText
characters, some of which are seven dots wide. Except for
lowercase letters with descenders and some MouseText
characters, the characters are only seven dots high, leaving one
blank line of dots between rows of characters.

The normal display has white dots on a medium blue
background. (Other color text on other color backgrounds is
also possible. See Chapier 4, “Video,” for more information.)
Characters can also be displayed as blue dots on a2 white
background; this is called fnverse format.

Text character sets

The Apple IIGS can display either of two text character sets: the
primary set or an alternate set. The forms of the characters in
the two sets are actually the same, but the available display
formats are different. The display formats are

® normal
B inverse

® flashing, alternating between normal and inverse

With the primary character set, the Apple I1IGS can display
uppercase characters in all three formats: normal, inverse, and
flashing. Lowercase letters can be displayed in normal format
only. The primary character set is compatible with most
software written for other Apple II models, which can display
text in flashing format but don't have lowercase characters.

The aliernate character set displays characters in either normal
or inverse format In normal format, you can get

® uppercase letters
m lowercase letters
m numbers
n

special characters

APDA Draft 2-9 11/121/86

Apple IIGS Hardware Reference

Table 2-4

Display character sets

In inverse format, you can get
MouseText characters

uppercase letiers

(]
]
® lowercase letters
® numbers

[]

special characters

You select the character set by means of the alternate-text soft
switch, SETALTCHAR, described later in this chapter in the
section “Display Mode Switching.” Table 2-4 shows the
character codes in hexadecimal for the primary and alternate
character sets in normal, inverse, and flashing (ormats.

Each character on the screen is stored as one bye of display
data. The low-order six bits make up the ASCII code of the
character being displayed. The remaining two (high-order) bits
select inverse or flashing format and uppercase or lowercase
characters. In the primary character set, bit 7 selects inverse or
normal format and bit 6 controls character flashing, In the
alternate character set, bit 6 selects between uppercase and
lowercase, according to the ASCII character codes, and flashing
format is not available.

Hex Primary character set Alternate character sef

Values Character type Format ’ Charocter type Format
$00-$1F Uppercase letters Inverse Uppercase letlers Inverse
$20-$3F Special characters Inverse Special characters Inverse
$40-$SF Uppercase letiers Flashing MouseText Inverse
$60-STF Special characters Flashing Lowercase leters Inverse
$80-$9F Uppercase letiers Normal Uppercase letiers Normal
$SA0-$BF Special characters Normal Special characters Normal
$C0O-3DF Uppercase letters Normal Uppercase letters Normal
$EO-$FF Lowercase lerters Normal Lowercase letters Normal

APDA Draft

40-column versus 80-column text

The Apple 1IGS has two modes of text display: 40-column and
80-column. The number of dots in each character does not
change, but the characters in 80-column mode are only half as
wide as the characters in 40-column mode. Compare Figures 2-2
and 2-3. On an ordinary color or black-and-white television set,
the narrow characters in the 80-column display blur together,;
you must use the 40-column mode to display text on a television
set.

2-10 11121186

Apple IIGS Hardware Reference

]LIST 0,100

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT : PRINT "Applesoft character Demo™

40 PRINT : PRINT "Which character set-="

50 PRINT : INPUT "Primary (P) or Alterrate (A) ?";AS
60 IF LEN (AS) < 1 THEN 50

65 LET AS = LEFTS (AS,1)

70 IF AS = "p" THEN POKE 49166, O

BO IF AS "APTHEN POKE 49167, 0

90 PRINT : PRINT "...printing the same line, first"
100 PRINT " in NCRMAL, then INVERSE ,then FLASK:": PRINT
1

Figure 2-2
40-column text dispiay

.

}LIST

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT PRINT "Applesoft Character Demo"

40 PRINT PRINT "Which character set=-="

50 PRINT : INPUT "Primary (P) or Alternate (A) 2";AS

60 IF LEN (AS$) < 1 THEN 50

65 LET AS = LEFTS (AS,1)

70 IF AS "P"™ THEN POKE 49166,0

80 IF AS "A" THEN POKE 49167,0

30 PRINT : PRINT "printing the same line, first™

100 PRINT "™ in NORMAL, then INVERSE ,then FLASH:"™: PRINT
150 NORMAL : GOSUB 1000

160 INVERSE : GCSUB 1000

170 FLASH : GOSUB 1000

180 NORMAL : PRINT : PRINT : PRINT "Press any key to repeat."
19¢ GET AS

200 GOTO 10

1000 PRINT : PRINT "SAMPLE TEXT: Now is the time--12:00"
1100 RETURN

]

Figure 2-3
80-column text display

Graphics modes

The Apple 1IGS can produce standard Apple II video graphics in
three different modes. All the graphics modes treat the screen
as a rectangular array of spots. Normally, your programs will use
the features of some high-level language to draw graphics dots,
lines, and shapes in these arrays; this section describes the way
the resulting graphics data are stored in memory,

Lo-Res graphics

In the Lo-Res graphics mode, the Apple IIGS displays an array of
48 rows by 40 columns of colored blocks. Each block can be any
of 16 colors, including black and white. On a black-and-white

APDA Draft 2-11 1121186

Apple 1IGS Hardware Reference

APDA Draft

monitor or television set, these colors appear as black, white,
and 3 shades of gray. There are no blank dots between blocks;
adjacent blocks of the same color merge to make a larger shape.

Data for the Lo-Res graphics display are stored in the same part
of memory as the data for the 40-column text display. Fach byte
contains data for 2 Lo-Res graphics blocks. The 2 blocks are
displayed one atop the other in a display space the same size as a
40-column text character, 7 dots wide by 8 dots high.

Half a byte—4 bits, or 1 nibble—is assigned 10 each graphics
block. Each nibble can have a value from 0 to 15, and this value
determines which 1 of 16 colors appears on the screen. The
colors and their corresponding nibble values are shown in
Table 2-5. In each byte, the low-order nibble sets the color for
the top block of the pair, and the high-order nibble sets the
color for the bottom block. Thus, a byte containing the
hexadecimal value $D8 produces a brown block atop a yellow
block on the screen,

Table 2-5

Lo-Res graphlcs colors

Nibble vaiue Nibble value

Dec Hex Color Dec Hex Color

0 $00 Black 8 $08 Brown

1 $01 Deep red 9 $09 Orange

2 $02 Dark blue 10 $0A Light gray
3 $03 Purple 1 $0B Pink

4 $04 Dark green 12 $0C Light green
5 $05 Dark gray 13 $0D Yellow

6 $06 Medium blue 14 $OE Aquamarine
7 367 Light blue 15 SOF White

Note: Colors may vary, depending on the controls on the
monitor or TV sel.

As explained later in the section “Video Display Pages,” the text
display and the Lo-Res graphics display use the same area in
memory. Most programs that generate ext and graphics clear
this part of memory when they change display modes, but it is
possible to store dara as text and display them as graphics, or
vice versa. All you have (o do is change the mode switch,
described later in this chapter in the section “Display Mode
Switching,” without changing the display data. This usually
produces meaningless jumbles on the display, but some
programs have used this technique to good advantage for
producing complex Lo-Res graphics displays quickly.

2-12 11121186

APDA Draft

Apple HGS Hardware Reference
Hi-Res graphics

In the Hi-Res graphics mode, the Apple IIGS displays an array of
colored dots in 192 rows and 280 columns. The colors available
are black, white, purple, green, orange, and blue, although the
colors of the individual dots are limited, as described later in
this section. Adjacent dots of the same color merge to form a
larger colored area.

Data for the Hi-Res graphics displays are stored in either of two
8192-byte areas in memory. These areas are called Hi-Res
Page 1 and Page 2; think of them as buffers where you can put
data to be displayed. Normally, your programs will use the
features of some high-level language to draw graphics dots,
lines, and shapes 1o display; this section describes the way the
resulting graphics data are stored in memory.

The Hi-Res graphics display is bit-mapped: each dot on the
screen corresponds to a bit in memory. The 7 low-order bits of
each display byte control a row of 7 adjacent dots on the screen,
and 40 adjacent bytes in memory control a row of 280

{7 times 40) dots. The least significant bit of each byte is
displayed as the leftmost dot in a2 row of 7, followed by the
second least significant bit, and so on, as shown in Figure 2-4,
The eighth bit (the most significant) of each byte is not
displayed; it selects 1 of 2 color sets, as described later.

Figure 2-4

Hi-Res display bits

Bits in Data Byte

r-‘_l-[es 1 (3]12(L]0

o

o)1) 23456

Dots on Graphucs Screen

On a black-and-white monitor, there is a simple
correspondence between bits in memory and dots on the
screen. A dot is white if the bit controlling it is on (1), and the
dot is black if the bit is off (0). On a black-and-white television
set, pairs of dots blur together; alternating black-and-white dots
merge to a conlinuous grey.

On an NTSC color monitor or a color television set, a dot whose
controlling bit is off (0) is black. If the bit is on, the dot will be
white or a color, depending on its position, the dots on either
side, and the setting of the high-order bit of the byte.

Call the leftmost column of dots column 0 and assume (for the
‘moment) that the high-order bits of all the data bytes are off (0).
If the bits that control dots in even-numbered columns (0, 2, 4,

2-13

11/21/86

Apple IIGS Hardware Reference

and so forth) are on, the dots are purple; if the bits thar control
odd-numbered columns are on, the dots are green—but only if
the dots on both sides of a given dot are black. If rwo adjacent
dots are both on, they are both white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a dala byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: The dots in even-numbered columns are blue, and the
dots in odd-numbered columns are orange—again, only if the
dots on both sides are black. Within each horizontal line of
seven dots controlled by a single byte, you can have black,
white, and one pair of colors, To change the color of any dot to
one of the other pair of colors, you must change the high-order
bit of its byte, which affects the colors of all seven dots
controlled by the byte.

In other words, Hi-Res graphics displayed on a color monitor or
television set are made up of colored dots, according to the
following rules:

a Dots in even columns can be black, purple, or blue.
® Dots in odd columns can be black, green, or orange.
m If adjacent dots in a row are both on, they are both white.

m The colors in each row of seven dots controlled by a single
byte are either purple and green, or blue and orange,
depending on whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 2-6. The blacks and whites
are numbered to remind you that the high-order bit is different.

Table 2-6
HI-Res graphics colors

Bits 0-& Bit 7 oft Bit7 on
Adjacent columns off Bladk 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

Note: Colors may vary depending on the controls on the
monitor or television set.

The peculiar behavior of the Hi-Res colors reflects the way NTSC
color television works. The dots that make up the Apple LIGS
video signal are spaced to coincide with the frequency of the
color subcarrier used in the NTSC system. Alternating black-
and-white dots at this spacing cause a color monitor or TV set to
produce color, but 2 or more while dots together do not.
Effective horizontal resolution with color is 140 dots per line (280
divided by 2).

APDA Draft _ 2-14 11121/86

Apple IIGS Hardware Reference
Double Hi-Res graphics

In the Double Hi-Res graphics mode, the Apple [IGS displays an
array of colored dots 560 columns wide and 192 rows deep.
There are 16 colors available for use with Double Hi-Res
graphics (see Table 2-7).

Double Hi-Res graphics is a bit-mapping of the low-order 7 bits
of the bytes in the main-memory and auxiliary-memory pages at
$2000-$3FFF. The bytes in the main-memory and auxiliary-
memory pages are interleaved in exactly the same manner as the
characters in 80-column text: Of each pair of identical
addresses, the auxiliary-memory byte is displayed first, and the
main-memory byte is displayed second. Horizontal resolution
is 560 dots when displayed on a monochrome monitor.

Unlike Hi-Res color, Double Hi-Res color has no restrictions on
which colors can be adjacent. Color is determined by any 4
adjacent dots along a line. Think of a 4-dot-wide window
moving across the screen: At any given time, the color
displayed will correspond to the 4-bit value from Table 2-7 that
corresponds to the window’s position (Figure 2-9). Effective
horizontal resolution with color is 140 (560 divided by 4) dots
per line.

To use Table 2-7, divide the display column number by 4, and
use the remainder to find the correct column in the table: ab0is
a byte residing in auxiliary memory corresponding to a
remainder of zero (byte 0, 4, 8, and s0 on); mbI is a byte
residing in main memory corresponding to 2 remainder of one
(byte 1, 5, 9 and so on), and similarly for ab3 and mb4.

APDA Draft 2-15 11/21/86

Apple 11GS Hardware Reference

APDA Draft

Table 2-7

Double Hi-Res graphics colors

Repeated

Color abl mb1 ab2 mb3 bit pattern
Black 300 300 $00 $00 0000
Deep red $08 $11 $22 $44 0001
Brown $44 508 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green 322 $44 $08 $11 0100
Dark gray 32a $55 $2a $55 0101
Green $66 $4C $19 $33 0110
Yellow $6E $5D $38 $77 0111
Dark blue $11 $22 $44 308 1000
Purple $19 $33 $66 $4C 1001
Light gray $55 $2A $55 $2A 1010
Pink $5D $3B $77 $6E 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B $77 $6E $5D 1101
Aquamarine $77 $6E $s5D $3B 1110
White $7F $7F $7F $7F 1111

Video display pages

The Apple TIGS generates its video displays using data stored in
specific areas in memory. These areas, called display pages,
serve as buffers where your programs can put data o be
displayed. Each byte in a display buffer controls an object at a
certain location on the display. In text mode, the object is a
single character; in Lo-Res graphics, the object is two stacked
colored blocks; and in Hi-Res and Double Hi-Res modes, it is a
line of seven adjacent dots.

The 40-column text and Lo-Res graphics modes use 2 display
pages of 1024 bytes each. These are called text Page 1 and text
Page 2, and they are located at 1024-2047 ($0400-$07FF) and
2048-3071 ($0800-S0BFF) in main memory. Normally, only
text Page 1 is used, but you can put text or graphics data into text
Page 2 and switch displays instantly. Either page can be
displayed as 40-column text, Lo-Res graphics, or mixed mode (4
rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-
column mode—1920 bytes—but it cannot switch pages. The 80-
column text display uses a combination page made up of text

2-16 11721156

Apple IIGS Hardware Reference

Page 1 in main memory plus another page in auxiliary memory
located on the 80-column text card. This additional memory is
not the same as text Page 2—in fact, it occupies the same
address space as text Page 1, and there is a special soft switch
that enables you to store data into it. (See the next section,
“Display Mode Switching.”) The built-in firmware 1/O roultines,
described in Chapter 3, take care of this extra addressing
automatically; that is one reason to use those routines for all
your normal text output.

The Hi-Res graphics mode also has 2 display pages, but each
page is 8192 bytes long. In the 40-column text and Lo-Res
graphics modes each byte controls a display area 7 dots wide by
8 dots high. In Hi-Res graphics mode each byte controls an area
7 dots wide by 1 dot high. Thus, a Hi-Res display requires 8
times as much data storage, as shown in Table 2-8.

The Double Hi-Res graphics mode uses Hi-Res Page 1 in both
main and auxiliary memory. Each byte in those pages of
memory controls a display area 7 dots wide by 1 dot high. This
gives you 560 dots per line in black and white, and 140 dots per
line in color. A Double Hi-Res display requires twice the total
memory as Hi-Res graphics, and 16 times as much as a Lo-Res

display.

Table 2-8
Video display page locations

Display Lowest address Highest address
Display mode page Hex Dec Hex Dec
40-column text, 1 $0400 1024 $O7FF 2047
Lo-Res graphics 2 $0800 2048 $0BFF 3071
80-column text 1 $0400 1024 $07FF 2047

24 $0800 2048 $0BFF 3071
Hi-Res graphics 1 $2000 8192 $3FFF 16383

2 $4000 16384 $5FFF 24575
Double High-Res 1t $2000 8192 $3FFF 16383
graphics 2t $4000 16384 $SFFF 24575

* This is not supported by firmware; for instructions on how to switch pages, refer o the next section,
“Display Mode Switching.”

t See the section “Double Hi-Res Graphics,” earlier in this chapter.

Display mode switching

You select the display mode that is appropriate for your
application by reading or writing to a reserved memory location
called a soft switch. In the Apple 1IGS, most soft switches have
three memory locations reserved for them: one for trning the

APDA Draft 2-17 11/121/86

Apple 1IGS Hardware Reference

switch on, one for turning it off, and one for reading the current
state of the switch.

Table 2-9 shows the reserved locations for the soft switches that

control the display modes. For example, to switch from mixed

mode to full-screen graphics in an assembly-language program,
you could use the instruction

STA 5C052
To do this in a BASIC program, you could use the instruction
POKE 49234,0

Some of the soft switches in Table 2-9 must be read, some must
be written to, and for some you can use either action. When
writing to a soft switch, it doesn't matter what value you write; the
action occurs when you address the location, and the value is

ignored.
Table 2-9
Display soft switches
Name Action Hex Funcfion
CLR80COL W $C000 Disable 80-column store
SET80COL W $C001 Enable 80-column store
CLR80OVID W $C00C Disable 80-column hardware
SET8CVID W SCOOD Enable 80-column hardware
CLRALTCHAR W $COOE Normal lower case character set; flashing upper case char. set
SETALTCHAR W $QOOF Normal, inverse character set; no flash
RD80COL R7 $C018 Read CLR/SET80COL switch ($C000/1) 1 = 80-column store
enabled
RDVBL BAR R7 $C019 Read vertical blanking: 1 = not VBL
RDTEXT R7 $CO01A Read TEXT switch: 1 = text mode enabled
RDMIX R7 $C01B Read MIXED switch: 1 = mixed mode enabled
RDPAGE2 R7 $COIC Read PAGE2 switch; 1 = text page 2 selected
RDHIRES R7 $C01D Read HIRES switch: 1 = Hi-Res mode enabled
ALTCHARSET R7 $CO1E Read ALTCHAR switch: 1 = alternate character set in use
RD8OVID R7 $QO1F Read 80COL switch: 1 = 80-column hardware in use
RDDHIRES R7 $CO7F Read DHIRES switch: 1 = DHIRES mode selected
TXTCLR R/W $C050 Select standard Apple 11 graphics mode, or if MIXSET on,
mixed mode
TXTSET RAW $C051 Select text mode only
MIXCLR RAW $C052 Clear mixed mode
MIXSET RAW $C0353 Select mixed mode
TXTPAGEI1 RAW $C054 Select text Page 1

APDA Draft 2-18 11/21/86

Apple 1IGS Hardware Reference

TXTPAGE2 RAW $C055 Select text Page 2 or, if 80STORE on, Page 1 in auxiliary memory
LORES RAW $C056 Select Lo-Res graphics mode
HIRES R/ $C057 Select Hi-Res graphics mode or, if DHIRES is on,
select Double Hi-Res graphics mode
DHIRES (AN3) R/W $COSE Turn Double Hi-Res graphics mode on
DHIRES (AN3) R/W $COSF Turn Select Double Hi-Res graphics mode off

Note: W means write anything to the location, R means read the location, R/W means read or write,
and R7 means read the location and then check bit 7.

“ By the way: You may not need to deal with these functions
by reading and writing directly to the memory locations in
Table 2-9. Many of the functions shown here are selected
automatically if you use the display routines in the various
high-level languages on the Apple IIGS,

Any time you read a soft switch, you get a byte of data. However,
the only information the byte contains is the state of the switch,
and this occupies only one bit—bit 7, the high-order bit. The
other bits in the byte are always 0.

If you read a soft switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is on,
the value will be equal to or greater than 128; if the switch i is off,
the value will be less than 128.

Addressing display pages directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you 1o write
statements that control the text and graphics displays.

Similarly, if you are programming in assembly language, you
may be able to use the display features of the built-in /'O
firmware. You should store directly into display memory only if
the existing programs can’t meet your requirements.

The display memory maps are shown in Figures 2-5, 2-6, 2-7, 2-
8, and 2-9. All the different display modes use the same basic
addressing scheme: Characters or graphics bytes are stored as
rows of 40 contiguous bytes, but the rows themselves are not
stored at locations corresponding to their locations on the
display. Instead, the display address is transformed so that 3
rows that are 8 rows apart on the display are grouped together
and stored in the first 120 locations of each block of 128 bytes
($80 hexadecimal). By folding the display data into memory
this way, the Apple IIGS, like the Apple 11, stores all 960
characters of displayed text within 1K of memory.

The Hi-Res graphics display is stored in much the same way as
text, but there are 8 times as many bytes to store, because 8 rows
of dots occupy the same space on the display as 1 row of
characters. The subset consisting of all the first rows from the
groups of 8 is stored in the first 1024 bytes of the Hi-Res display

APDA Draft 2-19 11121/86

Apple 1IGS Hardware Reference

page. The subset consisting of all the second rows from the
groups of 8 is stored in the second 1024 bytes, and so on for a
otal of 8 times 1024, or 8192 bytes. In other words, each block of
1024 bytes in the Hi-Res display page conuains 1 row of dots out
of every group of 8 rows. The individual rows are stored in sets of
3 40-byte rows, the same way as the text display.

All of the display modes except 80-column mode and Double
Hi-Res graphics mode can use either of 2 display pages. The
display maps show addresses for each mode'’s Page 1 only. To
obtain addresses for text or Lo-Res graphics Page 2, add 1024
($400); to obtain addresses for Hi-Res Page 2, add 8192 ($2000).

The 80-column display and Double Hi-Res graphics mode work
a litde differendy. Half of the data are stored in the normal text
Page 1 memory, and the other half are stored in memory on the
80-column text card using the same addresses. The display
circuitry fetches bytes from these 2 memory areas
simultaneously and displays them sequentially: first the byte
from the 80-column text display memory, then the byte from the
main memory. The main memory stores the characters in the
odd columns of the display, and the 80-column text display
memory stores the characters in the even columns.

To store display data in the 80-column text display, first turn on
the SET80COL soft switch by writing to location 49153 ($C001).
With SET80COL on, the page-select switch, TXTPAGE2, selects
between the portion of the 80-column display memory in Page 1
of main memory and the portion stored in the 80-column text
display memory, To enable the 80-column text display, turn the
TXTPAGE2 soft switch on by reading or writing at location 49237
(3C055).

APDA Draft 2-20 11121186

Apple IIGS Hardware Reference

Figure 2-5
Map of 40-column text display

E S NS ZERCE RS ER S EE S AR T A e X R LI VSR A g NN TS
B AAABRARAPAPRAARAT N NN N ARAAARAR BB e B o e om o n
Row SN TS e B N Te e R RSN S SNNAR YN IEE AR
0 $400 1024
| $480 1152
2 $500 1280
3 $580 1408
4 $600 1536
5 $680 1664
6 $700 1792
7 8780 1920
8 8428 1064
9 $4A8 1192
10 $528 1320
11 $5A8 1448
12 $628 1576 '
13 $6AB 1704
14 $728 1832
15 $7TA8 1960
18 $450 1104
17 $4D0 1232
18 3550 1360
19 $5D0 1488
20 36850 1616
21 $6D0 1744
22 4750 1872
23 $7D0 2000

APDA Draft 2-21 11/21/86

Apple 11GS Hardwure Reference

Figure 2-6
Map of 80-column text display

— Man Memorv | . _ _ _ :
imsmsozsosmsosm $20 $21 $22 823 §24 825 326 82T
B 0 1 2 3 _4_5_ 6 __ R 3B M_B BT B W

i ’—1‘_ = e um— :

0 S0 1024 l IREREEE
1
|

i

—
1B

1osR0 1132 | ! i
208500 1230
7 8580 1408
4 8600 1336) | |
$680 1664 | | |

111

s
—
—

5
6 $700 179
T 8780 1920 | I

8 $428 1084 | | Ly 1y
9 $4A8 1192 P
0 $528 1320 \ BEE
Il $5A8 1448 T
12 $628 1576 HRRE
13 $6A8 1704 |
14 $728 1832 i
15 $TA8 1960 1
16 $450 1104 1
17 $4D0 1232] P

19 $5D0 1488 | |

I

-

|

-
- s e =

2 3650 1616 l
21 $6D0 1744 L]
2 $7T50 1872

!

23 $7D0 2000 / |
$00 S0l $02 303 804 305 $06 807 $20 821 $22 $23 $24 $25 826 §%7

0 5 8 T 7 B

2 B U B B
Auxiliary Memory T

APDA Draft 2-22 11121186

Apple 1IGS Hardware Reference

Figure 2-7
Map of Lo-Res graphics display

E o N T TSR X TSy SR A S N T TGS 2 €T Sl o= T T S I
R O - g I - gl re- iy S R S S S

Row ST ME TR X I N I I S RN E R RS NNSNSSSSSESNET SRR ES

TR STTTRRNT)3Y! -]

2 OSB0 1152 e

1 %300 1280 { : ;

6 $380 1408 —

38600 1536 ——

10 3680 1664

12 8700 1792

14 §780 1920

16 $428 1064

13 $4A8 1192

20 8528 1320

22 $5A8 1448

24 $628 1576

26 $6A8 1704

28 $728 1832

30 $TA8 1960

32 8450 1104

M $4p0 1232

36 $550 1360

38 $5D0 1488

0 $650 1616

12 $6D0 1744

44 $750 1872

46 $7D0 2000

 APDA Draft 2.23 11121/86

Apple [IGS Hardware Reference

Figure 2-8
Map of Hi-Res graphics display

E - METSECEET S EXESE LS oV T S RS SN S =N DT S
A AR AR S B ABACR DA DR AN AR A S A e e e A e e e e
- s E- G Ee XS E NI ISR IS NN SN S Ao NS TS S
TR leﬁﬂ L ! { I l l
R TR SR R R i i | B
& ! o | ;
2S00 8448 REE b 5 j
3 %0 s8] | 11| | BEEE
482200 3704 R R ' T i
5 s0080 832 | | - L pei !
§ S2300 83960 Bl
7 $2380 9088 , B8
3 $2028 8232 ‘
9 $20A8 8360
10 $2128 8488 e
Il $21A8 8616 R S Y
gy
12 $2208 8744 \ =-
13 $228 8872 + 0 +30000
14 $2308 9000
15 $23A8 9128 Sl w0
16 $2050 8272 +2048 +30800
17 $2000 8400
18 $2150 8528 +3072 +$0C00
19 $21D0 8656
0 52250 8784) v40%. 31000
21 $22D0 8912 #5120 +$1400
2 82350 9040 \
23 $2300 9168 \ +6144 +$1800
k +T188 +$1C00

APDA Draft 2-24 11/21/86

Apple IIGS Hardware Reference

Figure 2-9
Map of Double Hi-Res graphics display

_ Main Memory |
TS0 S01 %02 303 S04 $05 806 $20 $21 $22 $23 324 825 26 827
Row]r-—— - 1;—- s = b = _,32._.33,——,34 X 36—-37——38—3?J
0 32000 8192« TR i SEEREERE A
2 v R T T T ']
Los2080 #3200 . L0t [l [RER
232100 8487 0 L | BEEREEE
38280 8576 , o L i || [TREEREEEEE
i i .
s 82200 8704 | [| | | FERREE
5 $280 8832 | | | | Pyd i
§ $2300 8960 | EEERE
7 82380 908 PLL T
8 s2028 8232 1
9 $20A8 8360 RN
10 52128 8488 ~_| BERE
11 $21A8 8616 A NERE
12 $2228 B8T#4 + 0 +$0(II)_;_‘
13 $22A8 8872 : \
14 $2328 9000 ‘ R AR
15 $23A8 9128 +0048 ~$0800 —
16 $2060 8272
17 52000 8400] +2072 +50C00
18 82150 8528
19 $21D0 8856 4008, +81000 ==
20 2250 8784 \ +5120 +$1400
21 32200 8912 -
-P—i
22 32350 9040 +6144 +$1800 |
23 52300 9168 1]
— = —— 7 —
00 301 02 303 S04 505 08 807 FHE
0 1 2 3 4 5 8 7 \
Awdliary Memory ...~ T T T 7
APDA Draft 2-25 11/21i86

-

Apple lIGS Hardware Reference

Warning

Warning

APDA Draft

The text window

After you have started up the computer or after a reset, the
firmware uses the entire display. However, you can restrict
video aclivity to any rectangular portion of the display you wish.
The active portion of the display is called the text window.

You can set the top, bottom, left side, and width of the text
window by storing the appropriate values into four locations in
memory. Using these memory locations allows you to control
the placement of text in the display and to protect other portions
of the screen from being written over by new text

Memory location 32 ($20) contains the number of the lefimost
column in the text window. This number is normally 0, the
number of the lefunost column in the display. In a 40-column
display, the maximum value for this number is 39 (§27); in an
80-column display, the maximum value is 79 ($4F).

Memory location 33 ($21) holds the width of the text window.
For a 40-column display, it is normally 40 ($28); for an 80-
column display, it is normally 80 ($50).

Be careful not to let the sum of the window width and the
leftmost posifion In the window exceed the width of the
dispiay you are using (40 or 80). If this happens. it is possible
to put characters Inte memory locations outside the display
page, possibly destroying programs or data.

Memory location 34 ($22) contains the number of the top line of
the text window. This is normally 0, the topmost line in the
display. Its maximum value is 23 ($17).

Memory location 35 ($23) contains the number of the botom
line of the screen, plus 1. It is normally 24 (318) for the bottom
line of the display. Its minimum value is 1.

After you have changed the text window boundares, nothing is
affected until you send a character to the screen.

Any time you change the boundaries of the text window,
you should make sure that the current cursor position
(stored at CH (524) and CV (525)) is inside the new window,
If it Is outside, it Is possible fo put characters Into memory
locations outside the display page, possibly destroying
programs or data.

Table 2-10 summarizes the memory locations and the possible
values for the window parameters.

2-26 11121186

Apple IIGS Hardware Reference

Table 2-10

Text window memory locations

Window Minimum Normal values Maximum values

parameter Location value 40 col. 80 col. 40 col. 80 col.
Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

Left edge 32 $20 00 $00 00 $00 00 $00 39 $27 79 S4F

Width 33 521 00 300 40 $28 80 350 40 $28 80 $30

Top edge 34 $22 00 300 00 $00 00 300 23 817 23 $17

Bottom edge 35 $23 01 %01 24 $18 24 $18 24 $18 24 518

Secondary inputs and outputs

In addition to the primary 1/O devices—the keyboard and
display—there are several secondary input and output devices in
the Apple 1IGS. These devices are

& the speaker (output)

m the annunciator (output)

m the switch (input)

m analog hand controls (inpu

These devices are similar in operation to the soft switches
described in the preceding section: You control them by
reading or writing to dedicated memory locations. Action takes
place any time your program reads or writes to one of these
locations; information written is ignored.

Important Some of these devices toggle—change state—each time
they are accessed. If you write using an assembly-language
indexed store operatlon, the microprocessor activates the
address bus twlce during successlve clock cycles, causing a
device that toggles each time It Is addressed to end up
back in ifs original state. For this reason, you should read,
rather than write. to such devices,

The speaker

The Apple 1IGS has a small speaker mounted toward the front of
the bottom plate. The speaker is connected to a soft switch that

toggles; it has two states, off and on, and it changes from one to
the other each time it is accessed. (At low frequencies, less than
400 Hz or so, the speaker clicks only on every other access.)

If you switch the speaker once, it emits a dick; to make longer
sounds, you access the speaker repeatedly. You should always
use a read operation to toggle the speaker.

APDA Draft 2-27 1172186

Apple 11GS Hardware Reference

Important If you write to this soft switch using an assembly language
indexed-write command, it switches twice in rapid succession.
The resulting pulse is so short that the speaker doesn't have time
to respond; it doesn’t make a sound.

The soft switch for the speaker, SPKR, uses memory location
49200 ($C030). You can make vanous tones and buzzes with the
speaker by using combinations of timing loops in your program.

Game 1/0

The Mega Il supports paddles 0, 1, 2, and 3, and switches 0, 1, 2,
and 3, which are available through the 16-pin DIP game
connector located below slot 4 and the 9-pin connector that is
located at the rear panel. Annunciator outputs ANO through AN3
are provided by the Slotmaker IC and are available only through
the 16-pin DIP connector. Figure 2-10 shows the two Apple 1IGS
game connectors, J9 and j21. Connector J21 is located on the
main logic board just forward of expansion slot 4. Connector]9
is located at the rear of the main logic board. Table 2-11 lists the
locations of the game I/O signals at the two connectors.

APDA Draft 2-28 11721186

Apple IIGS Hardware Reference

J21 J9

- _/ (— S W -
+5v 1 16 NGC. 3 5'% > 3
swo— 2 15— ANO a a a7
SW1 —1 3 14 |— AN 5 4 3 2 1
sw2 — 4 13— AN2 OOOOOOOOO
+5v — 5 12 — AN3 9 8 7 6
PDLO — & 11 |— PDL3 2 Zsg
PDL2 —1 7 10 — PDL1 D=z
GND —1 8 9 |— sws

APDA Draft

Figure 2-10. Game /O connectors

Table 2-11

Game |/O signals

Pin numbers

R » Signal

1 2 +5 volts

2 7 SWO0; switch input 0

3 1 SW1; switch input 1
4 6 SW2; switch input 2
5 - +5 volt pull-up

6 5 PDLO; analog input 0
7 4 PDL2; analog input 2
8 3 power and signal ground
9 - SW3; switch input 3
10 8 PDL1; analog input 1
1 9 PDL3; analog input 3
12 - AN3; digital output 3
13 - ANZ; digital output 2
14 - ANT1; digital output 1
15 - . ANG; digital output 0
16 - N.C

The hand control signals

Several inputs and outputs are available at the 16-pin IC
connector on the main logic board: 3 1-bit inputs, or switches,
and 4 analog inputs, along with 4 one-bit outputs. You can
access all these signals from your application program. Note
that the SW3 signal is new to the Apple IIGS.

Ordinarily, you connect a pair of hand controls to the 16-pin
connector. The rotary controls use two analog inputs, and the

2-29 ' 11121186

Apple lIGS Hardware Reference

push-buttons use 2 1-bit inputs. However, you can also use these
inputs and outputs for many other jobs. For example, 2 analog
inputs can be used with a 2-axis joystick. Figure 2-10 shows the
connector pin numbers.

The Apple DeskTop Bus will accept ADB-type hand controls,
joysticks, and graphics tablets as well as keyboards and mouse
devices that have been designed specifically for the ADB. The
ADB microcontroller handles mouse and keyboard input
devices transparently; that is, simply reading the standard
locations will return the current values of these devices. See
Chapter 7, “Apple DeskTop Bus,” for more information,

Annunciator outputs

The four 1-bit outputs are called annunciators. Each
annunciator can be used to turn 2 lamp, a relay, or some similar
electronic device on and off.

Warning When driving a device wlth the annunciator outputs, be
sure not o load any cone output with more than one
standard TIL load.

Each annunciator is controlled by a soft switch, and each switch
uses a pair of memory locations. These memory locations are
shown in Table 2-12. Any reference to the first location of a pair
turns the corresponding annunciator off; a reference to the
second location turns the annunciator on. There is no way 0
read the state of an annunciator.

Table 2-12
Annunclator memory locations
Annunciafor Address
) No. Pin® state Decimal Hex

0 15 Off 49240 $C058
On 49241 $C059

1 14 Off 49242 3CO0s5A
On 49243 $C0sB

2 13 Oft 49244 $CosC
On 49245 $COsD

3 12 Off 49246 $COSE
On 49247 $COSF

* Pin numbers given are for the 16-pin IC connector on the
circuit board.

APDA Draft 2-30 11/21/86

Apple IIGS Hardware Reference
Swilch inputs

The four 1-bit inputs can be connected to the output of another
electronic device or to a pushbutton. When you read a bvie
from one of these locations, only the high-order bit—bit 7—is
valid information; the rest of the byte is undefined.

The memory locations for these switches are 49249 through
49251 ($CO60 through $C063), as shown in Table 2-13.

Analog inpufs

The 4 analog inputs are designed for use with 150K ohm variable
resistors or potentiometers. The variable resistance is
connected between the +5V supply and each input, so that it
makes up part of a timing circuit. The circuit changes state when
its time constant has elapsed, and the time constant varies as the
resistance varies. Your program can measure this time by
counting in a loop uniil the circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset
the timing circuits. Accessing memory location 49264 ($C070)
does this. As soon as you reset the timing circuits, the high bits
of the bytes at locations 49252 through 49255 ($C064 through
$C067) are set to 1. Within about 3 milliseconds, these bits will
change back to 0 and remain there until you reset the timing
circuits again. The exact time each of the 4 bits remains high is
directly proportional to the resistance connected to the
corresponding input. If these inputs are open——no resistances
are connected—the corresponding bits may remain high
indefinitely.

To read the analog inputs, use a program loop that resets the
timers and then increments a counter until the bit at the
appropriate memory location changes to 0. High-level
languages, such as BASIC, also include convenient means of
reading the analog inputs: Refer to your language manuals.

Summary of secondary I/0 locations

Table 2-13 shows the memory locations for all of the built-in I/O
devices except the keyboard and display. As explained earlier,
some soft switches should be accessed only by means of read
operations; those switches are marked.

APDA Draft 2-31 11121186

Apple IIGS Hardware Reference

Table 2-13
Secondary |/O memory locations

Address

Soft switch Decimal Hex Definition
SPKR 49200 $C030 Toggle speaker (read only)
SETANO 49241 $C0S9 Set annunciator 0

. CLRANO 49240 $C058 Clear annunciator 0
SETAN1 49243 $COSB Set annunciator 1
CLRAN1 49242 $COS5A Clear annunciator 1
SETAN2 49245 $COSD Set annunciator 2
CIRAN2 49244 $COSC Clear annunciator 2
SETAN3 49247 $COSF Set annunciator 3
CLRAN3 49246 $COSE Clear annunciator 3
BUTN3 49248 $C060 Read switch 3 (read only)
BUTNO 49249 $C061 Read switch 0 (read only)
BUTN1 49250 $C062 Read switch 1 (read only)
BUTN2 49251 $C063 Read switch 2 (read only)
PTRIG 49264 $C070 Analog input reset
PADDLO 49252 $C064 Read only
PADDL1 49253 $C065 Read only
PADDL2 49254 $C066 Read only
PADDL3 49255 $C067 Read only

APDA Draft

Standard Apple I Memory

The 65C816 microprocessor in the Apple IIGS can emulate the
6502 microprocessor. Within the context of standard Apple II
programs however, we will assume that the microprocessor
addresses only 65,536 (64K) memory locations, and will limit
the discussion of memory in this chapter to the main and
auxiliary RAM banks. For information on the 65C816's ability to
address locations in other than the main or auxiliary banks, sce
Chapter 3, “New features™.

All input and output are memory mapped. This means that all
devices connected (o the Apple IIGS appear to be a set of
memory locations to the computer, In this chapter, the I/O
memory spaces are described simply as blocks of memory.

All the RAM, ROM, and I/O devices are allocated locations in
the 64K address range. Since each device or function requires a
certain block of memory, there are more devices and functions
than there are legal addresses, which means that the legal

2-32 11121186

Apple IIGS Hardware Reference

addresses must be shared. This sharing is accomplished
through a technique called bank-switching, which is explained
under the “Bank-Switched Memory” and “Auxiliary Memory”
sections in this chapter.

Programmers often refer to the Apple 1IGS memory in 256-byte
blocks called pages. One reason for this is that a 1-byte address
counter or index register can specify 1 of 256 different locations.
Thus, page O consists of memory locations from 0 to 255 ($00
to $FF), inclusive; page I consists of locations 256 to 511 (§0100
to $01FF). Note that the page number is the high-order part of
the hexadecimal address. Don’t confuse this kind of page with
the display buffers in Apple II computers, which are sometimes
referred to as Page 1 and Page 2.

Main memory map

The map of the main memory address space in Figure 2-11
shows the functions of the major areas of memory.

APDA Draft 2-33 11/21/86

Apple 1IGS Hardware Reference

Figure 2-11
Memory map for bank $EC.

FFFF
Bank-

ROM Switched
RAM

CRER 10

BFFF

TFFF

€k

3JFFF

RAM memory allocation

As Figure 2-11 shows, the major portion of the Apple IIGS
memory space is allocated to program storage (RAM). Figure 2-
12 shows the areas allocated to RAM. The main RAM memory
extends from location 0 to location 49151 Chex $BFFF), and
occupies pages 0 through 191 Chex $BF). There is also RAM
storage in the bank-switched space from 53248 10 65535 (hex
$D000 to $FFFF), described in the section *Bank-Switched
Memory” later in this chapter, and auxiliary RAM, described in
the section “Auxiliary Memory” later in this chapter.

APDA Draft 2-34 11/21/86

APDA Draft

Figure 2-12
RAM allocation map

Apple 1IGS Hardware Reference

BFFF
3000
FFF
6000
SFFF

Page 2
4000 Hxshﬂaoluuon

Graphics

3FFF Display Buffers

Page |
2000
IFFF

- Page2 | Text and Low-Resolution

Page | | Graphics Display Buffers

0000

important

+—— Reserved Pages

Reserved memory pages

Most of the Apple IIGS RAM is available for storing your
programs and data. However, a few RAM pages are reserved for
the use of the Monitor firmware and the BASIC interpreters. The
reserved pages are described in the following sections.

The system does not prevent your using these pages, but if
you do use them, you must be careful not to disturb the
system data they contain, or you will cause the system to
malfunction.

Direct page

Several of the 6502 microprocessor’s addressing modes require
the use of addresses in memory page zero, also called direct

2-35

11721186

Apple IIGS Hardware Reference

page. ‘The Monitor firmware, the BASIC interpreters, DQOS 3.3,
and ProDOS® all make extensive use of direct page.

To use indirect addressing in your assembly-language programs,
you must store base addresses in direct page. At the same lime,
you must avoid interfering with the other programs that use
direct page—the Monitor program, the BASIC interpreters, and
the disk operating systems. The best way to avoid conflicts is (o
save and restore only those direct page locations you use.

The 65C816 stack

The 65C816 microprocessor uses a stack to store subroutine
return addresses in last-in, first-out sequence. Many programs
also use the stack for temporary storage of the registers (via
PUSH and PULL instructions).

The 65C816 uses the stack two ways—in emulation mode and
native mode. In emulation mode, the stack pointer is 8 bits long
and the stack is located in page 1 and can hold 256 bytes of
information. When you store the 257th byte in the stack, the
stack pointer repeats itself, or wraps around, so that the new byte
replaces the first byte stored, which is now lost. This writing over
old data is called stack overflow, and when it happens, the
program continues to run normally until the lost information is
needed, whereupon the program terminates catastrophically.

In native mode, the stack pointer is 16 bits long, and the stack
can hold 64K of information at a ime. To read more about
using the 65C816 stack in native mode, see Chapter 11, “65C816
Microprocessor™.

Important Wraparound does not occur in all addressing modes.

The input buffer

The GETLN input routine, which is used by the Monitor program
and the BASIC interpreters, uses page 2 as its keyboard-input
buffer. The size of this buffer sets the maximum size of input
strings. (Note: Applesoft BASIC uses only the first 237 bytes,
although it permits you to type in 256 characters.) If you know
that you won't be typing any long input strings, you can store
temporary data at the upper end of page 2.

Link-address slorage

The Monitor program, ProDOS, and DOS 3.3 all use the upper
part of page 3 for link addresses or vectors.

BASIC programs sometimes need short assembly-language
routines. These routines are usually stored in the lower part of
page 3.

APDA Draft 2-36 11/21186

APDA Draft

Apple lIGS Hardware Reference
The display buffers

The primary text and Lo-Res graphics display buffer occupies
memory pages 4 through 7 (locations 1024 through 2047,
hexadecimal $0400 through $07FF). This entire 1024-byte area
is called text Page 1, and it is not usable for program and data
storage. There are 64 locations in this area that are not
displayed on the screen,; these locations are reserved for use by
the peripheral cards.

Text Page 2, the alternate text and Lo-Res graphics display
buffer, occupies memory pages 8 through 11 (locations 2048
through 3071, hexadecimal $0800 through $0BFF). Most
programs do not use text Page 2 for displays, so you can use this
area for program or data storage.

The primary Hi-Res graphics display buffer, called Hi-Res
graphics Page 1, occupies memory pages 32 through 63
(ocations 8192 through 16383, hexadecimal $2000 through
$3FFF). If your program doesn’t use Hi-Res graphics, this area is
usable for programs or data.

Hi-Res graphics Page 2 occupies memory pages 64 through 95
(locations 16384 through 24575, hexadecimal $4000 through
$5FFF). -Most programs use this area for program or data
storage.

The primary Double Hi-Res graphics display buffer, called
Double Hi-Res graphics Page 1, occupies memory pages 32
through 63 (locations 8192 through 16383, hexadecimal $2000
through $3FFF) in both main and auxiliary memory. If your
program doesn’t use Hi-Res or Double Hi-Res graphics, this
area of main memory is usable for programs or data.

Bank-switched memory

The memory address space from 52K to 64K ($D000 through
$FFEF) is doubly allocated: It is used for both ROM and RAM.
The 12K of ROM in this address space contain the Monitor
program and the Applesoft BASIC interpreter. Alternatively,
there are 16K of RAM in this space. The RAM is normally used
for storing the operating system (purchased separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: The Apple IIGS
is able to run software written for a standard Apple II because it
uses this part of memory in the same way a standard Appie II
does. It's convenient to have the Applesoft interpreter in ROM,
but the Apple 11GS, like an Apple II with a language card, is also
able to use that address space for other things when Applesoft is
not needed.

You may also be wondering how 16K of RAM are mapped into
only 12K of address space. The usual answer is that it's done with

2-37 11121186

Apple IIGS Hardware Reference

APDA Draft

mirrors, and that isn’t a bad analogy: The 4K address space
from 52K to 56K ($D000 through $DFFF) is used twice.

Switching different blocks of memory into the same address
space is called barnk switching. There are actually two examples
of bank switching going on here: First, the entire address space
from 52K to 64K ($D000 through $FFFF) is switched between
ROM and RAM, and second, the address space from 52K to S6K
($D000 to $DFFF) is switched between two different blocks of
RAM. (See Figure 2-13))

FFFF
RAM
E000 ROM
DFFF RAM RAM
DOco
Flgure 2-13

Warning

Bank-switched rmemory map

Setting bank switches

You swilch banks of memory in the same way you switch other
functions in a standard Apple II: by using soft switches. Read
operalions to these soft switches do three things: select either
RAM or ROM in this memory space, enable or inhibit writing to
the RAM , and select the first or second 4K bank of RAM in the
address space $D000 to $DFFF.

Do not use these switches without careful planning.
Careless switching between RAM and ROM Is almost certain
to have catastrophic effects on your program.

Table 2-14 shows the addresses of the soft switches for enabling
all combinations of reading and writing in this memory space.
All the hexadecimal values of the addresses are of the form
$CO08x. Notice that several addresses perform the same
function: This is because the functions are activated by single
address bits. For example, any address of the form $C08x with a
1 in the low-order bit enables the RAM for writing. Similarly,

bit 3 of the address selects which 4K block of RAM to use for the
address space $D000 to $DFFF; if bit 3 is 0, the first bank of RAM
is used, and if bit 3 is 1, the second bank is used.

When RAM is not enabled for reading, the ROM in this address
space is enabled. Even when RAM is not enabled for reading, it
can still be written to if it is write-enabled.

When you turn power on or reset the Apple IIGS, it initializes the
bank switches for reading the ROM and writing the RAM, using

2-38 11/21/86

—

Apple IIGS Hardware Reference

the second bank of RAM. Note that this is different from the
reset on the Apple II Plus, which didn't affect the bank-switched
memory (the language card). On the Apple IIGS, you can’l use
the reset vector to return control to a program in bank-switched
memory, as you could on the Apple II Plus.

Table 2-14
Language card bank select switches
Name Action Hex Function
R $CO80 Read this switch to read RAM, write-protect RAM,
use $D000 bank 2 .
ROMIN RR $C081 Read this switch twice to read ROM and write-enable fiAM-,
use $D000 bank 2
R $Co82 Read this switch to read ROM, write-protect RAM;
use $D000 bank 2
LCBANK?2 RR $C083 Read this switch twice to read and write-enable RAM;
use $D000 bank 2
R $C083 Read this switch to read RAM, write-protect RAM,;
use $D000 bank 1
RR $C089 Read this switch twice to read ROM, wrile-enable RAM;
use $D000 bank 1
R $CO8A Read this switch te read ROM, write-protect RAM;
use $D000 bank 1
RR $C08B Read this switch twice (o read and write-enable RAM;
use $D000 bank 1
RDLCBNK2 R7 $C011 Switch status: $D000 bank 2 (1) or bank 1)
RDLCRAM R7 $C012 Switch status: RAM (1) or ROM (O
SETSTDZP W $C008 Use main bank, page 0 and page 1
SETALTZP W $C009 Use auxiliary bank, page 0 and page 1
RDALTZP R7 $C016 Switch status: auxiliary (1) or main (0) bank

Note: R means read the location, W means write anything to the location, R/W means read or
write, and R7 means read the location and then check bit 7.

APDA Draft

% Reading and writing to RAM banks: You can’t read one
RAM bank and write to the other; if you select either RAM
bank for reading, you get that one for writing as well.

% Reading RAM and ROM: You can’t read from ROM in part
of the bank-switched memory and read from RAM in the
rest: specifically, you can’t read the Monitor program in
ROM while reading bank-switched RAM. If you want to use
the Monitor firmware with a program in bank-switched RAM,
copy the Monitor program from ROM (locations $F800
through $FFFF) into bank-switched RAM. You can't do this
from Pascal or ProDOS.

2-39

11/21/86

Apple [IGS Hardware Reference

To see how 1o use these switches, look at the following section of an assembly-language program:

APDA Draft

LDA
LDA
LDA
STA
LDA
STA
JSR
LDA
JSR
LDA
LDA
INC
JSR
LDA
INC

LDA

. JSR

LDA

LDA

INC

INC

LDA

JSR

5C083 *SELECT 2ZND 4K BANK & READ/WRITE
$co83 *BY TWO CONSECUTIVE READS

#5D0 *SET UP...

BEGTIN *...NEW, ..

#SFF *,..MAIN-MEMORY. ..

END *...POINTERS...

YOURPRG *...FOR 12K BANK

5C08B *SELECT 1ST 4K BANK

YOURPRG *USE ABOVE POINTERS

sC088 *SELECT 1ST BANK & WRITE PROTECT
#580

SUM

YOURSUB

$C080 *SELECT 2ND BANK & WRITE PRCTECT
SUM

#PAT12K

YQURSUB

$CO8B *SELECT 1ST BANK & READ/WRITE
5C088 *BY THO CONSECUTIVE READS

NUM *FLAG RAM IN READ/WRITE

sUmM

#PATYK

YOURSUB

The LDA instruction, which performs a read operation to the
specified memory location, is used for setting the soft switches.
The unusual sequence of two consecutive LDA instructions
performs the two consecutive reads that wrile-enable this area of
RAM:; in this case, the data that are read are not used.

Reading bank switches

You can read which language card bank is currently switched in
by reading the soft switch at $C011. You can find out whether the
language card or ROM is switched in by reading $C012. The
only way that you can find out whether or not the language-card
RAM is write-enabled is by trying to write some dara to the card’s
RAM space.

2-40 , 11121186

APDA Draft

Apple IIGS Hardware Reference
The State register

The State register is a read/write register containing eight
commonly-used standard Apple II soft switches. The byte-wide
format of the soft switch State register simplifies the process of
interrupt handling. Reading and storing this byte before
executing interrept routines allows you to restore the system soft
switches to the previous state in minimum time after returning
from the interrupt routine. Write operations to the State register
will slow the system momentarily. (See Figure 2-14.)

Warning Be careful when changing bits within this register. Use only
a read-modify-write instruction sequence when
manipulatng bits. See the waming in Chapter 1,
“Introduction to the Apple lics.”

7 514|321 0

— INTCXROM
ROMBANK
LCBNK2
RDROM
RAMWRT
RAMRD
PAGE2
ALTZP

Figure 2-14 . State register at $C068

241

11/21/86

Apple IIGS Hardware Reference

Bit Value
7 1
0
6 1
0
5 1
0
4 1
0
3 1
0
2 1
0
]_ -
0] 1
0

Description -

ALTZP: If this bit is 1, then bank-swilched memory, stack and zero page are in main
memory.
If this bit is 0, bank-switched memory, stack and zero page are in auxiliary memory.

PAGE2: If this bit is 1, text Page 2 is selected.
If this bit is 0, text Page 1 is selected.

RAMRD: If this bit is 1, auxiliary RAM bank is read-enabled.
If this bit is 0, main RAM bank is read-enabled.

RAMWRT: If this bit is 1, auxiliary RAM bank is write-enabled.
If this bit is 0, main RAM bank is write-enabled.

RDROM: If this bit is 1, the selected language-card ROM is read-enabled.
If this bit is 0, the selected language-card RAM bank is read-enabled.

LCBNKZ2: If this bit is 1, language-card RAM bank 1 is selected.
1f this bit is 0, the language-card RAM bank 2 is selected.

ROMBANK: ROM bank select switch (must always be 0). To maintain system
integrity, do not modify this bit.

INTCxROM: if this bit is 1, the internal ROM at $Cx00 is selected.
If this bit is 0, the slot card ROM at Cx00 is selected.

Auxiliary memory

The auxiliary bank has a 1K area of memory that serves the
purpose of expanding the text display to 80 columns. The other
63K can be used as auxiliary program and data storage. If you
use only 40-column displays, the entire 64K bytes is available for
programs and data.

Warning Do not attempt to switch in the audliary memory from a
BASIC program. The BASIC Interpreter uses several areas In
main RAM, Including the stack and the zero page. If you
switch to alternate memory In these areas, the BASIC
Interpreter fails and you must reset the system and start
over.

As you can see by studying the memory map in Figure 2-15, the

auxiliary memory is broken into two large sections and one small

one. The largest section is switched into the memory address

space from 512 to 49151 ($0200 through $BFFF). This space

includes the display buffer pages: As described in the section

*“Text Modes” earlier in this chapter, space in auxiliary memory

is used for one-half of the 80-column text display. You can

switch to the auxiliary memory for this entire memory space, or

you can switch just the display pages: See the next section, i
“Memory Mode Switching.”

APDA Draft 2-42 11/21/86

Apple IIGS Hardware Reference

% Soft swilches: If the only reason you are using auxiliary
memory is for the 80-column display, note that you can
store into the display page in auxiliary memory by using the
SET80COL and TXTPAGE2 soft switches described in the
section “Display Mode Switching” earlier in this chapter.

The other large section of auxiliary memory is switched into the
memory address space from 52K to 64K (D000 through $FFFF).
This memory space and the switches that control it are described
earlier in this chapter in the section “Bank-Switched Memory.”
If you use the auxiliary RAM in this space, the soft switches have
the same effect on the auxiliary RAM thart they do on the main
RAM: The bank switching is independent of the auxiliary RAM

switching.
FFFF]
Mun \aniddr
Banx Sanx
Ao Swiched EHE
M M
g [
o []
(i)
BFFF
Mun
AAM
3000 Auxican
SFFF RaM
8000
SEFF I
1000 High-Resoluton .
IFFF Graptucs Duspiay !Ill'fml
2000
iFFF

Ter and LowResoluuon |
Graphucs Dusplay Buffers |
W0 Stack and Zero Page—e

Figure 2-1§
Memory map with auxiliary memory

© Bank switches: Note that the soft switches for the bank-
switched memory, described in the previous section, do not
change when you switch to auxiliary RAM. In particular, if
ROM is enabled in the bank-switched memory space before
you switch to auxiliary memory, the ROM will still be
enabied after you switch. Any time you switch the bank.
switched section of auxiliary memory in and out, you must
also make sure that the bank switches are set propery.
When you switch in the auxiliary RAM in the bank-switched
space, you also switch the first two pages, from 0 to 511 ($0000
through $01FF). This part of memory contains page zero, which
is used for important data and base addresses, and page 1, which
is the 6502 stack. The stack and zero page are switched this way so
that system software running in the bank-switched memory space
can maintain its own stack and zero page while it manipulates the
48K address space (from $0200 to $BFFF) in either main
memory or auxiliary memory.

APDA Draft 2-43 1121186

Apple 1IGS Hardware Reference

Memory mode switching

Switching the 48K section of memory is performed by two soft
switches: The switches named RDMAINRAM and RDCARDRAM
select main or auxiliary memory for reading, and the ones
named WRMAINRAM and WRCARDRAM select main or
auxiliary memory for writing. As shown in Table 2-15, there are
two switches for each function-- one to select main memory, and
the other to select auxiliary memory. Enabling the read and
write functions independently makes it possible for a program
whose instructions are being fetched from one memory space to
store data into the other memory space.

Warning Do notf use these switches without careful planning.
Careless switching between main and auxiliary memories is
almost certaln to have catastrophic effects on the operation
of the Apple lles. For exampile, If you switch to expansion
memory with no memory expansion card in the memeory
expansion slot, the program that is running will crash.

Writing to the soft switch at location $C003 turns RDCARDRAM
on and enables auxiliary memory for reading; writing to
location $C002 turns RDMAINRAM on and enables main
memory for reading. Writing to the soft switch at location $C005
turns WRCARDRAM on and enables the auxiliary memory for
writing; writing to location $C004 turns WRMAINRAM on and
enables main memory for writing. By setting these switches
independently, you can use any of the four combinations of
reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and Hi-Res
graphics Page 1 can be used as part of the address space from
$0200 to $BFFF by using RAM read and RAM write soft switches
as described above. These areas in auxiliary RAM can also be
controlled separately by using the switches described in the
section “Display Mode Switching” earlier in this chapter. Those
switches are named SET80COL, TXTPAGE2, and HIRES.

As shown in Table 2-15, the SETBOCOL switch functions as an
enabling switch: With it on, you can select main memory or
auxiliary memory by writing to either TXTPAGE1 or TXTPAGE2.
With the HIRES switch off, the memory space switched by
TXTPAGEZ is text Page 1, from $0400 to $07FF; with HIRES on,
TXTPAGE2 switches both text Page 1 and Hi-Res graphics

Page 1, from $2000 to $3FFF.

If you are using both the auxiliary RAM control switches
(SETB0COL, CLR8OCOL, TXTPAGE1, TXTPAGE2, and HIRES)
and the auxiliary display page control switches (RDMAINRAM,
RDCARDRAM, WRMAINRAM, and WRCARDRAM), the display
page control switches take priority. That is, if CLRS0OCOL is on,
the RAM read and write switches toggle the entire auxiliary and
main memory space from $0200 to $BFFF.

APDA Draft 2-44 11/21/86

Apple 1IGS Hardware Reference

If SET80COL is on, the RAM switches have no effect on the
display page; if SETBOCOL is on and LORES is on, TXTPAGE1
and TXTPAGEZ switches control text Page 1, regardless of the
settings of the RAM read and write switches. Likewise, if
SET80COL and HIRES are both on, TXTPAGE1 and TXTPAGE2
control both text Page 1 and Hi-Res graphics Page 1, again
regardless of the RAM read and RAM write switches.

A single soft switch named ALTZP (for alternate zero page)
switches the bank-switched memory and the associated stack and
zero page area between main and auxiliary memory. As shown
in Table 2-15, writing to location $C009 turns ALTZP on and
selects auxiliary memory stack and zero page; writing to the soft
switch at location $C008 turns ALTZP off and selects main
memory stack and zero page for both reading and writing.

Table 2-15
Auxiliary-memory select switches
Location
Name Funetion Hex Decimal Notes
RDCARDRAM Read auxiliary memory $C003 49155 Write
RDMAINRAM Read main memory $C002 49154 Write
RDRAMRD Read switch status $C013 49171 Read (1=aux, 0=main)
WRCARDRAM Write auxiliary memory $C005 49157 Write
WRMAINRAM Write main mermory $C004 49156 Write
RDRAMWRT Read switch status $C014 49172 Read (1=aux, 0=main)
SET80COL On: access display page $C001 49153 Write
CLR80OCOL Off: use RAM switches, above $C000 49152 Write
RD80OCOL Read switch status $C018 49176 Read (1=80-col. store on)
TXTPAGEZ Page 2 on (aux. memory) $C055 49237 Write
TXTPAGE] Page 1 on (main memory) $C054 49236 Write
RDPAGE2 Read switch status $Co1C 49180 Read (1=page 2, O=page 1)
HIRES On: access Hi-Res pages $C057 49239 Write
LORES OfT: use RAM switches, above $C056 49238 Write
RDHIRES Read switch status $C01D 49181 Read (1=HIRES on, 0=0ff)
SETALTZP Aux. stack & zero page $C009 49161 Write
SETSTDZP Main stack & zero page $C008 49160 Write
RDALTZP Read switch status $C016 49174 Read (1=aux, 0=main)

Note: R means read the location, W means write anything to the location, R/W means read or

write, and R7 means read the location and then check bit 7.

There are three more locations associated with the auxiliary
memory switches. The high-order bits of the bytes you read at
these locations tell you the settings of the three soft switches
described above. The byte you read at location $C013 has its
high bit set 1o 1 if the auxiliary memory is read-enabled, or 0 if
the 48K block of main memory is read-enabled. The byte at
location $C014 has its high bit set to 1 if auxiliary memory is
write-enabled, or 0 if the 48K block of main memory is write-

APDA Draft

2-45

11121186

Apple 1IGS Hara'war:e Reference

enabled. The byte at location $C016 has its high bit set to 1 if
ALTZP is on (the bank-switched area, stack, and page zero in the
auxiliary memory are selected), or 0 if ALTZP is off (these areas
in main memory are selected).

]

%

* Sharing memory: In order to have enough memory
locations for all the soft switches and remain compatible
with the Apple II and Apple II Plus, the soft switches listed in
Table 2-15 share their memory locations with the keyboard
functions listed in Table 2-2. The operations—read or
write—(shown in Table 2-15) for controlling the auxiliary
memory are just the ones that are not used for reading the
keyboard and clearing the strobe.

Peripheral expansion

The seven expansion slots on the main logic board are used for
installing circuit cards containing the hardware and firmware
needed to interface peripheral devices to the Apple IIGS. These
slots are not simple 1/O ports; peripheral cards can access the
computer's, address, and control lines via these slots. The
expansion slots are numbered from 1 to 7, and certain signals,
described below, are used to select a specific siot.

Selecting a device 5

The Apple 1IGS supports several built-in devices and traditional
slot-devices, with each device taking up one logical slot. Each
built-in peripheral device is assigned to a slot, and cards are
plugged into any of the seven peripheral slots. This allows
devices, such as a serial port, to be built onto the main logic
board, however, only one device (either the built-in peripheral
device or the slot peripheral device) can be selected at a time.

The Slot register

The Control Panel (accessible by pressing the Apple-Control-
Esc keys simultaneously) allows the user to select the appropriate
device for each logical slot. Enabling and disabling of internal
peripheral devices may also be achieved under software control
by seuing the bits in the Slot Select register at location $C02D.
The bit representations are given in figure 2-16.

Warning To prevent the operating system from crashing. do not
manipulate the bits within the Slot Select register under
software confrol.

Waming Be careful when changing blfs within this register. Use only
a read-modify-write Instruction sequence when
manipulating bits. See the waming in Chapter 1.
"Introduction to the Apple lles”.

APDA Draft 246 11121186

Apple IIGS Hardware Reference

— Reserved; do not modify
Slot 1 device select
Slot 2 device select
Reserved; do not modify
Slot 4 device select
Slot 5 device select

Slot 6 device select
Slot 7 device select

Figure 2-16. The Slot register at $C02D

Bit Value Description

7

0

Selects the internal-device (AppleTalk) ROM code for slot 7.
Enables both the slot-card ROM space (location $C700 to $C7FF) and I/O space
$COF0 to $COFF.

Selects the internal-device (5.25-inch disk drive) ROM code for slot 6.
Enables both the slot-card ROM space (location $C600 to $C6FF) and 1/O space
$COEQD to $COEF.

Selects the internal-device (3.5-inch disk drive) ROM code for slot 5.
Enables both the slot-card ROM space (location $C500 to $CSFF) and 1/O space
$CODO to $CODF.

Selects the internal-device (mouse) ROM code for slot 4.
Enables the slot-card ROM space (location $C400 1o $C4FF).

Reserved; do not modify,

Selects the internal-device (serial port) ROM code for slot 2.

Enables both the slot-card ROM space (location $C200 to $C2FF) and 1/O space
$COAQ to $COAF.

Selects the internal-device (Serial port) ROM code for slot 1.

Enables both the slot-card ROM space (location $C100 to $CI1FF) and I/O space
$C090 to $CO9F.

Reserved; do not modify.

Note 1/O space for slots 3 ($COCO to $COCF) and 4 ($CODO to $CODF) is always enabled.

Peripheral-card memory spaces

Because the Apple IIGS microprocessor does all its I/O through

memory locations, portions of the memory space have been

APDA Draft 2-47

11/21/86

Apple IIGS Hardware Reference

APDA Draft

allocated for the exclusive use of the cards in the expansion
slots. In addition to the memory locations used for actual 1/0,
there are memory spaces available for programmable memory
(RAM) in the main memory and for read-only memory (ROM or
PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are
described below. Those memory spaces are used for small
dedicated programs such as 1/O drivers. Peripheral cards that
contain their own driver routines in firmware like this are called
intelligent peripherals. They make it possible for you 1o add
peripheral hardware to your Apple IIGS without having to change
your programs, provided that your programs foliow normal
practice for data input and output.

Peripheral-card 1I/O space

Each expansion slot has the exclusive use of 16 memory
locations for data input and output in the memory space
beginning at location $C090. Slot 1 uses locations $C090
through $CO9F, slot 2 uses locations $COAQ through $COAF, and
so on through location $COFF, as shown in Table 2-16.

These memory locations are used for different I/O functions,
depending on the design of each peripheral card. Whenever the
Apple IIGS addresses 1 of the 16 1/O locations allocated to a
particular slot, the signal on pin 41 of that slot, called /DEVSEL,
switches to the active (low) state. This signal can be used to
enable logic on the peripheral card that uses the 4 low-order
address lines to determine which of its 16 1/0 locations is being
accessed.

Table 2-16
Peripheral-card /O memory locations enabled by /DEVSEL
Slot Locations Slot Locations
1 $C090-$CO9F 5 $CODO-$CODF
2 $COAQ0-3COAF 6 $COEQ-$COEF
3 $COBO-$COBF 7 $COFO0-$COFF
4 $COC0~$COCF

Peripheral-card ROM space

One 256-byte page of memory space is allocated to each
accessory card This space is normally used for read-only
memory (ROM or PROM) on the card with driver programs that
control the operation of the peripheral device connected to the
card.

The page of memory allocated to each expansion slot begins at
location $Cn00, where n is the slot number, as shown in Table 2-
17 and Figure 2-16. Whenever the Apple IIGS addresses one of
the 256 ROM memory locations allocated to a particular slot, the

248 11121186

Apple 1IGS Hardware Reference

signal on pin 1 of that slot, called /IOSEL, switches to the active
(low) state. This signal enables the ROM or PROM devices on
the card, and the 8 low-order address lines determine which of
the 256 memory locations is being accessed.

Table 2-17
Peripheral-card 1/O memory locations enabled by /IOSEL

Slot Locations Slet Locotions
1 $C100-SC1FF S $Cs00-$CSFF
2 $C200-$C2FF 6 $C600-$C6FF
3 $C300-$C3FF 7 $C700-$C7FF
4 $C400-$C4FF ‘

Expansion ROM space

In addition to the small areas of ROM memory allocated to each
expansion slot, peripheral cards can use the 2K memory space
from $C800 to $CFFE for larger programs in ROM or PROM.
This memory space is called expansion ROM space. (See the
memory map in Figure 2-11.) Besides being larger, the
expansion ROM memory space is always at the same locations,
regardless of which slot is occupied by the card, making
programs that occupy this memory space easier to wrile.

This memory space is available to any peripheral card that
needs it. More than one peripheral card can have expansion
ROM on it, but only one of them can be active at a time.

Each peripheral card that uses expansion ROM must have a
circuit on it to enable the ROM. The circuit does this by a two-
stage process: First, it sets a flip-flop when the /IOSEL signal,
pin 1 on the slot, becomes active (low); second, it enables the
expansion ROM devices when the /IOSTRB signal, pin 20 on the
slot, becomes active (low). Figure 2-17 shows a typical ROM
enable circuit.

The /IOSEL signal on a particular slot becomes active whenever
the Apple 1IGS microprocessor addresses a location in the 256-
byle ROM address space allocated to that slot The /IOSTRB
signal on all the expansion slots becomes active (low) when the
microprocessor addresses a location in the expansion-ROM
memory space, $C800 to $CFFE. The /IOSTRB signal is used to
enable the expansion-ROM devices on a peripheral card. (See
Figure 2-17.)

APDA Draft 2-49 11121186

Apple 1IGS Hardware Reference

APDA Druft

> ENABLE |
SCEFF’ R K Br
: exasLe 2 | N B
(1,0 STROBE')= ROM

Figure 2-17
Expansion ROM enable circult

A program on a peripheral card can get exclusive use of the
expansion ROM memory space by referring to location $CFFF in
its initialization phase. This location is special: All peripheral
cards that use expansion ROM must recognize a reference to
$CFFF as a signal to disable their expansion ROMs. Of course,
doing so also disables the expansion ROM on the card that is
about to use it, but the next instruction in the initialization code
sets the expansion ROM enable circuit on the card.

A card that needs to use the expansion ROM space must first
insert its slot address ($Cn) in location $07F8 (known as MSLOT)
before it refers to $CFFF. This allows interrupting devices to
reenable the card’s expansion ROM after intecrupt handling is
finished. Once its slot address has been written in MSLOT, the
peripheral card has exclusive use of the expansion memory
space and its program can jump directly into the expansion
ROM. :

To RESET, ROM Enabie
Flip-Flop

W

(ostos)—{>0

Figure 2-18
ROM disable address deceding

As described earlier, the expansion-ROM disable circuit resets
the enable flip-flop whenever the microprocessor addresses
location $CFFF. To do this, the peripheral card must detect the
presence of $CFFF on the address bus. You can use the /IOSTRB
signal for part of the address decoding, since it is active for
addresses from $C800 through $CFFF. If you can afford to
sacrifice some ROM space, you can simplily the address
decoding even [urther and save circuitn on the card. For
example, il you give up the last 256 byics of expansion ROM
space, your disable circuil needs 10 derear only addresses of the

2-50 1112180

APDA Draft

Important

Apple IIGS Hardware Reference

form $CFxx, and you can use the minimal disable-decoding
circuitry shown in Figure 2-18.

Peripheral-card RAM space

There are 56 bytes of main memory allocated to the peripheral
cards, 8 bytes per card, as shown in Table 2-18. These 56
locations are actually in the RAM memory reserved for the text
and Lo-Res graphics displays, bul these particular locations are
not displayed on the screen and their contents are not changed
by the built-in output routine COUT1. Programs in ROM on
peripheral cards use these locations for temporary data storage.

Table 2-18
Peripheral-card RAM memory locations

Base Slot number
address 1 2 3 4 5 6 7

$0478 $0479 $047A $047B $047C $047D $047E $SO047F
$04F8 $04F9 $04FA $04FB $S04FC $04FD SO4FE $O4FF
$0578 $0579 $057A $057B $057C $057D $0S7E $057F
$05F8 $05F9 $05FA $05FB $05FC $05FD $0SFE $0SFF
$0678 $0679 $067A $067B $067C $067D $067E $067F
$06F8 S06F9 $06FA $06FB SO6FC $06FD $06FE $06FF
$0778 $0779 $077A $077B $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $07FF

A program on a peripheral card can use the eight base addresses
shown in the table to access the eight RAM locations allocated
for its use, as shown in the next section, “I/O Programming
Suggestions.”

I/O programming suggestions

A program in ROM on a peripheral card should work no matter
which slot the card occupies. If the program includes a jump o
an absolute location in one of the 256-byte memory spaces, then
the card will work only when it is plugged into the slot that uses
that memory space. If you are writing the program for a
penpheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card.

To function properly no matter which slot a peripheral card is
Installed In, the program in the card’s 256-byte memory
space must not make any absolute references to ifself.
Instead of using Jump instructions, you should force

2-51 ' 117121186

Apple 1IGS Hardware Reference

conditions on branch Instructions, which use relative
addressing.

The first thing a peripheral card used as an [/O device must do
when called is to save the contents of the microprocessor’s
registers. (Peripheral cards not being used as [/O devices do not
need to save the registers.) The device should save the regisiers’
contents on the stack, and restore them just before returning
control to the calling program. If there is RAM on the
peripheral card, the information may be stored there.

Finding the slot number with ROM switched in

The memory addresses used by a program on a peripheral card
differ depending on which expansion slot the card is installed
in. Before it can refer to any of those addresses, the program
must somehow determine the correct slot number. One way to
do this is 1o execute a JSR (jump to subroutine) to a location with
an RTS (return from subroutine) instruction in it, and then
derive the slot number from the return address saved on the
stack, as shown in the following example.

Important Make sure the return address Is located In Apple lics RAM,
not the memory on the peripheral card.

PHP ; save status
SEI ; inhibit interrupts
JSR KNOWNRTS ; —»a known RTS instruction...

;...that you set up

TSX ; get high byte of the...

LDA $0100,X% s ...return address from stack
AND #SOF ; low-order digit is slot no.
PLP ; restore status

The slot number can now be used in addressing the memory
allocated to the peripheral card, as shown in the next section.

1/0 addressing

Once your peripheral-card program has the slot number, the
card can use the number to address the I/O locations allocated
to the slot. Table 2-19 shows how these locations are related to
16 base addresses starting with $C080. Notice that the difference
between the base address and the desired I/O location has the
form $n0, where n is the slot number. Starting with the slot
number in the accumulator, the following example computes
this difference by 4 left shifts, then loads it into an index register
and uses the base address to specify 1 of 16 I/O locations.

APDA Draft 2-52 11721186

Table 2-19

ASL

ASL

ASL

ASL

TAX

LDA $CO0BO, X

; get n into...

r

Apple 1IGS Hardware Reference

; ...high-crder nibble. ..

; ...of index reglster.

; lecad from first I/0 location

< Selecting your target: You must make sure that you get an
appropriate value into the index register when you address
1/0O locations this way. For example, starting with 1 in the
accumulator, the instructions in the above example perform
an LDA from location $C090, the first I/O location aliocated
to slot 1. If the value in the accumulator had been 0, the
LDA would have accessed location $C080, thereby setting
the soft switch that selects the second bank of RAM at
location $D000 and enables it for reading.

Peripheral-card /O base addresses

Base Connector number

address 1 2 3 4 5 é 7
3C080 $C090 $C0AD $COBO $COCO $CoDO0 $COEO0 $COFO
5C081 $C091 $CO0Al $COB1 $C0oC1 $CoD1 $COE1 $COF1
$C082 $C092 $CoA2 $C0oB2 3C0C2 $COD2 $COE2 SCOF2
SC083 $C093 $COA3 $C0B3 $coc3 $COD3 $COE3 $COF3
3C084 $C094 $C0A4 $COB4 $CoC4 $COD4 $COE4 $COF4
3C085 $C095 $CO0AS $COBS $COC5 $COD5 $COES $COF5
$C086 $C09%6 $COA6 $COB6 $COC6 $COD6 $COE6 $COF6
$C087 $C097 $COA7 $CoB7 $CoC7 $COD7 $COE7 $COF7
$C088 $C098 $COA8 $COB8 $cocs $COD8 $COE8 $COF8
5C089 $C099 $C0A9 $CoB9 $C0Co 3COD9 $COE9 $COF9
SCOBA SCO9A $COAA $COBA $COCA $CODA $COEA $COFA
$C08B $C09B SCOAB SCOBB $COCB $CODB $COEB $COFB
5C08C $C09C 3COAC $COBC $COCC $CODC $COEC $COFC
5C08D $C09D $COAD $COBD $COCD $CODD $COED 3$COFD
SCO8E $CO9E $COAE $COBE $COCE SCODE $COEE $COFE
$CO8F SCO9F $COAF $COBF $COCF $CODF $COEF $COFF

APDA Draft

RAM addressing

A program on a peripheral card can use the eight base addresses
shown in Table 2-19 to access the eight RAM locations allocated

2-53

11/21/86

Apple 1IGS Hardware Reference

Warning

APDA Draft

for its use. The program does this by puiting its slot number into
the Y Index register and using indexed addressing mode with the
base addresses. The base addresses can be defined as constants
because they are the same no matter which slot the peripheral
card occupies,

If you start with the correct slot number in the accumulator (by
using the example shown earlier), then the following example
uses all eight RAM locations allocated to the slot:

TAY
LDA 50478, Y
STA '$04F8, Y
LDA $0578, Y
STA SO5FA, Y
LDA 50678, Y
STA SO6F8, Y
LDA 50778, Y
STA S07F8, Y

You must be very careful when you have your peripheral-
card program store data at the base-address locations
themselves since they are termporary storage locations: the
RAM at those locations Is used by the disk operating system.
Always store the first byte of the ROM location of the
expansion slot that Is currently active (SCn) in location
SO7F8 (MSLOT). and the first byte of the ROM location of the
slot holding the controller card for the startup disk drive in
location SOSF8,

Other uses of I/O memory space

The portion of memory space from location $C000 through
SCFFF is normally allocated to 1/O and program memory on the
peripheral cards, but in this computer there are built-in
functions that also use this memory space. Figure 2-19 shows the
division of address space to the built-in devices. The soft
switches that control the allocation of this memory space are
described in the next section.

2-54 11/21/86

APDA Drafi

Apple IIGS Hardware Reference

$CFFF
Peripheral Internal ROM
: and peripheral
fpansion ROM expansion ROM
Internal ROM
C800 '
: c700 Slot 7 ROM AppleTalk ROM
$C600 Slot 6 ROM 5.25" disk ROM
$C500 Slot 5 ROM 3.5" disk ROM
$C400 Slot 4 ROM Mouse ROM
$C300 Slot 3 ROM -column
$C200 Slot 2 ROM erial port
Slot 1 ROM Serial port ROM
$G100 Internal soft switches and peripheral 1/O
$C000 ' penp
Figure 2-19
11O memory map

Switching 1/0O memory

The built-in firmware uses two soft switches to control the
allocation of the /O memory space from $C000 to $CFFF. The
locations of these soft switches are given in Table 2-20.

¥ Note: Like the display switches described earlier in this
chapter, these soft switches share their locations with the
keyboard data and strobe functions. The switches are
activated only by writing, and the states can be determined
only by reading, as indicated in Table 2-20.

2-55

11/21/86

Apple IIGS Hardware Reference

Table 2-20
1/O memory switches

Locatlon
Name " Function Hex Decimal Notes
SETSLOTC3ROM Slot ROM at $C300 $CO0B 49163 Write
SETINTC3ROM Internal ROM at $C300 $CO0A 49162 Write
RDC3AROM Read SLOTC3ROM switch $C017 49175 Read (1 = slot ROM enabled,
7 0 = internal ROM enabled)
SETSLOTCXROM Slot ROM at $Cx00 $C006 49159 Write
SETINTCXROM Internal ROM at $Cx00 $C007 49158 Write
RDCXROM Read SLOTCXROM switch $C015 49173 Read (1 = slot ROM enabled,

0 = internal ROM enabled)

When SETSLOTC3ROM is on, the 256-byte ROM area at $C300 is
available to a peripheral card in slot 3, which is the slot
normally used for a terminal interface. Turning SETINTC3ROM
on disables peripheral-card ROM in slot 3 and enables the built-
in 80-column firmware. The 80-column firmware is assigned to
slot 3 address space because slot 3 is normally used with a
terminal interface, so the built-in firmware will work with
programs that use slot 3 this way.

The bus and I/O signals are always available to a peripheral card
in slot 3, even when the 80-column hardware and firmware are
operating. Thus it is always possible to use this slot for any /O
peripheral that does not have built-in firmware.

When SLOTCXROM signal is active (high), the I/O memory
space from $C100 to $C7FF is allocated to the expansion slots,
as described previously. Setting SLOTCXROM inactive (low)
disables the peripheral-card ROM and selects built-in ROM in
all of the /O memory space except the part from $C000 to
$COFF (used for soft switches and data I/O), as shown in

Figure 6-3.

% Note: Setting SLOTCXROM low enables built-in ROM in all
of the /O memory space (except the soft-switch area),
including the $C300 space, which contains the 80-column
firmware.

Developingﬁcaas for slot 3

In the original Apple Ile firmware, the internal slot 3 firmware
was always switched in if there was an 80-column card (either 1K
or 64K) in the auxiliary slot. This means that peripheral cards
with their own ROM were effectively switched out of slot 3 when
the system was turned on.

APDA Draft 2-56 11721186

APDA Draft

Apple IIGS Hardware Reference

In the Apple 1IGS, only the Control Panel may determine
whether or not the peripheral card in slot 3 is selected.

When programming for cards in slot 3:

B You must support the AUXMOVE and XFER routines at $C311
and $C314.

m Don't use unpublished entry points into the internal $Cn00
firmrware, because there is no guarantee that they will stay the
same.

m If your peripheral card is a character /O device, you must
follow the Pascal 1.1 firmware protocol. See the Apple IIGS
Firmware Reference manual for information on firmware
protocol.

Interrupts

The original Apple Ile offered little firmware support for
interrupts. The Apple IIGS firmware provides improved
interrupt support.

Interrupts are easiest to use with ProDOS and Pascal 1.2 because
they have interrupt support built in. DOS 3.3 has no built-in
interrupt support.

The main purpose of the interrupt handler is to support
interrupts in any memory configuration. This is done by saving
the machine’s state at the time of the interrupt, placing the
Apple in a standard memory configuration before calling your
program’s interrupt handler, then restoring the original state
when your program’s interrupt handler is finished.

What is an interrupt?

An interrupt is a hardware signal that tells the computer to stop
what it is currently doing and devote its attention to a more
important task. Print spooling and mouse handling are
examples of interrupt use, things that don’t take up all the time
available to the system, but that should be taken care of
promptly to be most useful.

For example, the Apple IIGS mouse can send an interrupt to the
computer every time it moves. If you handle that interrupt
promptly, the mouse pointer’s movement on the screen will be
smooth instead of jerky and uneven.

Interrupt priority is handled by a daisy-chain arrangement using
two pins, INT IN and INT OUT, on each peripheral-card slot.
Each peripheral card breaks the chain when it makes an interrupt
request. On peripheral cards that don’t use interrupts, these
pins should be connected together.

The daisy chain gives priority to the peripheral card in slot 7: 1f
this card opens the connection between INT IN and INT OUT, or

2-57 11/21:86

Apple lIGS Hardware Reference

if there is no card in this slot, interrupt requests from cards in e
slots 1 through 6 can’t get through. Similarly, slot 6 controls

interrupt requests (IRQ) from slots 1 through 5, and so on down

the line. ,

When the IRQ’ line on the Apple 1IGS microprocessor is
activated (pulled low), the microprocessor transfers control
through the vector in locations $FFFE to $FFFF. This vector is
the address of the Monitor firmware’s interrupt handler, which
determines whether the request is due to an external IRQ or a
BRK instruction and transfers control to the appropriate routine
via the vectors stored in memory page 3.

For further details on handling interrupts in the Apple
11Gs, see the Apple IIGS Firmware Reference manual.

APDA Draft

2-58 11721/86

Apple IIGS Hardware Reference

Chapter 3

New Features

The Fast Processor Interface (FPI) is one of the two major subsystems that make up the
Apple IIGS. It provides these new features for the Apple II famuly:

« faster processor speed
« support of additional RAM
« 1/O shadowing

Figure 3-1 shows the relationship of the FPI to other parts of the Apple IIGS. This chapter
describes the FPI subsystem and the new functions.

Cama F ol £
-
wis
MEGA O
;—————————— 1
| - T
Tl P o i -
L wans %) Vides amp <%
sarw ep K "t (esmes foanes Jookos |aemes :'"" - - [: B9 (24 S
pagrr=—{2an Jaaw JRam [¥ c —)

PTIC waed

rearaer

-

133

“Ey

ey MOC

L E o
Figure 3-1. Relationship of the FPI subsystem to other system components

The FPI subsystem

During normal operation, the FPI side of the system runs at 2.8 MHz and the Mega II side

runs at 1.024 MHz. This allows faster processing without disturbing the standard 1.024
MHz speed for [/O, video timing necessary for compatibility, and existing peripherals.

APDA Draft 3-1

1172186

Apple IIGS Hardware Reference

Darta must be ransferred and soft switches accessed between the Mega II and the FPL
When a program running on the FPI side of the system must access an I/O or Mega II
RAM location, the system slows down briefly to 1.024 MHz and synchronizes itself with
the Mega II timirig so that the access can be accomplished. When the access is finished, the
FPI side returns to the normal 2.8 MHz operating speed, and the Mega Il side continues at
1.024 MHz. -

A combination of existing Apple II soft switches, Mega II soft switches, and FPI control
registers controls the various functions of the FPI. The control registers include:

« the State register

» the Shadow register

« the Speed register

Memory allocation

The FPI controller can access a minimum of 128K of RAM and is expandable to 8Mb.
This RAM is separate from the 128K RAM available to the Mega I and is used for text and
graphics display buffers and system software. The FPI also has access to 128K of ROM,
expandable to IMb. The application program is free to use the remaining locations in
banks $0 and $1 and those in the RAM expansion banks. Figure 3-2 shows the system
memory map.

APDA Draft 3-2

112156

Bank Numbers Apple IIGS Hardware Reference

500 $01 KR .. ST CSE0 SE $0 ... SFE §FF

SFFFF R e

,m#-

.

.
Presesesrsosrsssassaasasesss

4
ameniond

COPPPCEPIIIERPPPOncssaasad

A INIA 4G ISAACI IR P G C Gt 9T d 04
,onucq‘f_a,qc_q-q;oaamu- saasd

Yvaadeeeeeetetenseeeveiviees

PP PEA I PRI T AN masana
:cuyc_ncndccououcwnu-

Bwitn RAM Expansion RAM Expanmion ROM authlOM'
] User 22 Dsciey il © Bl Syamm [Reserved

Figure 3-2. The Apple IIGS memory map

The State register

The State register is duplicated in the FPI IC, allowing access to eight of the commonly
used soft switches in a single transfer, as shown in Figure 3-3. This means that reading
the State register at location $C068 allows you to read the state of the soft switches without
slowing the system down. Write operations to the State register will slow the system down
momentarily. Figure 3-3 shows the soft switches in the State register.

7 16|54 |32 |1]|0]| soft switches

INTCXROM
—— ROMBANK
BANK2
RDROM
RAMWRT
RAMRD
PAGE2
ALTZP

Figure 3-3. State register at $C068

Shadowing

Shadowing is the process of duplicating the 1/O addresses in another bank of RAM.
Shadowing may be enabled in any RAM memory bank. The /O addresses are located in
banks $E0 and $E1, which is the low-speed Mega II main address space. By shadowing
these locations in the high-speed FPI address space, only writes to the I/O location require
the system to slow down.

APDA Draft 3-3

11:21°86

Apple IIGS Hardware Reference

An [/O write actually writes to the /O address in both banks, the Mega II bank, $EO0 or
$E1, and the high-speed bank, $00 or $01 (when shadowing is enabled in $00 and $01
only). Shadowing, therefore, helps minimize the impact of video display updates on the
overall system speed: Only [/O writes are done at low system speed; 1/O reads are done at
full system speed. '

The shadowing options are
« enable shadowing for banks $00 and $01 only
- enable shadowing for all RAM banks (not recommended)

Note: Shadowing of banks other than $00 and $01 should not be attempted under
normal operating circumstances; firmware operating in other banks will be
corrupted if shadowing is enabled in those banks, resulting in a system crash.

Choose which banks you want shadowing enabled in by setting or clearing bit 4 in the
Speed register (described later in this chapter). This will duplicate the I/O locations and any
portions of the video buffers you select (via the Shadow register) in those shadow-enabled
RAM banks. Reads and writes can now be done from and to these I/O locations in the
shadowed banks. Direct access to I/O and the video buffers is not inhibited and may stll
be accesed through banks $EO and $E1. Figure 3-4 shows banks $E1 and $01, or any
other odd-numbered shadow-enabled bank.

Note that slowing of the system for each I/O write is very brief and won’t affect program

execution speed significantly. Only continuous write accesses would actually be really
noticeable.

APDA Drdft 34

11/121:86

Apple IIGS Hardware Reference

Bank $E1 (64K) Bank $01 (64K)
SFFFF : i $FFFF
$E000 SE000
$C000 s "Ospmefﬂmm $C000
$A000 sAooo\
$8000 $8000
$6000 - . $6000 >32K Super Hi-R
N Hi-Res N P es
\\ + grapnics \ \ video buttfer
§4000 P2 A\ \ 54000
Hi-Res ST
< : 97070, 0. 0.0, 0.4, \
grapmcs :.000¢0.00‘00‘
$2000 Page 1 %% ete%ete%e? $2000/
Text page2
R e i
$0000 $0000
) Shaded areas of bank $E1 and $E1
Shadow regst . are shadowed in banks $00 and $01

'M rt R '- when shadowing is enabled.

76543210

r=reserved

*

=see bit descriptions

The Shadow register above shows which
bits control shadowing of which areas.

The Shadow register

Figure 3-4. Shadowed memory map

The Shadow register, located at $C035, controls which address ranges of each shadowed
high-speed RAM bank are duplicated in the Mega [RAM display areas. The Shadow
register also determines whether or not the I/O space/language-card (IOLC) areas for each
bank are implemented. Figure 3-5 shows the format of the Shadow register, followed by a
list of each of the bits and their functions.

APDA Draft

3-5

11#’2 [:‘:h

Apple IIGS Hardware Reference

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, “Ifitroduction to the Apple IIGS”.

716

5

4

3

2

1

0

l— Inhibit shadowing text Page 1

~——— [nhibit shadowing Hi-Res Page 1

inhibit shadowing Hi-Res Page 2

Inhibit shadowing Super Hi-Res buffer

Inhibit shadowing auxiliary HIRES pages

Reserved; do not modify
Inhibit I/O and language-card operation

Reserved; do not modify

APDA Draft

Figure 3-§. Shadow register at $C035

36

11121186

Apple IIGS Hardware Reference

Bit Value Description

.
6

Reserved; do not modify.

The I/O and language-card (IOLC) inhibit bit: This bit controls whether the
4K range from $C000 to $CFFF acts as RAM or [/O. When this bit is 0,
I/O is enabled in the $Cxxx space and the RAM that would normally occupy
that space becomes a second $Dxxx RAM space, forming a language card.
When this bit is 1, the /O space and language card are inhibited, and
contiguous RAM is available from $0000 through $FFFF.

For more information on I/O and the language card,
see Chapter 2, “The Mega II: Maintaining

Compatibility.”

k)
4

w2

1

Reserved; do not modify.

Inhibit shadowing for auxiliary Hi-Res graphics pages: When this bit is 1,
all shadowing enabled for Hi-Res graphics pages 1 and 2 (as determined by
bits O through 3 in this register) is disabled for all shadowed auxiliary (odd)
banks. Shadowing of main bank Hi-Res graphics pages remains
uneffected.

When this bit is 0, all shadowing enabled for Hi-Res graphics pages (as
determined by bits O through 3 in this register) is enabled for auxiliary bank
Hi-Res graphics pages as well.

Super Hi-Res buffer inhibit: When this bit is 1, shadowing is disabled for
the entire 32K video buffer.
When this bit is 0, shadowing is enabled for the Super Hi-Res buffer.

Hi-Res graphics Page 2 inhibit: When this bit is 1, shadowing is disabled
for Hi-Res video Page 2 and auxiliary Hi-Res video Page 2.

When this bit is O, shadowing is enabled for Hi-Res video Page 2 and
auxiliary Hi-Res video Page 2, unless auxiliary page Hi-Res shadowing is
prohibited by bit 4 of this register.

Hi-Res graphics Page 1 inhibit: When this bit is 1, shadowing is disabled
for Hi-Res graphics Page 1 and auxiliary Hi-Res graphics video Page 1.
When this bit is 0, shadowing is enabled for Hi-Res graphics Page 1 and
auxiliary Hi-Res graphics Page 1, unless auxiliary Page Hi-Res graphics
shadowing is prohibited by bit 4 of this register.

Text Page 1 inhibit. When this bit is 1, shadowing is disabled for text Page
1 and auxiliary text Page 1.

When this bit is 0, shadowing is enabled for text Page 1 and auxiliary text
Page 1.

Note: Text Page 2 (30800 through $OBFF) is never shadowed. If you need a text
display area or a code storage area, use Mega II banks $EO and $E1. These banks
are limited to 1.024 MHz operation, however.

Areas within each shadow-enabled 64K bank may be shadowed or not by settng the

corresponding bit or bits in the Shadow register. Shadowing may be turned off (no banks

APDA Draft 3.7 11/21:86

Apple IIGS Hardware Reference

shadowed) by setting all bits in the Shadow register. When the Shadow register is cleared
on reset, it defaults to shadowing all video areas.

Each bit in the Shadow register is active high, which means that the shadowing of the
selected area is inhibited if the corresponding bit is set. Programs that use the Shadow
register can tum off shadowing in unused video areas by setting the appropriate bits and
reclaim the free memory space in the unused video buffers in Mega II banks $EO and $EI.

The Speed register

The Speed register, located at $C036, contains bits that control the speed of operation and
that determine whether a specific area within a bank is shadowed. The Speed register is
cleared on reset or power up. Figure 3-6 shows the format of the Speed register, followed
by a description of each bit. :

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, “Introduction to the Apple IIGS™.

7| 6|5|4]3|2(1]0

|——Slot 4 disk motor-on detect

Slot 5 disk motor-on detect

Slot 6 disk motor-on detect

Slot 7 disk motor-on detect
Shadowing enabled in all RAM banks
Reserved; do not modify

Reserved; do not modify

Central processor speed

Figure 3-6. Speed register at $C036

APDA Draft 38 11:21:86

Bit

5-6

0-3

Apple lIGS Hardware Reference
Value Description

1 System operating speed. When this bit is 1, the system operates at 2.8

MHz.
0 When this bit is 0, the system operates at 1.024 MHz (as in an Apple II).

- Reserved; do not modify .

1 Bank shadowing bit: This bit determines memory shadowing in the RAM
banks. Shadow register bits O through 4 will determine which portions, if
any, of the banks will be shadowed. To enable shadowing in all RAM
banks $00 through $7F, set this bit to 1.

0 To enable shadowing in banks $00 and $01 only, clear this bit.

1 Disk I motor address detectors: To retain Apple II peripheral compatibility,
the motor-on detectors slow the system to 1.024 MHz whenever a Disk 11
motor-on address is detected. When the disk motor-off address is accessed,
the system speed increases to 2.8 MHz again. For example, when bit 1 is
1, the FPI switches to slow mode (1.024 MHz) when address $C0OD9 is
accessed, and returns to normal speed (2.8 MHz) following a $COD8
access. (See list of addresses below.)

0 When this bit is 0, the disk I motor detector is turned off.

Bits 0 through 3 detect the following address:

Slot Motor-on Motor-off

4 $COCY $COC8
5 $COD9 $COD8
6 SCOE9 $COE8
7 $COF9 $COF8

Note: Drives designed for the Apple IIGS system should use the speed bit (Speed
register bit 7) to change the processor speed when accessing disks, rather than the
disk motor-on detectors (Speed bits 0 through 3). By using bit 7, you access
drives in slots other than slots 4 through 7 by changing the system speed manually.
Be aware that central processor speed changes for drive compatibility may affect
application program timing; avoid using the motor addresses unless they are used in
a fashion consistent with the drive’s central processor speed requirements.

Note: Drives designed for previous Apple II computers will function as Apple IIGS
peripherals only if the system speed is slowed before disk access is attempted.

Note: For compatability with future Apple products, use firmware calls only to
manipulate bits 0 to 3 of the Speed register.

RAM control

The FPI alone controls the high-speed RAM. This high-speed memory consists of a
minimum of 128K RAM on the main logic board and additional expansion RAM on the
extended memory card for a total of 8Mb.

APDA Draft 3-9 11221 86

Apple IIGS Hardware Reference

The FPI provides memory refresh for the high-speed RAM, which incorporates internal
refresh-address counters. This refresh scheme frees the address bus so that the FPI can
execute ROM cycles while RAM refresh cycles are occurring, thus allowing full speed
operation in the ROM. These cycles occur approximately every 3.5 us and reduce the 2.8
MHz processing speed by approximately 8 percent for programs that run in RAM. When
running at 1.024 MHz, refresh cycles are executed during an unused portion of the
processor cycle and do not affect the processor speed.

ROM

The FPI provides contol for 128K of on-board ROM and additional expansion-card ROM
for a total of 1Mb. The Apple IIGS on-board system ROM is located in banks $FE through
$FF. Banks $FO through $FD are reserved for ROM expansion. ROM that occupies this
address space may reside on the extended memory card only, along with additional
expansion RAM.

I/0O processing

Normally, all /O write accesses are to the designated I/O space in bank $E0 or $E1, and
are written to all shadowed I/O space in the FPI. However, when FPI internal registers
(the direct memory access [DMA] Bank register, the Speed register, and the Shadow
register) are accessed, or when the interrupt ROM addresses ($C071 through $CO7F) are
read, only the high-speed I/O space is written to. All reads access only the high-speed,
shadowed I/O space, eliminating the need to slow the system speed

Direct memory access (DMA) is a means of providing
fast [/O. A peripheral card in one of the expansion
slots can require DMA. For more information on
DMA, see Chapter 5, “Peripheral Expansion Slots.”

The interrupt ROM code is available when shadowing is enabled and the inhibit I/O and
language-card operation (IOLC) bit in the Shadow register is set. The SETINTCXROM
and SETSLOTCXROM soft switches do not affect interrupt ROM accesses.

The Slot register

The built-in Slot register, located at $C02D, is used to select which device is enabled for
each of the seven logical slots. That device can be either the internal or the peripheral slot
device. If the enable bit is 1, accesses for that slot ROM space ($Cnxx) are directed to the
ROM on the slot card. If the enable bit is cleared, the built-in I/O device is selected, and the
systemn ROM code associated with the slot is executed.

The Control Panel (accessible by pressing and releasing the Apple-Control-Esc keys in
sequence) also allows the user to select the appropnate device for each logical slot. The bit
representations are shown in Figure 3-7, followed by a list of the bit descriptions.

Note: Slot 3 device hardware addresses are always available. However, the slot 3

ROM space is controlled by the SETSLOTC3ROM and SETINTC3ROM soft
switches to maintain compatibility with the existing Apple II products.

APDA Draft 3-10 11/21:86

Bit Value

7

Apple IIGS Hardware Reference

Warning: Be careful when changing bits within this register, Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, “Introduction to the Apple IIGS™.

6

514132110

—— Reserved; do not modify
~——— Slot 1 I/0 ROM select
Slot 2 1/0 ROM select
Reserved; do not modify
Slot 4 I/0 ROM select
Slot 5 /0 ROM select

Slot 6 I/0 ROM select
Slot 7 IO ROM select

0

Figure 3-7. The Slot register at $C02D
Description

Selects the internal-device (AppleTalk) ROM code for slot 7.
Enables both the slot-card ROM space (location $C700 to $C7FF) and I/O
space $COF0 to $COFF.

Selects the internal-device (5.25-inch disk drive) ROM code for slot 6.
Enables both the slot-card ROM space (location $C600 to $C6FF) and I/O
space $COEO to $COEF.

Selects the internal-device (3.5-inch disk drive) ROM code for slot 5.
Enables both the slot-card ROM space (location $C500 to $C5FF) and I/O
space $CODO to $CODF.

Selects the internal-device (mouse) ROM code for slot 4.
Enables the slot-card ROM space (location $C400 to $C4FF).

Reserved; do not modify.

Selects the internal-device (serial port) ROM code for slot 2.

Enables both the slot-card ROM space (location $C200 to $C2FF) and /O
space $COAO to $COAF.

Selects the internal-device (serial port) ROM code for slot 1.
Enables both the slot-card ROM space (location $C100 to $C1FF) and I/O
space $C090 to $COSF.

Reserved; do not modify.

Note: 1/O space for slots 3 ($COBO to $COBF) and 4 ($COCO to $COCEF) is always

enabled.

APDA Draft | 3-11

1112186

Apple IIGS Hardware Reference
Synchronization

Whenever data need to be ransferred between the FPI and the Mega II, the FPI IC must
first synchronize itself with the slower-running Mega II. This may involve a single Mega
I cycle, as when a single I/O location in the Mega II must be accessed, or consecutive
Mega II cycles (extended periods of low-speed operation), as when Apple II software must
be run at the lower speed for compatibility. The FPI runs the processor at low speed by
generating one processor cycle for each Mega Il cycle, thus running the processor at
precisely 1.024 MHz. This speed is necessary to support time-dependent Apple II
software.

In all Apple IT computers, every sixty-fifth processor cycle is elongated, or stretched by
140 nanoseconds. This practice is required to keep the video display consistent.

65th PHO cycle streched
by 140 nanoseconds

cycle 1 2 3 - 63| 64| 65
number:

PHO
(1.024 MHz

- - - - s

Figure 3-8. PHO cycles, 14M cycles, and M-States
The Mega II cycle

A Mega Il cycle is a central processor or DMA cycle that requires access to the low-speed
side of the system. These are:

- all extenal and most intemal I/O operations

» shadowed video write operations

» inhibited memory accesses

» Mega I memory accesses to banks $EO and $E1.

A Mega II cycle consists of these steps:

1. A Mega Il cycle begins when the FPI recognizes an address that requires access to the
slow side of the system, such as listed above.

2. Approximately 90 nanoseconds after the processor PH2 clock goes low, the location
address and bank address from the processor become valid. The FPI decodes these
addresses and determines the type of cycle to be executed before the PH2 clock rises.

3. If the cycle is a Mega I cycle, the FPI holds the PH2 clock high undl it synchronizes
itself with the Mega I1.

4. Memory or I/O access begins.

APDA Draft 3-12 11121:86

Apple IIGS Hardware Reference
Mega II auxiliary bank access

To allow direct access to the Mega II auxiliary bank, the FPI passes the least significant bit
(Isb) of the bank address to the Mega II during each Mega II cycle. If shadowing is
enabled or the software is addressing bank $E0 or $3E1, an odd-numbered bank address
will access the Mega I auxiliary memory automatically, without using the soft switches.
For this setup to work, the programmer must first set bit 0 in the Video-Control register at
$C029 to 1 (see Chapter 4, “Video,” to read about the Video-Control register). Otherwise,
the Mega II ignores the bank bit, and the soft switches must then be used to access the
auxiliary 64K through an even-numbered, shadowed bank.

Real-time clock IC interface

The real-time clock (RTC) chip provides the system with calendar and clock information as
well as parameter RAM preserved by battery power. These functions are performed
through two read/write registers: the control and data registers.

Note: The parameter RAM in the RTC is used for system parameters, and is not
available, nor should it be used by programs other than the system.

The control register (located at $C034), shown in Figure 3-9, serves a dual function: as the
command register for the RTC and as the Border Color register. Refer to “Screen Border
Color” in Chapter 4 for more information on controlling the color of the display border.

Serial data communication to and from the RTC is carried out one byte at a time. (The
terms read and write are used in perspective of the system: A read transfers data from the
clock chip, while a wrire transfers data to the clock chip.) To write to the clock chip, the
program must first write the data into the data register ($C033), then set the appropriate bits
in the control register ($C034). To read from the clock chip, set the appropriate control
register bits, and then read the data from the data register.

Note: To remain compatable with future Apple II products, use the firmware calls to
read and write data to the RTC. See the Apple IIGS Firmware Reference manual for
how to use the firmware.

Warning: Be careful when changing bits within this register. Use only a read-

modify-write instruction sequence when manipulating bits. See the waming in
Chapter 1, “Introduction to the Apple IIGS™.

APDA Draft 3-13

HE2L'86

Apple [IGS Hardware Reference

6 514 |3 2 1 0

Bit Value
7 1

0
6 1

0
5 1

0
4 -
30 -

Border color

¥ Reserved; do not modify

» Last byte = 0

—p» Read = 1, write = 0

» Start = 1, finished = 0

Figure 3-9. Control register at $C034
Description

A read or write to the the clock chip begins by setting this bit to 1.

This bit is set to 0 automatically by the RTC when the data exchange is
complete. The program can detect that the exchange has been completed by
polling bit 7 fora 0.

The read/write bit: Set this bit to 1 prior to a read from the RTC.
Set this bit to O prior to a write to the RTC.

The last-byte control bit: After the last byte has been read or written, this bit
must be set to 1. This last step is necessary to avoid corrupting the data in
the clock chip after the ransactions are completed.

A data transfer typically involves an exchange of two or three bytes. Set
this bit to O before transferring any bytes to or from the RTC.

Reserved; do not modify.

Display border color: See “Text and Background Color” in Chapter 4,
“Video,” for details on selecting the video display border color.

APDA Draft 3-14

11121:86

Apple IIGS Hardware Reference

Chapter 4

New Video

The Apple IIGS can display several video modes. These include display modes that are
compatible with the rest of the Apple II family (as well as some enhancements to these
existing modes) and some completely new display modes. These new video modes
provide higher resolution, greater color flexibility, and programming ease previously
unseen in the Apple II product line. Figure 4-1 shows a block diagram of the Apple 1IGS
and the relationship of the video components within the system.
This chapter describes: _

« enhancements to the standard Apple II video modes

* new video features including the new video display modes

The Video Graphics Controller
The Video Graphics Controller (VGC) custom IC is responsible for generating all video
displayed by the Apple IIGS. The VGC provides these functions:

« supports and enhances existing Apple II video modes

 supports the new video modes

» provides interrupt handling for two interrupt sources

The VGC generates all video output in all video modes, while the Mega II is responsible
for maintaining the video RAM. All writes to the video display buffers in bank $EQ and
$E1 are done via the Mega II. Figure 4-1 shows the relationships of the VGC, Mega II,
main, and auxiliary RAM. ‘

APDA Draft 4.1

1121 86

Apple 11GS Hardware Reference

v

oalire
AN

__|
__‘ wxae

B

Bty DOC

B |

Figure 4-1. Diagram of the Apple IIGS and video components

The RGB video connector

Located at the rear of the main logic board is the RGB video connector. An analog RGB
video monitor may be connected to this connector. Figure 4-1 shows the pin diagram of
this connector, and table 4-1 describes the signal associated with each pin.

..C...
1514131211 10 9

Figure 4-2. The RGB video connector

APDA Draft 4-2 11721/86

Pin Description
1- Ground

2 Red

3 Comp

4 N.C.

5 Green

6 Ground

7 -5V

8 +12V

9 Blue

10 . (% &

11 Sound

12 NTSC/PAL
13 Ground

14 N.C.

15 N.C.

Apple IIGS Hardware Reference

Ground reference and supply
Red analog video signal
Composite synch signal

No connection

Green analog video signal
Ground reference and supply
-5 volt supply

+12 volt supply

Blue analog video signal

No connection

Analog sound output
Composite video output
Ground reference and supply
No connection

No connection

Table 4-1. The RGB video signals

Apple II compatibility

The Apple IIGS shares several display modes with previous Apple II computers. The
Apple 1IGS supports and enhances these existing Apple II video modes:

* 40-column and 80-column text modes
» mixed text/graphics mode

» Lo-Res graphics mode

Hi-Res graphics mode

Double Hi-Res graphics mode

*

For more information on Apple II-compatible video,
refer to Chapter 2, “The Mega II: Maintaining

Compatibility.”

Enhancements to the existing Apple II video modes include:
+ the ability to select unique text and background colors from any of the 16 Apple II

colors listed in Table 4-2.

« the ability to select the border color for the perimeter of the video image. You can
choose this color from any of the 16 Apple II colors listed in Table 4-2.

* the ability to display gray-scale video. This means that you can display color video
output on monochrome monitors in shades of gray rather than in dot patterns that
represent color. This ability increases contrast between graphics colors on a

monochrome monitor.

Table 4-2. Text and background colors

APDA Draft

11/21'86

Apple 1IGS Hardware Reference

$0 Black
$1 Deepred
$2 Dark blue

. $3 Purple
$4 Dark green
$5 Dark gray
$6 Medium blue
$7 Light blue
$8 Brown
$9 Orange
$A Light gray
$B Pink
$C Green
$D Yellow
$E Aquamarine
$F White

Removing color from the composite video signal in 40-column and 80-column text modes
makes text more readable. Color is not removed when the computer is running in mixed
text/graphics modes, and the 4 lines of text at the bottom of the display will exhibit color
fringing on composite color monitors.

Color fringing is the rainbow-like effect that appears

around text characters when they are displayed in color

on most color monitors. This fringing is

unavoidable because the color detection circuitry of

most composite color monitors cannot respond fast

enough to the changing of the color information

during the text portion of the display. Displaying

text in black and white makes it more readable.

New video display features

The Apple [IGS brings new features to the existing Apple II video modes. These include:
» selectable screen border color
» selectable background color
« selectable text color

« selectable color or black-and-white composite video

These enhancements are described below. The new graphics modes—Super Hi-Res
graphics and color-fill graphics—are described in the next section.

Text and background color
The Apple IIGS provides the capability of colored text on a colored background. To select

one of these new display options, write the appropriate color values to the Screen Color
register located at $C022.

APDA Draft 44

Apple IIGS Hardware Reference

The Screen Color register is an 8-bit dual-function register. First, the most significant 4
bits determine the text color. Second, the least significant 4 bits determine the background
color. You can choose these colors from the 16 available Apple II colors given in Table 4-
2. The user can also select these colors from the Control Panel. Figure 4-3 shows the
format of the Screen Color register, followed by a description of each bit in the register.

71 6|1 S| 4] 3| 2 11 0

Text Background

Figure 4-3. Screen Color register at $C022
Bit Value Description
74 - Text color
30 - Background color

Border color

The colored border area surrounds the video display text area. You may select a color for
the border by writing the appropriate color value to the Screen Border register located at
$C034. You can choose this color from the 16 Apple II colors listed in Table 4-2.
Alternately, the user can select the border color from the Control Panel.

The Border Color register is an 8-bit read/write register serving 2 functions. First, the least
significant 4 bits determine the border color. Second, the most significant 3 bits are the
control bits for the real time clock chip interface logic. Figure 4-4 shows the Border Color
register format, followed by a descripton of each bit.

Note: When you change the border color by writing to the Border Color register,
use values between 30 and $30F when writing to this register. This will ensure that
the RTC chip contents remain unaltered.

See the section on the Real Time Clock Interface in
Chapter 3, “New Features,” for more information on
the RTC.

71 6| S| 41 3} 21 1] O

RTC interface Border

Figure 4-4. Border Color register at $C034

Bit Value Description

74 - Real -time clock control bits (see “Real-Time Clock Interface” in Chapter 3)

30 - Border color

APDA Draft 4-5 11:21186

Apple IIGS Hardware Reference
To color or not to color...

The Apple IIGS video is displayed in either color or black and white. Figure 4-5 shows the
format of the Manochrome/Color register, followed by a description of each bit. Located at
$C021, this register controls whether the composite video signal consists of color or
gradations of gray. If bit 7 is a 1, video displays in black and white; if it is a 0, video

displays in color.

If you are using a monochrome monitor, set this bit to 1. Displaying text in black and
white results in a better-looking, more readable display. The remaining bits are reserved;
do not modify them when writing to this location. You can also select color or
monochrome video from the Control Panel. Figure 4-5 shows the format of the
Monochrome/Color register, followed by a description of each bit in the register.

Important: This bit does not affect the RGB outputs.

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in

Chapter 1, “Introduction to the Apple IIGS”.

7| 6| 5| 4

3

2

1

0

Reserved; do not modify

Figure 4-5. Monochrome/Color register at $C021

Bit Value Description

7 1 Composite gray scale video output

0 Composite color video output

60 - Reserved; do not modify

New graphics display modes

The Apple [IGS has 2 video modes that are new to the Apple II family. These are the 320-
pixel and 640-pixel Super Hi-Res graphics modes, which increase horizontal resolution to
either 320 or 640 pixels and increase vertical resolution to 200 lines.

A pixel is the smallest individually addressable video
or picture element (hence the word pixel). The Apple
I1GS video screen displays different quantities of
pixels, depending on the video mode. In Super Hi-
Res graphics 640-mode, the screen contains 128,000
pixels (640 pixels on each of 200 lines). In 320-
mode, half that number of pixels are displayed.

APDA Draft

46

Lo Color or monochrome select

1112186

Apple 1IGS Hardware Reference

Another new feature of Apple IIGS video graphics is Color-Fill, an option that simplifies
the task of painting continuous color on any one line.

Color-Fill mode lets you draw consecutive pixels on
a scan line in the same color faster and much more

conveniently than previously possible. Color-Fill is
available only in 320-Super Hi-Res graphics.

Super Hi-Res graphics
The Apple TIGS uses Super Hi-Res graphics to implement new video graphics features
previously unavailable in the Apple II family of computers. The VGC is primarily

responsible for supporting the Super Hi-Res video graphics, which provide these new
video capabilities:

* 320- or 640-horizontal resolution selectable

e 200-line vertical resolution

= 12-bit color resolution that allows 4096 available colors to choose from
» 16 colors for each of the 200 lines —up to 256 colors per frame

« Color-Fill mode

* scan-line interrupts

» all new video mode features programmable for each scan line

» linear display buffer

+ pixels contained within byte boundaries

The Super Hi-Res graphics buffer

The Super Hi-Res graphics display buffer contains 3 types of data: pixel data, scan-line
contol bytes, and color palettes. Figure 4-6 shows a memory map of the display buffer.
This buffer resides in contiguous bytes of the auxiliary 64K bank of the slow RAM from
$2000 through $9FFF. Note that this display buffer uses memory space used for the
Apple II Double Hi-Res graphics buffers, but leaves the other graphics and text display
buffers untouched.

The next three pa‘ragmphs describe the color palettes, scan-line control bytes, and pixel data
bytes used in Super Hi-Res graphics mode.

APDA Draft 4.7

11/121/86

Apple IIGS Hardware Reference

Memory bank $E1

- -y -
LA O B O J

$OFFF
Color
palettes
$9EOQO
Scan-line $3DC7
control bytes $9D00
$9CFF
Pixe!
data
e |
; — :_:_,—
$2000

L A]
L B B 2 2l

Figure 4-6. Super Hi-Res graphics display buffer

APDA Draft | 48 1121186

Apple IIGS Hardware Reference

Scan-line control bytes ($9D00-$9DC?7)

An added advantage of the new Apple IIGS video graphics is the ability to select the Super
Hi-Res graphics horizontal resolution for each video scan line. The 200 scan-line control
bytes (located from $9D00 through $9DC7 as shown in Figure 4-7) control the features for

each scan line. There is one 8-bit control byte for each of the 200 scan lines. For each
line, you can select

« the palette (16 colors) to be used on the scan line

» Color Fill mode on the scan line

* an interrupt to be generated on the scan line

+ either 320-pixel or 640-pixel resolution for the scan line

The scan-line control byte bits and their functions are listed in Figure 4-7, and a description
of each follows.

Warning: Be careful when changing bits within this byte. Use only a read-modify-
write instruction sequence when manipulating bits. See the wamning in Chapter 1,
“Introduction to the Apple IIGS”.

716 514]3|2|]1]0

Palette select code

Reserved; do not modify
L — Color-Fill mode

L— —» Generate interrupt
- 320 or 640 mode

Figure 4-7. Scan-line control byte format

Bit Value Description

7 1 Horizontal resolution = 640 pixels
0 Horizontal resolution = 320 pixels
6 1 Interrupt generated for this scan line (when this bit is a 1, the scan line
interrupt status bit is set at the beginning of the scan line.)
0 scan line interrupts disabled for this scan line

5 1 Color-Fill mode enabled (this mode is available in Super Hi-Res 320-pixel
resolution mode only. In 640-pixel mode, Color-Fill mode is disabled.)
0 Color-Fill mode disabled
4 - Reserved; do not modify

0-3 - Palette chosen for this scan line

APDA Draft 4-9 : 11/21:86

Apple IIGS Hardware Reference .

The location of the scan-line control byte for each scan line is $9Dxx, where xx is the
hexadecimal value of the line. For example, the control byte for the first scan line (line 0)
is located in memory locaton $9D00; the control byte for thc second scan line (line 1) is in
location $9D01, and so forth.

Nore: The first 200 bytes of the 256 bytes in the memory page beginning at $9D00
are scan-line control bytes, and the remaining 56 bytes are reserved for future
expansion. For compatibility with future Apple products, do not modify these 56
bytes.

Color palettes ($9E00-$9FFF)

A color palette is a group of 16 colors to be displayed on the scan line. Each scan line can
have 1 of 16 color palettes assigned to it. The 16 colors in each palette can be chosen from
any of the 4096 colors available. You can draw each pixel on the scan line in any of the 16
colors that make up the palette.

These colors are determined by a 12-bit value made up of 3 separate 4-bit values. Each 4-
bit quantity represents the intensity of each red, green, and blue. The combination of the
magnitudes of each of the 3 primary colors determines the resulting color. Figure 4-8
shows the format of each of these 4-bit values that make up a palette color.

7 6 5 4 3 2 1 0 Even byte

7161514132 1] 0] Oddbyte

Reserved,
do not modify Red

Figure 4-8. Color palette format

The color palettes are located in video buffer locations $9E0Q through $9FFF. There are
16 color palettes in this space, with 32 bytes per palette. Each color palette represents 16
colors, with 2 bytes per color. The palette indicated in the scan-line control byte is used to
display the pixels in color on the scan line, The starting address for each of the color
palettes and the colors within them are listed in Table 4-3. The 16 colors within a palette
have numbers $0 through $F. Note that each color begins on an even address.

Once you have filled the palettes with the colors to be used and selected the display modes

within each of the scan-line control bytes, you must choose which of the 16 colors that you
are going to display for each pixel.

APDA Draft 4-10 11721186

Apple IIGS Hardware Reference
Table 4-3. Palette and color starting addresses

- Palette
Number Color $0 Cokorél ... Color $E Color §F
$0 $9E0Q-01 $9E02-03 ... $9E1C-1D $9EIE-IF
$1 $9E20-21 $9E22-23 ... $9E3C-3D $9E3E-3F
$2 $9E40-41 $9E42-43 ... $9ES5C-5D $9ESE-5F

$F S$OFEO-E1 $9FE2-E3 ... $9FFC—FD $9FFE-FF

Pixels

The Super Hi-Res graphics color information for each pixel is different for each of the 2
resolution modes: 4 bits represent each pixel color in 320-pixel mode; 2 bits represent the
pixel color in 640-pixel mode. Higher resolution comes with a slight penalty, however:
Although in 320 mode a pixel may be any of 16 colors chosen from the palette, a pixel may
be 1 of 4 colors in 640 mode.

The pixel data are located in the display buffer in a linear and contiguous manner; $2000
corresponds to the upper-left comer of the display, and $9CFF corresponds to the lower-
right comer. Each scan line uses 160 ($A0) bytes. Figure 4-9 shows the format in which
the pixel color data are stored in both the 320-pixel and 640-pixel modes.

Bits in byte
716|514 13(2}1110

640 mode] Pix1 | Pix2 | Pix3 | Pix4

320 mode Pix1 Pix2

Figure 4-9. Pixel data byte format

In 320-pixel mode, 4 bits determine each pixel color, and data are stored 2 pixels to a byte
of the display buffer. Since 4 bits determine the pixel color, in 320 mode each pixel can be
any of the 16 colors from that palette. .

In 640 mode, color selection is more complicated. The 640 pixels in each horizontal line
occupy 160 adjacent bytes of memory, and each byte holds 4 pixels that appear side-by-
side on the screen. The 16 colors in the palette are divided into 4 groups of 4 colors each.
The first pixel in each horizontal line can select 1 of 4 colors from the third group of 4 in
the palette. The second pixel selects from the fourth group of 4 colors in the palette. The
third pixel selects from the first group of 4 colors, and the fourth pixel selects from the
second group, as shown in Figure 4-10. The process repeats for each successive group of
4 pixels in a horizontal line. Thus, even though a given pixel can be 1 of 4 colors, different
pixels in a line can take on any of the 16 colors in a palette. Using a technique called
dithering, software for 640 mode can take advantage of this color selection scheme to
display 16-color graphics on the same screen with 80-column text.

APDA Draft 4-11 11:2]:86

Apple IIGS Hardware Reference

Dithering is a technique for altemnating the values

of adjacent pixels to create the effect of more colors.

-

Pixel

Value

Palette

Px3

0

Color1

Color2

Color3

Colord

Px4

Colors

Coiorb

Color7

Color8

Px1

Colord

Color10

Colort1

Color12

Px2

Color13

Colori4

Color15

Wit jlojw v jlojlw v lolw N

Color16

Figure 4-10. Color selection in 640 mode

The New-Video register

When a standard Apple II video mode (Lo-Res, Hi-Res or Double Hi-Res graphics) is
enabled, the Mega II accesses the video memory buffers and generates video. When Super
Hi-Res graphics is enabled, the Video Graphics Controller has sole access to the video
buffers. The bit to enable this access, along with the memory map configuration switch, is
in the New-Video register located at $C029. The bit descriptions for this register are
shown in Figure 4-11, followed by a description of each bit.

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, “Introduction to the Apple IIGS™.

APDA Draft

4-12 11/121:86

Apple IIGS Hardware Reference

71615 ¢4 |3]2] 110

Reserved; do not modify

» Color or black and white Double Hi-Res
» Linearize Super Hi-Res video memory

—» Enable Super Hi-Res graphics mode

Figure 4-11. New-Video register

Bit Value Description

s

0 Selects Apple II video mode. If this bit is 0, all existing Apple II-
compatible video modes are enabled. The Mega II alone reads the video
memory during the video cycles and generates the video.

1 Selects Super Hi-Res video modes. If this bitis 1, all standard Apple IT
video modes are disabled; either 320- (and Color-Fill mode) or 640-
resolution graphics are enabled (the selection of 320 or 640 is made in the
scan-line control byte for each line). Also when this bit is 1, bit 6 is
overridden, and the memory map is changed to support the Super Hi-Res
graphics video buffer, as described below (see the description of bit 6).

0 If this bit is 0, the 128K memory map is the same as the Apple Ile.

1 If this bit is 1, the memory map is reconfigured for use with Super Hi-Res
graphics video mode: the video buffer becomes one contiguous, linear
address space from $2000-$9D00 (Figure 4-6 shows the Super Hi-Res .
graphics buffer).

Note: Set bit 6 to 0 whenever using Double Hi-Res graphics mode. This is
necessary to ensure that the video display will function properly.

Note: See Chapter 2: “The Mega II: Maintaining Apple II compatibility,” for a
description of the Apple Ile memory map.

0 If this bit is 0, Double Hi-Res graphics is displayed in color (280 x 192, 16
color).

1 If this bitis 1, Double Hi-Res graphics is displayed in black and white (560
x 192).

40 - Reserved; do not modify.

APDA Draft 4-13

11121186

Apple IIGS Hardware Reference
Color-Fill mode

Color-Fill mode, which is available in 320-pixel mode only, is used to rapidly fill a large
area of the video'display with a single color. In this mode, color $0 in the palette takes on
a unique definition. Any pixel data byte containing the color value $0 causes that pixel to
take on the color of the previous pixel instead of displaying a palette color. This means that
only 15 unique palette colors ($1-$F) are available for each scan line rather than 16 colors.
For example, assume that A, B, and C represent 3 different palette colors, 4 bits per pixel.
These colors do not include color $0. The desired color pattern for a series of pixels on a
line might be as follows without Color-Fill mode:
AAAAAAAARAAABBBBBBBBBBBBCCCCCCCCCCCC

The same color pattern would be created by using Color-Fill mode a follows:
AQ0000000000B0O0O0O00000000C00000000000

Method 2 would save time: The program only needs to fill the pixel area of the scan line
once with 0, and then write a color value into those locations where a color should begin or
change. In the example just given, only 3 bytes need be written to implement the 3 color
areas on the scan line using the Color-Fill method, as opposed to 12 pixels per color
without Color-Fill.

The only restriction of the Color-Fill mode is that the first pixel value on a scan line must
not be 0; if the first pixel value is 0, then an undetermined color results.

VGC interrupts

Video display in the Apple IIGS is enhanced by VGC-generated interrupts. The VGC
generates two internal interrupts: the one-second interrupt and the scan-line interrupt.

A one Hz input signal from the RTC chip sets the one-second interrupt status bit. The
scan-line interrupt occurs at the beginning of a video display scan line that has the generate
interrupt bit set in the corresponding scan-line control byte. Scan-line interrupts are
generated when the computer is operating in the Super Hi-Res video graphics mode only,
and are not available in other video modes.

Figure 4-12 depicts the video screen consisting of the text display area and the display

border. The scan-line interrupt occurs at the beginning of the scan line, which is defined as

the beginning of the right-hand border area.

APDA Draft 4-14

11/21/86

Apple IIGS Hardware Reference

Video display screen
) A

L)
Scan-line interrupt
occurs here for each
First scan line begins here . scan line

‘‘‘‘‘‘‘‘

--

And ends hefe

Text display area

Border area

Figure 4-12. Scan-line interrupt

The VGC Interrupt register

The VGC Interrupt register ($C023) contains a status bit and an enable bit for each of the
three interrupts. When an interrupt occurs, the interrupt status bit for that interrupt is set.
The VGC interrupt bit (bit 7) is set and the interrupt request (IRQ) line is asserted if the
interrupt status bit and interrupt enable bit are set for one or more interrupts.

You enable an interrupt by writing to the appropriate positions in the VGC Interrupt
register; the interrupt source hardware sets the status bits. Software can directly manipulate
only the enable bits in the VGC Interrupt register; writing to the other bit positions has no
effect. Figure 4-13 shows the format of the VGC Interrupt register and is followed by a
description of each register bit.

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the wamning in
Chapter 1, “Introduction to the Apple 1IGS”.

APDA Draft 4-15

11:21°86

Apple 1IGS Hardware Reference

L—b Reserved; do not modify
L—bScr:m--iine interrupt enable
One-second interrupt enable
» Reserved; do not modify

- Reserved; do not modify

—» Scan-~line interrupt status
—» One-second interrupt status
— VGC interrupt status

Figure 4-13. VGC Interrupt register at $C023
Bit Value Description

7 1 VGC interrupt status. This bit is set when the interrupt bit and the status bit
are set for 1 or more of the interrupts.

0 This bit is O when all interrupts have been cleared.

6 1 One-second interrupt status: | = interrupt has occurred.
0 0 = interrupt is cleared.

5 1 A scan line interrupt status: |1 = interrupt has occurred.
0 0 = interrupt is cleared.

43 - Reserved; do not modify.

2 1 One-second interrupt is enabled.
0 Interrupt is disabled.

1 1 scan line interrupt is enabled.
0 Interrupt is disabled.

0 . Reserved; do not modify.

The VGC Interrupt-Clear register

Once an interrupt has occurred, the interrupt routine must proceed to clear the interrupt and
take some predetermined interrupt-handling action. To clear the scan line and one-second
status bits, write a O into the corresponding bit position in the VGC Interrupt-Clear register
at $C032. Bit 5 clears the scan-line interrupt and bit 6 clears the one-second interrupt in the
VGC Interrupt-Clear register shown in Figure 4-14. Writing a 1 into these positions or
writing into the other bit positions has no effect Figure 4-14 shows the format of the VGC
Interrupt-Clear register, and is followed by a description of each bit

APDA Draft 4-16 [1:21'86

Apple lIGS Hardware Reference

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, “Introduction to the Apple IIGS™.

7|6543210

Reserved; do not mtidify

»Clear bit for scan-line interrupt
»Clear bit for one-second interrupt -

»Reserved; do not modify

Figure 4-14. VGC Interrupt-Clear register at $C032

Bit Value Description

7 - Reserved; do not modify.
6 1 Undefined result.

0 Write a 0 here to clear the one-second interrupt.
5 1 Undefined result.

0 Write a (here to clear the scan-line interrupt.
40 - Reserved; do not modify.

Graphics summary

The Apple IIGS supports all previous Apple II graphics modes, and provides enhancements
to these modes. These are

+ the ability to select unique text and background colors
» the ability to select the border color for the perimeter of the video image
* the ability to display gray-scale video

New graphics modes include:
» Super Hi-Res graphics mode in 320-pixel resolution
+ Super Hi-Res graphics mode in 640-pixel resolution
« Color-Fill mode

There are 16 palettes, each palette containing 16 preselected colors, located in the paletie
area of the display buffer. Use these palettes to select the display colors for each pixel.

APDA Draft 4-17 11121186

Apple IIGS Hardware Reference
There are 200 scan-line control bytes (1 control byte per scan line), which determine:

+ either 320-pixel mode or 640-pixel mode

» Color-Fill mode or regular display mode

» which of the 16 palettes in memory are to be used in this scan line
» whether the current scan-line interrupt is enabled or disabled

The pixel data bytes are then loaded with the color information for each pixel: There will be
4 bits per pixel in 320 mode, and there will be 2 bits per pixel in 640 mode.

Figure 4-15 shows the display screen and the pixels that make up each scan line. Also

shown are the pixel data bytes for both 640- and 320-pixel Super Hi-Res graphics mode.
The scan-line control bytes, 1 for each scan line, are shown at the right.

Ga0-plxal mOde:Pixel data byte

bi:hlll)i_xbl#i:{al*i::um
Color palettes
E $9FFF

Pixel

£ R
320-pixel mode: ‘ / == $9000

Scan lin
Pixel data byte \ e =

I L rel!1 'I_il Il2
lp[¥ 1 _lpxiel.

Video screen

)
N

53

Pixels

| /

Figure 4-15. Drawing pixels on the screen

APDA Draft 4-18

11121 86

Apple IIGS Hardware Reference

Chapter 5

Peripheral Expansion Slots

The main logic board of the Apple 1IGS has seven empty card
connectors or slots on it. These slots make it possible to add features
by plugging in peripheral cards with additional hardware. This chapter
describes the hardware that supports these slots, including the signals
available at the expansion slots. Figure 5-1 shows a block diagram of
the Apple 11GS and the relationship of the slots in the computer.

Bhod mnnlyor

Feat]

4Kze
RAM Retraft 6aKxd
ikypad RaM

Raosy e) a Video amp]
Vides 228 %
e O Bad Jeeiud | SaKns Joamnd | gaXza
RAM Badd Jran RaM Craphbes | 4 »
LY, . '
berac vdof
gensraior
e
T
—_——————————
| Eayour 3 [P
| ferad GLu
I
|

AICALS | ADT

o Eayboard

a7

S4K a4

Retcont

I miciecontrellx
- .
é%@ : Reybosrd
£ 7 . .
X Eawmig DOC

Borlal port 1 Bumal port 3 Diels port %
A"Il'
D;:. o ;“,:;::' & m | SPEAKER

Figure 5-1. Diagram showing relationship of expansion slots and other components

mE
bl O

TTTTTTT

Note: The Apple 11GS has seven expansion slots plus a memory expansion slot. This
memory expansion slot is not the same as the seven expansion slots, nor should it be used
as such. Also, the memory expansion slot is not the same as the auxiliary slot in the Apple
IIe, nor should it be used as such. The memory expansion slot is to be used for memory
expansion cards designed specifically for this slot. See Chapter 9, “Memory Expansion
Slot,” for a description of this slot.

APDA Draft 5-1 11121:86

Apple IIGS Hardware Reference
The expansion slots

The 7 connectors lined up across the back part of the Apple 1IGS main
circuit card are the expansion slots (also called peripheral slots or
simply slots), numbered from 1 to 7. They are 50-pin card-edge
connectors with pins on 0.10-inch centers. A circuit card plugged into
one of these connectors has access to all the signals necessary to
perform input and output and to execute programs in RAM or ROM on
the card. These signals are shown in Figure 5-2 and are described
briefly in Table 5-1.

oD 281 25 ,sv
(NC on siot 1) DMA IN 2L} {24 DMA OUT (NC on siot 7)
(NC on sot 1) INT IN 281+ 123 |NT OUT (NC on siot 7)
/NM1 22le o122 ,pMA
/RQ 2YUe o421 RpY
/RESET -lle o420 ,OSTRB
ANH 32l¢ o112 NC (/SYNC on siot 7)
—12v 331, 18 Aomw
sv 34, 1L a15
(M2B0 on slot 3; CREF on slot 7) NC 221 o1& A14
M 38le o112 A3
Q3 3, 4 ar2
pH1 38le o3 A1q
M2SEL 3o otl% A10
pro 40[% oL g
DEVSEL 4le o0 ag
D7 42L, 2= a7
D 23le 18— A6
D5 :g . o ;’; AS
D4 —te et+— A4
D3 %-c -—-4L- A3
D2 ® o A2
D1 -:—g-——o 0—2—- Al
DO e o2 AQ
vizv 290 o joseL

Figure 5-2. Peripheral expansion slot pin diagram

APDA Draft 52 1172186

APDA Draft

Table 5-1
Expansion slot signals

Apple IIGS Hardware Reference

Pin

Signad Description

1

/TOSEL

2-17 AO-A15

18

19

AZR/W

/SYNC

/IOSTRB

RDY

/DMA

INT OUT

DMA OUT

sV

DMAIN

INTIN

5-3

Normally high; goes low during ®0 when the
65CB16 addresses location $Cnxx, where nis
the connector number. This line can drive
10 LS (low-power Schottky) TTL (transistor-
transistor logic) loads.®

Three-state address bus. The address
becomes valid during &1 and remains valid
during ®0. Each address line can drive

2 LS TTL loads.”

Three-state read/write line. Valid at the same
time as the address bus; high during a read
cycle, low during a write cycle. It can drive

2 LS TTL loads.”

Composite horizontal and vertical sync, on
expansion slot 7 only. This line can drive 2 LS
TTL loads.*

Normally high; goes low during ®0 when the
65C816 addresses a location between $C800
and $CFFF. This line can drive 4 LS TTL
loads.

Input to the 65C816. Pulling this line low
during @1 halis the 65C816 with the address
bus holding the address of the location
currently being fetched. This line has a
4700 ohm pullup resistor to +5V.

Input to the address bus buffers. Pulling this
line low during ®1 disconnects the 65C816
from.the address bus. This line has a 3300
ohm pullup resistor to +5V.

Interrupt priority daisy-chain output. Usually
connected to pin 28 (INT IN).

DMA priority daisy-chain output. Usually
connected to pin 27 (DMA IN).

+5S-volt power supply. A total of 500mA is
available for all peripheral cards.

System common ground.

DMA priority daisy-chain input. Usually
connected to pin 24 (DMA OUT).

Interrupt priority daisy-chain input. Usually
connected to pin 23 (INT OUT).

11/121:80

Apple lIGS Hardware Reference

29 /NMI
30 /IRQ

31 /RES

2 /INH

33 AW
¥

35 REF

35 /M2BO
% M

¥ Q3

3 @

39 /M2SEL
0 @0

4 /DEVSEL
42-49 DO-D7

APDA Draft 54

Nonmaskable interrupt to 65C816. Pulling
this line low starts an interrupt cycle with the
interrupt-handling routine at location $03FB.
This line has a 3300 ohm pullup resistor to
+5V.

Interrupt request to 65C816. Fulling this line
low starts an interrupt cycle only if the
interrupt-disable (I) flag in the 65C816 is not
set. Uses the interrupt-handling routine at
location $03FE. This line has a 3300 ohm
pullup resistor to +5V.

Pulling this line low initiates a reset routine.

Pulling this line low during @1 inhibits
{(disables) the memory on the main circuit
board. This line has a 3300 ohm pullup
resistor to +5V.

-12 volt power supply. A total of 200mA is
available for all peripheral cards.

=5 volt power supply. A total of 200mA is
available for all peripheral cards.

3.58 MHz color reference signal, on slot 7
only. This line can drive 2 LS TTL loads.”

Mega II bank-0 signal, on slot 3 only. This
signal goes low whenever the Mega 11 is
addressing the main bank of Mega 11 RAM.

System 7 MHz clock. - This line can drive
2LS TTL loads."

System 2 MHz asymmetrical clock. This line
can drive 2 LS TTL loads.”

Phase-1 clock. This line can drive 2 LS TTL
loads.”

The Mega 11 select signal. This signal goes low
whenever the Mega 1l is addressing a location
within the 128K of Mega 11 RAM.

Phase-0 clock. This line can drive 21LS TTL
loads.”

Normally high; goes low during @0 when the
65C816 addresses location $COnx, where n is
the connector number plus 8. This line can
drive 10 LS TTL loads.”

Three-state buffered bidirectional data bus.
Data become valid during @0 high and
remain valid until 0 goes low. Each data line
can drive 1 LS TTL load.*

11121186

Apple lIGS Hardware Reference

0 +12V +12 volt power supply. A total of 250mA is
available for all peripheral cards.

*Loading limits are for each card.

Apple II compatibility

The 7 1/O slots in the Apple [Igs are almost identical to the slots in the Apple Ile, the only
exceptions being signals /M2SEL and M2B0. /M2SEL replaces pPSYNC on pin 39, and M2B0 is
available at pin 35, only at slot 3; CREF is still available at pin 335, slot 7.

The slots behave like their counterparts in the Apple II with only a few differences, the most
important being the behavior of the address bus. Since the Apple IIGS computer can operate at 2.8
MHz and has a 24-bit address, the address bus to the slots is not always valid as it was in the
Apple II. The signal /M2SEL indicates when a valid address for banks 224 or 225 ($E0 or $E1) is
present on the address bus and so should be used to qualify any address decoding that does not use
an I/O enable line. Since this memory space contains video buffers and I/O addresses, peripheral
video cards can make extensive use of these 2 signals.

Direct memory access

Direct memory access (DMA) supports the full 24-bit address range. This means that any
peripheral card using DMA may have direct address control of all 8Mb of memory (main and
expansion memory). This is accomplished by loading the DMA bank register with the upper 8 bits
of the required 24-bit address.

During DMA cycles (memory access cycles that are controlled by a DMA peripheral card), the
address bus is turned off until the bank address has been latched. At this time, the address bus is
enabled, pointing "in" toward the FPI and 65C816. The FPI decodes the address and stored DMA
bank address to determine whether the cycle is to RAM, ROM, or Mega II. If the cycle is a DMA
to the Mega II (or slots), the Mega II select line is asserted by the FPI, and the FPI data buffers are
turned off if R/W is high. If the access is to the high-speed RAM, the data buffers are enabled

while @0 is high.
Note: To increase read/write data timing margins to the high-speed RAMs, the FPI generates

an early CAS signal for read cycles and a late CAS signal for write cycles. This makes read
data available earlier and requires less write data setup time.

I/O in the Apple IIGS

The input and output functions are made possible by built-in I/O devices and the use of peripheral,
slot I/O, and DMA cards.

Slot I/O cards

Most 1/O cards used in the Apple II also work in the Apple IIGS. Cards that use the IOSEL and
DEVSEL bus signals will work especially well, not having to deal with the larger address range of
the Apple IIGS.

The 65C816 processor operates with a 24-bit address; however, the 1/O slots receive only a 16-bit
address. Therefore, cards that use the 16-bit address decode select method rather than the DEVSEL

APDA Draft 5-5 1112186

Apple IIGS Hardware Reference

and IOSEL signals will not work properly. These cards include the multifunction I/O cards that
emulate multiple I/O cards and most add-on RAM cards. In general, these types of cards will not
~ be needed because of the extensive built-in I/O and high-speed RAM expansion already provided.

Cards that use INHIBIT will work properly if

» the system is running at | MHz
» they assert inhibit within 200 nanoseconds of the @0 falling edge

However, compatibility with this type of card must be determined on an individual basis because
many Monitor firmware calls execute code in bank $FF and many cards are not designed to decode
bank information.

The FPI will ignore INHIBITSs that occur when the system is running fast (2.8 MHz), or when it is

not in a bank where I/O and language-card operation are enabled. This improves compatibility
with existing cards. _

DMA cards
Many DMA cards that work successfully in previous Apple I models will work in the Apple IIGS,

but may require changes in their firmware or associated software to function properly with the
DMA bank register. In general, DMA cards that assert and remove the DMA signal within the first

200 nanoseconds of the @0 rising edge will probably work properly; this allows sufficient time for
the Mega Il select line to be activated by the FPI when video and I/O accesses are required.

Note: Nommally the system should be running slowly when performing DMA; otherwise,
DMA to I/O or Mega Il video areas will not work properly. However, DMA can be
performed while the system is running fast as long as the following warnings are heeded:

* Only high-speed RAM or ROM can be accessed (access to I/O, video, or the Mega Il
banks does not work properly).

« Fast DMA may cause a repeated cycle to occur to the location currently being accessed by
the processor. This could cause a malfunction if the processor is accessing I/O when the
DMA occurs; however, a repeated access to a RAM or ROM location will have no effect.

The 65C816 can be stopped indefinitely for DMA and does not require any processor refresh
cycles from a DMA card.

Expansion slot signals

Many of the expansion slot signals can be grouped into three general categories:
« those that constitute and support the address bus
« those that consititute and support the data bus
» those that support the functions of DMA and interrupts

These signals are described in the following paragraphs. For additional information, refer to the
schematic diagram in Appendix D.

APDA quft 56 117121186

Apple IIGS Hardware Reference
The buffered address bus

The microprocessor’s address bus is buffered by two 74HCT245 octal
three-state bidirectional buffers. The 6§5C816 R/W line is also
buffered. The FPI disables these buffers when requested by any
peripheral card. This disables the address and R/W lines so that
peripheral DMA circuitry can control the address bus. The DMA
address and A2R/W signals supplied by a peripheral card must be
stable zll during ®0 of the instruction cycle, as shown in Figure 5-3,

Another signal that can be used to disable normal operation of the
Apple 11GS is /INH. PBulling /INH low disables all the memory in the
Apple TIGS except the part in the I/O space from $C000 to $CFFF. A
peripheral card that uses either /INH or /DMA must observe proper
timing; in order to disable RAM and ROM properly, the disabling
signal must be stable all during ®0 of the instruction cycle (refer to the
timing diagram in Figure 5-4).

The peripheral devices should use /IOSEL and /DEVSEL as enables.
Most peripheral ICs require their enable signals to be present for a
certain length of time before data are strobed into or out of the device.
Remember that /IOSEL and /DEVSEL are only asserted during ©0
high.

The slot data bus

The Apple 1IGS has three versions of the microprocessor data bus (see
Figure 5-3)

e the internal data bus DBUS, connected directly to the
microprocessor and the FPI chip and all main RAM

o the Mega Il data bus MDBUS, connecting the Mega 11, VGC,
serial communications controller (SCC), Integrated Woz
Machine (I1WM), keyboard and sound general logic units
(GLUs) and the Mega 11 RAM main bank

¢ the slot data bus, SDBUS, common to all expansion slots

The 65C816 is fabricated with MOS (Metal Oxide Semiconductor)
circuitry, so it can drive capacitive loads of up to about 130
picoFarads. If peripheral cards are installed in all 7 slots, the loading
on the data bus can be as high as 500 pF, so the 74HCT245 buffer is
used to drive the data bus peripheral card loads. The same argument
applies if you use MOS devices on peripheral cards: They can’t
provide enough drive current for the fully loaded bus, so you should
add buffers. A peripheral card must have the capacity to drive 2 LS
TTL loads per slot pin, plus additional capacitance for the Apple 1IGs
data bus.

APDA Draft 5-7 1112186

Apple I[IGS Hardware Reference

Sound GLI<:
M mglA IWM<:- Expansion
74245
=3 s Ba7A ot
—
65816 <: DBUS.{}]C:MDBUS: .%80339—-—::
microprocessor =
‘ [————]
FPI Q:_l- SCC<:

:> Mega Il <___

All segments of the data | |
bus are bi-directional ADBUS> VGC <:

*RIURA
auxi'éﬁ'ge?)saﬂtﬁ only méFrF %saf’nlfoonly

Figure 5-3. The data buses within the Apple IIGS

APDA Draft 5-8 11721186

Apple 1IGS Hardware Reference

PHO _i ‘H I
- 1 il 2 :FL___
PH1 I '
’ _1 3 4 =
™ /\L
5 6 7 8
Q3 4{ \ —
9 Ia 10 >| 11 |
/NMI, /IRQ, RDY X
P

Figure 5-4. Input/output clock and control signal timing

Number Description Min. (ns) Max. (ns)

1 o0 low time 480
2 @0 high time 480
3 @1 high time 480
4 @1 low time 480
5 7™ low time 60
6 Fall time, all clocks 10
7 Rise time, all clocks 10
8 7M high time 60
9 Q3 high time 270

10 Q3 low time 200

11 Skew, @0 to other clock signals -10 10

12 Control signal setup time 140

Note: All clock signals present on the I/O slots are buffered by
the Slotmaker custom IC. These clock signals are delayed
somewhat from the corresponding signals on the main board
because of this buffering. All timing parameters in the timing
diagrams in this chapter have been adjusted to account for this
delay.

APDA Draft 5-9 11121/86

Apple IIGS Hardware Reference

o i R
/M2SEL ‘i }F
[— 1 ——4 2 —¥ (4—
/SEL -
3~ fe— ¢ |-
A15-A0, | |
sow | MK
<+ 5 —il l 6 —» [¢—
D7-DO (Write Data) 7% 1 7
7 — 5 —)
D7-D0 (Read Data)
9 —¥ [*10
Figure 5-5. Slot I/O read and write timing
Number Description Min. (ns) Max. (ns)
1 /M2SEL low from @0 low 160
2 /M2SEL hold time -10
3 /O enable low from ®0 high 15
(DEVn,/J0SELn/IOSTRB)
4 I/O enable high from &0 low 10
(DEVn/IOSELn/IOSTRB)
5 Address and A2R/W valid from 0 low 100
6 Address and A2R/W hold time 15
7 Write data valid delay 30
8 Write data hold time 30
9 Read data setup time to &0 140
0 Read data hold time 10

The standard Apple 1IGS slot /O timing is shown in Figure 5-5. When
the computer is running in high-speed mode (2.8 MHz), the address
bus to the /O slots is not valid during the entire ®0 cycle, and
therefore cannot be used to perform unqualified address decoding.
The /M2SEL signal (which replaces the uSYNC signal found at pin 39 in
previous Apple I models), indicates when a slow, synchronized
memory cycle is taking place and, therefore, when the value on the
address bus will remain valid during the current @0 cycle. This means
that cards that use the Apple II technique of "phantom slotting” to put
multiple /O devices on one card must use /M2SEL to qualify their
address decoding.

APDA Draft 5-10 11721186

Apple IIGS Hardware Reference

PHG N Y, 3
/INH

— | —» — |2
IM2SEL {_ f

— 3 l4— — 4 [

e X

€ 5 —¥ | — 6
D7-D0 (Write Data) IECAAAIAIIIAY | A

B —

07-D0 (Read Data) A SIS IIAY 8 AL

PR

Figure 5-6. 1/O read and write timing with /INH active

Number Description Min. (ns) Max. (ns)
1 /INH valid after &0 low 175
2 /INH hold time 15
3 /INH low to /M2SEL low delay 30
4 /INH high to /M2SEL high delay 30
5 Address and A2R/W valid from &0 low 100
6 Address and AZR/W hold time 15
7 Write data valid delay 30
8 Write data hold time 30
9 Read data setup time to ©0 140

10 Read data hold time 10

APDA Draft

Read and write cycles that are directed to the /O slots by /INH
have the same timing parameters as normal I/O read and write

cycles. When /INH is asserted, the computer responds as if a
Mega II memory cycle were being performed.

Cards that use the /INH signal will function properly only if the
computer is running at slow speed (1 MHz). If the computer is
running at high speed, the addresses that are seen by cards in the
I/O slots are not guaranteed to be valid during an entire @0 cycle.
Also, since the upper 8 bits of the memory address are not
available to cards (only 16 address lines are available at the
slots), the potential of /INH is greatly reduced in this machine.

5-11 11721180

Apple 11GS Hardware Reference

PHO TN Wi \
/DMA 1)
- 1 —> _ [¢— 2 —»
A15-A0, | -
AZR/W «
3 —» — s —| sl et [+

/M2SEL i
— 7 |¢— — 8
DMA Write data — ; S
49 3 ' ~» le— 10

oM st da W7/ /771777777, SR /A AA,
I‘—H—'I 12

Figure 5-7. /DMA read and write timing

Number Description Min. (ns) Max. (ns)
1 /DMA low from &0 low 120
2 /DMA high from &0 low 120
3 A15-A0 and R/W float from /DMA 30
4 DMA address and A2R/W valid before 300

@0 goes high
5 DMA address and A2R/W hold time 10
6 /DMA high to A15-A0 and A2R/W active 30
7 DMA address valid to /M2SEL low 30
8 DMA address float to /M2SEL high 30
9 @0 high to write data valid 100
10 DMA write data hold tme 10
11 DMA read data setup time 125
12 DMA read data hold time 30

DMA devices will work in the Apple IIGS computer only in slow mode
(1 MHz). If the computer is running at high speed (2.8 MHz), only
DMA accesses to the high-speed memory banks 0 through 127 will
work. Accesses to the low-speed memory (all YO and video memory)
must be done at low speed (1 MHz). To do this, set the processor
speed bit in the Speed register at location $C036 before requesting
DMA.

DMA can be performed to or from any part of the Apple 11GS memory
map, provided that the DMA bank register is first set to the
appropriate bank.

APDA Draft 5-12 12/21:80

Apple IIGS Hardware Reference
Interrupt and DMA daisy chains

The interrupt requests (/IRQ and /NMI) and the direct-memory
access (/DMA) signal are available at all seven expansion slots. A
peripheral card requests an interrupt or a DMA transfer by pulling the
appropriate output line (pin 24) low. If two peripheral cards request an
interrupt or a DMA transfer at the same time, they will contend for the
data and address buses. To prevent this, two pairs of pins on each
connector are wired as a priority daisy chain. The daisy-chain pins for
interrupts are INT IN (pin 28) and INT OUT (pin 23), and the pins for
DMA are DMA IN (pin 27) and DMA OUT (pin 24), as shown in Figure
5-2.

Each daisy chain works like this: The output from each connector goes
to the input of the next higher numbered one. For these signals to be
useful for cards in lower numbered connectors, all the higher
numbered connectors must have cards in them, and all those cards
must connect DMA IN to DMA OUT and INT IN to INT OUT.
Whenever a peripheral card uses pin /DMA, it must do so only if its
DMA IN line is active, and it must disable its DMA OUT line while it is
using /DMA. The INT IN and INT OUT lines must be used the same
way: Enable the card’s interrupt circuits with INT IN, and disable INT
OUT whenever /IRQ or /NMI is being used.

Loading and driving rules

Do not overload any pin on the expansion slots; the driving capability
of each pin is listed under each signal description in Table 5-1. The
address bus, the data bus, and the A2R/W line should be driven by
three-state buffers; remember that there is considerable distributed
capacitance on these buses and that you should plan on tolerating the
added load of up to six additional peripheral cards. MOS devices such
as PIAs (Peripheral Interface Adapters) and ACIAs (Asynchronous
Communications Interface Adapters) cannot switch such heavy
capacitive loads; connecting such devices directly to the bus will lead
to possible timing and level errors. Buffer all MOS output signals.

The total power supply current available for all seven expansion slots is
* S00mA at +5V

* 250mA at +12V

e 200mA at -5V

¢ 200mA at -12V

The support circuitry for the slots is designed to handle a DC load of 2
LS TTL loads per slot pin and an AC load of no more than 15 pF per
slot pin.

Summary

* The Apple IIGS expansion slots are almost identical to other Apple
I expansion slots. The exceptions, signals /M2B0 and /M2SEL,
indicate accesses to slow RAM banks $E0 and $E1, the location of
/O and video buffers.

APDA Draft 5-13 11/21:86

Apple IIGS Hardware Reference

» Expansion slot outputs are buffered to provide greater driving —

capability. Peripheral cards must use buffers when driving the bus
on the Apple 1IGS.

* The power supply provides power to the peripheral cards. This
power is limited and must not be exceeded. -

* The expansion slots are provided to allow an external device a
means to connect to the internal data and address buses. DMA
and interrupt requests are handled in a slot 7 to slot 1 priority
fashion. A card in the higher numbered slot has priority when
more than one device signals a request simultaneously.

v

APDA Draft 5-14 11121186

Apple IIGS Hardware Reference

Chapter 6

Sound

One of this computer’s outstanding features is its sound capability. By programming the
Apple IIGS you can utilize this powerful sound-synthesizing ability; your ability to generate
sounds is limited only by your imagination. This chapter covers the digital oscillator chip
(DOC), the individual oscillators, and the many registers associated with these oscillators.
Also covered is the sound general logic unit (GLU) and its associated registers.

Sound synthesis

Sound is synthesized by programming digital oscillators to produce waveforms that
simulate sounds (musical, human, or other) or generate unique ones. These waveforms
can be programmed manually (values placed in memory individually) or through
digitization of an outside analog input signal.

The Apple IIGS uses the Ensonig® 5503 digital oscillator chip, a programmable sound
synthesizer chip. This chip has 32 independent oscillators, volume control, and digitizing
capability. The synthesizer uses 64K of RAM dedicated to sound waveform storage, and
interfaces with the 65C816 microprocessor via the sound GLU. Commands and data are
transferred to the DOC via the GLU, and sound is output via the built-in speaker, external
speaker jack, or molex connector on the main logic board. Figure 6-1 shows the
relationship of the sound components to the rest of the computer.

APDA Draft - 6-1

11121186

Apple lIGS Hardware Reference

FPL

. o P

(7} Compomrs e

LT oG
e
1w |, sl
ng
- Buifer
Nwmaker
] Gume VO
I-—l | el AR
L 4 [
RADT 4 rad
-bfl Mep @ s |eanze Boamae foomss | aamus e ;":I' S ™
m M faam fram | wam s el el LT |
L
n«n" 203 r1mc
—n e eTIC et
l L -8
1
|
l..__._..___..___.1
I Kepveurd
oLy
11 1 : i
A P s | snsa Qeaxcna Jooxa | cuy
. et 8AM M fram fean
I M
s |
— |
r
T OO
P |,
EOM i
|
I

Exd
Rad

[T
AN

Eassniq DOC

Figure 6-1. Diagram showing relationship of the sound components in the system

As stated earlier, the Apple IIGS uses a toolbox of utilities to performm many different
functions: graphics, disk access, and sound. The following description of the DOC is

meant to familiarize you with the general principles of Apple IIGS sound generation. When

you program this computer for sound, using the toolbox utilities will result in the proper

use of the DOC and ensure software compatibility with future Apple II products.

To find out how to use the sound tools, refer to the
Apple HIGS Toolbox Reference manual.

Accessing the DOC

To program the DOC or build a wavetable in the sound RAM you must write command and

data bytes to registers within the chip. This process is facilitated by the GLU, which

serves as an interface between the microprocessor, the DOC, and the dedicated 64K x 8
dynamic RAM. This interface allows the DOC chip to run independent of the rest of the
system.

A wavetable is a series of contiguous data bytes in
memory. The input signal is sampled, digitized, and
placed in memory as a continuous wavetable. This
wavetable will be used as data for the DOC which
will resuit in sound output.

APDA Draft

11/121/86

Apple IIGS Hardware Reference

An altemate means of generating synthesized sound is
1o manually build a wavetable in memory, one byie
at a time.

The sound GLU contains
« a Sound Control register
* adata register
* a pair of Address Pointer (high and low address) registers

These registers and their addresses are listed in Table 6-1 and described in detail in the
sections that follow. _

Table 6-1. GLU registers.

GLU Registers Address Type
Sound Control register $C03C R/
Data register $C03D R/W
Address Pointer register, low byte $CO3E R/W
Address Pointer register, high byte $CO3E R/W

The Sound Control register

The Sound Control register controls whether the microprocessor accesses the DOC internal
registers or the sound RAM. This register also controls whether or not the Address Pointer
registers auto-increment, that is, increment automatically after every RAM read or write,
thereby avoiding the necessity of reloading the pointers with addresses after each access.
Figure 6-2 shows the format of the Sound Control register, followed by a description of
each bit. '

Warning: Do not use a read-modify-write command when altering bits in this
register.

7165|1432 1]0

1 I 1 » Volume value

p» Reserved; do not modify

» DOC or RAM access

» Address Pointer count enable
» DOC busy flag

Figure 6-2. The Sound Control register at $C03C

APDA Draft 6-3

11121186

Apple I[IGS Hardware Reference
Bit Value Description

7 1
0
6 1
0
51
0
4 -
30 -

The DOC is busy. Loop on this bit until it is clear.
The DOC is free. The DOC will respond to register reads and writes.

Address auto-incrementing is enabled.
Address auto-incrementing is disabled; Address Pointer registers hold the
last value.

All accesses are to the dedicated 64K RAM.
All accesses are to the DOC chip.

Reserved; do not modify.

Volume control; $0 is low volume, $F is high volume.

Address Pointer register

When accessing the sound RAM (bit 5 = 1 in the Sound Control register), the Address
Pointer register points to the address of the next byte in sound RAM. The high byte
Address Pointer register contains the high 8 bits of the 16-bit address, and the low byte
register contains the low 8 bits.

When accessing the sound DOC (bit 5 = 0 in the Sound Control register), the Address
Pointer register high byte is ignored by the DOC, and the low byte points to the DOC
register to be written or read from. Figure 6-3 shows the format of the Address Pointer

registers.

Address Pointer register, low byte at $CO3E
716|514 32| 1 0

Address Pointer register, high byte at $CO03F
716 51413|2]|]1]0

Figure 6-3. The Address Pointer registers

APDA Draft 64 11/21:86

Apple IIGS Hardware Reference

Write operation

To write to the DOC or sound RAM:
1. Set the Sound Control register:

« to point to either the RAM or the DOC
» to enable or disable auto-incrementing in the Address Pointer registers

2. Then load the address pointer with the beginning location into which data are 1o be
written.

3. Data now written to the data register will be transferred by the sound GLU into the
corresponding memory (if you are accessing RAM) or DOC register (if you are
accessing the DOC).

If the auto-increment feature is enabled, the Address Pointer register is automatically
incremented to the next higher location or register after each write to the data register.

Important Do not use indexed addressing mode when reading data
from or wrlting data to the data register. Indexed
addressing mode generates a false read. which will cause
the sound GLU to lose synchronlzation.

Read operation

The sound RAM read operation is the same as the write operation with 1 exception—
reading from the data register lags by one read cycle. For example, if you want to read 10
bytes from the sound RAM, select the RAM by setting the control register bit and enabling
auto-incrementing. Then set the address pointer to the starting address and read the data
register 11 times, discarding the first byte read.

The DOC registers

The DOC contains three registers common to all oscillators. These are
« the Oscillator Interrupt register
* the Oscillator Enable register
» the Analog-to-Digital (A/D) Converter register

Also, each oscillator has one of each of the following registers dedicated to it:
+ an Oscillator Control register
+ an Oscillator Data register
* a Volume register
» a Frequency register (low)
+ aFrequency register (high)
* a Wavetable register
» an Address Pointer register (high)

APDA Draft 6-5

111217186

Apple 1GS Hardware Reference
The Oscillator Interrupt register ($E0)

This register contains the status of the DOC interrupt request (IRQ) pin and the number of
the oscillator that generated the interrupt, if any. When an oscillator reaches the end of a
wavetable and the enable interrupt (EI) bit for that oscillator has previously been set, the
IRQ line and bit 7 of the Interrupt register is then set, and the register number is entered in
bits 1 to 5 of the Oscillator Interrupt register. Figure 6-4 shows the format of the Oscillator
Interrupt register, followed by a description of each of the bits.

7161514132110

Oscillator number Reserved; do not modify

—» Reserved; do not modify

—» |nterrupt occurred

Figure 6-4. The Oscillator Interrupt register at $EO

Bit Value Description

7 1 No oscillator has generated an interrupt.
0 One of the 32 DOC oscillators has generated an interrupt; this bit reflects the
status of the IRQ line.
6 - Reserved; do not modify.
5-1 - Interrupting oscillator number: When one of the 32 DOC oscillators

generates an interrupt, the number of the oscillator is contained here.
0 - Reserved; do not modify.
The Oscillator Enable register ($E1)

The Oscillator Enable register controls the number of oscillators that are operating at a
particular ime. To enable 1 or more oscillators, multiply the desired quantity of oscillators
by 2 and enter the number in this register. You may enter any number from 2 to 64 that
will enable the corresponding oscillators in sequential order (low-numbered oscillators
cannot be skipped in order to enable a higher-numbered one). A minimum of 1 oscillator is
always enabled, which is also the reset default.

The A/D Converter register ($E2)

The A/D Converter register contains the output value of the analog-to-digital converter. An
analog input signal can be sampled at pin 1 of the 7-pin molex connector (J25). The result
of the conversion resides in the A/D Converter register at the completion of the conversion.
Reading this register initiates the 31-microsecond conversion process. If this register is
read before the end of the conversion process, the value will be lost and a new conversion
will begin.

APDA Draft 6-6

1172186

Apple IIGS Hardware Reference

The Oscillator Control register ($A0-$BF)

Each Oscillator Control register controls all functions of each oscillator. This register
controls:

« which of eight optional external analog multiplexer channels this oscillator will use

» whether or not this oscillator may generate an interrupt

« the oscillator’s mode of operation

Figure 6-5 shows the format of this register.

7

6

5 4—IS 2 1 0

Channel addrelss L Halt(ed) oscillator

L————p Oscillator mode

—» Oscillator mode

Interrupt enable
» Reserved; do not modify

Bit

~d

Figure 6-5. The Oscillator Control register

Value Description

Reserved; do not modify.

Channel address bits: These bits determine to which demultiplexer output
channel (provided by optional external demultiplexer hardware) this
oscillator will be directed. Connecting a demultiplexer to the 7-pin molex
connector will allow you to use up to 8 separate sound channels. Figure 6-
7 shows an example of how the external demultiplexer circuitry may be
implemented.

Interrupts enabled: An interrupt flag will be set in the DOC’s Oscillator
Interrupt register (OIR) and the DOC will assert the IRQ signal when an
oscillator generates an interrupt. If the flag is already set (an oscillator
interrupt is currently being handled), the flag is pushed onto a first-in, first-
out buffer, and handled in that order.

Interrupts disabled: The interrupt flag will not be set in the Oscillator
Interrupt register when an oscillator generates an interrupt.

Oscillator mode. The oscillator may function in one of several available
modes. Selected the mode desired by setting these two bits as follows:

Bit 2 Bit 1 Mode

0 0 Free-run
0 1 One-shot
1 0 Sync
1 1 Swap

Each of these modes is described below.

APDA Draft 6-7 11/21/86

Apple IIGS Hardware Reference

Free-run mode: The oscillator begins at the beginning of the wavetable and
repeats the same wavetable. The oscillator will halt when the halt bit is set
or when a 0 is encountered in the table data.

One-shot mode: The oscillator begins at the beginning of the wavetable,
stepping through it only once, and stopping at the end of the table.

Sync mode: Enable sync mode by selecting even/odd pairs of oscillators (a
lower even-numbered oscillator paired with an adjacent higher-numbered
oscillator). When the even-numbered oscillator begins its wavetable, the
odd-mate oscillator will synchronize, also beginning its wavetable
simultaneously.

Swap mode: Uses even/odd pairs of oscillators (a lower even-numbered
oscillator paired with an adjacent higher-numbered oscillator). The enabled
oscillator runs in one-shot mode. When it reaches the end of its wavetable,
it resets its accumulator to 0, sets its halt bit, and clears the halt bit of its
mate.

0 1 Halt(ed) oscillator. This is a read/write bit. To halt the oscillator, set this
bit. Certain modes (sync, swap) will halt the oscillator and set this bit
automatically after completion.

0 Running oscillator. This bit is cleared if the corresponding oscillator is
currently enabled.

The data register ($60-$7F)

The data register is a read-only register and contains the last byte read by the oscillator from
the wavetable.

The Volume register ($40-$5F)

The Volume register contains the oscillator’s volume value. The current wavetable data
byte is multiplied by the 8-bit volume value to obtain the oscillator final output level.

The Frequency High and Frequency Low registers ($00-$3F)

The Frequency High register and Frequency Low register are concatenated to create a 16-
bit value. This frequency value determines the speed at which the wavetable is read from
memory. This indirectly determines the frequency of the output signal at the speaker. The
relationship between output signal frequency, wavetable scan rate, and the Frequency
register values is

Output frequency = [SR /2 (17+RES} | * F
where
Scan rate (SR) = 894.886 KHz / (OSC+2)

and where RES is the resolution value in the Waveform register, F,;; is the 16-bit

frequency value concatenated from the Frequency High and Frequency Low registers, and
OSC is the number of enabled oscillators.

APDA Draft 68 11/21/86

Apple IIGS Hardware Reference
The Waveform register ($C0-$DF)

The Waveform register controls the size of the individual wavetable each oscillator will
access. The size of this table may be between a minimum of 256 bytes and a maximum of
32K. Figure 6-6 shows the format of the Waveform register and is followed by a
description of each bit.

71615143210

Table size| Address bus resolution
[|

» See text; set to 0
» Reserved; do not modify

Figure 6-6. The Waveform register format

APDA Draft 6-9

11/21i86

Apple 1IGS Hardware Reference
Value Description

Bit
7
6

5-3

20

0

Reserved; do not modify.

Extended addressing: The Apple IIGS uses only 64K for the sound RAM
and has no high memory bank available. Therefore, this bit must always be
set to 0.

Table size: The waveform table may extend up to 32K in size, but in
discrete steps only, as listed in the table below. Wavetables must begin on a
page boundary ($0C00, $0D00, and so forth).

Table 6-2. Table size determination

Bit

5 4 3 Table size
0 0 0 256

0 0 1 512

0 1 0 1024

0 1 1 2048

1 0 0 4096

1 0 1 8192

1 1 0 16384

1 1 1 32768

Unused locations within the wavetable should begin with a minimum of
eight zeros. Otherwise, the oscillator will halt when it encounters these
bytes and will not interpret them as data.

Address bus resolution: The wavetable may be one of eight sizes, as just
shown. The table is played back by using every byte as data, or only
intermittent bytes, as desired. The address resolution bits determine
whether or not every byte is used during playback. If the resolution bits are
000, all wavetable data bytes are read; if the resolution bits are 001, every
other byte is used; if they are 010, every fourth byte is used, and so on.
Table 6-3 shows how the different address bits to be used are selected.

Table 6-3. Table size determination

Resolution bits Address bits
2 1 0 used
0 0 0 1-16
0 0 1 2-17
0 1 0 318
0 1 1 4-19
1 0 0 5-20
1 0 1 6-21
1 1 0 7-22
1 1 1 8-23

APDA Draft 6-10 11721186

Apple IIGS Hardware Reference
Making sound

To generate sound, the DOC reads data bytes from a wavetable built in dedicated RAM.
Each oscillator acts as an address generator, pointing to successive data bytes which make
up a signal that is to be reproduced. Each data byte pointed to by an oscillator, is then
converted to an analog value by the A-to-D converter within the DOC. The resulting series
of values make up the output signal, which is then filtered and amplified and output to the
speaker.

The data residing in the sound RAM can be placed there either byte-by-byte by manually
building the wavetable (trial-and-error method works best here; try a sound, and modify it
as you prefer), or fill memory with a digitized input signal.

The waveshape of the signal is determined by the actual values of the data bytes that make
up the wavetable. The pitch of the signal is determined by the speed with which the
wavetable is scanned by the DOC. This scan rate is the value contained in the Waveform
register of each oscillator, and is arrived at using several factors. Figure 6-7 shows the
process which results in the scan rate.

16-bit
frequency control
register

Address pointer » Table-size register
register Resolution register]

address outpuf
buffer

only certain address bits are used. See text.

Figure 6-7. Generating the sound addresses

The 32 oscillators are time-domain multiplexed, that is, the DOC services each oscillator in
its turn. With all oscillators enabled, the DOC takes approximately 38 microseconds to
service all 32.

Digitized soundwaves are built using consecutive data bytes (known collectively as a
wavetable) in dedicated sound RAM. Each of the 32 oscillator reads these bytes in
sequential order at a speed that is programmable. This speed determines the frequency at
which the waveform is reproduced, while the actual data in RAM determine the shape of
the output waveform. The volume for each oscillator is also programmable.

APDA Draft 6-11

11121186

Apple [IGS Hardware Reference
Sound input and output specifications

The 7-pin molex connector is used for sound input and output to and from the Apple IIGS.

The electrical specifications for these inputs and outputs are listed below in Table 6-4.

Table 6-4. Sound input and output electrical specifications

Signal Name Pin Max. Units

A/D input 1 2.5 V p-p, full-scale conversion
Analog ground 2 - -

Analog output 3 -S5to+5 Vp-p

Channel addr O 4 1 LS TTL load

Channel addr 1 5 1 LS TTL load

Channel strobe* 6 1 LS TTL load

Channel addr 2 7 1 LS TTL load

Input impedance 1 3,000 ohms

Output impedance 3 10,000 ohms

* Channel strobe goes low when the channel address is valid.

Figure 6-8 shows an example of a demultiplexer circuit that can be used to produce stereo

(2-channel) sound using the output from the DOC available at the 7-pin molex connector J-

25. A more complex circuit would result in 15 unique sound channels.

d1
11
ANALOG QUTPUT Y MC14052

from pin 3 of —N—

connector J25 X0
+ —1X1 X L_ channel 1 output
LM318 —1X2 to lo-pass filter
—{Y0 TLOT2
—1Y1
EORE & 2 [‘\N‘—
Tom pin —1Y3
A Y ——-\N\ - channel 2 output
CAQ B b— 10 lo-pass ﬁll?r
from pin 4 :
TLO72

\Y

Figure 6-8. An example of a two-channel demultiplexer circuit

Summary

The Apple IIGS provides sound synthesis capabilities to the Apple II family. The sound
tool sets provide routines that manipulate the sound synthesizer. If you decide to bypass
the tools, you must address the registers within the DOC and the sound GLU, as well as
the sound RAM. To do this you must:

1. Set the Sound Control register bits for DOC or RAM access with the Address Pointer
auto-increment option enabled.

APDA Draft 6-12

11721186

2. Load the Address Pointers with the target address.

3. Read or write the data byte.

Apple 1IGS Hardware Reference

The addresses of the DOC registers for each oscillator are listed in Table 6-3.

Table 6-3. DOC register addresses

FrequencyFrequency Address

Oscillator Low High Volume Data Pointer Control Waveform
number register register register register register register register
$00 $00 $20 $40 $60 $80 $A0 $CoO
$01 $01 $21 $41 $61 $81 $A1 $C1
$02 $02 $22 $42 $62 $82 $A2 $C2
$03 $03 $23 $43 $63 $83 $A3 $C3
$04 $04 $24 $44 $64 $84 $A4 $C4
$05 $0s $25 $45 $65 $85 $AS $C5
$06 $06 $26 $46 $66 $86 $ADL $Cob
$07 $07 $27 $47 $67 $87 $A7 $c7
$08 $08 $28 $48 $68 $88 $A8 $C8
$09 $09 $29 $49 $69 $89 $A9 $C9
$0A joa $2A $4A $6A $8A $AA $ca
$0B $0B $2B $4B $6B $8B $AB $CB
$0C $o0C $2C $4C $6C $8C $AC $CC
$0D $0C $2D $4D $6D $8D $AD $CD
$0E $OE $2F $4E $6E $8E $AE $CE
$OF $OF $2F $4F $6F $8F $AF $CF
$10 $10 $30 $s0 $70 $90 $BO $DO
$11 11 $31 $51 $71 $91 $B1 $D1
$12 $12 $32 $52 §72 $92 $B2 $D2
$13 $13 $33 $53 $73 $93 $B3 $D3
$14 $14 $34 $54 $74 $94 $B4 $D4
$15 $15 $35 $55 $75 $95 $Bs $D5
$16 $16 $36 $56 $76 $96 $B6 $D6
$17 $17 $37 $57 $77 $97 $B7 $D7
$18 $18 $38 $58 $78 $98 $BB $D8
$19 $19 $39 $59 $79 $99 $B9 $D9
$1A $1A $3A $5A $7A $9A $BA $DA
$1B $1B $3B $5B $7B $9B $BB $DB
$1C $1C $3C $sC $7C $9C $BC $DC
$1D $1D $3D $sD $7D $9D $BD $DD
$1E" $1E $3E $SE $7E $9E $BE $DE
$1F"- $1F $3F $5F $7F $9F $BF $DF

*These oscillators are reserved for system use. Use of these oscillators may result in a system

crash.

Additional information

To learn more about synthesized music and sound, we recommend you read the following

book:

Chamberlin, Hal, Musical Applications of Microprocessors, Hasbrouck Heights, NJ,

Berkeley, CA: Hayden Books, 1985.

APDA Draft

6-13

11:21:86

Apple IIGS Hardware Reference

Chapter 7

Apple DeskTop Bus

The Apple DeskTop Bus (ADB) is a method for connecting input devices (such as a
keyboard or a mouse) with the Apple IIGS computer. The ADB consists of an ADB
microcontroller chip and the Apple DeskTop Bus cabling. Figure 7-1 shows the
relationship of the ADB components in the Apple IIGS computer.

TG vidad
Pmarsiar

A0E

1B
nom

|TI

Figure 7-1. ADB components within the Apple IIGS

The ADB microcontroller controls devices on the bus by receiving commands from the
65C816 microprocessor, and then sending appropriate ADB commands to and receiving
data from the input devices on the bus. Microcontroller commands (those received from
the 65C816) are located in ROM. Figure 7-2 shows the relationship of ADB components
in the host to devices on the bus.

APDA Draft 7-1

11721186

Apple [IGS Hardware Reference

mm = memeoEmoEmeoEmeEMeEMEE R EmEMEESE = mEmEmEAeEe-.memeeaememememmemeoememom

ADB cabling

65C816 . ADB
microprocessor GLU microcontroller

Mouse| |Keyboard

The host computer

fe W R WM WM LR OR M WM OE oW OMOWMOOWMOOEMOEM MR MMM OWM M OEMOEMOOE WM OWOM OE oW W m m ow w W

Figure 7-2. The ADB components

Note: To keep compatability with future Apple II products using ADB, use the
Apple DeskTop Bus Tool Set in ROM. Directly accessing some of the ADB
registers may cause the system to crash.

To find more information about the ADB Tool Set,
refer to the Apple IIGS Toolbox Reference manuals.

This chapter describes the physical and network layers of the ADB as it is used in the Apple
1IGS computer. For the remainder of this chapter, the computer will be referred to as the

host and the input devices (for example, a keyboard or a mouse) connected to the bus as
devices.

The input bus

All input devices share the input bus with the host. This bus consists of a 4-wire cable and
uses 4-pin mini-DIN jacks at the host and at each device. Figure 7-3 shows the pin
assignments of the connectors. ADB devices may use the +5 volt power supplied by the
bus, but must not draw more than 500 mA total for all devices. All devices are connected

in parallel, using the signal, power, and ground wires. Cables should be no longer than 5
meters, and cable capacitance should not exceed 100 picoFarads per meter.

Host jack
4 3
= =
- -

3

Figure 7-3. Mini-DIN connector pin configuration used in the ADB

Pin Description

1 Data

2 Reserved

3 +5 power supply at 500 mA for all devices
4 Signal and power ground

APDA Draft 7-2 11721186

Apple HGS Hardware Reference
The ADB microcontroller

The ADB microconwoller is an intelligent controller IC that oversees the Apple DeskTop
Bus. The M50740 microcontroller uses a superset of the 6502 instruction set, and contains
96 bytes of RAM and 3K of ROM. The ADB microcontroller operates asynchronously,
issuing commands on the bus and transmitting data to and receiving data from the bus
devices. Use the ADB commands in the ROM toolbox to communicate with the ADB.

To find out how to use the toolbox in the system
ROM, see the Apple {1gs Toolbox Reference manual,

The keyboard GLU

The keyboard general logic unit (GLU) works together with the ADB microcontroller to
form an intelligent input-device interface. The keyboard GLU, located on the main logic
board, uses two independent data buses that serve as a communications interface between
the ADB microcontroller and the system bus. This interface is accomplished by using
muldple internal read/write registers to store keyboard data, key modifiers, mouse X and Y
coordinates, command data, and status information,

Keyboard GLU registers

The keyboard general logic unit contains seven data and control registers. These are used
for storing keyboard data and commands, key modifiers, mouse X and Y coordinates, and
status information. The registers are

« Keyboard data register ($C000)

* Mouse Coordinate register ($C024)

« Modifier key register ($C025)

« ADB Command/Data register ($C026)

« ADB Status register ($C027)
All registers, except the status registers, have a status flag that is set to 1 when the register
is written to, and cleared to 0 when the register is read. Each of the keyboard data, mouse,
and data registers also have an interrupt flag that generates system interrupts, if interrupts

are enabled. These status and interrupt flags are located in the status register. The registers
are described in the following sections.

Keyboard Data register
The keyboard data register contains the ascii value of the last key pressed on the keyboard.

The high bit is set when a new key has been pressed. Figure 7-4 shows the format of this
register and is followed by a description of each bit.

APDA Draft 7-3

11121786

Apple IIGS Hardware Reference

716|514]|3]|2]|1 0

ASCII code

» Key strobe

Figure 7-4. The keyboard data register at $C000
Bit Value Description
7 - This bit is 1 when a key has been pressed, and indicates that the ASCII

value in bits 6-0 are valid. This bit must be cleared after reading the data by
reading or writing to address $C010.

60 - ASCII data from the keyboard.

Mouse Data register

The ADB mouse, when moved, generates movement data which is transmitted to the host.
This data, along with the mouse button status, is available in the mouse data register.
Figure 7-5 shows the format of this register and is followed by a description of each bit.

Important: Read this register only twice in succesion. The first read returns X-
coordinate data, and the second read returns y-coordinate data. Reading this
register an odd number of times will result in an unknown effect.

716|15]4]|]3|2|1]6¢0

Mouse movement

» Delta movement sign bit

Current button status and
mouse coordinate indicator

Figure 7-5. The Mouse Data register at $C024

Bit Value Description

7 1 Current mouse status: Mouse button up.
0 Mouse button down.
6 ! Delta value sign bit: if this bit is 0, the delta value is +.
0 If this bit is 1, the delta value is —.
50 - The relative mouse movement data is returned here. If you are reading this

register for mouse movement data, bit 7 tells you which data (X or Y-
coordinate) is represented here. If bit 7 is 1, X-coordinate data is contained
in bits 5-0. If bit 7 is 0, Y-coordinate data is contained in bits 5-0.

APDA Draft 7-4 11121/86

Apple 1IGS Hardware Reference
Modifier Key register

The Modifier Key register contains bits that reflect the status of the modifier keys. These
keys include the standard shift, control, repeat, command, Apple, and repeat keys, as well
as keys on the numeric keypad. Figure 7-6 shows the format of this register and is
followed by a description of each bit.

slels|lal3l2|1]o0

L___p Shift key down
L — p Control key down
» Caps Lock key down
» Repeat key down
—p Keypad key down
» Updated modifier key latch
—+» Command key down
» Apple key down

Figure 7-6. The Modifier Key register at $C025

Bit Value Description

7 1 When this bit is 1, the Open Apple key has been pressed.
0 When this bit is 0, the Open Apple key has not been pressed.
6 When this bit is 1, the Closed Apple key has been pressed.

1
0 When this bit is 0, the Closed Apple key has not been pressed.
5 1 When this bit is 1, the modifier key latch has been updated, but no key has

been pressed.

0 3
4 1 When this bit is 1, a keypad key has been pressed.

0 When this bit is 0, a keypad key has not been pressed.
3 1 When this bit is 1, the Repeat function is active.

0 When this bit is 0, the Repeat function is inactive.
2 1 When this bit is 1, the Caps Lock key has been pressed.

0 When this bit is 0, the Caps Lock key has not been pressed.
1 1 When this bit is 1, the Control key has been pressed.

0 When this bit is 0, the Control key has not been pressed.
0 1 When this bit is 1, the Shift key has been pressed.

0 When this bit is 0, the Shift key has not been pressed.

APDA Draft 7-5 11721186

Apple 1IGS Hardware Reference
ADB Command/Data register

The ADB command/data register is a dual-function register used to communicate with ADB
devices. To send a command to a device on the bus, write the command byte to this
register at address $C026. To check the status of an ADB device, read this register at the
same address. Figure 7-7 shows the format of the ADB command/data register when it is
read.

i

LI I __p Number of data bytes returned
» Service Request valid

p Buffer flush key sequence

» Desktop Manager key sequence
» Abort/CTRLSTB flush

» Response/status

Figure 7-7 The ADB command/data register at $C026.

Bit Value Description

7

1
0
1

When this bit is 1, the ADB microcontroller has received a response from an
ADB device previously addressed.
No response available.

When this bit is 1, and only this bit in the register is 1, the ADB
microcontroller has encountered an error and has reset itself. When this bit
is 1 and bit 4 is also 1, this indicates that the ADB microcontroller should
clear the key strobe (bit 7 in the data register at $C000).

When this bit is 1, the Apple, Control, and Reset keys have been pressed
simultaneously. This condition is usually used to initiate a cold start up.
Reset key sequence has not been pressed.

When this bit is 1, the Apple, Control, and Delete keys have been pressed
simultaneously. This condition will result in the ADB microcontroller
flushing all internally buffered commands.

Buffer flush key sequence has not been pressed.

When this bit is 1, a valid service request is pending. The ADB
microcontroller will then poll the ADB devices and determine which has
initiated the request.

No service request pending.

The number of data bytes to be returned from the device is listed here.

APDA Drdft 76

117121186

Apple 1IGS Hardware Reference

ADB Status register

The ADB Status register, located at $C027, contains flags that relate to mouse and
keyboard data and staws. Figure 7-8 shows the format of the ADB Status register,
followed by a description of each bit.

41312 (111]0

L Command register full
L » Mouse X-Y-Coordinate registers available
L— — _p Keyboard interrupt enable/disable
—p Keyboard Data register full
- Data interrupt enable/disable
— Data register full

» Mouse interrupt enable/disable
» Mouse Data register full

Figure 7-8. ADB Status register at $C027

Bit Value Description

7 1
0
6 1
0
5 1
0
4 1
0
3 1
0
2 1
0
1 0
1
0 1
0

When this bit is 1, the mouse data register at $C024 is full (read-only bit).
When this bit is 0, the mouse data register is empty.

When this bit is 1, the mouse interrupt is enabled (read/write bit).
When this bit is 0, the mouse interrupt is disabled.

When this bit is 1, the data register is full (read-only bit).
When this bit is 0, the data register is empty.

When this bit is 1, the data interrupt is enabled (read/write bit).
When this bit is 0, the data interrupt is disabled.

When this bit is 1, the keyboard data register is full (read-only bit).
When this bit is 0, the keyboard data register is empty.

When this bit is 1, the keyboard data interrupt is enabled (read/write bit).
When this bit is 0, the keyboard data interrupt is disabled.

Mouse X-Coordinate register available (read-only bit).
Mouse Y-Coordinate register available.

Command register full (read only bit)
Command register empty.

The command full flag is set to 1 when the system writes to the Command register and is
cleared to 0 when the ADB microcontroller reads the Command register.

APDA Draft 7-7 11121186

Apple IIGS Hardware Reference

The keyboard data full flag is set when the keyboard writes data into this register; it is
cleared when the system reads the System Status register and the keyboard data register.

Bus communication

The host carries communication on the bus by sending either commands or data to a device.
A device can respond to commands by sending data to the host. This form of
communication uses strings of bits, each making up a packet. A data transfer or transaction
consists of a complete communication between the host and a device; for example, it may
be a command packet sent by the host to request data from a device followed by a data
packet sent from the device to the host.

Figure 7-9 shows how duty-cycle modulation represents bits on the bus. A low period of
less than 50 percent of the bit-cell time is interpreted as a 1. A low period of greater than
50 percent of the bit-cell time is interpreted as a 0.

- - em o=

i oulliin. ol

Duty cycle < 50% Duty cycle > 50%
bitcell represents 1 bitcell represents 0

Figure 7-9. Bit representation via duty-cycle modulation

Signals

Certain ransactions are neither commands nor data transactions. These are special
ransactions that the host uses to broadcast status globally to all devices on the bus. There
are four special ransactions in this group: attention, sync, reset, and service request.

Attention and sync

The start of every command is signaled by a long low attention period that the host sends
on the bus. This is followed by a short high sync pulse that signals the beginning of the
initial bus timing. The falling edge of the sync pulse is used as a timing reference, after
which the first command bit follows, Figure 7-10 shows the format of the attention and
sync signals.

APDA Draft 78 11721186

Apple [IGS Hardware Reference

Attention |Sync

- - - -

Figure 7-10. Attention and sync pulses
Reset

Reset issues a break on the bus. Only the host may issue this signal, which signals all
devices to reset. By holding the bus low for a minimum of 2.8 milliseconds, a reset is

initiated.
Service request

A service request is used to signal the host that a device requires service, such as when
there are data to send to the host. Only a device can issue a service request. Following any
command packet, a requesting device can signal a service request by holding the bus low
during the low portion of the stop bit of the command transaction. This lengthens the stop
by a minimum of 140 milliseconds beyond its normal bit-cell boundary. This lengthened
stop bit indicates to the host that a service request is desired. Figure 7-11 shows the format
of the service request signal.

normal Stop bit cell boundary

N\

P R T

~

140 milliseconds, which
indicates a service request

Figure 7-11. Service Request

A device will signal a service request repeatedly until it is served. When a device has
requested service (at this point the host does not know which device sent the request), the
host will poll each of the devices by sending a Talk register 2 command.

When the host commands the requesting device to Talk, the device is considered served
and does not send a service request signal again until it needs to be served again. The host
can enable and disable the ability of a device to send a service request at any time. ADB
mouse devices are prohibited by the Apple 1IGS from issuing service requests. All other
ADB devices may issue service requests.

APDA Draft 7-9

11/121/86

Apple 1IGS Hardware Reference
Reset -

The host can reset all devices on the bus by holding the bus low for a minimum of 250
milliseconds. Upon detecting a reset on the bus, devices will reset and place themselves in
a mode to receive commands.

Transactions

A command (Talk, Listen, Flush) initiates a transaction. The sequence of the command is
as follows:

1. an attention signal
2. async signal

3. eight command bits
4. one stop bit

To synchronize the end of the transaction, the command transmits the stop bit after the last
command bit-cell. Then the transaction is complete and the host releases its control of the
bus (the bus is always floating in a high state until a device or the host initiate a
transaction).

ADB peripheral devices

Each device on the bus has an address. There is only one active talker on the bus at a time; —
this may be the host or an addressed device. A device addressed to Talk (with data to send)

releases control of the bus after it sends the data. If a device has been addressed but has no

data to send, it releases control of the bus immediately and allows the host to time out

(waiting for data, none arrives). The host may also send data to the addressed device in a

separate packet, after it sends a Listen command to the device.

Each peripheral device has a 4-bit command address that identifies its device type. A total
of 16 addresses are available, which means that a maximum of 16 unique devices may be
on the bus. A device always responds to its address when there is a power-on or a reset
signal.

Addresses

Each peripheral device is preassigned a 4-bit command address, which identifies its device
type. For example, all relative devices such as a mouse, power up at address 3. Most
devices have moveable addresses; the host can assign a new address to the device.
However, a device will always default to its assigned address upon power-on or after it
detects an ADB reset. Currently, 8 addresses are predefined and reserved. The other 8
addresses are available for moveable devices. This means that ADB can support up to 9
mouse devices at the same time, each one with a unique address.

Commands

Only the host can send commands. There are two types of commands: the Talk command s
is used for data transaction from a device to the host; the Listen command is used for a data
transaction from the host to a device.

APDA Draft 7-10 11721186

Apple 1IGS Hardware Reference
A command is an 8-bit word that has a specific syntax (see Table 7-1):

« a 4-bit field that specifies the address of the desired device. The addresses range from
0-15 (A3-A0).

« a 4-bit command and register address code.

Table 7-1. Command byte syntax

Bit
7 6 5 4 3 2 1 0 Command
x x x x 0 0 0 0 Sendreset
A3 throughAO 0 0 O 1 Flush
Xx x x x 0 0 1 0 Sendreset
x x x x 0 0 1 1 Sendreset
x x x x 0 1 x x Sendreset
A3 throughA0 1 0 r r Flush
A3 through A0 1 1 r r Flush
x = ignored

I = register number

Note: To allow for future expansion of the command structure, Apple has reserved
a group of instructions that are currently treated as no-ops (no operation
performed). Use of commands not listed above will result in possible
incompatability with future Apple products.

Talk
When the host addresses and requests a device to Talk, the device must respond with data

before the host times out (does not receive data within the specified time). The selected
device performs its data transaction and releases the bus.

Listen

When the host addresses and requests a device to Listen, it is enabled to receive the data
bits that the host places on the bus. The host performs its data transaction. After the stop
bit that follows the data is received, the transaction is complete and the device releases the

bus. If a listening device detects another command on the bus before it receives any data,
the original transaction is immediately considered complete and the device releases the bus.

Flush

The flush command is a device-independent command which requests that the device purge
all pending data from its buffer.

Send Reset

APDA Draft 711

11721186

Apple 1IGS Hardware Reference
Device registers

All devices have four locations to receive data. These are :

Register O, Talk: Data register, device specific
Listen: Data register, device specific

Register 1, Talk: Data register, device specific
Listen: Data register, device specific

Register 2, Talk: Data register, device specific
Listen: Soft addressed devices; device specific

Register 3, Talk: Status information, including the device address handler
Listen: Status information, including the device address handler

Collision detection

All devices must be able to detect collisions. If a device is attempting to output a bit and the
data line is forced (either high or low) by another device, it has lost a bit in collision with
the other device. If another device sends data before the device is able to assert its start bit,
it has lost a collision. The losing device should immediatedly untalk itself and preserve the
data that were being sent for retransmission. The device sets an internal flag if it loses a
collision.

Note: Devices using internal clocks that operate within * 1 percent should attempt
to assert their start bit at a random time within the limits of the line turnaround time.

Error conditions

If the bus hangs low, all devices reset themselves and output a 1. If a command
transaction is incomplete by staying high beyond the maximum bit-cell time, all devices
ignore the command and prepare for another attention signal.

Network layer

The network layer accommodates normal devices and extended address devices.

Normal devices

A normal device optionally has a device, called the activator, on it to indicate activity. The
activator can be a special key on a keyboard or a mouse button.

To aid in collision detection, the address portion of the address field of register 3 is
replaced with a random number in response to a Talk R3 command. Normal devices will
change their register 3 to the data received when they receive a Listen R3 command, no
collision is detected, and activator inactive is true.

At the systems level, a host can change the address of normal devices by forcing the
collision of devices sharing the same address. By issuing a Talk R3 command and
following it with a Listen R3 command with a new address in bits 8 to 11 of the data, all
devices that did not detect a collision are moved to the new address. Typically, only one
device wil not detect a collision. This process can be repeated at new addresses until the

APDA Draft 7-12 11721:86

Apple lIGS Hardware Reference

response to the Talk R3 command is a time-out. This can be used to identify and relocate
multiple devices of the same type after initialization of the system.

At the applications level, addresses can be changed by displaying a message requesting a
user to use the activator, The host then issues a Listen register 3 command to a new
address and all devices except the one with the activator being used are moved. This
method can be used to identify and locate individual devices in multiuser applications.
Cerain handlers have been reserved to facilitate both address changing methods.

Extended address devices

Extended address devices have the same command address and a unique 16-bit extended
address that is stored in the device. Their command address cannot be changed. On
power-up or RESET, they accept only the Listen register 2 command in which the data
maich their extended address. When enabled, they respond to all commands addressed to
them. These devices become disabled after receiving a Listen register 2 command in which
the data do not match their extended address.

Register 3

The function of a device and the use of its data by the host are controlled by a handler that
is stored by the device in register 3. The host changes the handler with a Listen register 3
command. If the receiving device is able to function with the new handler, it is stored and
sent in response to a Talk register 3 command.

Handler $FF is reserved for the self test mode for all devices. Handler $00 in response to a
Talk is reserved to indicate a failed self test. Handler $00 sent with a Listen is reserved to
indicate that the device is only to change the address portion of register 3. Figure 7-12
shows the format of register 3.

15 1312 11 8 7

0
I l ‘ l I I I l Device handler
, Device address
High-speed enable
Service request enable
0 (Zero)

Figure 7-12. Register 3

Register 0

Register 0 is used to hold device data, and is read using the Read register 0 command.
Figures 7-13 and 7-14 show the format of register 0 as used in a keyboard and mouse
device.

APDA Draft 7-13 11/21!56

Apple 1IGS Hardware Reference

15 6 0

l l l ' [l l Keycode 1
s Key released

Keycode 2
Key released

Figure 7-13. Keyboard Register 0

15 ' S 0

l I l [I ‘ X move value
Moved right
"o

Y move value
Moved up
Button pressed

Figure 7-14. Mouse Register 0

Service request

The Listen R3 command is also used to enable and disable the service request. Service
request is enabled on the bus by setting the register 3 enable bit to 1; it is disabled by setting
the bit to 0. This is useful in systems where the service request response time in a polled
system is longer than desired. When only specific devices are requued for an application,
the others can be disabled.

APDA Draft 7-14 1172186

Apple [1GS Hardware Reference

Chapter 8

The Disk Port

The Apple IIGS computer can use either 5.25-inch 140K disk drives or the 3.5-inch 800K
disk drives. The disk port connector at the rear panel is compatible with both types of
Apple disk drives. This chapter describes the disk port connector of the Apple IIGS.
Figure 8-1 shows the Apple IIGS block diagram and position of the disk port within the
system.

abot
L l i ety
L] E 3

s RAGT] | Vides wmpd
Rt |pamns foimns Joamas |eonua
2and fram feam | man

Mo B
Contratiar

INTSC wde
generster

Renl Tima

o1

1 - e
i 1 | | rike
nis e |
Kz Culp
e — L Ln m bl 4l el el B Retrent _— T
202 i | iy [N
DAy I e Haynward
o
[Ese
- -l RetreBt | wam
LT] I "' Reybenrd I
RALCASRTC -
|)
L o | Sevtnl part 1 Suriel purt 3 Dt purt ﬁ" Smmiybeg
] 4 | %%
At l
I

e -
=t Spoarer) E Breaxen

Figure 8-1. Relationship of the disk port and other components

Apple II Compatibility

The Apple IIGS uses the same disk drive interface as the Apple Ilc and Ile. Programs
written for both of these earlier computers will run on the Apple IIGS. The firmware
recognizes ProDos block device calls and SmartPort interface calls to both the Apple
UniDisk™ 3.5 and Apple DuoDisk® 5.25-inch disk drives.

To find out how to use the ProDos block device calls see the ProDos 8 Reference manual.
To find out how to use the SmartPort interface calls, see the Apple [IGS Firmware
Reference manual. :

APDA Draft 8-1 | 11121186

Apple IIGS Hardware Reference
The disk port connector

The disk port connector is located at the rear of the Apple IIGS case. Itisa 19-pin
connector. Figure 8-2 shows the connector, and the signals and their descriptions are listed
below.

i0 987 654321
e o 0000 0 9 0 0

® 0000 090 00
19 18 17 16 15 14 13 12 11

Figure 8-2. The disk port connector

Pin Description

1,2,3 GND Ground reference and supply
4 3.5DISK ‘ 3.5- or 5.25-inch drive select
5 -12V —12 volt supply

6 +5V +5 volt supply

7.8 +12V +12 volt supply

9 DR2 Drive 2 select

10 WRPROTECT Write protect input

11 PHO Motor phase 0 output

12 PH1 Motor phase 1 output

13 PH2 Motor phase 2 output

14 - PH3 Motor phase 3 output

15 WREQ Write request

16 HDSEL Head select

17 DR1 Drive 1 select

18 RDDATA Read data input

19 WDATA Write data output

Warning: The power connections on this disk port are for use by the disk drive
only. Do not use these connections for any other purpose. Any other use of these
supplies may damage the voltage regulator within the computer.

The IWM

The disk port interface is enhanced by the Integrated Woz Machine (IWM), which
simplifies the microprocessor’s task of reading and writing serial data to and from each
disk drive. To perform disk operations, the microprocessor simply reads or writes control
and data bytes to or from the six IWM registers.

The disk port is mapped as an internal device at addresses $COEQ through $COEF. These

are the same addresses as in the Apple IIc and Ile. Table 8-2 shows these locations and
their functions.

APDA Draft 8-2 | 11/21/86

Apple 1IGS Hardware Reference
Table 8-2. Disk port soft switches

Address Description

$COEO Stepper motor phase 0 low
$COE1 Stepper motor phase 0 high
$COE2 Stepper motor phase 1 low
$SCOE3 Stepper motor phase 1 high
$COE4 Stepper motor phase 2 low
SCOES5 Stepper motor phase 2 high
$COE6 Stepper motor phase 3 low
$COE7 Stepper motor phase 3 high
$COES Spindle motor enabled
$SCOE9 Spindle motor disabled
$COEA Drive 0 select

$COEB Drive 1 select

S$SCOEC Q6 select bit low

$COED Q6 select bit high

$COEE Q7 select bit low

$COEF Q7 select bit high

Soft switches Q6 and Q7 are select bits for accessing registers within the IWM. By setting
or clearing the Q6, Q7, and spindle motor bits, you may read or write to one of the
registers.

The Disk Interface register

The Disk Interface register ($C031) serves as a control register for the disk drive. By

writing to this register, you select the type of disk drive being used and the side of the disk
to be accessed.

This register uses only two bits, which are both cleared on reset. When the Disk Interface
register is read, 0’s are returned in the unused posttions (bits 5-0). Figure 8-3 shows the
format for this register. Descriptions of each bit are also listed below.

Warning: Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, “Introduction to the Apple IIGS”.

71 6 5] 4| 3| 2| 1| O

Reserved; do not modify

» Read/write head
» Disk drive type

Figure 8-3. Disk Interface register at $C031

APDA Draft 83 11121/86

Apple IIGS Hardware Reference
Bit Value Description

7 1 Read/write head select bit: A 1 in this position selects head 1.
0 A 0 selects head 0.

6 1 Disk drive select bit: A 1 in this position selects 3.5-inch disks.
0 A 0 selects 5.25-inch disks.

50 - Reserved; do not modify.

APDA Draft 84 11/21/86

Apple lIGS Hardware Reference

Chapter 9

The Memory Expansion Slot

The extended memory card slot allows you to add a memory card holding up to 8Mb of
RAM and 896K of ROM memory. It supports additional memory only and is not to be
used for any other purpose. RAM cards of IMb or 4Mb can be constructed by using
256Kilobit x 1-bit or 1Megabit x 1-bit RAM ICs. Figure 9-1 shows a block diagram of the
Apple 1IGS, and the relationship of the memory expansion slot with the rest of the computer
system.

2

M S 1 2
-t - i -—ﬂ—i—i : i ¥
- Bufler i &
P ‘ ‘ ;
MEGA I :5; o= I =
™ —/
) i 1 .
i . =
L Ll Vides wrpy
Buffer begn I b :l:d ::d ;‘: r‘lf: c& 4 [e
.l;l‘ I L —
[e -
u I . ; C videg
Y o
O —— =
| Kopheard "-,_E— GLU
s o e O - -
e Ll ™ S e " Cup
sl o [T e | e e e l N w.:;;:' -
ay | ‘o .
— i Retrent ey
Ir_ {E rem RAM
| =
q x| I Bartul purt 1 Surtet purt 3 Nl pot e e
- l Spn G E Brsanen

Figure 9-1. Diagram showing location of expansion memory in the system

Extended RAM

Up to 4Mb (64 banks of 64K each) of RAM can be designed in the extended memory card.
This would be organized as 4 rows (8 chips per row) of RAMs with each row holding
either 256K or 1Mb. This requires the use of 256 kilobit x 4 bit (resulting in 1Mb total) or
1 megabit x 1 bit RAMs (yielding 4Mb total).

To control and select individual rows of RAM, the FPI provides /CRAS (card row address

strobe), /CCAS (card column address strobe), CROWO (card row select 0), and CROW1
(card row select 1) signals. Signals /CRAS and /CCAS are the basic memory timing

APDA Draft 9-1

11121186

Apple IIGS Hardware Reference

signals common to most dynamic RAMs. Signals CROWO0 and CROW 1 are row selects
that, when taken as a pair, indicate the row number to be accessed. Typically, CROW0
and CROWI1 are used as the select signals for a dual 1-of-4 decoder (74F139 or equivalent)
that demuldplexes /CRAS and /CCAS into a separate /RAS and /CAS for each 8-chip
segment.

Extended RAM mapping

Figure 9-2 depicts a 1Mb extended RAM card using 4 rows of 256K per row totaling 1Mb.
The RAM banks above bank $11 are ghosts (repeat images) of the RAM in banks $2
through $11. A partially populated card causes holes in the memory map unless there is an
option on the card to alter the address decoding. Therefore, contiguous memory for banks
$2 through 11 is available only for 256K, 512K, and 1Mb expansion cards.

Main Board RAM Expansion Card RAM

Bank numbers $12-$7F are ghost banks;
addressing these will result in access to
a corresponding bank $2 through $11:

Bank $
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B

$12,22,32,42,52,62,72
$13, 23, 33,43, 53, 63,73
$14,24,34,44 54,64,74

$1E, 2E, 3E, 4E, 5E, 6E, 7E
$1F, 2F, 3F, 4F, 5F, 6F, 7F
$20, 30, 40, 50, 60, 70
$21,31,41,51,61, M1

Figure 9-2. Extended RAM mapping
MSIZE

A new input to the memory expansion slot, MSIZE, flags the type of memory chips being
used on the memory expansion card.

If the MSIZE pin is tied to ground (when using 256 kilobit RAMs), the FPI multiplexes 18
address bits onto RAO—8 and generates the CROWO0-1 row selects for rows of 256K. If

APDA Draft 9-2 11/21/86

Apple IIGS Hardware Reference

the MSIZE pin is not connected (for 1 megabit RAMs), the FPI multiplexes 20 address bits
onto RAO-9 and generates the CROW(O-1 row selects for rows of 1Mb.

Ghosting

The RAM expansion card is enabled for accesses in banks $2—-$80, but only provides 1
megabyte of actual RAM (banks $2-$11). Four eight-IC rows of RAMs on the card are
individually selected by CROWO0 and CROW 1. For a IMb card with 256 K rows (MSIZE
= (), the selected RAM row numbser is given by the bank number mod 4. For banks $0-$1
(main board RAM), the extended memory card is not accessed. This method of card and
row selection causes multiple images or ghosting of the RAM areas on the card; whenever
locations above $FFFFFF are addressed, locations in a corresponding low bank ($2-$11)
are accessed.

Extended ROM

Additional ROM space up to 896K is available in banks $F0 to $FD. To accomplish this,
an additional bank-address latch-decoder is required on the memory card. The FPI
provides a signal (CROMSEL.L) that selects one bank; however, the card must provide the
additional decoding to select individual ROMs within the selected bank.

The extended memory card connector provides a group of signals to support dynamic RAM
and additional general purpose signals to support ROM decoding and selection. Table 9-1
lists these signals.

Table 9-1. Memory card interface signals

Signal Description
FRAO-FRA9 10 bits of multiplexed RAM address for RAM cycles—
the least significant 10 bits of ROM address.

CROWO,1 2 bits select 1 of 4 RAM rows.

CRAS.L RAM/RAS strobe.

CCAS.L RAM/RAS strobe.

FR/W Write enable to RAMs. R/W from microprocessor or DMA.

DO-D7 8 bits of bidirectional data—microprocessor data bus

CDIR.L Card dc;am buffer direction control. Signal goes high when reading
card data

CROMSEL.L Card ROM select. Low for accesses to banks $FO-$FD.

PH2CLK Microprocessor clock. Rising edge indicates valid bank address on
D0O-D7.

MSIZE Output from card. Indicates RAM row size.

Al0-A15 The 6 high-order address bits. Used with ROMs.

14M 14 MHz clock signal.

VCC +5v £5%. 600mA maximum.

To control and select individual rows of RAM located on the ROM card, the FPI provides
the /CRAS, /CCAS, CROWO0, and CROW!1 signals. The /CRAS and /CCAS signals are
for basic memory timing common to most dynamic RAMs. The CROW0 and CROW1 are
row select signals that, when taken as a pair, indicate the row number to be accessed.
Typically, CROWO0 and CROW1 are select signals for a dual 1-of-4 decoder (74F139 or

- equivalent) that demultiplexes /CRAS and /CCAS into a separate /RAS and /CAS for each
row. Figure 9-3 shows a typical circuit for RAM row selection.

APDA Draft 9-3

11121186

Apple lIGS Hardware Reference

+5V

33 KQ §
74F139

3al0—— /RAS3
AS.
CRAS.L F2 al— /RAS2

_ﬁ;: 1aj0— /RASH
0alo— /RASO /RAS, /CAS for

3b J/CAS3 each row of RAMs
CCAS.L 7 fb 2b /CAS2
CROW0 —@ J21 ib 1b JCAS1

/CASO

CROW1 —9—@—

Figure 9-3. Example circuit for decoding the extended memory card RAS/CAS signals

Address multiplexing

The FPI multiplexes the RAM addresses onto either §, 9, or 10 RAM address lines to
provide support for RAM with 64 kilobit, 256 kilobit, or 1 megabit RAM ICs. The main
logic board RAMs (banks $0 and $1) are 64 kilobit chips requiring 8 address lines. The
RAM expansion card can support 256 x 1-, 256 x 4-, IM x 1-, or IM x 4-bit RAMs. The
expansion card manufacturer indicates word size of the RAMs on the memory card by the
MSIZE signal from the card. (See MSIZE, above.)

APDA Draft 94 11121186

Apple 1IGS Hardware Reference

Chapter 10

Power Supply

The Apple IIGS power supply has the same four-supply, switching, load-sensing design as
the Apple II, II plus and Iie models used. The following sections describe the design of
this unit.

Function

The power supply changes high-voltage alternating current (AC) into low-voltage direct
current (DC). The Apple IIGS does this by using a switching-type power supply that
allows a simple, maintenance-free operation.

Warning: The power supply contains dangerously high voltages, and should be
opened by an authorized Apple service technician only.

This power supply also contains special load-sensing circuitry; whenever it detects a short
or a no-load condition, the supply will no longer provide voltages to the computer. This
condition is easily recognized: The supply will emit two audible chirps per second. This
condition will persist until you correct the situation or turn the power supply off.

Specifications

The Apple IIGS power supply operates on regular household 120-volt alternating current.
The supply provides +12 volts, —12 volts, +5 volts, —5 volts, and 2 ground return lines.

The power input requirements are 107 to 132V AC. The power output specifications are as
follows:

» +12 volts at 1.5A

e —12 volts at 0.25A
* +5 volts at 2.5A

+ -5 volts at 0.25A

APDA Draft 10-1

11121186

Apple 1IGS Hardware Reference
Power connector

The connector is a 6-pin, molex-type, keyed in-line socket. Figure 10-1 shows its pin-out,
followed by a description of each pin.

1 2 NC.| 4 5 6 Fi

Figure 10-1. Power supply connector

Pin Description
1 Ground

2 Ground

3 N.C.

Rl +5 volt supply
5 +12 volt supply
6 ~12 volt supply
7 -5 volt supply

APDA Draft 10-2 11121186

Apple IIGS Hardware Reference

Chapter 11

65C816 Microprocessor

The microprocessor is the intelligence of the computer system. It is this device that
recognizes the instructions encoded by the programmer and manipulates the other devices
in the system (VGC, the Mega II, the DOC) that result in output such as video and sound.
Figure 11-1 shows the Apple IIGS block diagram and the relatonship of the
microprocessor to the rest of the computer.

C wded

gfs [t

=

Figure 11-1, The 65C816 in the Apple IIGS system

The Apple IIGS uses the 16-bit 65C816 microprocessor, a CMOS design based on the
6502 chip. The microprocessor provides this computer with greater computing power in
these ways:

» 8Mb address range increases potential progam and data size

» 16-bit internal data registers increase data-handling capability

« 2.8 MHz processor speeds computations
This chapter describes the new features of this microprocessor and its capability to emulate
the 6502. Also, each of the 65C816 internal registers is described briefly.

APDA Draft 11-1

11/121/86

Apple IIGS Hardware Reference

65C816 features

The new 65C816 microprocessor shares many characteristics with the 6502 and 65C02
used in other Apple I-family computers. It also introduces new features not found in
other Apple II computers. These are

* 16-bit accumulator

» 16-bit X and Y Index registers

» relocatable zero page

» relocatable stack

* 24-bit internal address bus

» 8-bit data address bank register

* 8-bit program address bank register

* 11 new addressing modes

* 36 new instructions, for a total of 91 (all 256 operation codes)
« fast block-move instructions

» ability to emulate the 6502 8-bit microprocessors
For detailed descriptions of these features, refer to the
manufacturer's data sheet at the end of this chapter.
To learn how to implement these features, refer to the
Apple lIGS Assembler Reference manual.

The 65C816 microprocessor shares some features with the 6502 and 65C02 micro-
processors used in previous Apple II models. Table 11-1 lists some of these features.

Table 11-1. Some 6500 family ties

6502 65C02 65816

Characteristic Year avallable 1975* 1983* 1985*

onstruction NMOS NMOS CMOS
%°0 "5) e
Address bus bits 16 16 24t
Data bus bits 8 8 8
Maximum memory 64K 64K 16M
Largest stack 256 256 64K
Defined opcod es 151 178 256
Address aglge 13 15 24
Relocat d:rect (zero) page? No No Yes
6502 software compatible? Yes Yes Yes
Fast block move instructions? No No Yes
*year available

t+ high 8 bits multiplexed onto data bus

NMOS is an abbreviation for N-doped Metal Oxide
Semiconductor, which is one of several methods of
semiconductor integrated-circuit fabrication.

APDA Draft 11-2

11/21/86

Apple IIGS Hardware Reference

The 65C816 is software compatible with the 6502 family of microprocessors. Actually,
the 65C816 has an emulation mode, in which it becomes an 8-bit 6502. By emulating the
6502, the 65C816 can execute most programs written for Apple I computers.

The 16-bit 65C816

In the Apple IIGS, the 65C816 normally operates in either of two modes: 6502 emulation
mode and 65C816 native mode. Figure 11-2 shows the sizes of the registers in emulation
mode and in native mode. In emulation mode, the accumulator and index registers are 8
bits wide, and existing Apple II programs run the same as they do on any other Apple II
model. In native mode, the accumulator and index registers are 16 bits wide. The 65C816
also has several new and more powerful addressing modes that take advantage of its 24-bit
addressing. The new addressing modes operate in either native mode or emulation mode,
although the shorter registers in emulation mode make some of them ineffective.

Note: Native mode can also work with 8-bit data registers with an additional
accumulator, the B register. Apple does not recommend 8-bit native mode, but
some internal routines use it, and developers are free to use it if they choose.

6502 emulation mode 65816 native mode
00 A Accumulator A
00 X X Index register X
00 Y Y Index register Y
00 Data bank register DBR
00 01 S Stack pointer 00 S
P Program_ Status P
register
PC Program counter PC
PBR Program bank register PBR
00 0000 Direct register 00 D
P |] | | | I |
24 16 8 0 24 16 8 0
Register length in bits Register length in bits

m emllllation mode tcpese bits are
e values shown dnd are no

Figure 11-2. 65C816 registers

APDA Draft 11-3

11121186

Apple lIGS Hardware Reference
Microprocessor differences

The 65C816 microprocessor differs from the 6502 in several ways. This section describes
some of those differences and their impact on program execution.

The registers

The 65C816 contains all the registers found in the 6502. In addition, the new
microprocessor has three additional registers that make it a more powerful chip. These new
registers provide additional addressing capability and greater data-handling capability. The
nine registers within the 65C816 are described below.

To learn how to use the registers in the 65C816, see
the Apple [IGS Assembler Reference manual,

The accumulator

The accumulator (also known as the Arithmetic Logic Unit—ALU) is a 16-bit register that
holds all values while arithmetic and logical calculations are performed. The result of a
calculation within this register affects the status bits in the Program Status register. In
emulation mode, the upper 8 bits are filled with 0’s that cannot be altered.

X Index register

The X Index register is a 16-bit register that is used as an address offset value when
calculating an effective address. When the x bit is set, the upper 8 bits are filled with 0’s
that cannot be altered.

Y Index register

The Y Index register is a 16-bit register that is used as an address offset value when
calculating an effective address. When the x bit is set, the upper 8 bits are filled with 0’s
that cannot be altered.

Data bank register

The data bank register is an 8-bit address register that contains the most significant byte of
the effective 24-bit address in all addressing modes. In emulation mode, it contains 0’s that
cannot be altered.

Stack pointer

In the previous Apple computers, the stack was located at $100 through $1FF in memory.
In the 65C816, the stack can be located anywhere in bank $00, but may not exceed 64K.
The stack pointer contains the address of the next available stack location. The stack
“grows” in a downward direction (toward lower addresses just as with a 6502 stack);
PUSH and PULL instructions place and remove bytes from the “top” of the stack (actually
the lowest address) and grows down toward lower addresses.

APDA Draft 114

11/21/86

Apple IIGS Hardware Reference
Program Status register

The Program Status register is an 8-bit register that contains status bits that are set or
cleared as a result of the condition of the accumulator after each operation within the
accumulator. Also, this register contains the e and m bits that control the emulation and
native modes. In emulation mode, this register remains unchanged in size.

Program counter

The program counter is a 16-bit register that is concatenated with the program bank register
to obtain the resulting 24-bit address of the next instruction to be fetched for execution. In
emulation mode, this register remains unchanged in size. (See the program bank register
address description, below.)

Program bank register

The program bank register is an 8-bit register that contains the most significant byte of the
24-bit program counter address. In emulation mode, this register is available, although
limited in its use, and remains unchanged in size. (See the program counter description,
above.)

Direct register

In the previous Apple computers, the zero page (called the direct page in the 65C816) was
located in the low glOO bytes of memory, and could not be moved. In the 65C816, the
direct page can be located anywhere in bank $00. The starting (low-byte) address of the
direct page is determined by the Direct register. This address can be any value from $0000
through $FF00. Although the direct page can begin anywhere in bank $00, there is a one-
cycle penalty when it does not begin on a page boundary (when the low byte of the Direct
register is not $00).

Emulating the 6502

As mentioned earlier, the 65C816 is capable of emulating a 6502 microprocessor. In
emulation mode, the 65C816 will execute the complete 65C816 instruction set (which
includes all 6502 instructions), but many of these instructions will be of limited use
because of the reduced width of the registers. For instance, addresses are 24 bits wide in
native mode but are limited to 16 bits in emulation mode, and data registers that are 16 bits
wide in native mode are reduced to 8 bits. Note in Figure 11-2 that certain bits in some of
the registers are filled with specific values that cannot be altered when the m bit is set.

To emulate the 6502 microprocessor, set the € bit to 1. You may then run programs that
were written for the 6502.

The e bit
The e bit in the Status register controls whether the 65C816 functions like a 6502

(emulation mode) or like a 65C816 (native mode). When this bit is a 1, the 65C816
executes only those instructions within the 6502 microprocessor.

APDA Draft 11-5

11712186

Apple IIGS Hardware Reference

In emulation mode, the microprocessor addresses 64K of memory, ignoring the program
bank register. In native mode, the microprocessor addresses up to 8Mb by using the
program bank register.

The m bit

The m bit in the Status register controls whether the accumulator and memory locations are
8 or 16 bits wide. When the m bit is set, references to the accumulator and memory
locations are 8 bits wide. When the m bit is cleared, references to the accumulator and
memory locations are 16 bits wide.

In emulation mode (e bit = 1) the m bit is forced to 1, and all references to the accumulator
and memory are 8 bits wide. '

The x bit

The x bit in the Status register controls whether the X and Y registers are 16 bits or 8 bits
wide. When the x bit is set, references to the X and Y registers are 8 bits wide. When the
x bit is cleared, references to the X and Y registers are 16 bits wide.

Operating speed

The Apple IIGS can run the 65C816 processor at one of two speeds: 1.024 MHz and 2.8
MHz. The FPI controls the clock input signal to the microprocessor and selects the
appropriate speed as indicated by the clock speed bit in the Speed register.

Summary

The new 65C816 16-bit microprocessor provides these improvements over the 6502:
» 16-bit accumulator
» 16-bit X and Y Index registers
» relocatable zero page
» relocatable stack
« 24-bit internal address bus
« 8-bit data address bank register
» 8-bit program address bank register
* 11 new addressing modes
» 36 new instructions, for a total of 91 (all 256 opcodes)
» fast block-move instructions
+ ability to emulate the 6502 8-bit microprocessors

APDA Draft 116

11721156

Apple IIGS Hardware Reference
65C816 data sheets

In the following pages are the data sheets from two manufacturers of the 65C816
MiCroprocessor.

APDA Draft 11-7 11121/86

W65C816

CMOS W65C816 and W65C802
16-Bit Microproqessor Family

Features - General Description
* Advanced CMQOS design for low power consumption and increased WDC's W65CB02 and WB5C816 are CMQS 16-bit microprocessors fea-
noise immunity ' turing totai softwars compatibility with their 8-bit NMOS and CMOS 6500~
® Single 3-6V power supply, 5V specified series predecessors. The WE5CB802 is pin-to-pin compatible with 8-bit
* Emulation mode allows complete hardware and software devices currently available, while the W65C816 extends addressingtoa
compatibility with 6502 designs full 16 megabytes. These devices offer the many advantages of CMOS
* 24-bit address bus allows access to 16 MBytes of memory space technoiogy, including increased noise immunity, higher reliability, and
® Fuil 16-bit ALU, Accumulator, Stack Pointer, and Index Registers greatly reduced power requirements. A software switch determines
* Valid Data Address (VDA) and Valid Program Address (VPA) output whether the processor is in the 8-bit "emulation™ mode, or in the native
ailows dual cache and cycle steal DMA implementation mode, thus allowing existing systems to use the expanded features.
® Vector Pull (VP) output indicates when interrupt vectors are being As shown in the processor programming model. the Accumulator, AL,
addressed. May be used to implement vectored interrupt design X and Y Index registers, and Stack Pointer register have all been ex-
* Abort (ABORT)input and associated vector supports virtual memory tended to 16 bits. A new 16-bit Direct Page register augments the Direct
system design) Page addressing mode (formerly Zero Page addressing). Separate
¢ Separate program and data bank registers allow program Program Bank and Data Bank registers allow 24-bit memory addressing
segmentation or full 16-MByte linear addressing ; with segmented or linear addressing.
" raans . ii _
:;‘:e?;':;;2:?,:?;;?3:;?3?;2::; :?Jrga;r:‘\::‘r!ges capability Four new signals provide the system designer \n_nth many optione_‘.. The.
« 24 addressing modes—13 original 6502 modes, plus 11 new ABORT input can interrupt the currently executing instruction without
addressing modes with 91 instructions using 2:,,5 opcodes moditying internal register, thus allowing virtual memory system design.
o New Wait for Interrupt (WAI s Clock (STP) i " valid Data Address (VDA) and Valid Program Address {VPA) outputs
pt{) and Stop the Clock (STP) instructions tacili it By indicating wheth ok
turther reduce power consumption, decrease interrupt latency and :rgg'::: ds:;menl iesn::::sr:edy 'Mo'(;’;y""r"g . vectaorrais :na:aeg:ai:tt?;

altows synchronization with externai events

» New Co-Processor insiruction {COP) with associated vector sup- monitoring the Vector Pull (VP) output.

ports co-processor configurations, i.e., floating point processors Note: To assist the design engineer, a Caveat and Application infor-
* New block move abitity mation section has been included within this data sheet.
W65C816 Processor Programming Model Pin Configuration
L__881Ts "] eBTs | 888] § 2 -
——————— = ' Vos 1 -0
[Daa Bank Reg. | X Regster HI I X Register Low NeirRrBisas = I =T
{OBR) (XH) {XL) TEEEE - el
| EESRRIEE, itizal S / 539358 =P =P
I Data Bank Reg | Y Register Hi Y. Y Register Low ot 4 ¢ o = E =
L 28] ZN A 1Y = = — =~
r::::::: . w0 n »{o ngt =
H H At n/
| 00 Stack I?g;ster Hi(s) Stack (FS!E?. Low m: :: : :; o rwescasay 5 oo
E-
e - A A
= §502 Accumulator ,~, Accumulator " e AR o
Registers {B) (?} (A) : : : : = =y
M =01 A7 b =
Progran;BBs;'nk Reg/ Pr r'_a'm (plc) CDPI-E'EH meRERASTRRASR Pt =P =
({) L () 5213 : i} l E a i ! AN n n m
[- z - a—-— g
L 00 Dlrac(:B mg Hi (?) |rect(gt’g. Low E] .
------- e2Ed5a w
L} 5;:_|5 HER Ra=H =
Status Register Coding /- AR ot 3 pif e
"
STATUSREG. (P) z 'r : :W_i) gg . o g:m
[Ts [€ |— EMULATION 1 < 6502 we s | v mcr uae
NVMXD 1 ZC 0=NATIVE pof b ol o= I e
IAET] |pusar h
I [T WS |oumaz AT 1[0 owsar
CARRY 1=TRUE xt|n 1 | ovass ot e Sy
ZERO 1= RESULT ZERO ol 3 oven = R =
OEOMALMODE 1-TAUE zt HE- -
= M |17 W | DT/BAY
INDEX REG. SELECT 1-=8BIT0=16BIT " 2zxznazanca = s
MEMORY SELECT 1=8BIT0=16BIT T I PPN it = | Sty
OVER FLOW 1=TRUE £ = =
L~ NEGATIVE 1= NEGATIVE For notes, refer to Packaging Information section.

Design Enginesr Wilhiam D Mensch, Jr.
Advance Information Data Sheet:
THEWESTERNDESIGN CENTER, INC. This is advanced information and
21686 East Srown Road s Mesa, Armzona 85203 « 5602-962-4545 s ¢ "
specifications are subject to change

without notice.

Absolute Maximum Ratings: (Note 1)

Rsting Symbol Yaiue This device contains input protection against damage due to high static
Supply Voltage Voo _0.3V 10 +7.0V voltages or electric fields, however, precautions should be taken to avoid
application of voltages higher than the maximum rating.
Input Voltage ViN -0.3V to Voo +0.3V —
Oparating Temperature Ta 0°C to +70°C L
. . 1. Exceeding these ratings may cause permanent damage. Functional
Storage Temperature Ts - -55°C 1o +150°C operation under these conditions is not implied.

DC Characteristics (All Devices): voo = 5.0V 5%, Vss =0V, Ta = 0°C to +70°C

—_—

! Paramaeter Symbol Min Max Unit
i Input High Valtage — ViH

RES, RDY, IRQ. Data, SO, BE, 2.0 Voo - 0.3 v

@2 (IN), NM), ABORT 0.7 Voo Voo +0.3 v
Input Low Vollage - ViL

i AES. RDY.IRQ, Data, SO, BE, -03 08 v

@2 (IN). NMI, ABORT -03 0.2 v o
Input Leakage Current (Vin = 0 to Voo) 1IN : I

RES. NMI, IRQ, SO, BE, ABORT (internal Puilup) -100 1 uA

RADY (Internal Pullup, Open Drain) -100 10 uh

@2 (IN) _ -1 1 uA

Address, Data. R/W (Off State, BE = 0) -10 10 uA
Output High Volitage (lox = =100yA) Vor :]

SYNGC, Data, Address, R/W, ML, VP, M/X, E, VDA, VPA, .

@1 (0OUT), @2 (OUT)) 0.7 Voo - \'
Output Low Voltage (loL = 1.6mA) __ Vou

SYNC, Data, Address, R/W, ML, VP, M/X, E, VDA, VPA, “

@1 (OUT), @2 (OUT) - 04 V'
Supply Current (No Load) lob 4 mA/MH2z
Standby Current (No Load, Data Bus =Vss or Voo Ise = |

RES. NMI, iRQ, SO, BE, ABORT, ¢2 = Voo) 10 A
Capacitance (ViN = 0V, Ta = 25°C, 1 = 2 MHz)

Logic, @2 (IN}) Cin — 10 pF

Address, Data, R/W {Off State) Crs — 15 pF

Pin Function Table
Pin Description Pin Description
AO-A1S Address Bus NC No Connection
ABORT Abort Input NMi Non-Maskable Interrupt
BE Bus Enable RDY Ready
@2 {IN) Phase 2 In Clock RES Reset
@1 (OUT) Phase 1 Out Clock RW Read/Write
@2 (OUT) Phase 2 Out Clock 50 Set Overfiow
Do-D7 Data Bus {G85SC802) SYNC Synchronize
DO/BAO-D7/BAT Data Bus, Multiplexed (G85SC816) VDA Valid Data Address
E Emulation Select VP Vactor Full
TRQ Interrupt Request VPA Valid Program Address
ML | Memory Lock Voo Positive Power Supply (+5 Volts)
M/X | Mode Select (PM or Px) Vss internal Logic Ground

AC Characteristics (W65C816): Voo = 5.0V £5%, Vss = 0V, Ta = 0°C to +70°C

2 MHz 4 MHz 6 MHz 8 MHz
! Parameter Symbol Min | Max | Min | Max | Min | Max | Min | Max | Unit
[Cycle Time teve 500 | DC | 250 | DC | 167 | DC | 126 | DC | ns
Clock Puise Width Low tPwiL 0.240 10 0.120 10 0.080 10 0.060 10 usS
Clock Pulse Width High tPWH 240 = 120 = 80 = 60 » nS
Fall Time, Rise Time s e tF, tA = 10 — 10 — 5 - 5 | nS
AO0-A15 Hold Time tAH 10 - 10 — 10 — 10 — nsS
AQ-A15 Setup Time tADS —_ 100 e 75 — 60 - 40 nS
BAO-BA7 Hold Time tan 0| — 10 | — 10| — 0] — [ns
| BAO-BA7 Setup Time teas - | w0 | - 90 | — 85 | — 45 | ns
I Access Time tacc 365 — 130 — 87 — 70 - nS
! Read Data Hold Time tDHR 10 - 10 —_ 10 = 10 -— nS
" Read Data Setup Time tosA w0 | — 3 | — 20 | — 15| — | ns
Write Data Delay Time tMos — 100 — 70 - 60 - 40 nsS
Write Data Hold Time toHw 10 -— 10 — 10 — 10 — nS
Processor Control Setup Time trcs 40 — 30 - 20 - 15 - nS
Processor Control Hold Time tPCH 10 - 10 —_ 10 - 10 - nS
E.MX Output Hold Time teH 10 — 10 - 5 - 5 — nS
E.MX Output Setup Time tes 50 —_ 50 — 25 - 15 — nS
Capacitive Load (Address, Data, and R/W) Cext - 100 — 100 - 35 - 35 pF
BE to High Impedance State teHz - 30 — 30 - 30 - -30 nS
BE to Valid Data tevo - | — 0| — 30 | — ! ‘30| ns
Timing Diagram (W65C816)
ot (= {4 1 jp— t¢
S2(IN) ———— 5 —]S
N 7 ik
1F —— (et tPwlL By (el P -
g {AH —2 ——] fet—— R]
AD-A1S, VDA, VPA
ot tapn e tacc [et— tD3A
READ DATA, :%‘_:__{k BAG-BAT N F [neap oama
(DHR ——id
I —_—t [eg— {BH
:;T:A E;'ATA, \m BAO-BA7 WRITE DATA
1DHW —) e — twos =l g 1PCS
:g:', NMI, RES, X X
—] tPeH
ABORT F
trcs [—
o XTI ss 1 ¥
- - En i ot EH s
1ES ——ad a

Timing Notes:
1. Voltage levels are VL << 0.4V, V1 >> 2.4V

2. Timing measurement points are 0.8V and 2.0V

AC Characteristics (W65C802): voc = 5.0V £5%, Vss =0V, Ta=0°C lo +70°C

i f 2MHz | 4MHz 6MHz | 8MHz |
f—r— : ! i
, Parameter Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | .-

Cycle Time teve 500 | bc | 250 [oc | 167 [oc [125 | bC | ns |
| Clock Pulse Width Low tewL 0240 | 10 0120 10 |0080| 10 0060, 10 | us |
_Clock Puise Width High | tewn | 240 | = 120 = 80 | = | 80 | = | ns |
[Fall Time, Rise Time) S ‘ tF, tR — 10 — 10 — 5 — 5 : nS i
' Delay Time, ¢2 (IN) to @1 (OUT) tog 1 — 20 | — 20 | — 20 | — 20 | ns |
| Delay Time. ¢2 (IN) to ¢2 (OUT) top2 - 0 | — 40 | — a0 | — 40 | ns |
[r Address Hold Time tAH 10 — —i 10 — r 0| - 10 - | nS |
[Address Setup Time ~ i taos — 100 — j 75 - i 60 — 40 T nS 7

= 1 S= 4

| Access Time tacc 365 - 130 — 87 + - 70 — | nS
| Read Data Hold Time tOHR 10 — 10 — 10 - 10 — ! ns |

Read Data Setup Time toSR J 40 — 30 -_ 20 — 15 — | nS '
! Write Data Delay Time tMDS — 100 - 70 - B0 | ~— 40 | ns |
i Write Data Hold Time toHw 10 — l 10 - |i 10 — 10 | — . nS
'7 4
| Processor Control Setup Time tpcs 40 —J 30 ~ j 20 — J 15jI — | n§ |
| Processor Control Hold Time tpcH 10 — ! 10 — [10 —_] 10 i — | nS |
| Capacitive Load (Address, Data, and R/W) CexTt - f TOOT - 100 — 35 l — | 35 | pF !
Timing Diagram (W65C802)

tcve "| |g—— 1F
02 “m_—_"f
s L
! | tPwiL et Bl e 2 tPwM
——iwe| [we—— IR
o1 (0UT) - ng \ .
#2(0UT) —-""_\-—— o1 [\

| ISNR— Y p—

R/W, SYNC,
AD-A1S

1ap3 tace — e losa

READ DATA ﬁ}_ READ DATA

toma Sm— et [MDS

WRITE DATA

WRITE DATA N

e o] | e
SO ‘-K [tPCH —am

Foulp—
IR0, NMI, RES, K
RDY

— - {PCH iy [~at— PCS

/M

Timing Notes:
1. Voltage levels are VL-< 0.4V, VH > 2.4V
2. Timing measurement points are 0.8V and 2.0V

Functional Description

The W65CBQ2 offers the design engineer the opportunity to utilize both
existing software programs and hardware configurations, while also
chieving the added advantages of increased register lengths and faster
secution imes. The W65C802's "ease of use” design and implementa-
“tion features provide the designer with increased flexibility and reduced
implementation costs. In the Emulation mode, the W65C802 not only
offers software compatibility, but is also hardware (pin-to-pin) coms-
patible with 6502 designs...plus it-pfovides the advantages of 16-bit
internal operation in 6502-compatible applications. The WE5C802 is an
excellent direct repiacement microprocessor for 6502 designs.

The W65CB16 provides the design engineer with upward mobility and
software compatibility in applications where a 16-bit system configura-
tion 1s desired. The WE65C816's 16-bit hardware configuration, coupied
with current software allows a wide selection of system applications. In
the Emulation mode. the WB5CB16 offers many advantages, including
full software compatibility with 6502 coding. In addition, the WE5C816's
powerful instruction set and addressing modes make it an excellent
choice for new 16-bit designs.

Internal organization of the W65C802 and W65CA816 can be divided into
two parts: 1) The Register Section, and 2) The Control Section. instruc-
tions (or opcodes} obtained from program memory are executed by
implementing a series of data transfers within the Register Section.
Signais that cause data transfers 10 be executed are generated within the
Control Section. Both the W65C802 and the W65C816 have a 18-bit
internal architecture with an 8-bit external data bus.

Instruction Register and Decode

An opcode enters the processor on the Data Bus, and is latched into the
Instruction Register during the instruction fetch cycle. This instruction
is then decoded. along with timing and interrupt signals, to generate the
various Instruction Register control signals.

Timing Control Unit (TCU)

The Timing Controf Unit keeps track of each instruction cycleasit is ex-

ecuted. The TCU is set to zero each time an instruction fetch is executed,

and is advanced at the beginning of each cycle for as many cycies asis
rquired to compiete the instruction. Each data transfer between regis-

.ers depends upon decoding the contents of both the Instruction Regis-

ter and the Timing Control Unit.

Arithmetic and Logie Unit (ALU)

All arithmetic and logic operations take place within the 16-bit ALU. In
addition to data operations, the ALU also calculates the effective address
forrelative and indexed addressing modes. The result of a data operation
15 stored in either memory or an internal register. Carry, Negative, Over-
flow and Zero flags may be updated following the ALU data operation.

Internal Registers (Refer to Programming Model)

Accumulators (A, B, C)

The Accumulator is a general purpose register which stores one of the
operands. or the result of most anthmetic and logical operations. In the
Native mode (E=0), when the Accumulator Select Bit (M) equals zero,
the Accumulator is established as 16 bits wide {A + B = C). When the
Accumulator Select Bit (M) equals one, the Accumulator is 8 bits wide
(A). In this case, the upper 8 bits (B) may be used for temporary storage
in conjunction with the Exchange Accumulator (XBA) instruction.

Data Bank Register (DBR)

During modes of operation, the 8-bit Data Bank Register holds the de-
fault bank address for memaory transfers. The 24-bit address is composed
of the 16-bit instruction effective address and the 8-bit Data Bank ad-

dress. The register value is multiplexed with the data value and is present
on the Data/Address lines during the first haif of a data transfer memory
cycle for the W65C8186. The Data Bank Register is initialized to zero dur-
ing Reset.

Direct (D)

The 16-bit Direct Register provides an address offset for all instructions
using direct addressing. The effective bank zero address is formed by
adding the 8-bit instruction operand address to the Direct Register. The
Direct Register s initialized to zero during Reset.

index (X and Y)

There are two Index Registers (X and Y) which may be used as general
purpose registers or to provide an index value for calculation of the ef-
fective address. When executing an instruction with indexed addressing,
the microprocessor fetches the opcode and the base address. and then
modifies the address by adding the index Register contents to the ad-
dress prior to performing the desired operation. Pre-indexing or post-
indexing of indirect addresses may be selected. In the Native mode (E=0),
both Index Registers are 16 bits wide (providing the Index Select Bit (X)
equais zero). If the Index Select Bit (X) equals one, both registers wili be
8 bits wide, and the high byte is forced to zero.

Processor Status (P)

The 8-bit Processor Status Register contains status flags and mode select
bits. The Carry (C), Negative (N}, Overflow {V), and Zero (Z) status flags
serve to report the status of most ALU operations. These status flags are
tested by use of Conditional Branch instructions. The Decimal (D), IRQ
Disable {1}, Memory/Accumulator (M), and index (X) bils are used as
mode select flags. These tlags are set by the program to change micro-
processor operations. .,

The Emulation (E) select and the Break (B) flags are accessible only
through the Processor Status Register. The Emulation mode select flag
is selected by the Exchange Carry and Emulation Bits (XCE} instruction.
Table 1, W65C802 and W65C816 Mode Comparison, illustrates the
features of the Native (E=0) and Emulation (E=1) modes. The M and X
flags are always equal to one in the Emulation mode. When an interrupt
occurs during the Emulation mode, the Break flag is written to stack
memory as bit 4 of the Processor Status Register.

Program Bank Register (PBR)

The 8-bit Program Bank Register holds the bank address for all instruc-
tion fetches. The 24-bit address consists of the 16-bitinstruction effective
address and the 8-bit Program Bank address. The register value is multi-
plexed with the data value and presented on the Data/Address lines during
the tirst half of a program memory read cycle. The Program Bank Regis-
ter is initialized to zero during Reset. The PHK instruction pushes the
PBR register onto the Stack.

Program Counter (PC)

The 16-bit Program Counter Register provides the addresses which are
used to step the microprocessor through sequential program instruc-
tions. The register is incremented each time an instruction or operand is
fetched from program memory.

Stack Pointer (S)

The Stack Pointer is a 16-bit register which is used to indicate the next
availabie location in the stack memary area. It serves as the effective ad-
dress in stack addressing modes as well as subroutine and interrupt pro-
cessing. The Stack Pointer allows simple implementation of nested sub-
routines and multiple-level interrupts. During the Emulation mode, the
Stack Pointer high-order byte (SH) is always equal to one. The bank ad-
dress for all stack operations is Bank zero.

INDEX X
(16 BITS)
¥
INDEX Y
g <___— {16 BITS) ORT (818)
@
e -
E STACK POINTER e INTERRUPT
z] (5) (16 BITS) = LOGIC
AD-A7 <: i <j i e - yoo
") —
3 <:> g - yss
a
< ALU 4
{16 BITS) 5 —
C & D
a
o
-l
z TIMING
BE (818) i CONT, [ROY
£
- TRANSFER
@ SWITCHES
a <::
- a
4 -
9 = p
b3 »
=l |2 z NS
e @ ACCUMULATOR 5
AB-A1S 5 w (C) (18 BITS) — - o fe—— 02 (IN)
a & (418 BT =] @ w w cLOCK
? g U (e E 9 8= | § GEN- [—= 21(QUT) (802)
w s a o o ERATOR
E < < T wE w
=] z - & Qp ng —a= 2 (OUT) (802}
« o PROG. CQUNTER o e zZ zE
= {PC) (16 BITS) - < oF op
< « Fu =z
™ z - Qg Qs
& € | 23 | 2 '
DIRECT (D) 3 H =3 = .
{16 BITS) £ 2 z2° z - R/W
BE (816) [+] = =
* - ¥
& PROG. BANK (PBR) = SYNC (802)
= (6 BITS)
E [t VPA (816)
-]
u DATA BANK (DBR)
I == VOA (816
g (8 BITS) SYSTEM (818
-] CONT. _
Do-D7 (802} Q [— PROCESSOR [ML (816}
DO/BAC-D7/BAT (816) 2 STATUS (P)
z [_ 18:8173) ——a VP (816}
a ety PREDECODE
=) PREDECODE E (818)
< INSTRUCTION REGISTER
E :> [> 1§ BITS) —— M/X (816}

BE (816)

30 (802)

Figure 1. Block Diagram — Internal Architecture

Signal Description

The following Signal Description applies to both the WE5C802 and the
WE5C816 except as otherwise noted.

Abort (ABORT)—W65C816

The Abort input is used to abort instructions (usually due to an Address
Bus condition). A negative transition will inhibit modification of any in-
ternal register during the current instruction. Upon completion of this
instruction, an interrupt sequence is initiated. The location of the aborted
opcode is stored as the return address in stack memory. The Abort vector
address is 00FFF8,9 (Emulation mode) or 00FFEB,3 (Native mode). Note
that ABORT is a puise-sensitive signal: i.e., an abort will occur whenever
there is a negative pulse (or level) on the ABORT pin during a ¢2 clock.

Address Bus (A0-A15)

These sixteen cutput lines form the Address Bus for memory and /O
gxchange on the Data Bus. When using the W65C816, the address lines
may be sel to the high impedance state by the Bus Enable (BE) signal.

Bus Enable (BE)—W65C816

The Bus Enable input signal allows external control of the Address and
Data Buffers, as well as the R/W signal. With Bus Enable high. the A/W
and Address Bufters are active. The Data/Address Buffers are active
during the first haif of every cycle and the second half of a write cycle.
When BE is low, these buffers are disabled. Bus Enabie is an asynchro-
nous signal.

Data Bus (D0-D7)—W85C6802

The eight Data Bus lines provide an B-bit bidirectional Data Bus for use
during data exchanges between the microprocessor and external mem-
ory or peripherals. Two memory cyctes are required for the transfer of
16-bit values.

Data/Address Bus (DO/BAQ-D7/BAT)—WGE5C816
These eight lines multiplex address bits BAO-BA7 with the data value. The

address 1s present during the first half of a memory ¢ycle, and the data
value is read or written during the second half of the memory cycle. Two
memory cycles are required to transfer 16-bit values. These lines may be
set to the high impedance state by the Bus Enable (BE) signal.

Emulation Status (E)—WBE5C816

The Emulation Status output reflects the state of the Emulation (E) mode
flag in the Processor Status (P) Register. This signal may be thought of
as anopcode extension and used fownemory and system management,

interrupt Request (IRQ)

The Interrupt Request input signal is used to request that an interrupt
sequence beinitiated. When the IRQ Disable (1) llag is cleared, a lowin-
put logic level initiates an interrupt sequence after the current instruc-
tion 1s completed. The Wait tor Interrupt (WAI) instruction may be ex-
ecuted to ensure the interrupt will be recognized immediately. The Inter-
rupt Request vector address is 00FFFE,F (Emulation mode) or 00FFEEF
(Native mode). Since IRQ is a level-sensitive input, an interrupt will
occur if the interrupt source was not cleared since the last interrupt.
Also, no interrupt will occur il the interrupt source is cleared prior to
interrupt recognition.

Memory Lock (ML)—W85C816

The Memory Lock output may be used to ensure the integrity of Read-
Modify-Write instructions in a multiprocessor system. Memory Lock
incicates the need to defer arbitration of the next bus cycle. Memory
Lock is low during the last three or five cycles of ASL, DEC, INC, LSR,
ROL, ROR, TRB, and TSB memory referencing instructions, depending
on the state of the M flag.

Memory/Index Seilect Status (M/X)—W65C816

This muitiplexed output reflects the state of the Accumulator (M) and
Index (X) select fiags (bits 5 and 4 of the Processor Status (P) Register.
Flag M is valid during the Phase 2 clock negative transition and Flag X is
valid dunng the Phase 2 clock positive transition. These bits may be
thought of as opcode extensions and may be used for memory and
system management.

Non-Maskable Interrupt (NMI)

A negative transition on the NMI inputinitiates an interrupt sequence A
high-to-iow transition initiates an interrupt sequence after the current
instruction is completed. The Wait for Interrupt (WAI) instruction may be
executed to ensure that the interrupt will be recognized immediately. The
Non-Maskable Interrupt vector address is 00FFFA,B (Emulation mode)
or QOFFEA.B {Native mode). Since NMI is an edge-sensitive input, an
interrupt will occur if there is a negative transition while servicing a pre-
vious interrupt. Also, no interrupt will occur tf NMI remains low.

Phase 1 Out (@1 (OUT))—W65C802

This inverted clock oulput signal provides timing for external read and
write operations. Executing the Stop (STP) instruction holds this clock
in the low state.

Phase 2 In (¢2 (IN))

Thisis the system ciock input to the microprocessor internal clock gen-
erator (equivalentto @0 (IN) on the 6502). During the low power Standby
Mode, ¢2 (IN) should be held in the high state to preserve the contents
of internal registers. ‘

Phase 2 Out (¢2 (OUT))—W6E5C802

This clock output signal provides timing for external read and write op-
erations. Addresses are valid (after the Address Setup Time (Taps)) foi-
lowing the negative transition of Phase 2 Qut. Executing the Stop (STP)
instruction holds Phase 2 Out in the High state.

Read/Write _(_R/\’l)

When the R/W output signal is in the high state, the microprocesaor is
reading data from memory or [/O. When in the low state, the Data Bus
contains valid data from the microprocessor which is to be stored at the
addressed memory location. When using the WE65CB816, the R/W signat
may be set to the high impedance state by Bus Enable (BE).

Ready (RDY)
This bidirectional signal indicates that a Wait for Interrupt (WAI) instruc-
tion has been executed allowing the user to halt operation of the micro-

processor. A low input logic level will hait the microprocessor in its cur-
rent state (note that when in the Emulation mode, the WE5C802 stops
only during a read cycle). Returning RDY to the active high state allows
the microprocessor to continue following the next Phase 2 in Clock
negative transition, The ROY signal is internally pulled fow following the
execution of a Wail for Interrupt {WAI) instruction, and then returned to
the high state when a RES, ABORT, NMI, or IRQ external interrupt is
provided. This feature may be used to eliminate interrupt latency by
placing the WAl instruction at the beginning of the IRQ servicing routine.
Ifthe IRQ Disable flag has been set, the next instruction will be executed
when the IRQ occurs. The processor will not stop after a WAl instruction
if RDY has been forced to a high state. The Stop (STP) instruction has
no effect on ROY.

Reset (RES)

The Reset input is used to initialize the microprocessor and start pro-
gram execution. The Reset input butfer has hysteresis such that asimpie
R-C timing circuit may be used with the internal puliup device. The RES
signal must be held low for at least two clock cycles after Vob reaches
operating voltage. Ready (RDY) has no effect while RES is being held low.
During this Reset conditioning period, the following processor initializa-
tion takes place:

Registers
D = 0000 SH = M
DBR = 00 XH = 00
PBR = 00 YH = 00

N V. M X D | 2Z2 C/E

= :[* % 1 1 0 1 % =1 %*=Notinitialized
STP and WAI instructions are cleared.

Signals .
E =1 VDA =20
M/X =1 VP =1
R/W =1 VPA =
SYNC=0 .

When Reset is brought high, an interrupt sequence is initiated:
® R/W remains in the high state during the stack address cycles.
® The Reset veclor address is 0OFFFC,D.

Set Overfiow (S0)—W65C802
A negative transition on this input sets the Overtlow (V) flag, bit 6 of the
Processor Status (P) Register.

Synchronize (SYNC)—W65C802
The SYNC output is provided to identify those cycles during which the
microprocessor is fetching an opcode. The SYNC signal is high during
an opcode fetch cycle, and when combined with Ready (RDY), can be
used for single instruction execution.

Valid Data Address (VDA) and

Valld Program Address (VPA)—W@5C816

These two output signals indicate valid memory addresses when high
{logic 1), and must be used for memory or |/O address qualification.

VDA VPA

1] 0 Internal QOperation—Address and Data Bus
available. The Address Bus may be invalid.

0 1 Valid program address—may be used for program
cache control.

1 0 Valid data address—may be used for data cache
control.

1 1 Opcode fetch—may be used for program cache
control and single step control.

VoD and Vss

Voo is the positive supply voltage and Vss is system logic ground. Pin 21
of the two Vss pins on the WE5C802 shouid be used for system ground.

Vector Pull (VP)—W65C818

The Vector Pull outputindicates that a vector location is being addressed
during an interrupt sequence. VP is low during the last two interrupt
sequence cycies. during which time the processor reads the interrupt
vector. The VP signal may be used to select and prioritize interrupts from
several sources by modifying the vector addresses.

Table 1. W65C816 Compatibility Issues

W65C816/802

L
| 1. S ({Stack)

Always page 1 (E = 1), 8 bits
16 bits when (E = 0).

we5C02

NMOS 6502 !

Always page 1, 8 bits

2. X (X Index Register)
3. ¥ (Y Index Register)

4. A (Accumulator)

~page 0 (E = 1},

“Indexed page zero always in

Cross page (E = 0).

T e
Always page 1, 8 bits i

Always page 0

indexed page zero always in
page 0 (E = 1),
Cross page (E = 0).

8 bits (M = 1). 16 bits (M = 0)

5. P (Flag Registor)

|

% S

Always page 0

Always page 0

Always page 0

8 bits

N R B

8 bits

N, V, and Z flags valid in
decimal mode.
D = 0 after reset or interrupt.

.

| 6. Timing
i A. ABS, X ASL. LSR, ROL,

i ROR With No Page Crossing

B. Jump Indirect
Cperand = XXFF

C. Branch Across Page

D. Decimal Mode

7 cycles

5 cycles

4 cycles (E = 1)
3 cycles (E =0)

No additional cycle

N. V, and Z flags valid in
decimal made.
D = 0 after reset and

N, V, and Z flags invalid

D = unknown after reset.

i
in decimal mode. }
|

interrupt. | D not moditied after interrupt.
6 cycles 7 cycles !
|
6 cycles 5 cycies and invalid page
crossing
4 cycles 4 cycles
Add 1 cycle No addrtional cycle

7. BRK Vector

8. Interrupt or Break

O0FFFE,F (E = 1) BRK bit =0
on stack it IRQ, NMI, ABORT.
00FFEG, 7 (E=0) X = X on
Stack always.

FFFE,F BAK bit = 0 on stack
it IRQ, NMI.

FEFE,F BRK bit = 0 on stack
it IRQ. NML. ’

PBR not pushed (E = 1)
RTI PBR not pulled (E = 1)
PBR pushed (E = 0)

RTI PBR pulled (E = 0)

Not availabie

Not available

it gl gt Wbt) W

i

9. Memory Lock (ML)

ML = 0 during Read, Modify and
Write cycles.

ML = 0 during Modify and Write.

Not available

-

10. Indexed Across Page

|

|

L

f

| Bank Address
l

]

|

i

i Boundary (d),y: a.x; a.y

Extra read of invalid address.

(Note 1)

11 RDY Pulled During Write

Cycle.

Ignored (E = 1) for WB5C802 only.
Processor stops (E = 0).

Extra read of last instruction
fetch.

Extra read of invalid address. !
|

Processor stops

Ignored

| 12, WAl and STP instructions.

13. Unused OP Codes

Available

Available

Not available

One reserved CP Code specified
as WDM will be used in future
systems. The W65C816 performs
a no-operation.

14 Bank Address Handling

PBR = 00 after reset or interrupts.

No operation

—_—— g

Unknown and some “hang
up” processor.

Not availabie

15. R/W During Read-Modify-
Write Instructions

E = 1, R/W = 0 dunng Modify and
Write cycles.

E = 0. R/W = 0 only during

Write cycle.

R/W = 0 only during Write cycle

Not available

R/W =0 during Modify and
Write cycles.

S | I N [

16. Pin7

WB5C802 = SYNC.
W65C816 = VPA

SYNC

———

|

[17. COP Instruction

i Signatures 00-7F user defined
Signatures 80-FF reserved

Availabie

Not available

Note 1. See Caveat section for additional information.

SYNC

Not availabie 1

W65C802 and WE5C816
Microprocessor Addressing Modes

The WE5C816 is capable of directly addressing 16 MBytes of memory.
. This address space has special significance within certain addressing
modes, as follows:

Reset and Interrupt Vectors .
The Reset and interrupt vectors use tHe majority of the fixed addresses
between O0OFFEQ and Q0FFFF,)

Stack

The Stack may use memory from 000000 to 00FFFF. The effective ad-
dress of Stack and Stack Reiative addressing modes will always be within
this range. .

Direct

The Direct addressing modes are usually used to store memory registers
and pointers. The effective address generated by Direct, Direct,X and
DirectY addressing modes is always in Bank 0 (000000-00FFFF).

Program Address Space

The Program Bank register is not affected by the Relative, Relative Long,
Absolute. Absolute Indirect, and Absolute Indexed Indirect addressing
modes or by incrementing the Program Counter trom FFFF. The only
instructions that affect the Program Bank register are: RTI, RTL, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al-
though code segments may not span bank boundaries.

Data Address Space

The data address space is contiguous throughout the 16 MByte address
space. Words, arrays, records, or any data structures may span 64 KByte
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bil effective addresses:

Direct Indexed Indirect (d,x}

Direct Indirect Indexed (d).y

Direct indirect (d)

Direct indirect Long [d]

Direct Indirect Long Indexed (d],y

Absolute a

Absolute a,x

Absolute a,y

Absolute Long ai

Absolute Long Indexed al,x

Stack Relative Indirect Indexed (d,s),y

The following addressing mode descriptions provide additional detail as
to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the W65C802
and WB5C816 microprocessors, The “long” addressing modes may be
used with the W65C802; however, the high byte of the address is not
available 10 the hardware, Detailed descriptions of the 24 addressing
modes are as follows:

1. Inmediate Addressing—#
The operand s the second byte (second and third bytes when inthe
16-bit mode) of the instruction.

2. Absolute—a
With Absolute addressing the second and third bytes of the instruc-
tion form the low-order 16 bits of the effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

Instruction: | opcode] addrl } addrh |
Operand | | |
Address: I DBR addrh addrl

3. Absolute Long—al
The second, third, and fourth byte of the instruction form the 24-bit
effective address.

tnstruction: | opcode | addn | addrh | baddr |
Jpe:and i ‘ I
Address: + baddr addrh addri

4. Direct—d

The second byte of the instruction is added to the Direct Register
(D) to torm the effective address. An additional cycle is required

when the Direct Register is not page aligned {DL not equal 0). The
Bank register is always 0.

Instruction: | opcode | offset |

j Direct Register |

+ ‘ offset

Qperand ‘ {
Address: 00

5. Accumuiator—A
This form of addressing always uses a single byte instruction. The
operand is the Accumulator,

i
effective address I

6. implied—i
Implied addressing uses a single byte instruction. The operand is
implicitly defined by the instruction.

7. Direct Indirect Indexed—(d),y
This address mode is often referred to as indirectY. The second
byte of the instruction is added to the Direct Register (D). The 16-bit
contents of this memory location is then combined with the Data
Bank register to form a 24-bit base address. The Y Index Register is
added to the base address to form the effective address.

Instruction: | opcode | offset |
| Direct Register i
+ | offset W
“ 00 | direct address I
then:
00 ' {direct address) ‘
+| oem |
I base address }
. ' | YReg |
Operand | |
Address: - effective address

8. Direct Indirect Long Indexed—[d].y
With this addressing mode, the 24-bit base address s pointed to by
the sum of the second byte of the instruction and the Direct
Register. The effective address is this 24-bit base address plusthe Y
Index Register.

Instruction: opcode] offset }
{ Direct Register i
" | oftset |
| 00 | direct address |
then:
| (direct address) |
+ ‘ i Y Reg |
Opersnd I) I
Address: effective addraess

9. Direct Indexed Indirect—(d,x)

This address mode is often referred to as Indirect, X. The second
byte of the instruction is added to the sum of the Direct Register
and the X Index Register. The result points to the low-order 16 bits
of the effective address. The Data Bank Register contains the high-
order 8 bits of the effective address.

Instruction: | opcode offset | instruction: LopcodeJ addrl | addrh | badar 1
| Direct Register | | badar | addrn addrl |
+ | offset | . ! XReg |
|) J Operand {
dl_r&Fl address Address: effective address |
oo ol XReg |
oot e TR 14. Absolule Indexed With Y—a,y
Il 00 | o — E The second and third bytes of the instruction are added to the
' Y Index Register to form the low-order 16 bits of the efective ad-
then: dress. The Data Bank Register contains the high-order 8 bits of the
f 00 | (address) l eftective address.
+| oer | fnstructlon: | opcode | addri | addrh |
Operand R
Address: ‘ effective address | I OB | addrh ! addri I
.| | YReg |
10. Direct Indexed With X—d,x Operand | l
Address: effective address

;he second byte of the inslrlg:tion is added to thewg\-onh%Dilect
egister and the X Index Register to form the 16-bit effective
address. The operand is always in Bank 0. 15. Program Counter Relative—r
This address mode, referred to as Relative Addressing, is used oniy
with the Branch instructions. If the condition being lested 1s met,
the second byte of the instruction is added to the Program Counter,
| which has been updated to point to the opcode of the next instruc-
tion. The olfset is a signed 8-bit quantity in the range from -128 to
I 127. The Program Bank Raegister is not atfected.

16. Program Counter Relative Long—ri

Thisaddress mode, referred to as Relative Long Addressing, is used
I only with the Unconditional Branch Long instruction (BAL) and the
Push Effective Relative instruction (PER). The second and third
bytes of the instruction are added to the Program Counter, which
(has been updated to point to the opcode of the next instruction. With
the branch instruction, the Program Counter is loaded with the
rasult. With the Push Effective Relative instruction, the result 1s
stored on the stack. The offset is a signed 16-bit quantity in the range

Instruction: | opcode f offset |

l Direct Register

+ | offset

| direct address |

X Reg

a i

Operand \
Address:

11. Direct Indexed With Y—d,y

The second byte of the instruction is added to the sum of the Direct from -32768 to 32767. The Program Bank Register is not affected.
Register and the Y Index Register to form the 16-bit effective

aadress. The operand is always in Bank 0. 17. Absolute Indirect—(a)
The second and third bytes of the instruction form an address to a
l pointer in Bank 0. The Program Counter is loaded with the first and
' second bytes at this pointer. With the Jump Long (JML) instruction,
the Program Bank Register is loaded with the third byte of the
l pointer,

: Instruction: | opcode | addri |
I direct address | , o l

00] effective address

Instruction: ropcoda] offset

l Direct Register

* l offset

addrh |

addrh |

Indirect Address = addr! |

)
+ ! YReg l New PC = {indirect address)
Qperand l ' | with JML:
Address: 00 effective address New PC = (indirect address)

New PBR = (indirect address +2)
18. Direct Indirect—(d)

12. Absolute Indexed With X—a,x
The second and third bytes of the instruction are added to the

X Index Register to form the low-order 16 bits of the effective ad-
dress. The Data Bank Register contains the high-order 8 bits of the

effective address.
Insiruction: r opcode addrh

addri |

Thesecond byte of the instruction is added to the Direct Register to
form a pointer to the low-order 16 bits of the effective address. The
Data Bank Register contains the high-order 8 bits of the effective
address.

in ction: opcode offset
| oBR | addm | adan | e [op ‘ |
| ! XReg | ‘ Direct Register '
Operand | + | offset '
Address: I effective address
l 00 | direct address |
13. Absolute Long Indexed With X—al,x then;
The second, thi d and' fourth bytes of the instruction form a 24-bit 00 ‘ (direct address) |
base address. The effective address is the sum of this 24-bit address
and the X Index Register. b 5 ’ DBR l
QOperand , ‘
Address: effective address

10

21.

19. Direct indirect Long—[d]

The second byte of the instruction is added to the Direct Register 1o
torm a pointer to the 24-bit effective address.

Instruction: | opcode | offset |
| pirecl Register |
oo ottset |
l 00 ' direct address l
then:
Operand
Address: | (direct address) ‘

20. Absolute indexed Indirect—(a,x)

The second and third bytes of the instruction are added to the
X Index Register to form a 16-bit pointer in Bank 0. The contents of
this pointer are loaded in the Program Counter. The Program Bank
Register is not changed.

Instruction: I_opcode [addrni I addrh]
‘ addrh | addrl |
| | XReg |

| R | address |
then:

PC = (add-ess)
Stack—s

Stack addressing refers to all instructions that push or pull data
trom the stack, such as Push, Pull, Jump to Subroutine, Return from
Subroutine, Interrupts, and Return from Interrupt. The bank ad-
dress is always 0. Interrupt Vectors are always fetched from Bank 0.

22. Stack Relative—d,s

The low-order 16 bits of the effective address is formed from the
sum of the second byte of the instruction and the Stack Pointer. The
high-order 8 bits of the eflective address is aiways zero. The relative
offset is an unsigned 8-bit quantity in the range of 0 to 255.

Instruction: | opcode | offset |
l Stack Pointer l
+ | ofiset |
Operand
Address: 00 | eftective address |

23.

2‘.

Stack Relative Indirect Indexed—(d,s),y

The second byte of the instruction is added to the Stack Pointer to
form a pointer to the low-order 16-bit base address in Bank 0. The
Data Bank Register contains the high-order 8 bits of the base ad-
dress. The effective address is the sum of the 24-bit base address
and the Y Index Register.

Instruction: | _opcode | offset |

| Stack Pointer |

+ | offset |

I 00 l S + oftset ’
then:
| S + oftset |
«| oBR |
| base address |
+ | E Y Reg |
Operand
Address: | effective address i
Block Source Bank, Destination Bank—xyc

This addressing mode is used by the Block Move instructions. The
second byte of the instruction contains the high-order 8 bits of the
destination address. The Y index Register contains the low-order 16
bits of the destination address. The third byte of the instruction
contains the high-order 8 bits of the source address. The X Index
Register contains the low-order 16 bits of the source address. The
C Accumulator contains one less than the number of bytes to move.
The second byte of the block move instructions is also loaded into
the Data Bank Register. i,

Instruction: | opcode | dstbnk | srconk |
dstenk — DBR
Source
Address: | srcbak | X Reg |
Destination
Address: | oer | Y Reg |

Increment (MVN) or decrement (MVP) X and Y.
DCecrement C (if greater than zero), then PC+3 — PC.

n

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRA
BRK
BRL
BvC
BVS
CLC
CLD
cul
CLv
CMP
CcoP
CcPX
crPY
DEC
DEX
DEY
EOR
INC
INX
INY
JML
JMP
JSL
JSR
LDA
LDX
LDY
LSR
MVN
MVP
NOP
ORA
PEA

PEI

PER

Table 2. W65C802 and W65C816 Insiruction Set—Alphabetical Sequence

Add Memory to Accumulator with Carry PHA
"AND" Memory with Accumulator PHB
Shift One Bit Left. Memory or Accumulator PHD
Branch on Carry Clear {Pc = 0) PHK
Branch on Carry Set (Pc = 1) PHP
Branch if Equal (Pz = 1) PHX
Bit Test PHY
Branch if Result Minus (Pn = 1) PLA
Branch if Not Equal (Pz = 0) PLB
Branch if Result Plus (PN = 0) PLD
Branch Always PLP
Force Break PLX
Branch Always Long PLY
Branch on Qverflow Clear (Pv = 0) REP
Branch on Overflow Set (Pv = 1) ROL
Clear Carry Flag ROR
Clear Decimal Mode RTI
Clear Interrupt Disable Bit RTL
Clear Overflow Flag RTS
Compare Memory and Accumulator SBC
Coprocessor SEC
Compare Memory and Index X SED
Compare Memory and Index Y SE|
Decrement Memory or Accumulator by One SEP
Decrement Index X by One STA
Decrement Index Y by One STP
“Exclusive OR"” Memory with Accumulator STX
Increment Memory or Accumulator by One STY
Increment Index X by One §TZ
Increment index Y by One TAX
Jump Long TAY
Jump to New Location TCD
Jump Subroutine Long TCS
Jump to New Location Saving Return Address TOC
Load Accumulator with Memory TRB
Load index X with Memory TSB
Load Index Y with Memory TSC
Shift One Bit Right (Memory or Accumulator) TSX
Block Move Negative TXA
Block Move Positive TXS
No Operation TXY
“OR" Memory with Accumulator TYA
Push Effective Absolute Address on Stack (or Push Immediate TYX
Data on Stack) WAI
Push Effective Indirect Address on Stack (or Push Direct WDM
Data on Stack) XBA
Push Effective Program Counter Relative Address on Stack XCE

For alternate mnemonics, see Table 7.

Push Accumulator on Stack
Push Data Bank Register on Stack
Push Direct Register on Stack
Push Program Bank Register on Stack
Push Processor Status on Stack
Push Index X on Stack
Push Index Y on Stack
Pull Accumulator from Stack
Pull Data Bank Register from Stack

Pull Direct Register from Stack

Pull Processor Status from Stack

Pull Index X from Stack

Pull Index Y form Stack

Reset Status Bits

Rotate One Bit Lelt (Memory or Accumulator)

Rotate One Bit Right (Memory or Accumulator)

Return from Interrupt

Return from Subroutine Long

Return from Subroutine

Subtract Memery trom Accumulator with Borrow

Set Carry Flag

Set Decimal Mode

Set interrupt Disable Status

Set Processor Status Bite

Store Accumulator in Memory

Stop the Clock

Store Index X in Memory

Store Index Y in Mamory

Store Zere in Memory

Transfer Accumuiator to Index X

Transfer Accumulator to Index Y

Transfer C Accumulator to Direct Register -
Transfer C Accumulator to Stack Pointer Register
Transfer Direct Register to C Accumulator

Test and Reset Bit

Test and Set Bit

Transfer Stack Pointer Register to C Accumulator
Transfer Stack Pointer Register 1o index X

Transfer Index X to Accumulator

Transter Index X to Stack Pointer Register

Transter Index X to Index Y

Transfer Index Y to Accumulator

Transfer Index Y to Index X

Wait for Interrupt

Reserved for Future Use

Exchange B and A Accumulator

Exchange Carry and Emulation Bits

r

Table 3. Vector Locations

E=1 E=0

OOFFFE.F —IRQ/BRK Hardware/Solware OQOFFEE.F —IRQ Hardware
OOFFFC.D—RESET Hardware QOFFEC.D—(Reserved)

OQFFFA.B —NMI Hardware QQFFEA,B —NMI Hardware
QOFFF8,9 —ABORT Hardware OOQFFEB,9 —ABORT Hardware
OOFFF6,7 —(Reserved) QOFFE6,7 —BRK Software

OOFFF4,5 —COP Software QOOFFE4,5 —COP Software

The VP output is |low during the two cycles used for vector location access. .
When an interrupt is executed, D =0 and | = 1.in Status Register P.

12

Table 4. Opcode Matrix

M "
s s,
D) LSD D
0 1 2 3 5 6 7 a 9 A c o E F
o |BRK s [ORA(dx) | COPs| ORAds | TSBd | ORAD | ASLd | ORA[J) |PHPs| ORA# | ASLA|PHDsS| TSBa | ORAa | ASLa | ORAal| .
28 26 2%g 2%y 2%5 | 23|25 2% |1 3| 2 2|1 2[1*4| 3%s 34| 36| 4%s
1| BPLT | ORA (d).y |ORA (d)|ORA (dish.y| TRBd |ORA dx|ASLd.x| ORAjdly | CLCi|ORAay|INCA|TCSi| TRBa |ORAax| ASLax|ORAalA
ol e 25 2 b S 2%s5 | 24 | 26 2%s 12| 34 |1%2]1%2| 3% 34| 37| a*s
2 |JSRa |ANDI(gx) | JSLal | ANQds | BITd | ANDd |ROLA | AND(d] |PLPs| AND# |[ROLA(PLDS| BITa | ANDa | ROLa| ANDal| ,
36 2 6 a¥g 2%, 23|23 |25 2%6 1 4l 22 |1 2|1%s| 34 34 | 36
3 BMIir | AND {d).y |AND (d) ANDLd.s),y BIT d.x |AND d.x |ROL d,x AND'[dl.y SECi |ANDay DECA|TSC | BITax | AND a.x|ROL a.x| AND al.x 3
2 2 25 2°%s5 2%7 2% | 2 4 | 2 6 2%6 12 3 4 | 1% [1%2] 3% 34 | 37| 4a%s
¢|RTls |EOR(dx) | WOM | EORds |MVPxyc| EORd |LSRd | EOR[d] |PHAS| EOR# |LSRAPHKs| JMPa | EORa | LSRa | EORal| ,
17 2 6 2%z 2%, a*7 | 23|25 2% (13| 22 |1 2|1%3] 3 3 34| 36| 4%s
‘5 BYCr | EOR (d),y |EOR (d) EOR Ld.s).y MVN xyc |EOR d.x |LSR d.x EOR‘jd].y CLlIi |[EORay| PHYs|TCDi| JMPal |EORax | LSAa.x|EORalx 5
2l22| 25 2%5 2%7 a*7 | 24 |26 2% |1 2| 3 4 |1%3|1%2| a%a | 34 | 37| 4¥s5
: 6 RTSs |ADC (a.x) PERSs ADC ds S§TZd ADC d | RORd ADC [d] PLAS | ADC# |[ROR A|[RTL s | JMP (a) ADCa | RORa ADE al 6
18 2 6 a¥%s 7l 2%3 | 23 |25 2%g 14| 22 |1 2|1%s| 3 5 34 |36
; | BVS [ADC (d)y |ADC ()| ADC (d.shy| STZd.x |ADC d.x ROR d.x| ADC jdly | SEIi |ADCay| PLY's [TOC i |JMP (ax) | ADC a.x ROR ax ADCald
2 2 25 2%;g 2%y 2%4 | 24 | 2 8 2% 1 2 3 4 [1%a|1%2| 3% 34 | 37| 4%s
g |BRAT|STA(dx) | BAL1 | STAds | STYd | STAa |STXd | STA[d] |DEYi| BIT# | TXAi PHBs STYa | STAa | STXa | STAal| .
2%2| 2 8 a%3 2%4 23|23 |23 2%g 1 2| 2%2 (1 2|1%3| 3 4 3 4 34| a¥®s
g |BCCr [STA(d)y |STA(d)|STA (ds)y | STYdix |STAdx [STXdy | STAldLy | TYAi |STAay| TXSi|TXYi| STZa |STAax | STZax|STAalx o
2 2 2 6 2%5 2%y 24 | 24 |2 4 2%6 |1 2| 35 |1 2|1%2| 3%4 35 | 3%:5| 4%s
A |LOY#|LDA(dx) | LDX# | LDAds | LDYd |LDAd [LDXd | LDA[d] | TAYi | LDA# | TAXi|PLBs| LOYa | LDAa | LOXa | LDAaI| ,
2 2 2 6 2 2 2%4 2 3 23|23 2™.g 12|22 |1 2[1*4]| 3 4 3 4 34| 4%5
g |BCS7 |LDA (d)y (LDA(d)|LDA (ds)y|LDY dx |LDAdx [LDXdy | LDA[d]y | CLVi |LDAay| TSXi |TYXi| LDYax |LDAax|LDXay|LDALX o
22 25 2%s 2%y 2 4 2 4 |2 4 2% 1 2341 21%2] 3 4 34 34| 4%s
c |CPY® |CMP(d.x) | REP® | CMPds | CPYd |CMPd |DECd | CMP[d] | INYi | CMP# | DEXi|WAli| CPYa | CMPa | DECa | CMPal| .
22| 26 2%3 2%y 23 |23 |25 2%6 12|22 |1 2|1%3] 3 4 | 34 |36 | a¥s
D |BNEr [CMP (d)y |CMP (d)|CMP (d.s).y| PEls CMPdxDECd.x|CMPdly | CLDi (CMPay| PHXs|STPi| JML(a) |CMPax DECax CMPalx
2 2 25 2%s 2%y 2% | 24 | 2 6 2%g 12| 34 |[1%3]1%3| 3% 3 4 37 | 4%5
g (CPX# |SBC (¢xj | SEP# | SBGds | CPXd | SBCd | INCd | SBC[d] | INXi | SBC# | NOPi|XBAi| CPXa | SBCa | INCa | SBCal| .
2 2 2 6 2%3 2%4 2 3 23 |25 2%g 1222 |1 2|1%3] 3 4 3 4 36| 4%s
¢ |BEQr | SBC (aLy sac (d) [SBC (as)y PEAS |SBC d.x [INC d.x SBC‘[dJ.y SEDi |SBCay| PLXs XC*Ei JSR (a x} | SBCax | INC ax SBCaI E
2 2 25 2%s 2%y 3%s | 2 4 |2 6 2% |1 2| 3 4 |1%4|1%2]| 3% 34 | 37| a¥*s
0 1 2 3 4 5 8 7 8 9 A B c D E F
symbol | addressing mode symbol | addressing mode
immediate 1] direct indirect long
A accumulator (d].y direct indirect long indexed
r program counter relative a absolule
7l program counter relative long ax absolute indexed (with x)
i implied ay absolute indexed (witk y)
£ stack al absolute long
d direc! alx absolute long indexed
d.x direct indexed (with x} ds stack relative
dy direct indexed (with y) (d.s)y stack relalive indirect indexed
(d) direct indirect (a) absolute indirect
{d.x) direct indexed indirect (a,x) absolute indexed indirect
{dhy direct indirect indexed xyc block move
Op Code Matrix Legend
INSTRUCTION ADDRESSING
MNEMONIC # = New WEB5C816/802 Opcodes MOGE
e = New WE5C02 Opcodes
BASE Blank = NMOS 6502 Opcodes BASE
NQO. BYTES NQO. CYCLES

13

Table 5. Operation, Operation Codes, and Status Register

2 Break Bat (B) in Status register indicates nardware or sofiware braak,

i STATUS CoD!
> STATU E
MNE- | 3 x - = MNE-
MONIC - _iS= ® | » = =l L1217 6 543210 MONIC
[e] =la|Tlo | ggiiiﬁ'ln--5333-33,NVMXD.ZCE:°
OPERATION 1]2]a3ls)sle|7|a]afwln]2{najalisislir|e]9(20]21]22]23|24 [N v 1 B O 1 Z ClE= 1
ADC A-MrC—A Fososts 71 [77]61]75 70 |7F | 79 72 |67 63 [73 NV zZcC AD
AND AN —A__ 29 |2D(2F |25 31)|37|21)35 3D |3F |39 32|27 23 |33 N Z ANg
ASL c-- N&7_ a9 -0 0E 06 |0A 18 1€ N ZC ASL
BCC SAANGH IFE -9 %0 8ce
BCcs BRANCH IFC =1 - BO BCS
BEQ BRANCH IF 2 = 1 - 7o o
BIT AAM (NOTE 1) 89 | 2C 24 34 3c l My My & BlTo
BMI BRANCH IF N = 1 == 30 BMI
BNE | BRANCHIFZ:0 | 00]
arL BRANCH (FN =0 10 BPL
BRA BRANCH ALWAYS i 80 BRA
BRK BREAK (NOTE 2) L 00 0! ~BRK
BAL BRANCH LONG ALWAYS 2 . BRL
ave BRANCH IFV = 0 50 Bve
Bvs BRANCH IF V = 1, 70 BVS
cLe 0-C 18 0 CcLC
cLD 0-0 D8 i 0 . cLD
cLl 0-1 58 i 0 cL!
CLY 0-v 88 .0 .) CLv
CMP A-M Co|CO|CF|Cs p1|o7|C1|DS DO (OF (D8 Dz |c7 C3 |03 N zZC cMP
coP CO-PROCESSOR 1 02 g 0| * COP
CPX XM E0|EC E4 N . ZC cPX
CPY Y-M Co{CC C4 N 2 C CPY
DEC OECREMENT CE C6 |3A D6 DE N z OEC
DEX X-1-~X CA N F DEX
DEY Y-1-Y 82 N Z DEY
EOR ATM 49 (4D| aF | 45 51 |57| 41|55 50 {5F | 59 52 (47 43|53 N z EOR
INC INCREMENTS EE E6 [1A F6 FE N F INC
INX X+1-X E8 N . z INX
INY Yel=Y cs N 5 z INY
ML JUMP LONG TO NEW LOC DC * ML
JMP JUMP TO NEW LOC. 4C{5C 6C 7C IMP
JSL JUMP LONG TO Su8. 2 . JSL
JSR JUMP TO SUB 20 FC . JSA
LDA M- A AS|AD| AF | AS B1 (87| A1 85 80 |eF|es B2 | A7 A3|B3 N z LDA
LDX M- X A2| AE AB B6 BE N F . LDx
oY MY AG|AC A4 B4 ac N z LDY
LSA o- [157 0] -c 4E 44 |4A 56 SE 0 Z G LSA
MVN M = M NEGATIVE 54, ; ' MUN
MVP M = M POSITIVE 1 44 Cl® MvP
NOP PERAT! EA ; 5 " NOP
ORA :;?MQ.E\H TION 09| 0D| OF 05 M7 01|15 tD 11F| 19 12 |o7 03 |12 N z ORA
PEA Mpc + 1, Mpc +2 - Ms -1 Ms F4 s PEA
§-2 -8
PEI M(d). M{d * T) - Ms-1.Ms D4 PEI
§-2-8
PER Mpe + 1l Mpe =7l = 1 - Ms -1, Ms 62 PER
$-2 'S
PHA A-MsS-1-§ . PHA
PHB DBR - Ms, §-1-5 88 . PHB
PHOD D -MsMs-1.5-2-5 08 % PHD
PHK PBR - Ms.5-1 -8 48 * PHK
PHP P-MsS-1~-S 08 PHP
PHX X—-Ms,S5-1-85 o PHX
PHY Y-MsLS-1~-5 SA . . le PHY
PLA S+1 -5 Ms—A 68 N z PLA
PLB S+1 =5 Ms- DBR AB N - Z |* P8
PLD S+2-5Ms-1 Ms - D 28 N . Z (* PLD
PLP S-1-S Ms~FP NVMXDi2ZC PLP
PLX S+1-S Ms-X FA N . z . PLX
pLY 3-1-S Ms—Y TA N . z . PLY
REP MAR - P c2 NVMXDI 2ZCl* REP
ROL g o] -c= 26| (26 (2A %| |3 N zc|l rou
RORA E_CW SE| |88]6A e] |e N . zc| ROR
RTI RTRAN FROM | 40 NVMXDI ZC ATI
ATL RTRN FAOM SUB. LONG &8 . . . * RTL
ATS RTAN S BRDUTINE 80 o RTS
sec A-M- EQ|ED| EF | ES FiIF?| E1|F5 FD |[FF| F9 F2|E7 E3 [F3 N V zZC SBC
SEC 1-C a8 1 SEC
SED 1-0 F8 1, . SED
SEI 1 78 1 SEI
SEP MVP - P E2 NVMXOD! ZCl® SEP
STA A~ M BD| 8F | BS 91 | 97| 81 85 9D |9F | 99 92 | 87 83 {93 " STA
S§TP STOP (1 - ¢2) o8 (@ STP
STX X~ M 8E 86 9% STX
STY Y -M 8C 84 94 STY
sTZ 00 - M 8cC 64 74 9E , e ST2
TAX A-X AA N Z TAX
TAY A=Y A8 N z . TAY
TCD | C-D 58 N z [* 1CD
TCS cC-§ 18 . ® TCS
oC 0D-C 78 N Z . |® TOC
TAB 1C 4 b4 L] TRB
TSB AVM - M oc 04 Z . |» TSB
TsC s-C B N Z .|* TSC
TSX S-~X BA N Z TSX
TXA X-A 8A N z TXA
™S X-5 9A . ™S
TXY X~¥ 98 N Z % TXY
TYA Y - A 98 N r4 TYA
TYX ¥y - X BB N Z |® TYX
WAI 0 ~ ADY cBe . . WAl
WDM NO OPERATION (RESERVED) 42 * WDM
| xBA B——A EB N Z . |* xBa
L___xcs C-—E F8 . E(® XCE
Notes: 3. % = New wascuolaaoz instructions . gda v OR o
1 B le N Vi ¥ M=0 Mi5 - -V & = New WB5C02 Instructions - Subtract 4 Exciusive OR
it immediate N and V flags not affecisd. When 15 - N and My4 Blank » NMOS A ANO

i

"

Table 6. Detailed Instruction Operation

ADDRESS MODE CYCLE VP, ML VDA YPA ADDRESS BUS DATA BUS R/W ADDRESS MOOE CYCLE VP, ML VDA VPA AODRESS BUS OATABUS AW
1 Immediale 8 1 1 1 % { PBAPC Op Code 1 7 Direcl Ingirect indexed (d).y 1 LI B | | FBRPC Op Coda 1
(LOY CPY CPX LDX ORA, 2 ' 1 @ | PBRAPC-I 10L 1 {ORA.,AND.EDR,ADC, 2 ' 1 0 1 PBRPC+1 (=1s] 1
AND EORADC.BITLDA, (1)iB) 2a. ' 1 @0 1 PBAPC+2 10H 1 STA.LDA.CMP.SBC) 2y 28 1 1 0 0 PBRPCe! 10 i
CMP SBC REF SEP) B Op Codes) 3 ' 1 1 0 0D-DO AAL 1
114 Op Codes) {2 bytes) 4 { A ' @ 0.D-DO-1 AAH 1
12 ang 3 pyles) (5.6.7 ang 8 cycles) 4) 4a 1 1 0 0 DBRAAHAAL:YLIO '
(2 and 3 cycles) 5 LI | 1 0 OBR.AA-Y Daw Low g
2a Absoluiea 1 T 1 1 1 PBRPC Op Code 1 {1y Sa 1t 1 1 0 DBRAAsYs1 Data High 10
(BITSTY ST2 LDY 2 T 1 0 1 PBRPCrt AAL 1 6 Direct Ingirect) i1 1 1 PBRPC Op Coce 1
CPY.CPX STX LOX 3 1 ' 0 | PBRPC:2 AAH 1 Indexed Long [dLy 2 1 1 0 ' PBRPC-1 [a]s] 1
ORA AND EOR ADC 4 1.1 1 0 DBRAA Data Low 1.0 {ORA,AND.EORADC. 2y 2 ' 1 0D 0 PBRPC-1 =] 1
STALDA CMP SBC) 4a 1= 7T 1| O ODBRAA-| Oata High 1/0 STALDA.CMP.SBC} b] T 1t 0 00+00 AAL 1
118 Qo Codes; : =T 8 Op Coces) 4 T 1t 0 00+DD-1 AAH 1
13 bytes) (2 bytes; 5 t 1 | 0 0D+DO-2 AAB 1
(4 and § cycles) 6.7 and E cycles) 6. 11 1 0 AABAA-Y Deta Low 170
20 Absoiute (R-M-W) 8 1 11 1 1 PBRAPC Op Code 1 () 6a VoY 10 AABAA-Y+l Daasgh 140
2z 1 1 0 1 PBRFPC- AAL 1 9. Dirsct Indaxed Indirect {d.3) 1 % ' PBR.PC Op Cods 1
|ASL ROL.LSA AQR b 11 0 1\ PBRPC2 AAH 1 |ORAAND.EOR.ADC. 2 1 1 0 1 PBRPC-1 Do 1
DEC INC.TSB.TRB)) T 0 1 0 DBRAA Deta Low 1 STA.LDA.CMP.SBC) (2) 2a 1 1 0 O PBRAPC- [[v] 1
16 Op Codes) LT () 4a 1 0 ' O DBRAA+I Data High 1 {8 Op Codest 3 ' 1 0 0 PBAPCM 10 1
+3 oyles) 3 5 10 0 0 DBRAAM (=] 1 {2 bytas) 4 1 1 0 00+DOx AAL 1
|6 and 8 cycles) {1) E€a 1 0 1 0 ODBRAA+I Osta High 0 {6.7 ang 8 cycles) 5 1T 1 1 0 00+DO+X+1 AAH 1
6 1 0 1 0 DBRAA Daa Low 0 6 1 1 1 0 DBRAA Data Low i
2c Absolute (JUMP) & 1 v 1 1 1 PBRPC Op Code 1 (M 6s 1 1 1 0 DBRAAH DataHigh 10
(JMP)(4C) 2 1 1 0 1 PBAPCH NEW PCL 1 10a. Direct X d.x 1 ' ! ' 1 PBRPC Op Code 1
11 Op Code) 3 1 1 0 1 PBRPC:2 NEW PCH 1 (BITSTZ.STY.LDY. 2 1 1 0 Vv PBRPC+1 oo ' 1
13 byles) 1 1 1 1 PBR. NEwPC Op Code 1 ORAAND.EOR.ADC. {2) 2a (I 0 0 PBRPC-1 []
(3 cycles) STALDA.CMPSBC) 3 I 1 0 0 PBRPC+ 10 1
d. Absoluts (Jump 1o i 1 1 1 1 PBAPC COp Cods Y (11 Op Codes} 4 11 1 0 00+00+x Dana Law 1]
ol iy Jymp o r + B T BENReH . {2 bytes) M 4. 1 1 1 0 OD-DO'X-1 Damrgh 1,0
(JSR) 3 11 0 1 PBRPC-2 NEWPCH 1 (4.5and 6@ cyclas)
1Y Opn Code) 4 1 1 0 0 PBRPC:2 0 1 10b. DirectX{R-M-W) d.x 1 1 1 1 1 PBRPC Op Coda 1
(3 Dytes) 5 11 1 0 0S PCH o IASL.ACL.LSA,ROR, 2 1 1 0 \ PBRPC [+3%] 1
(6 cycles) [} 11 I 0 0S5 PCL 0 DEC.INC) 2y 2a 1 1 0 0 PBRPC+1 [la] 1
(Qilfersnt order trom NE502) 1 11 1 1 PBRNEWPC NextOpCode 1 (& Cp Codes) 3. 1 ; 0 0 PBRPCst 10 1
*3a Apsolule Long sl 1 t 1 1 1 PBRP Op Cooe 1 12 bytes) 4 1 10 00+DO+X Data Low 1
(ORA AND EQRADC 2 Troa paa.ng-u AL ' (6.7,8:and 3 cycies) () 4a. 1 0 1 O QO-DO-X-1 DewHign 1
STA LDA.CMP.SBC) 3 11 0 1 PBRPC2 AAH 1 s !0 0 0 0D«DO+x+t 1O 1
18 Op Codes) " v 1 0 1 PBAPC- AAB ' {n €& 1 0 I 0 0D+DO-X-1 DataHgh 0
(4 Dyles) S 1 1 1 0 AABAA DslaLow /0 g A8 1 00D0e Datalow 0
5 and 6 cycles) (1) Sa 1 1 1 0 AABAA+I Data bhgn 1/0 11 OorectY dy 1 ' 1 1 1 PBRPC Op Cods 1
w3p Apsoiute Long (JUMP) el ! 11 1 1 PBREC Op Code Y (STLDX) Z -1 1 004 PERPCH 00 1
(JMP) 2 I 1 0 1 PBRPC NEW PCL 1 12 Op Codes} (@) 2e. 1 1 0 0 PBRPCH [s] 1
{1 Op Codel 1 1 1 0 1 PBRPC#2 NEWPCH 1 (2 bytes) 2 1 ¥ 0. 0 PBRPCET - 1D 1
|4 Oytes) & 1 o 1 PBA.PC+3 NEW BR 1 (4.5 and 6 cycias} 4 1 1 1 Q@ 0D+DO-Y . Detslow 10
|4 Cycies) 1 1 3 | NEWPBR.PC QOp Code (1) @a 1 1 0 0,0+DOs¥-4 Data High 1.0
1 128. Absoclute. X a,a 1 11 1 1 PBAPC Cp Coas 1
(BITLDY.STZ. 2 1 1 0 1 PBRPC+) . AAL 1
#3c. Absoluta Lang (Jump to 11 1 1 1 PBRPC OpCose 1 ORA.AND.ECR.ACL, g 11 @l PRRPOR e A 1
Subroutine Long) af 2 11 0 1 PBAACH NEWPCL 1 STA.LDA.CMP.SEC) (4 3 1 1 0 0 DBRAAHAAL:XLIO !
(WSL) 3 1 1 ¢t PBRPGC NEW PCH ' {11 Op Codes) 4. 1 1 1 0 DBRAA+X Data Low 0
(1 Cp Coda) 4 1 v 0 05 PBR 0 (J bytes) (N da 11 1 0 DBAAA«x+1 Data High V]
(4 bytes) 5 11T @ 0 08 [] 1 (4.5 ang 6 cycles)
(7 cycles) 5 1+ 0 1 PBAPC.] NEW PBR 1 120. Absolute X(R-M-W} 8.x 1 1 1 1t | PBRPC Oo Code H
7 11 1 Q 0.5-1 PCH 0 {ASLROLLSR.ROR, 2 1] 0 1 PAAPC-1 AAL 1
8 11 1 0 052 PCL "] DEC.INC) 3 1 1 0 1 PBRPC+2 AAH 1
1 T 1 1 1 NEWPBRPC NextCpCode 1 {8 Op Coqges) 4 1T 1 0 0 DBRAAHAAL+XLIQ T
{3 Dyten) 5 1 @ 1 0 DBRAA-X Data Low v
" iTsrzsTyior 2 1 o) PeReen oo (7 ana 8 cyctes) () 5a 1 0 1 0 DBRAAXT Dmamgn
CPY CPX,STX LDX @ 2 ' 1 0 0 PBAPC- 10 ' :|; ?. : g ? g gg:-:::::: '[?l o [‘,
ORA AND EOR ADC 3 11 1 0 0000 Dstalow 170 B A st e
STA LDA CMP SBC} (1 a1 1 1 0 00-00% DataHigh 140 7 0 1 0 DBRAA. Osuiow 0
118 Oo Codes) %13 Apsoluia Long,X alx 1 1 1 1 1 PBRPC Op Code 1
12 bytes)} {ORAAND EOR,ADC, 2 " 1 0 1 PBRPC- AAL 1
(3 4 and 5 cycles) STALDA.CMPSBC) 3 1T 1 0 1 PBRPC:2 AAH 1
&b Oirect (A-M-W) @ Ty s 1 1 1 PBRPC Op Code 1 18 Op Coges) 4 1 1 0 1 PBRPC-3 AAB 1
(ASL ROL.L SR HOR z 110 1 PBRPCrt 0o 1 (4 bytes} 5 1 1 3 O AABAARX Pemlow. 14
DEC INC.TSB.TRB) 121 2a T 1 0 0 PBRPC# (o] 1 {5 and 6 cycles) i1 Sa 1 1 | 0 AABAA-X-1 DataHign 10
& Op Codes) 3 10 1 0 00+D0O Dats Low 1 Ab30iula.Y 8,y 1 1 1 1 PBRPC Op Code 1
12 Dyteal (1 3a 10 1 0 0.D-DO-1 Data Hign 1 (LDOX.ORA AND EQR.ADC. 2 1 1 0 1 PBRAPC- AAL 1
56,7 and 8 cyclas) (3 4 T2 0 0 00«DO+) o 1 STA.LDA.CMP,SBC) 3 I 1 0 1 PBAPC+2 AAH 1
1y Sa 19 1 0 0D+DO+1 Dara Fhgh Q (9 Op Coden) 4) la 1 1 0 0 DBAAAHAAL-YLIO 1
5 10+ 0 0D-DO Data Low 9 (3 byies) 4 ! 11 0 DBRAAsY Data Low 140
5 Accumulalor A ¥ 1 1 1 1 PBRAPC Op Code 1 i4.5 and 6 cycles) M 4a 1 1 1 0 DBRAA-y-1 DmlaHgn 1Q
{ASL INC AOL.DEC LSR.ROR; 2. 1 1 @ @ PBRPCH 10 1 15 Aelativar 1 I ! PBR.PC Op Cads 1
16 Op Codes) {BPL.BMI.BVC.BVS.BCC. 2 I 1 0 1 PBRPCH Offsat i
i1 byte) BCS.BNE.BEQ.BRA) {5) 2 ' 1 0 Q@ PBRPC" o] 1
12 cycles) |9 Op Codes) {6) 2b. 1 1 0 Q PBRPC+t 1c T
6a Imoned | 1 11 1 PBRPC Op Coae | 12 bytes) 1 1 1 1 | PBAPC+Oftset Op Code 1
(DEY. INY. INX. DEX, NOP, 2 10 0 PBRPCH 10 1 {2.3 and 4 cycles)
XCE, TYA TAY TXA, TXS, . RelabvaLong o 1 LI | 1 1 PBAPC Op Coce ¥
TAX, TSX,TCS.TSC.TCO, {BAL) 2. 11 0 | PBAPCe! Offast Low 1
TOC TXY.TYX CLC.SEC, (1} Op Code) 3 I + 0 1 PBAPC-2 OHset High 1
CLl S€1.CLV,.CLD S€ED} {3 bytes) 4, 1 1 0 0 PBAPC-2 o] 1
25 Op Codes) 4 cyciew) 1 1 1 1 1 PBRPC+Oftsst Op Cooe 1
(1 pyie) 17a. Absoiute tharecs (a)] 1 1 1 1 PBAPC Op Coda 1
(2 cycles) (IMP) 2 1 1 0 1 PBAPCH AAL 1
#6b. imphea | 1 t 1 1 1 PBRPC Op Code 1 it Op Code) 3 1 1 0 1 PBAPC-2 AAH 1
(X8A) 2 Y1 0 Q2 PBRPCH 10 1 (3 byren) 4 1T 1 1 0 0AA NEW PCL 1
11 Op Code| 3 1T 1 @ 0 PBRPC-I (o] ! 5 cycien) 5 LI | 10 0AA- NEW PCH 1
|1 byte} ' ! 1 1 1 PBANEWPC OpCade 1
(3cycles) ®1{7p. Absolute Indirect (a) I 1 ' 1 1 PBRPC Op Code 1
RDY 2 1 1 0 1 PBRAPC- AAL '
® ¢ Waul For Interrupt {JML} 3 1 1 0 Y PBAPC-2 AAH 1
1AL 1 ! 1 1 1Y\ PBAPC Op Code ! {1 Op Code) . 11 1 0 0Aa NEW PCL. v
11 Qo Codel o 2 1 1 0 0 ' PBRPC+t 0 ! 13 bytas) 5 11 0 0AAs NEW PCH 1
|1 byie} .3 1 1 0 0 0 PBRPC+t IO [{6 cycles) . 1 1 1 0 0AA-2 NEw PBR [
13 cycies) IRC NMI 1 11 1 1 PBRPC+t IRQIBRK) 1 1 It 1 1 NEWPBRPC OpCode !
® 69 Stop-The-Clock @ 18 Oirect Indirect (d) 1 101 1 1 PBAPC Op Code 1
15TP) 1 1.1 1 1 1 PEAPC Op Code [{ORA AND.EOR ADC, 2 I ' 0 1 PBAPC* DO 1
{1 Op Code) — 2 1t 1 0 0 1 PBAPCH O ! STA LDA.CMPSBC) 2 2a t 1 0 0 PBAPCH 10 1
it oyte BES:1 G 11 0 g 1 PBRPCH1 1O ! {8 Op Codes) 3 It 1t 0 0D+DO AAL 1
3 cycles) HES-0 !c 1 1 0 0) PBAPC-1 RES(BRK) 1 {2 bytes) 4 L 1 0 0.0D-DO+1 AAH !
HES=0 ip 1 @ 0 1 PBR.PC+| RES(BRK) 1 {5.6and 7 cycles) 5 L 1 0 DBR.AA Data Laow 1.0
RES:1 1a ' 1 0 0 1 PBR.PC+1 RES(BRK} | (1) Sa [' 0 DOBRAA+I Date Low 10
See 21a Stack 1 11 1 1 1 PBAPC=-1 BEGIN 1

(Hardware inlefrupt)

15

19

<0a

* 200

21

219

w2le

a1

arg

*21n

"2y

*21

*22

ADORESS MODE CYCLE

Direct inairect Long (d]
{ORAAND EOR ADC

STA LOA CMP.58C) 12y
18 Op Codes)

1Z oytes)

(6.7 and 8 cycres)

AR =
-

1
Apsolute Indexed Indirect (a.x)
(JMP}
(1 Op Code;}
<3 bytes)
(B cycles)

Ap30iuie Indaxed Indwect
(Jump ta Subrouting indeaed
indirect) (m) *
1J5R)

(1 Op Coded

13 aytes)

18 cycles)

TRNOVAUNS @ NBVAUNS cONALN- RO

Stack (Hardware

intarruptsl & 3}
(IRQ.NMI| ABORT RES)
14 Rardware nlefrupls)
10 oyies)

17 and 8 cycles)

=

Stack (Software

inlerrupls) & 32
{BRAK.COP) in 3
12 Op Cooes) (10) 4
12 pytes) (10 5
17 and 8 cycles) 0o s

Stacn {Raturn lrom
Intarrupt) ¥

(AT

11 Op Code|

(1 oytel

16 and 7 cycles)
iditferent ordar from NG502) {7)

e

Stack (Aeturn from
Subrouline) s
(RTSI

(1 Op Codel

11 oytel

16 cycles)

Stack (Return from
Suprounne Longl &
|TL)

i1 Op Code}

tY Dyle}

16 Cycles)

Stack (Push) »

(PHP PHA PHY PHX,
PHO,PHX PHB)

i7 Op Cooes|

1) oyte)

{3 and 4 cycies)

Stack (Pull) o

IPLP PLA PLY PLX PLO.PLB)
(Dutlerenl than N6S02)

16 Op Codes)

i1 Dyte)

(4 and 5 cycles)

Slack (Push Elfecuve 1
Incdirect Address) 9 2
WPEI) (2v 2a
! Op Code)

|2 bytes)

«B4nd 7 cycles)

LN D ARUN . BN ALUNS S NBV LN - — B

prun -

e

Stack (Pusn Effective
Apsolute Aadreas) s
\PEA)

11 Oo Coae)

] oytes)

(S CvCien)

Stacw (Pusn Effective
Program Counter Relalive
Acdress) s

WPER)

i1 Op Cooe)

13 oytesl

6 cycies)

Stacs Relatve 4.0

.ORA AND ECR ADL
5STA LDA CMP SDC)

8 Cp Codes)

12 Dytes) i1 4a
4 ang 5cycles)

P b -

L R

-

- . - e - - - - et

et I T - 1 - T T PR

] o e == = - .-

- - et m OO0 = 2O = OO0 = et a DD s) ket e = D000 = -0 — ~“0 0000~ === ==-00 =

-0 -

“ =00 = == =-00=

- 000 =

-—_0 Q- -

"y

- -~ 000000 « =

~D000D000 = == -0 =00 = -==@="

—000000- ~D000DO0G - =

C00= ~00QOO=- ~“00Q00 =«

0CO0OQO =

00 4=~= 00=== 00000 =

CoO0==a

Table 6. Detailed Instruction Operation (continued)

PBR.PC Op Code

PBRPC-1 Do

PBA.PC-1 (o]

0.0-00 AAL

0.0-D0-Y AAH

0.0-00-2 AAB

AAB AM Data Low

AAB AAT Data High

PBR.PC Op Code

PBRPC-I AAL

PBRPC+2 AAH

PBR.PC+7 10

PBR.AA-X NEW PCL

PBRAAX 1 NEW PCH

PER.NEW PC Op Code

PBR.PC Op Cooe

PEA.PC+1 AAL

oS PCH

051 PCL

PBR.PC*2 AAH

PER PC+2 0

PBR.AA+X NEW PCL

PBR.AAX " NEW PCH

PBA.NEW PC Next Op Cade

PBRPC 0

PBR.PC [[s]

0.5 PBR

0.5-1 PCH

05-2 PCL

0.5-3 P

QvA AAVL

0vA-1 AayH

0,AAV Next Op Code

PBRPC Op Code

PERPC1 Sgnature

0.s PBR

2.5 PCH

0.5-2 PCL

0.5-3 (COP Latches) P

0.VA AAVL

O. VA« AAVH

0.AAV Next Op Code

PBA.PC Op Code

PBR.PC#1 [e]

PBRPC1 10

0.5+1 P

0.5+2 PCL

0.5+3 PCH

0.5+4 PBR

PBAPC New Op Code

PBRPC Op Code

PBA.PC+1 10

PBA.PC+1 10

0.5-1 PCL

0.5-2 PCH

052 10

PBRPC Op Code

PBRPC Op Code

PBR PC+1 10

PBA.PC-! 0

0.5-1 NEW PCL

05-2 NEW PCH

0.5+3 NEW PBR

NEW PBAPC NextOp Code

PBR.PC Op Code

PBR.PC*1 [e]

os Register High

0.5-1 Register Low

PER.PC Op Code

PBR.PC+1 0

PBA.PC-1 [s}

0.5¢1 Regisrer Low

0.5+2 Register Hign

PBR.PC Op Code

PBR.PC-1 [=]e]

PEAPC-1 0

0.0-D0 AAL

0.0-00-1 AAH

0.5 AAH

0.5-1 AAL

PBAPC Op Code

PBRPC1 AAL

PBRPC-2 AAH

0s AAH

0.5-1 AAL

PBRPC Op Code

PBRPC-1 Offsat Low

PBRPC-2 Offsat Hign

PRR PC-2 o

0s PCH«OFF+
CARAY

051 PCL-OFFSET

FBRPC Op Cove

PBR.PC1 S0

PBR.PC-1 [s]

0.5-50 Data Low

0.5-S0+1 Data Hign

VOA VPA ADORESS BUS OATABUS R/W

oa

- e e e e e - = w = m— = = w2 D000 = 4w = OO OO0 = s =t DO - = = -

OO0 === OO0 === = PSR

- O O

(]
10

ADDRESS MOOE CTCLE VP, ML VOA.VPA ADDAESS BUS DATABUS AW
*23 Stack Aelative ind:rect 1 v 1 1t PPAPC Op Coge
Ingexed (d.a)y 2 1 % 0 ' PBRPC-! SO [
I(ORA AND.EDR ADC. 3 1 1 @0 0 PBR-PC-\ [[s] |
STA.LOA CMP,SDC} 4 I 1 1 0 0SS0 AAL 1
(8 Op Codes) 5 t t 1 0 05504 AAH [
12 Dyles) 6 [| o € 0.5+50-1 10 t
(7 ang 8 Cycles) 7 111 0 DBRAA-Y Data Low 10
mn Ta 1 Y I 0 ODBRAA:Y-1 DataHign 'a
*248. Block Move Positive 1 ' 1 1 1 PBRPC Op Coce i
(lorward) xye 2 T 1 D 1 PBRPC+! DBA 1
IMVP) 3 S IO | 0 1 PBRPC-2 SBA 1
11 Op Code) N-2 | a I 1 1 0 SBAX Source Data |
{3 bytes) Bvte | § 1 1 1 0 DBAY Oest Data 0
{7 cycles) C=2(6 L | 0O 0 DBAY [ls] 1
2 i Soulte Address 7 T ' 0 0 DpBAY (o] [
y * Desunation 1 11 1 1 PBRPC Op Code I
¢ ‘Numbper ol Bytesato Move -1 | 2 t 1 0 | PBRPC-I OBA 1
x.y Decrement 3 't 0 ' PBRPC-2 SBAa 1
MVP 15 used wnen The N-1 |4 1 1 1 0 58AxX- Source Data |
destnalion sten address Byfe |5 Tt 1 0 DBAY-) Deatl Daa o
18 higner (Mare positive] C=t |6 1 1 0 0 DBAY- 10 1
than Ine source 31an address 7 I 1 0 0 OBAY 0 1
' Y 1 1 PBRPC Op Coce I
FFFFFF FH I 1 0 1 PBRPC: DBA '
Dest. Start N Byte | 3 1 1 s} !t PBRPC+2 SBA 1
% Last | ¢ ' v 1t 0 SBAX-2 Source Dala *
curce Start C0 |5 I] I 0 0Bay.7 Dest Dala 0
Dest End 6 1 1 0 0 OB8ay-2 10 '
Source End L4 11 0 0 DBAY-2 10 t
000000 1 1 1 1 1 PBAPC-) NexiOp Cooe |
#24b Biock Move Negative M I 1 1 1 PBRPC Op Coge 1
(backward) xye 2 t 1 0 1 PBRPC+ DBA 1
MVN) N-2 |2 I 1 0 1 PBRAPC+2 SBA 1
i1 Op Coge) Byte | 4 11 1 0 SBAax Source Data 1
{J bytes) c=2.5 1t 1 1 0 OBAV Oes1 Dala 0
{T cycles}] ' 1 0 0 DBAY Qo 1
x * Source Address |_:r 1 1 0 0 DBAY (o] 1
y : Destination ey
¢ = Number of Bytes 1o Move -7 | ! LR | 1 1 PBRAPC Op Code 1
x.y Incremant 2 11 0 | PBRAPCH DBA !
FEEEFF N-1 13 1 1 0 1 PBRPC-2 SBA ¢ 1
Soues Efd Byte | 4 11 0 SBAxY) SowceDaa 1
c=1 /5 [| 1 0 DBAY-l Dest Ouate (1]
[P10 0 OBAY-l [e] !
Oesat End .
Source Start L7 ' 1 0 0 DBAY% 10 . l
Dewst. Stan T 1 1 1 PBRPC Op Coae 1
2 1 1 0 | PBRPC-I 0BA 1
N Byte | 3 ' 1 0 1 PBRAPC-2 58A I
ouoa0 C:0 |4 L1 1 0 S8AX:2 Source Data !
MVN 19 used when the 5 (I | T 0 DBAY-2 Dest Data bl
desfinalion start address & Tt 0 0 DBAY-2 (e} !
s lower (more negatrve) ? I 1 0 0 DBAY-2 10 T
than the source start ' 1t 1 1 1 PBAPC-] NextOpCpage !
address.
Notes

{1} Add | byte {lor immediaie pnly) for M=0 or X=0 (1 @ 16 bit dala). add 1 Cycle lor M:=0 or X -0
(2) Add | cycle lor direct regrater iow {DL) not equal @
{3) Special casefor aborting insiruction, This s Ine iast cycle whCh may be asoried or Ihe Siatus
PHEA or DBA registers will oe updated
(4) Add ! cyche lor indexrng acrosy page boundares. or waite. of X0 When X- 1 orin the
emulation mode. this Cycle contans invalid addresses. .
(5) Add 1 cycle If branch i3 laken
(6) Agd | cyche ff Dranch s 1aken acroas page boundanes in 6502 emuiabion moge (E-1)
17) Subtract 1 cycie lor 6502 emuiation mode (E+1)
(8) Agd 1 cycle for REP.SEP
(9) Wai al cycie 2 for 2 cycies after NMI or TR acove input
(10} R/W remains high during Reset
Abbrevianons,
AAB Aploiute Adoress Bank
AAM Absolute Address High
AAL Absolute Aadress Low
AAVH Absolule Agdress Vacior Hign
AAVL Abaciute Adaress Vector Low
C Accumuialor
D Dwect Aegister
D8A Destination Bank Adoress
DER Data Bank Regsster
00 Direct Offser
I1DH Immediate Data High
IDL Immecate Dala Low
10 Internat Operation
P Statys Register
PBA Program Bank Reguwer
PC Program Counter
A-M-w Reaa-Modity-Write
S Stack Agdress
SBA Source Bank Adoress
SO Stack Offsst
VA Vector Aggress
xy inoex Registers
* : New WESCS16/802 Acaressing Modes
o = New WE5C02 Modes
Blana « NMOS 6502 Agaressing Mddes

16

Recommended W65C816 and W85C802 Assembler
Syntax Standards

Directives

Assembler directives are those parts of the assembly language source
program which give directions to the assembler; this inciudes the defini-
tion of data area and constants within a program. This standard excludes
any definitions of assembier directives.

Comments =L s

An assembler should provide a way to use any line of the source program
as acomment. The recommended way of doing this is to treat any blank
line, or any line that starts with a semi-colon or an asterisk as acomment.
Other special characters may be used as wel.

The Source Line’

Any line which causes the generation of a single W85C816 or W65C802
machine language instruction should be divided into four fields: a iabel
tield, the operation code, the operand, and the comment fieid.

The Label Fiedd—The label field begins in column one of the line, A label
must start with an alphabetic character, and may be foilowed by zero or
more alphanumeric characters. An assembler may define an upper limit
on the number of characters that can be in a fabel, so long as that upper
limit is greater than or equal to six characters. An assembiler may limit
the aiphabetic characters to upper-case characters if desired. If lower-
case characters are allowed, they shouid be treated as identical to their
upper-case equivaients. Other characters may be allowed inthe label, $0
long as their use does not confiict with the coding of operand fietds.

The Opaeration Code Fleid—The operation code shall consist of athree
character sequence (mnemoni¢) from Table 3. It shall start no sconer
than column 2 of the line, or one space after the label if a label is coded.

Many of the operation codes in Table 3 have duplicate mnemonics; when
two or more machine language instructions have the same mnemonic,
the assembler resoives the difference based on the operand.

It an assembler allows lower-case letters in iabels, it must also allow
lower-case letters in the mnemonic. When lower-case letters are usedin
the mnemonic, they shall be treated as equivalent to the upper-case
counterpart, Thus, the mnemonics LDA, |da, and LdA must all be recog-
nized, and are equivaient.

In addition to the mnemonics shown in Table 3, an assembler may pro-
vide the alternate mnemonice shown in Tabie 6.

Table 7. Alternate Mnemonics

Standard Alias
BCC BLT
BCS BGE
CMP A CMA
DEC A DEA
INC A INA
JSL JSR
JML JMP
TCD . TAD
TCS TAS
TDC TDA
TSC TSA
XBA SWA

JSL should be recognized as equivalentto JSR when itis specified with a
long absolute address. JML is equivalent to JMP with long addressing
forced.

The Operand Fleld—The operand field may start no sooner than one
space after the operation code field. The assembier must be capabie of
at least twenty-four bit address calculations. The assembler shouid be
capable of specifying addresses as labels, integer constants, and hexa-
decimal constants. The assembler must allow addition and subtraction
in the operand field. Labels shall be recognized by the fact that they start
alphabetic characters. Decimal numbers shall be recognized as contain-
ing only the decimal digits 0. .. 8. Hexadecimal constants shall be recog-
nized by prefixing the constant with a “$" character, followed by zero or
more of either the decimal digits or the hexadecimal digits “A”... “F". If
lower-case letters are allowed in the label field, then they shall also be
allowed as hexadecimal digits.

Al constants, no matter what their format, shall provide at ieast enough
precision to specify all values that can be represented by a twenty-four
bit signed or unsigned integer represented in two's complement notation.

Table 8 shows the operand formats which shall be recognized by the
assembler. The symbol d is a label or value which the assembiler can
recognize as being less than $100. The symbol ais a label or value which
the assembler can recognize as greater the $FF but léss than $10000: the
symbol al is a label or value that the assembler can recognize as being
greater than $§FFFF. The symbol EXT is a labet which cannot be located
by the assembler at the time the instruction i3 assembled. Unless in-
structed otherwise, an assembler shall assume that EXT labels are two
bytes long. The symbols r and rl are 8 and 16 bit signed displacaments
calculated by the assembler.

Note that the operand does not determine whether or not immediate
addressing loads one or two bytes; this is determined by the setting ot
the status register. This forces the requirement for a directive or directives
that tell the assembler to generate one or two bytes of space forimme-
diate loads. The directives provided shall allow separate settings for the
accumulator and index registers.

The assembler shall use the <, >, and A characters after the & character
in immediate address to specify which byte or bytes will be salected from
the value of the operand. Any calculations in the operand must be per-
tormed before the byte selection takes place. Table 7 defines the action
taken by each operand by showing the effect of the operator on an ad-
dress. The column that shows a two byte immediate value show the bytes
inthe order in which they appear in memory. The coding of the operand
is for an assembler which uses 32 bit address calculations, showing the
way that the address should be reduced to a 24 bit valug.

Table 8. Byte Selection Operator

Operand One Byte Result Two Byts Resuit
#301020304 04 ‘04 03
#<$01020304 04 04 03
#>501020304 03 03 02
#/$01020304 02 02 o1

Inany location in an operand where an address, or expression resulting in
an address, can be coded, the assembler shall recognize the prefixchar-
acters <,|, and >, which force one byte (direct page), two byte (absolute)
or three byte {long absolute) addressing. In cases where the addressing
mode is not forced, the assembler shall assume that the address is two
bytes unless the assembler is able to determine the type of addressing re~
qQuired by context, in which case that addressing mode will be used. Ad-
dresses shall be truncated without error if an addressing moda is forced
which does not require the entire vaiue of the address. For example,

LDA $0203 LDA [$010203

are completely equivalent. If the addressing mode is not forced, and the
type of addressing cannot be determined from context, the assembler
shall assume that a two byte address is to be used. If an instruction does
not have a short addrassing mode (as in LDA, which has no direct page
indexad by Y) and a short address is used in the operand, the assgmbler
shall automaticelly extend the address by padding the most significant
bytes with zeroes in order to extend the address to the length needed. As
with immediate addressing. any expression evaluation shall take place
before the address is selected; thus, the address selection character is
only used once, before the address of expression,

The! (exclamation point) character shouid be supported as an alternative
to the | (vertical bar).

A long indirect address is indicated in the operand field of an instruction
by surrounding the direct page address where the indirect address is
found by square brackets; direct page addressas which contain sixteen-
bit addresses are indicated by being surrounded by parentheses.

The operands of a block move instruction are specified as source bank,
destination bank—the opposite order of the object bytes gene:ated.

Comment Fisld—The comment field may start no sconer than one space
after the operation code field or operand field depending on instruction

type.

17

Addressing Mode
Immediate

Absolute

Absolute Long

Direct Page

Accumulator

Implied Addressing

Direct Indirect
indexed

Direct indirect
Indexed Long

Direct indexed
Indirect
Direct Indexed by X

Direct Indexed by Y

Absolute indexed by X

{no operand)
(dhy
(<d).y
(<a)y
(<al)y
(<EXT).y
{dly
[<d].y
<aly
[<ally
[<EXT]y
(d.x)
(<d,x)
(<a,x)
{<Zal.x)
(<EXT.x)
d.x

<d,x
<a,x
<al,x
<EXT,x
dy

<d,y
<ay
<aly
<EXTy
d.x

d,x

ax

lax

lal,x
IEXT,x
EXT,x

Table 9. Address Mode Formats

Addressing Mode
Absolute Indexed by Y

Absolute Long Indexed
by X

Program Counter
Relative and
Program Counter
Relative Long

Absolute Indirect

Direct Indirect

Direct indirect Long

Absolute Indexed

Stack Addressing

Stack Relative
Indirect indexed

Block Move

Note: The aiternate ! (exclamation point) is used in place of the| (vertical bar).

Format

'dy

dy

ay

lay

laly

'EXTy

EXTy

>d,x

>a.x

>al.x

al,x

>EXT,x

d {the assembier calculates
a rand)

al

EXT

(d)

('d)

(a)

(la)

('al)

(EXT)

(d)

(<a)

{<al)

(<EXT)

[d) .
[<a] ‘
[<al) g
[<EXT]

(d.x)

{1d,x)

(a.x)

(la,x}

{al,x)

(EXT.x)

('EXT,x)
(no operand)
(d.s)y
{<d.s).y
(<a,s).y
(<al,s).y
(<EXT,s).y
dd

da

d,al
d,EXT
ad

aa

aal
a,EXT
al.d

ala

al,al
al.EXT
EXTd
EXT.a
EXT.al
EXT.EXT

Table 10. Addressing Mode Summary

i Memory Utllization
| Instruction Times in Number of Program
L In Memory Cycles Sequence Bytes
: Original New Originsi New
Address Mode 8 Bit NMOS wescsie 8 Bt NMOS WesCsie
. 8502 8502
1. Immediate Cm et 2 203 2 2(3)
2. Absolute 4(5 413.5) 3 q
3. Absolute Long - 5(3) s 4
4. Direct 3(5) 3(3.4.5) 2 2
5. Accumulator- * 2 2 1 1
6. tmplied 2 2 1 1
7. Direct Indirect Indexed (d).y 501 5(1.3.4) 2 2
8. Direct Indirect indexed Long [d]. y i B13.4) — 2
9. Direct Indexed Indirect (d,x) 6 6134} 2 2
10. Direct. X 4(5) 4(34.5) 2 2
11. Direct, Y 4 4(3.4) 2 2
12. Absolute. X 4(1.5) 4(1.3.5) 3 3
| 13. Absolute Long, X Z 53 — 4
14. Absolute, Y 4 401.3) 3 3
15. Relative 201.2) 20 2 2
16. Relative Long - 3@ — a
17. Absolute Indirect (Jump) 5 5 3 3
18. Direct Indirect —_ 5(3.4) -— 2
19. Direct Indirect Long - i34 —_ ., 2
20. Absolute Indexed Indirect (Jump) — 6 -— 3
21: Stack 37 3-8 1-3 1-4
22. Stack Relative - 413 - b2
23, Stack Retative Indirect Indexed - 7 — 2
24. Block Move X, Y. C (Source, Destination, Block Length) — 7 - | 3
NOTES:
1. Page boundary, add 1 cycle it page boundary is crossed when forming address.
2. Branch taken, add 1 cycle if branch is taken. "
3. M=0or X =0, 16 bit operation, add 1 cycle, add 1 byte for immediate.
4. Direct register low (DL) not equal zero, add 1 cycle.
5. Read-Modify-Write, add 2 cycies for M = 1, add 3cyclesfor M= 0.

19

Caveats and Application Information

Stack Addressing

When in the Native mode, the Stack may use memory locations 000000
to OOFFFFF. The effective address of Stack, Stack Relative, and Stack
Relative Indirect indexed addressing modes will always be within this
range. In the Emulation mode, the Stack address range is 000100 to
0001FF. The following opcodes and addressing modes will increment or
decrement beyond this range when accessihg two or three bytes:

JSL. JSR(a,x); PEA; PEI; PER; PHD; PLD; RTL; d,s; (d,s).y

Direct Addressing

The Direct Addressing modaes are often used to access memory registers
and pointers. The effective address generaied by Direct; Direct.X and
DirectY addressing modes will always be in the Native mode range
000000 to OCFFFF. When in the Emulation mode, the direct addressing
range is 000000 to 0000FF, except for [Direct] and [Direct],Y addressing
modes and the PEI instruction which will increment from 0000FE or
0000FF into the Stack area.

When in the Emulation mode and OH is not equal 10 zero, the direct
addressing range s 00DHO00 1o 00DHFF, except for [Direct] and [Direct),Y
addressing modes and the PEI instruction which will increment from
00DHFE or 00DHFF into the next higher page.

when in the Emulation mode and DL in not equal 10 zero, the direct
addressing range is 000000 to OOFFFF.

Absolute indexed Addressing (W65C816 Only)

The Absolute Indexed addressing modes are used to address data out-
side the direct addressing range. The W65C02 and WE5C802 addressing
range 1s 0000 to FFFF. Indexing from page FFXX may result in a 00YY
data fetch when using the W65C02 or W65CB02. In contrast, indexing
from page ZZFFXX may result in ZZ+1,00YY when using the W65CB816.

Future Microprocessors (i.e., W65C832)
Future WDC microprocessors will support all current W65C816 operat-
ing modes for both index and offset address generation.

ABORT Input (W65C816 Only)

ABORT should be held low for a period not to exceed one cycle. Also, if

ABORT is held low during the Abort Interrupt sequence, the Abort Inter-

rupt will be aborted. It is not recommended to abort the Abort interrupt.

The ABORT internal latch is cleared during the second cycle of the Abort

Interrupt. Asserting the ABORT input atter the following instruction

cycles will cause registers to be modified:

* Read-Modify-Write: Processor status modified if ABORT is asserted
after a modify cycle.

* RTI: Processor status will be modified if ABORT is asserted after
cycled. _—

* |JRQ,NMI, ABORT BRK, COP: When ABORT is asserted after cycle 2.
PBR and DBR will become 00 (Emulation mode) or PBR will become
00 (Native mode). E

The Abort Interrupt has been designed for virtual memory systems. For
this reason, asynchronous ABORT's may cause undesirable results due
to the above conditions.

gDA and YPA Valid Memory Address Output Signals (W65C816
nly)

When VDA or VPA are high and during ali write cycles, the Address Bus
isalways valid. VDA and VPA should be used to qualify all memory cycles.
Note that when VDA and VPA are both low, invalid addresses may be
generated. The Page and Bank addresses could aiso be invalid. This wilt
be due to low byte addition only. The cycle when only low byte addition
occurs is an optional cycle forinstructions which read memory when the
Index Register consists of 8 bits. This optional cycle becomes a standard
cycle for the Store instruction, all instructions using the 16-bit Index
Register mode, and the Read-Modity-Write instruction when using 8- or
16-bit Index Register modes.

Apple Il lle, lic and i+ Disk Systems (W65C816 Only)

VDA and VPA should not be used to qualify addresses during disk opera-
tion on Apple systems. Consult your Appie representative for hardware/
software configurations.

DB/BA Operation when RDY is Pulled Low (W65C816 Only)
When RODY is low, the Data Bus is held in the data transfer state (i.e., ¢2
high). The Bank address external transparent latch should be latched
when the ¢2 clock or RDY is low.

M/X Output (W65C816 Only)

The M/X output reflects the value of the M and X bits of the processor
Status Register. The REP, SEP and PLP instructions may change the
state of the M and X bits. Note that the M/X output is invalid during the
instruction cycle following REP, SEP and PLP instruction execution.
This cycle is used as the opcode fetch cycle of the next instruction.

All Opcodes Function in All Modes of Operation

It should be noted that all opcodes lunction in all modes of operation.
However, some instructions and addressing modes are intended for
WE5C816 24-bitaddressing and are therefore less useful for the WE5C802.
The following is a list of instructions and addressing modes which are
primarily intended for W65CB16 use:

JSL; RTL; {d]; {d].y: JMP al; JML; al; al,x

The following instructions may be used with the WE5C802 even though
a Bank Address is not multipiexed on the Data Bus:

PHK; PHB; PLB
The following instructions have “limited” use in the Emulation mode:

e The REP and SEP instructions cannot modify the M and X bits when in
the Emutation mode. In this mode the M and X bits will always be high
(logic 1).

¢ When in the Emulation mode, the MVP and MVN instructions use the
X and Y Index Registers for the memory address. Also, the MVP and
MVN instructions can oniy move data within the memory range 0000
{Source Bank) to 00FF (Destination Bank) for the WE5CB816, and 0000
to O0FF for the WB5CB02. i

Indirect Jumps

The JMP (a) and JML (a} instructions use the direct Bank for indirect

addressing, while JMP (a.x) and JSR (a,x) use the Program Bank for in-

direct address tables.

Switching Modes

When switching from the Native mode to the Emulation mode, the X and
M bits of the Status Register are set high (logic 1), the high byte of the
Stack is set to 01, and the high bytes of the X and Y Index Registers are
set to 00. To save previous values, these bytes must always be stored
before changing modes. Note that the low byte of the S, X and Y Registers
and the iow and high byte of the Accumulator (A and B) are not affected
by a mode change.

How Hardware Interrupts, BRK, and COP instructions Affect
the Program Bank and the Deta Bank Registers

When in the Native mode, the Program Bank register (PBR) is cleared to
00 when a hardware interrupt, BRK or COP is executed. in the Native
mode, previous PBR contents is automatically saved on Stack.

In the Emulation mode, the PBR and DBR registers are cleared to 00 when
ahardwareinterrupt, BRK or COP is executed. In this case, previous con-
tents of the PBR are not automatically saved.

Note that a Return from interrupt (RT1) should always be executed from
the same “mode” which originally generated the interrupt.

Binary Mode
The Binary mode is set whenever a hardware or software interrupt is
executed. The D flag within the Status Register is ¢cleared 1o zero.

WAI Instruction

The WAl instruction puils RDY low and places the processor in the WAI
“low power" mode. NMI, IRQ or RESET will terminate the WAI condition
and transfer control to the interrupt handler routine. Note that an ABORT
input will abort the WAI instruction, but will not restart the processor.
When the Status Register | flag is set (IRQ disabled), the [AQ interrupt
will cause the next instruction (following the WAI instruction) to be
executed without going to the | in:err%handhr. This method re-
sults in the highest speed response to an input. When an interrupt

20

is received after an ABORT which occurs during the WAI instruction, the
processor will return to the WA instruction. Other than RES (highest

priority), ABORT is the next highest priority, followed by NMI or TRG

interrupts.

STP Instruction

The STPinstruction disables the 2 clock to all circuitry. When disabled,
the 2 clockis held in the high state. Ia this case, the Data Bus will remain
in the data transfer state and.the Bank address will not be multiplexed
onto the Data Bus. Upon executing the STP instruction, the RES signal is
the only input which can restart the processor. The processor is restarted
by enabling the $2 clock, which occurs on the falling edge of the RES
input. Note that the external oscillator must be stable and operating prop-
erly before RES goes,high.

COP Signatures

Signatures 00-7F may be user delined, while signatures 80-FF are re-
served forinstructions on future microprocessors (i.e., W65C832). Con-
tact WDC for software emulation of future microprocessor hardware
functions.

WDM Opcode Use

The WDM opcode will be used on future microprocessors. Forexample,
the new WE5C832 uses this opcode to provide 32-bit ftoating-point and
other 32-bit math and data operations. Note that the W65CB32 will be a
plug-to-plug repiacement for the W65CB16, and can be used where high-
speed, 32-bit math processing is required. The W65C832 will be available
in the near future.

RDY Pulled During Write

The NMOS 6502 does not stop during a write operation. In contrast, both
the W65C02 and the W65C816 do stop during write operations. The
W65C802 stops during a write when in the Native moda, but does not
stop when in the Emulation mode.

MVN and MVP Affects on the Dala Bank Register
The MVN and MVP instructions change the Data Bank Register to the
value of the second byte of the instruction {destination bank address),

Interrupt Priorities
The following interrupt priorities witl be in effect should more than cne
interrupt occur at the same time:

RES Highest Priority
ABORT

NMI

iRG Lowest Priority

Transfers from 8-Bit to 16-Bit, or 16-Bit to 8-Bit Registers

All transfers from one register to another will result in a full 16-bit output
from the source register. The destination register size will determine the
number of bits actually stored in the destination register and the vaiues
stored in the processor Status Register. The foliowing are always 18-bit
transfers, regardiess of the accumulator size:

TCS; TSC; TCD; TDC

Stack Transfers

When in the Emulation mode, a 01 is forced into SH. in this case, the B
Accumulator will not be loaded into SH during a TCS instruction. When
in the Native mode, the B Accumulator is transferred to SH. Note that in
both the Emulation and Native modes, the full 18 bits of the Stack Regis-
ter are transferred to the A, B and C Accumulators, regardless of the
state of the M bit in the Status Register.

WDC Toolbox System-Emulator

Featurss
® Real-Time emulation of the W85CB802/816 and the WB5C02

e Uses an inexpensive Apple |le Computer as host (software provided)
e 18K bytes of Emulation RAM, mappable in 2K blocks

o Optional RAM expansion to 256K

® Optional hardware Real-Time Trace Board

Optional 802/816 Emulation Pod Unit

& Single-Step

& 48 bit trace memory of up to 2048 machine cycles

L

Three 40-bit breakpoint control registers providing:
—Break on Address

—Break on Data

—Break on Control

—Break on User Status

—Break on Nth Occurance

—Coast Mode

* Microsecond execution timer
e Also aveilable in In-Circuit-Evaluation chip or system test configuration

Product Overview

The Toolbox System-Emuiator consists of a Main Unit and Interface Card
that plugs into one of the Apple Computer's expansion slots. The Main
Unit provides all necessary logic for breakpointing, single-stepping and
mapping. in this configuration the user may perform basic debug opere-
tions or use the Toolbox in the Evaluation Mode.

With the optional Real-Time Trace Board, the user now has 40 bits of
trace memory within a window of 2048 machine cycies. A optional
Emulation RAM Expansion Board is also available which increases the
user's emulation RAM by 64K bytes or 256K bytes, with memory configur-
ation un Jer software control.

The Toolbox may be usad with or without the optional Pod Unit. With the
Pod Unit, the user can plug into the prototype microprocessor socket for
hardware debug. Since the Main Unit remains the same regardless of
the microprocessor used, the user does not have to learn a new set of
Toolbox commands for each type of processor.

Apple lle is a trademark of Appte Computer, Inc.

Additional Information

For additional information on the WB5C802/816, refer to the following
publications:

Programming the 85818
William Labiak

SYBEX, Inc.

2344 Sixth St.

Berkeley, CA 94710

The 6502, 85C02 and 65816 Handbook
Steve Hendnix

Weber Systems, Inc.

8437 Mayfield Rd.

Chesterland, OH 44026

85816/65802 Assembly Language Programming
Michael Fisher

Osborne McGraw-Hill

2600 Tenth St.

Berkeley, CA 94710

Programming the 85816 Including the 6502, 85C02, and 85802
David Eyes and Ron Lichty

Prentice Hall Press

A Division of Simon & Schuster, Inc.

Gulf & Western Bidg.

One Guif & Western Plaza

New York, NY 10023

21

Apple lkss Hardware Reference

Appendix X

Roadmap to the Apple llGs
Technical Manuals

Beta Draft Al 9/16/%

Apple lics Hardware Reference

The Apple IIGS personal computer has many advanced features,
making it more complex than earlier models of the Apple 1I. To
describe it fully, Apple has produced a suite of technical manuals.
Depending on the way you intend to use the Apple 1IGS, you may
need 1o refer to a select few of the manuals, or you may need (o refer

to most of them.

The technical manuals are listed in Table A-1. Figure A-1is a

diagram showing the relationships among the different manuals.

Table A-1
The Apple lles technical manuals

Title

Subject

Technical mtroduction to the Apple IIGS
Apple 1IGS Hardware Reference

Apple IIGS Firmware Reference
Programmer’s Introduction to the Apple IIGS
Apple 1IGS Toolbox Reference: Volume 1

Apple IIGS Toolbox Reference: Volume 2
Apple IIGS Programmer’s Workshop Reference
Apple IIGS Workshop Assembler Reference*
Apple IIGS Workshop C Reference*

ProDOS 8 Reference

Apple IIGS ProDQS 16 Reference

Human Interface Guidelines

Appie Numerics Manual

*There is a Pocket Reference for each of these.

Befa Draft

What the Apple IIGS is

Machine internals—hardware
Machine internals—firmware
Concepts and a sample program

How the t0ols work and some toolbox
specifications

More toolbox specifications

The develo pment environment
Using the APW assembler

Using C on the Apple IIGS

ProDOS for Apple II programs
ProDOS and Loader for Apple IIGS
Guidelines for the deskiop interface

Numerics for all Apple computers

9/16/96

Figure A-1

Roadmap to the fechnical manuals

Beta Draft

To start finding out
about the Apple IIGS

To learn how the
Apple IIGS works

:Reference
To start learning 1o o

program the Apple lIGS

To use the Toolbox

. APpie IIGS Toolbox
b HReference, Vol. 2

To operate on files

To use the development :
environment

Touse C

To use assembly
language

Apple IGS Fimware

Apple lles Hardware Reference

o

i v\" q:l’

ﬁ?ogrcmmer S Introdud

S
ion

- Apple IIGS ProDOS 16 -

A S

© the e IGS
E Ap'?l Sy

Refer_ence

| e ‘.
iizReference !

R A
e

pp?e"lle's 'Ii‘tggrommer's j
orkshop C Reference‘

Pockef Rerorence
zf EE

9/16/%6

Apple lics Hardware Reference

An event-driven prograrmwaits in
a loop untll it detects an event
such as a click of the mouse
button.

Befa Draft

Introductory manuals

These books are introductory manuals for developers, computer
enthusiasts, and other Apple IIGS owners who need technical
information. As introductory manuals, their purpose is to help the
technical reader understand the features of the Apple 1IGS,
particularly the features that are different from other Apple
computers. Having read the introductory manuals, the reader will
refer to specific reference manuals for details about a particular
aspect of the Apple IIGS. :

The technical introduction

The Technical Introduction to the Apple IIGS is the first book in the
suite of technical manuals about the Apple IIGS. It describes all
aspects of the Apple IIGS, including its features and general design,
the program environments, the toolbox, and the development
environment,

Where the Apple IIGS Owner's Guide is an introduction from the
point of view of the user, the Technical Introduction describes the
Apple IIGS from the point of view of the program. In other words, it
describes the things the programmer has to consider while
designing a program, such as the operating features the program
uses and the environment in which the program runs.

The programmer’s introduction

When you start writing programs that use the Apple IIGS user
interface (with windows, menus, and the mouse), the Programmer’s
Introduction io the Apple IIGS provides the concepts and guidelines
you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the

Apple IIGS. It introduces the routines in the Apple IIGS Toolbox and
the program environment they run under. It includes a sample
event-driven program that demonstrates how a program uses the
Toolbox and the operating system.

A4 Q/16/96

Beta Draft

Apple lics Hardware Reference

Machine reference manuals

There are two reference manuals for the machine itself: the
Apple IGSs Hardware Reference and the Apple IIGS Firmware
Reference. These books contain detailed specifications for people
who want to know exactly what's inside the machine.

The hardware reference manual

The Apple IIGS Hardware Reference is required reading for

hardware developers, and it will also be of interest to anyone else
who wants to know how the machine works. Information for
developers includes the mechanical and electrical specifications of -
all connectors, both internal and external. Information of general
interest includes descriptions of the internal hardware, which
provide a better understanding of the machine’s features.

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs and
subroutines that are stored in the machine's read-only memory
(ROM), with two significant exceptions: Applesoft BASIC and the
toolbox, which have their own manuals. The Firmware Reference
includes information about interrupt routines and low-level I/O
subroutines for the serial ports, the disk port, and for the DeskTop
Bus interface, which controls the keyboard and the mouse. The
Firmware Reference also describes the Monitor, a low-level
programming and debugging aid for assembly-language programs.

The toolbox manuals

Like the Macintosh, the Apple 1IGS has a built-in toolbox. The
Apple GS Toolbox Reference, Volume 1, introduces concepts and
terminology and tells how to use some of the tools. It also tells how
to write and install your own tool set. The Apple IIGS Toolbox
Reference, Volume 2, contains information about the rest of the
tools.

A5 Q/16/96

Apple lics Hardware Reference

In applications that use the
desktop user interface,
commands appear as options in
pull-down menus, and material
belng worked on appears in
rectangular areas of the screen
called windows. The user selects
commands or other material by
using the mouse to move a
pointer around on the screen.

Beta Draft

Of course, you don't have to use the toolbox at all. If you only want
to write simple programs that don't use the mouse, or windows, or
menus, or other parts of the desktop user interface, then you can get
along without the toolbox. However, if you are developing an
application that uses the desktop interface, or if you want to use the
Super Hi-Res graphics display, you'll find the toclbox to be
indispensable.

The Programmer’s Workshop;- manual

The development environment on the Apple IIGS is the Apple IIGS
Programmer's Workshop (APW). APW is a set of programs that
enable developers to create and debug application programs on the
Apple 1IGS. The Apple IIGS Programmer's Workshop Reference
includes information about the parts of the workshop that all
developers will use, regardless which programming language they
use: the shell, the editor, the linker, the debugger, and the utilities.
The manual also tells how to write other programs, such as custom
utilities and cornpilers, to run under the APW Shell.

The APW reference manual describes the way you use the workshop
to create an application and includes a sample program to show
how this is done.

Programming-language manuals

Apple is currently providing a 65C816 assembler and a C compiler.
Other compilers can be used with the workshop, provided that they
follow the standards defined in the Apple IIGS Programmer’s
Workshop Reference.

Ad /16/96

Beta Draft

Apple llcs Hardware Reference

There is a separate reference manual for each programming
language on the Apple IIGS. Each manual includes the
specifications of the language and of the Apple 1IGS libraries for the
language, and describes how to write a program in that language.
The manuals for the languages Apple provides are the Apple JIGS
Workshop Assembler Reference and the Appie IGS Workshop C
Reference.

Operating-system manuals

There are two operating systems that run on the

Apple 1IGS: ProDOS 16 and ProDOS 8. Each operating system is
described in its own manual: ProDOS 8 Reference and Apple lIGS
ProDOS 16 Reference. ProDOS 16 uses the full power of the

Apple 1IGS and is not compatible with earlier Apple II's. The
ProDOS 16 manual includes information about the System Loader,
which works closely with ProDOS 16. If you are writing programs for
the Apple 1IGS, whether as an application programmer or a system
programmer, you are almost certain to need the ProDOS 16
Reference. '

ProDOS 8, previously just called ProDOS, is compatible with the
models of Apple II that use 8-bit CPUs. As a developer of Apple 11GS
programs, you need to use ProDOS 8 only if you are developing
programs to run on 8-bit Apple II's as well as on the Apple IIGS.

All-Apple manuals

In addition to the Apple IIGS manuals mentioned above, there are
two manuals that apply to all Apple compuiers: Human nterface

Guidelines and Apple Numerics Manual. If you develop programs
for any Apple computer, you should know about those manuals.

The Human Interface Guidlines manual describes Apple’s standards
for the desktop interface of programs that run on Apple computers.
If you are writing an application for the Apple IIGS, you should be
familiar with the contents of this manual.

A7 Q/16/96

Apple llcs Hardware Reference

Beta Draft

The Apple Numerics Manual is the reference for the Standard Apple
Numeric Environment (SANE), a full implementation of the IEEE
standard floating-point arithmetic. The functions of the Apple 11GS
SANE tool set match those of the Macintosh SANE package and of
the 6502 assembly language SANE software. If your application
requires accurate arithmetic, you'll probably want to use the SANE
routines in the Apple 1IGS. The Apple IIGS ToolBox Reference tells
how to use the SANE routines in your programs. The Apple
Numerics Manual is the comprehensive reference for the SANE
numerics routines. A description of the version of the SANE
routines for the 65CB16 is available through the Apple
Programmer'’s and Developer's Association, administered by the
APPLE. cooperative in Renton, Washington.

% Note: The address of the Apple Programmer's and
Developer's Association is 290 SW 43rd Street, Renton, WA
98055, and the telephone number is (206) 251-6548.

AS 9/16/%

Apple lics Hardware Reference

Appendix B

international Keyboards

Apple makes different versions of the Apple 1IGS for different
countries. The different versions have different keyboards and
display characters that reflect the different typing conventions of
the different countires. The ADB keyboard on the Apple IIGS is
available in the following versions:

® U.S.A. English
UK. English
Canadian
French
German
Italian
Spanish
Swedish

m US.A. Dvorak ‘
The keyboards on the localized versions of the Apple IGS are all
mechanically the same; that is, the shapes and arrangement of the
keys are the same, only the legends are different. The character
decodings for the different versions are all stored in the keyboard

decoder ROM. Figures A-1 through A-9 show the legends on the
different keyboards.

Beta Draft 81 9/17/86

Apple llcs Hardware Reference

Figure A-1
U.S.A. English keyboard

(a4]

! @ {#» s % - & |» () ke |
esc |1 2 3 4 5 6 7 8 g 0 - a |delete clear | = / *
¢ D 7 1
tab a W E R T Y 1] | 1} P [) 7 8 9 -
- "
control A S D |F G H J K L 3 ' return 4 5 (i -
< > i

shift Z X c v 8 N M ’ . / shift 1 2 k|

caps I N ! 7
lock [Joption (3 3@ \ - |- + 1 Ll'.) . enter

Figure A-2
U.K. English keyboard

1 @ L s % & # () _ N 8
esc |1 2 k] 4 5 6 7 8 9 0 - - delete | |clear | = / x
' L
tab Q \ E R T Y u ! 0 P [] 7 8 38 +
B : n
control A S D F G H J K L H retumn 4 S 8 -
< > ?
shit 2z Ix Je v 8 I8 Im . Lo)z sk 1 J2 |3
caps | -
| fock lontionl@ b+ 4 \ * - |- il 1 0 . enter

Beta Draft 82 Q/17/84

Figure A-3
Canadian keyboard

Apple lics Hardware Reference

3 % (. N

esc |1 5 delete clear x

id Hg IW] 7 +

control , ' return 4 3

7%

shit /@ 1

caps r

lock |option 1 0 enter
\ 7

Figure A-4

French keyboard

f 1 3]

esc & & delete 4] x

—a 7 +

control <J 4 -

o W ; 1

Q Lntionl@ < A T 0 —

Beta Draft 9/17/86

Apple lics Hardware Reference

Figure A-5
German keyboard

ol s Ix e [/ T«)y [- T I+ () 1
esc |1 |2 f3 fa fs |6 |7 |8 o Jo s |° [delete -« O VA E
A
- a w e Ir I Iz v b o P o | 7 s |8 |+
ool fa Is o IF s W O Ix b |8 |x < 4 s |s -
o v Ix e Iv Is I8 I0n |0 |-) e N PR E
) ~
Q option G |« ’ -~ |- $ ¥] 0 ' kel

Figure A-6
Italian keyboard

T 1z 17 ¢ 5 7 B [o [_ |- T []
esc |& " i (G F) i é z = [delete = |- / %
= *
- qQ z E R T Y U I 0 P i L] 7 8 9 +
%
conrol A 5 D F G H J K L M b <«J 4 5 6 -
2 1. I+ I]
o W X c v B N ’ : : o O 1 2 3
N .
Q option (3 p=4 B § «— |- $ t [0- ' o

Beta Drart B4 9/17/86

Apple lics Hardware Reference

Figure A-7
Spanish keyboard

[¢ £ $ % / A () I
esc |1 2 3 5 6 7 8 9 0 - = delete [b:¢ [/ £
—> aQ W E R T Y u I 0 P ’ 7 8 g +
ool fa Is o IF s v v Ik L & |) s Is s |-
? I "
Q 2 X c v B N M . S O 1 2 3
> § :

_Q‘ otion | (3 38 < " - |- |t It 0 ’ -~
Figure A-8

Swedish keyboard

N CHEN PR TR 2 O 2 T T B L (
esc |f 1 2 3 4 5 6 7 8 9 0 . ? delete = |- / t
o Q W £ R T y 1] I 0 P AT 7 8 g +
ool |a ds o IF e W v Ik It |8 |x) a Is |Is =
1] —

O z X C v B N M ’ - < 1 2 3

> A .
t option (3 -4 B @ - |- |} t 0) »e

Beta Draft B-5 Q/17/86

Apple lles Hardware Reference

Figure A-9
U.5.A. Dvorak keyboard

e 2 s fx b l« i1 D [« D ,

esc |1 2 3 4 S 6 7 8 0 (] delete clear L
[" () *

tab i , P |y JF 6 Jc R L / - 7 +
!contro! L o g lo L o v Jr Ix s |- Jreum 4 -]
(:hi‘t ; Q J K p B Mmojw v |2 shit 1

caps N . | W .
. lock nptmnl(j H \ o — + + LD enter

Beta Draft B-6

9/17/86

Figure C-1

Uppercase characters

Appendix C

Character Generator

This appendix describes the hardware character generator for the 40-
column and 80-column text displays. For information about text fonts in
Super Hi-Res displays, refer to the QuickDraw II tool set in Apple Iigs
Toolbox Reference, Volume 1.

Character Generator ROM

The ROM contains the dot patterns making up the characters in the 40-
column and 80-column displays.

U.S. Characters

Figures C-1, C-2, C-3 show the characters for the U.S. versions of the
computer.

CEABCDEFGHTIUJ

Figure C-2

Lowercase characters

KLMNOPQRSTUVWXYZI[\N] "

.

abcdefghii]

Figure C-3

Special characters

klmnopgqrstuvwxyzi{]| 1}~

II#S%&

Betqg Draft

[) *4,;~=./01234567829:

A
Il

v
N}

C-1 9/12/86

Apple ligs Hardware Reference

international characters

For other countries, localized versions of the Apple IIgs substitute
appropriate characters for some of the special characters used in the text
displays. Figure C-4 shows those characters.

Figure C-4
Intermnational characters

Language Equivalent characiens

U.S.A. English # ¢ N1 {1 } ~
UK. English £ @ [N1 ° {1} ~
French £ a " c § T é u e
Danish # @ %) A > g a ~
Spanish £ § 1 N g ° " A ¢ ~
Italian £t § " ¢ é 1 a é6 e 1
German # § A O U > a o6 1 B
Swedish # @ A O A a5 & ~

MouseText characters

The character ROM includes several graphic characters used in
displaying the desktop user interface in text mode. Figure C-5 shows
those characters.

Beta Draft c2 9/12/86

Appendlx C: Choracter Generator

Figure C-5
MouseText characters
@ A B c D E F G

Beta Drart C3 /12786

Apple ligs Hardware Reference

Befa Draft c4 @/ 12/86

98-dI5-22 f I
SR T ! S ot CST:881518Y
. it rI it 3-€an
SOIL T IUIL ' i s, s
BE 21 o = 1 8f
T
& i 2 o 81y
st g £€ a1 SabL
[i H2Hel i
(42 W 3zice
wjEor W - ETRTT YTV
) L st s 13 EEERTEET)
5 5 Bl ETH 827 7IsM0
. Sjen sveis €F _mua | i
o7 n" A0 52
S/ SE_1'gw0 2 L]
v
= € [LEE)]
i " [
av— [
;] AR
"] <
F=) a ? Veew ! '
'qum:sa._w F [(s) B 5 i b CE 2 10l | +qost
&
AS £ 7 88 ¢ '9 ‘v E 2 7ULIBW e R T
a
E] s¢ £ HADY E L -
NV) —H E 5
2 l £ 7 IHN 3 TN
Ee2i 3
M@l AR Tl e
2841 A =
3 Y,
B2l SE| =3 -
} 52 0 Ny = J
_ AN EIC] I P
T
¢ A M < ml-ﬂ e —
1641 S8 sa| o € 2
1 42 £
H EW ssas
: & 2y MLy
£3¥ o ¥Ely
B I8 o any K L
1 M A i oy
T w TErRYEnEn @ -, i 1 H Mumn._n T
R 3 24 e TN 3
H sl s ! £ oY svarznie Age
il EE= AL tee o
i 2 7uraev =i wibey =
i 2 1'anaay il seer £p
. : 21
H 2 voae of veeaee 2
i _ 2 VHrgan 77| eTeea Bb
: [« 2we o] : 5d1 ared1sm
| ' [8as 23 v e annme pe LT p— ! ¥
i 1 E
| : 2 E ‘2 Vs REREEY
1 H)\AV(i s o £ 1om3us|
i “e o
i z " T hut| R
~ vEId S I
o 5| grgn/yf—
s¥ A EE e SF v/ A0 ;
W _ —— - e I
EY| MY 5ar
e 111 I —o A -91938 | k,
ZM‘MJ..] *. . 25d1(0) s [v
vl 822 7|
B I ma&©,|.
320 7 . H PMWMK 3
‘xx.w:éa_m 2dll -
¥
MAT——
e 864 i
TVW—
[1H Y '
Am s ANA— seal
+6H 181 i
e
e g A w0}
t BET
. €6t
=== E0l 30; i]
E—<lonp wag i) T 7 VW I1T;
PR o i S
101 SYD o b
L— oo sy — o o T ear ¢ T &
] 2} vl ; ; 7 y (59 Gl o
avitl mrem It —AN £ 5 ‘2 {6TiR0)NMEY
[2 ¥ 11 glls
BEH
' wiit .|.Lxm 3 3 afs
PMET B sie T 4 ey Fid
SvEE el . L
£ T VW— ar L Fl Bl v 9z
8 asu i
s E2 <§c< T 0 Idd
h ud ga
*0tvsuven (8 rr———
16 RISTEYHT [al
ASs LI

CRERTA T

o
[FE3EL T

98- 435 -22
8 40 € 13345
SOT1 3hid¥

[ERIBYY

e
ANCO3UATA

HA[HLTY

M
PTCTURT
T

A

——— 8Ly
UROTNI # IOHHIOH ¥OH 2 sEf
: "1
&] Aee2?
FE s :
fhos —VW—
&fl -1 | M 1 1 (=] sty
65
WO} ma —
wid =
14 . .
£ 3 466 g A_I]
& I ﬁ
a Fort - + Mt ' W
E B9 7y 2 T ET
Ag:8 gneads o ==
|>m,_ i ”— = T o0t q) €105 - 0BEN2
A | o i o
BETY E
_ o 2
= ¥
|
A.m\ ! 735 W 3&&@ e vW |I© asdL
s | 2 6l
4 _ M
: _
i B e
¥ : ” f FROTA 5
T w22
_a——F & weanos) KRR ' — [T V
! !
— INASWOD LI T N_. et €|
€2106-+BEENS k sarn i
0 ¥ ——
€ W3HI0 AT¥3 DL 530NV _:OE ._< A4l = A
| ¥ £ SHTLINONI DML 3HL 30¥1d 43108 T e
aaiA L
A2+ ! I
M. - S0Ia 49
i W Voin 95
i
L IO
I :"ll_ ,_E_,;mhL A =
T =
34 i - B
= 403 W
¥
ey ol Lok
53| 4210 e
ran Bl =
= EY 15 i
ﬂru [
68t = o [l‘_;}‘lm
el nm L M k .
DN 2H r;
- T s e
.ir Case s-
HO LT3N

1531860

e —— SRR W
el § 9 r 2 nphd
;S =
VO TEERH fo
003 /ONDH 8RO (53
-
s
2
L
m«._dﬂm. 2 A-adi Y
. i
S/ et o T 2 HdlY
HILBUS o T 1 J.EPEE_
TEOIA L |T| B'S 23 bR 1 x;::m:
pEOIA i z
4l
BaTA
o= 1
eara DS
-, o 4
s =" 33 1z
[arA - " 1. y P
sSarA “-“w M 8
A
Swi %
Yaza t.u'..u‘E ¥ wd go
EOQTA ..a\w 5 2 o
C-])
Tl " 8 5

®R

EREE
—— L
—

a0-d435-22
B O 5 133
ST gy 13U

w4 J|‘© LN

:"&@u‘ i
waG—
mu.u—ﬁﬂ,,d,_|n B
.:&@m.l

= i....|_.@ SHldL

_© Tl

AO EdTdl

8l o
O} 2eid m_ﬂ Sv)
'BRN BSA SBA|

H1D5NN0T |
(HYDELIH _

BT

6
0¥ed JTHIWN

GBS

L% @
i J57-4 =
< o e T
=L Eral E2105~ +HBENE Av _,......n
0
J55-0 =
TG
ad—— —— o o \m\ a
h;y L= {ThimE
Mk an
£1 n-uz anA psan
- s eyt
LY 2
92 i
Sedf= =
= G ==
:MMM b —flY 3 s avoses |
bl
Hes
: I
wEch D.m —— e . — o — o — m * EJ —_ 3
M—«
: ane L
i 1ANIf Wy |
rlo % '
RRECET = e
A
ven{0) seiy
F{ _. Ay €
R R 1 Ee-L0Svient -
" -
5 !
< b ——)
.|| | — - - - =g J?._
\\lﬁ Z 3 .v .m .w ‘F i3s3
s ~ g1 w;r:h
—— ——— —— : Ttum

—

n.a_-_m_.ﬁg

i S

B0 6 F @ e

S Feet¥ 3L

i

t6r 2808 H
T

a5

Sali-

E 1 mH
ieeiNGI MW 156NS) 238
TSI 1238 ,_E.m.'munmﬁ

A2w

ol

15ens; EH
i

age

mﬁ
E{L U

(STAN1S508 CISkEn munH_H
¥

AS-

RETC TS AT .rﬁH
¥
AS

L12E0 9639
TUBHN1 BLOB 4AAE L£38 COTTIN 908 CLeTIN BSIE
TIEHNY BPIE C(rd| BY3E CTEMN (4DE C13UN| 94 M
CLTMNY S4B (MG #¥38 (1S40 B8 CIETHN fEDA 2
TURTHNY 9ET8 C(HIHM) SEDE CrSTHN) E3E 1T PEDE e
‘193Nt 2EI0 CietIM TEDR CSLI) EDD C18INI 6278 T
11

e
ags

M
anTe -
i2an} 2808
T
a2

i3

!
12y §238 C180) G126 t..H .

“1SCY BEJB Ctr1 £128 C(EF) 9138 CrEr m_Um._x'II_\
i

(23] EBJG ‘44T 8238 (190 208 1SN} 5208 MET A
CIHPI 5208 CGET) Y208 11301 £208 0N umumww

A2

(AINE 8238 18NN v83E

(W) 2BIE CTSHN) TEDE 11500 538 CIeION) EHIG T
HETINI B0 C(EN) L9208 T2 $I0T T 5908
‘1§30 1938 "i82r) 8338 12110) J508 m_r
TeSIANG €538 491001 8508 (1S EvDE L

TSN 2¥D8 CUSIN 1508 CtE¥T) #4328 C(EAN mnumH
i

ASe

mH

) ETI8 CiEM) 2108 Bl

CISP| FYDE Cisfh 0138 CIEM) 6828 (i m-HH
I
"

g

%
€4My ¢339 '490) 8838 '(SCY 5009 e
TIC) 483G C1EF) ERIB CCEC) ZEIE TN 1416 M1

1

35

SHOLIOVIYD SSvald

5 aresaa o

2 7" swana

£ H'EDs

£ HWwm

£ W
£ HORHIE MJ‘

* TSAIALNT

8 ‘¢ 1 d-8680

[0]

2 123501

£ 71°§73Is01
£ 1°5713907

£ v 13501
£ 1"ET3S0] o
£ 7 @IsnI

£ 7 TVES0Y
£ 7 EulstT
£ 712A30
£ 7°5A3
£ 1"5A08
£ s

| ey |

+ NV
B

r'

I‘Jljw S £k CE @ ¥ HWHERY

o)

| O

8 5 24 61@}.“—.|J

R
T

¢ TEA3O
£ 1'eAdn

£ 1 TATD e

§ 187K |

-.«rum-m‘

|«@ 1541
\a@ 25dL
——=(0) es
7’i¢© Sl

S3di

T i6ra]

| R i
LR

Iﬁw T tatian)sngy |

8

ity

254
%

o

== =] — =
. — \\ﬁlﬂ.fﬁ. $54015787
_:m_u - hz.. Aﬂ.ﬁ i e L o
E 743w
a f - — ey a2 | P - - — [[

e as- .5&«._“"... AR ..-H |onet e ' w.v Jﬁ
a1 < 2 i (3 ot §) = Sty T -ds0 2>l DWITY NI SN AW 4.
L o —- ¥ A e — Lo ——— — Trin o
o ighE—— el Y Ige— iy jos 2, —_ -t S
o - b av a0t — L i _ ' 3 o
5 Be il = —t o
i T o .!aﬂ! - o — _ :....: VoLIBaD Ve e
= [sa By [T} -4} o =S |I?u0 "
o ETI—. P 1]) | z 7O C i
ay 1inaef B v 4] yanag! D et s
& =3 e -~ —d Sa——

AEiiiiniiny

, ’CRLLJﬁLLIﬂ;LJ;L;l:JLL!»H | LLLJ-l
S

MEES

s85i

133

UL belale b pige

53223 IsiI¥es
T T e
) PR

SigiT

e
Ei—m‘{?_:\: zz

i

i R e
~ 32BEE 333I3I3

[)

e

o
A
=

|

!

+-——_

o HF-E
2
J

L

EERLS: 35:_,9 £y G
3

i
o I-E :

I
882
i

-
!
B

il

W

|
I

St

“’L"‘-‘
= |
™ o

i

3
[

|
&

Su Ly tesnaitusys
< 53LFf FTIIIIIEEaER

B3y
¥i-F

-

tell . =
o

z 1z B 3 —en
E A B
Jp! | sifeR[Ee Iﬁn

[“QRNGRD TYLIDLD 0L 5301 ONIOMD ‘GHYOH 3L MO ST TFTTI ERSSI00 L
48-a35-22 : 007Ny JyBcn 3y AWQ 3L 38 05T ITA 41 03033 10N ¥ SHOLSTS: 3SHL |
| INIOd SIHL Q¥ '6} NId "AWO NIOd 34D A¥
8 40 B L3S (31 FR55-300 FHL QUM L1 1A ONDGHD VA TDIQ

ST Iy IUIL . ‘UMD WLISTA HOWJ ILvewd3S 35 YIS
i ‘JLAVWIHIS SIHL ND NACHS SY “QACDES DOWNY 310N 5 H B2bdL
d [inrmmr——oang
- 2 R
7 % _ | ~@ aa
' 8635 oo |
A 2 i N‘n\ T NW I —t U L3P I
y o ; | AAN ot 08
1 T i J H @ A0F i z T v :ﬂ@ §EldL
s | i e [3 2¥ls g ' ares _ ' o Recs
HMISE | . i 2 i
| d 89
i . a2 v
AL _ s| a4 Jid o
VWA SSA ¥ESA
a5 war
e v
g Bys 2 EJA
1 24 A =
& eV owse {:1:% 0 8 s -
7 AVAVAY = T4 124 11353 T 5°£°8 % E 2 °F 13M
Fus
5
Fal sl
4 2 g
ﬂﬂ(J = 12
5v1 rsRE—15]
8l P LA 1
¥ 2 F
=l 25
e sEe 2]
91| 2§
o 7 e o T % s
Tl T = Tdems
RIE B y ip B .
5 HE "w . TS 4’3 'k °E 2 T Haee
gq) 1V¥S MM *
e e 7000 v]
- 28 q.ow ey 2
2 g B 28
€| 58 i)
2 ;i
T = P | £¥y £
{ E Hannas +|_m = Ltk e ¥ =0} mw
ans i B Sw s 4
. A2se £ o &5 =
sz 3 1 il =T + R
4 e i b e R sranisev
.|A 2 E E
E .7 U a2vy El
515 221s 2 N__m e ol mw 2
o iz ram P0G, + — 1
fEHS nengs — SRR B 2O
! Evidl] oo | =
I ©|_ AdvaE 1 ¥
i) ¥ #3126 A+
] um-mmJ‘ _-il. H 85idL _]
RIEC 32N 4 5t + 74 T veaL
ot X
d-aba Yeiw V¥V m)D%M_
. \ T Y 23k =TT —_—
L — + e L R
i :Ae? e /m_ el 5 3 R
. [RS- S N R e N
i ST i aecee 02z SR PN A5
Sk - 2335 AN
JnEEeR S El T <
agsrsie a1 TS 2 ..(w/mw REELIER
i T
@ 62z ? s [z {0 sara:
£5TdL
z M s
% S2H5).“Mw/._ HO) raraL
g 2 e ' LR .el@ €2ta
A N
z T
¥aus \(m@m('x _© 2ardl
z ¥
2 ems O
ERA A
@S LEE) @
83741
a 3 (e
s
& 6314l
' |
2 o
SR B
s
L3 I
; Wy
! ——
wtoip Bvn |
il 5
i Az
—

12 Q1 SNEIVDS

Appendix E

Conversion Tables

Beta Droft E1 /10/86

Apple lics Hardware Reference

Beta Draft

This appendix brefly discusses bits and bytes and what they can
represent, and peripheral identification numbers. It also contains
conversion tables for hexadecimal to decimal and negative
decimal, and a number of 8-bit codes.

These tables are intended for convenient reference. This appendix
is not intended as a tutorial for the materials discussed. The brief
section introductions are for orientation only.

E.1 Bits and bytes

This section discusses the relationships berween bit values and their
position within a byte. Here are some rules of thumb regarding the
65C816:

®m A bit is a binary digit; it can be eitheraQ ora 1,

® A bit can be used to represent any two-way choice. Some
choices that a bit can represent in the Apple IIGS are listed in
Table E-1.

m Bits can also be combined in groups of any size to represent
numbers. Most of the commonly used sizes are multiples of
four bits.

® Four bits comprise a nibble (sometimes spelled nybble).

® One nibble can represent any of 16 values. Each of these
values is assigned a number from 0 through 9 and
A through F.

m Eight bits (two nibbles) make a byte (figure E-1).

® One byte can represent any of 16 x 16 or 256 values. The value
can be specified by exactly two hexadecimal digits.

® Bits within a byte are numbered from bit 0 on the right to bit 7
on the left.

® The bit number is the same as the power of 2 that it represents,
in a manner completely analogous to the digits in a decimal

number.
® Each memory location in the Apple IIGS contains one 8-bit
byte of data.
E2 9/10/86

Beta Draft

Appendix E: Conversion Tabies

B How byte values are interpreted depends on whether the byte
is an instruction in a language, part or all of an address, an
ASCII code, or some other form of data. Tables E-S
through E-8 list some of the ways bytes are commonly
interpreted.

B Two bytes make a word. The 16 bits of a2 word can repre—sent
any one of 256 x 256, or 65536, different values.

m Three bytes make an address. The 24 bits of an address can
represent any one of 256 x 65536, or 16,777,216, different
values.

@ The 65C816 uses a 24-bit adress to identify a memory location.
It can therefore distinguish among 16,777,216 (16M) locations
al any given time.

® A memory location is one byte of a 256-byte page. The low-
order byie of an address specifies the location in the page.
The middle byte specifies the memory page in a 65536-byte
(64K) memory bank. The high-order byte specifies which 64K
memory bank the byte is in.

Table E-1
What a bit can reprasent

Context Represeniing e 1=
" Binary number Place value 0 1 x that power of 2
Logic Condition False © True
Any switch Position Off On
Any switch Position Clear* Set
Serial transfer Beginning Start Carrier (no
information yet)
Serial transfer Dam 0 value 1 value
Serial transfer Panty SPACE MARK
Serial transfer End Stop bit(s)
Serial transfer =~ Communication BREAK Carrier
state
Preg bit N Neg. resul? No Yes
P reg bitV Overdlow? No Yes
P reg. bit B BRK command? No Yes
Preg bitD Decimal mode? No Yes
P reg bitI IRQ interrupts Enabled Disabled {masked
oun)
Preg bit Z Zero result? No Yes
P reg. bit C Carry required? No Yes
E3 9/10/86

Apple llcs Hardware Reference

Beta Draff

* Sometimes ambiguously termed reset.

Figure E-1

Bits. nibbles, and bytes

Binary Hex Dec Binary Hex Dec
0000 $0 0 1000 $8 3
0001 $1 1 1001 $9 9
0010 $2 2 1010 A 10
0011 $3 3 1011 $B 11
0100 $4 4 1100 $C 12
0101 35 5 1101 $D 13
0110 $6 6 1110 SE 14
0111 $7 7 1111 $F 15
E.2 Hexadecimal and decimal

Use Table E-2 for conversion of hexadecimal and decimal
numbers,

Table E-2 :

Hexadecimal/Decimal conversion

Digit $x000 $0x00 $00x0 $000x
F 61440 3840 240 15
E 57344 3584 24 14
D 53248 3328 208 13
C 49152 2072 192 12
B 45056 2816 176 11
A 40960 2560 160 10
9 36864 2304 144 9
8 32768 2048 128 8
7 2672 172 112 7
6 24576 1536 B 6
5 20480 1280 a 5
4 16384 1024 &4 4
3 12288 %8 48 3
2 8192 512 32 2
1 4096 26 16 1

To convert a hexadecimal number to a decimal number, find the

decimal numbers corresponding to the positions of each
hexadecimal digit. Write them down and add them up.

Examples:

9/10/86

Beta Draft

Appendix E: Conversion Tables

$1C = 2 $FDA7 = 2
$30 = 48 $F000 = 61440
$0C = 12 $ DOO = 3328
- $ 40 = 64

5 7= 7
$3C = 60 .

SFDA7 = 64839

To convert a decimal number to hexadecimal, subtract from the
decimal number the largest decimal entry in the table thart is less
than it. Write down the hexadecimal digit (noting its place value)
also. Now subtract the largest decimal number in the table that is
less than the decimal remainder, and write down the next
hexadecimal digit. Continue until you have 0 left. Add up the
hexadecimal numbers.

Example:
16215 = § 2
16215 - 12288 = 3927 12288 = $7000 3927 -
3840 = 87 3840 = $ FOO 87 -
80 = 7 80 = 5 30
3 7 =3 7
16215 = $TF57

E.3 Hexadecimal and negative decimal

If a number is larger than decimal 32767, Applesoft BASIC allows
you to use the negative-decimal equivalent of the number.

Table E-3 is set up to make it easy for you to convert a hexadecimal
number directly to 2 negative-decimal number.

Table E-3
Hexadecimal to negattve decimal conversion
Digit $x000 $50x00 $500:0 $3000x
0 0 0 -1
E 4006 256 -16 -2
D 8192 512 32 3
C -12288 768 48 4
B -16384 -1024 64 -5
A -20480 -1280 20 5
g -24576 -1536 ©6 7
8 -28672 -1792 -112 8
£S5 9/10/86

Apple lics Hardware Reference

Beta Draff

i -2048 -128 9
6 2304 -144 -10
5 -2560 -160 -1
4 2816 -176 -12
3 3072 -192 -13
2 -3328 -208 -14
1 3584 24 -15
0 -3840 -240 -16

To perform this conversion, write down the four decimal numbers
corresponding to the four hexadecimal digits (Os included). Then
add their values (ignoring their signs for a moment). The resulting
number, with a minus sign in front of it, is the desired negative-
decimal number.

Example:

$COL0 = - 2

$C000: =-12288 $ 000: - 3840 § 10: - 224 § 0: -
16

SCo10 -16368

To convert a negative-decimal number directly to a positive-
decimal number, add it to 65536. (This addition ends up looking
like subtraction.)

Example:
-151 = + 2
65536 + (-151) = 65536 - 151 = 65385

To convert a negative-decimal number to a hexadecimal number,
first convert it to a positive-decimal number, then use Table E-2.

E.4 Peripheral identification numbers

Many Apple products now use peripheral identification numbers
(called PIN numbers) as shorthand to designate serial device
characteristics. The Apple II series Universal Utilities disk presents
a menu from which to select the characteristics of, say, a printer or
modem. From the selections made, it generates a PIN for the user.
Other products have a ready-made PIN that the user can simply type
in.

Table E4 is a definition of the PIN number digits. When
communication mode is selected, the seventh digit is ignored.

£ 9/10/86

Example: 252/1111 means:
Communication mode

8 data bits, 1 stop bit

300 baud (bits per second)

Table E-4
PIN numbers

Appendix E: Conversion Tables

No parity
Do not echo output to display

No line feed after carriage return
Do not generate carriage returns

X X X / X b4

—_

= Printer mode
2 = Communication mode*

1 = 6 dara bits, 1 stop bit
2 = 6 dara bits, 2 stop bits
3 = 7 data bits, 1 stop bit
4 = 7 data bits, 2 stop bits
5 = 8 data bits, 1 stop bit
6 = 8 darta bits, 2 stop bits

1 = 110 bits per second

2 = 300 bits per second

3 = 1200 bits per second
4 = 2400 bits per second
5 = 4800 bits per second
6 = 9600 bits per second
7 = 19200 biis per second

1 = No parity

2 = Even parity (total on = even)
3 = Odd parity (total on = odd)

4 = MARK parity (parity bit = 1)
5 = SPACE parity (parity bit = 0)

1 = Do not echo output on screen
2 = Echo output on screen

1 = Do not generaie LF after CR
2 = Generate LF after CR

1 = Do not generate CR*

Beta Draft &7

@/10/86

Apple lics Hardware Reference

2 = Generate CR after 40 characters
3 = Generate CR after 72 characters
4 = Generate CR after 80 characters
S = Generate CR after 132 characters

* 1f you select communication mode, then seventh digit must equal 1. This value is supplied
automatically when you use the UUD.

E.S Eight-Bit code conversions

Tables E-5 through E-8 show the entire ASCII character set. Note
that character values are shown with the high bit off. Unless
otherwise noted, all ASCII character values above $7F (127 decimab
generate the same character as that value with the high bit off. Here
is how to interpret these tables:

® The Binary column has the 8-bit code for each ASCII character.

m The first 128 ASCII entries represent 7-bit ASCII codes plus a
high-order bit of 0 (SPACE parity or Pasca)—for example,
01001000 for the letter E.

& The last 128 ASCII entries (from 128 through 255) represent 7-bit -
ASCII codes plus a high-order bit of 1 (MARK parity or
BASIC)}—for example, 11001000 for the letter £.

& A transmitted or received ASCII character will take whichever
form (in the communication register) is appropriate if odd or
even parity is selected—for example, 11001000 for an odd-parity
H, 01001000 for an even-parity E.

& The ASCII Char column gives the ASCII character name.

® The Mterpretation column spells out the meaning of special
symbols and abbreviations, where necessary.

m The What to Type column indicates what keystrokes generate the
ASCII character (where it is not obvious).

m The columns marked Pri and Alt indicate what displayed
character results from each code when using the primary or
alternate display character set, respectively. Boldface is used for
inverse characters; italic is used for flashing characters.

Note that the values $40 through $5F (and $CO through $DF) in
the alternate character set are displayed as MouseText characters
(Figure 5-1) if the firmware is set to do so (Section 5.2.2), or if
the firmware is bypassed.

» Note: The primary and alternate displayed character sets in
‘Tablées E-5 through E-8 are the result of firmware mapping. The

Beta Draft 8 Q/10/86

Appendix E: Conversion Tables

character generator ROM actually contains only one character
set. The firmware mapping procedure is described in
Section 3.3.6.

Table E-5
Control characters, high bit off

ASCH
Binary Dec Hex Char Interprefation What to Type Pri Alt
0000000 0 300 NUL Blank (null) Control-@ @ @
0000001 1 501 SOH Start of Header Control-A A A
0000010 2 $02 STX Start of Text Control-B B B
0000011 3 303 ETX End of Text Control-C cC cC
0000100 4 $04 EOT End of Transm. Control-D D D
0000101 5 305 ENQ Enquiry Control-E E E
0000110 6 $06 ACK Acknowledge Control-F F F
0000111 7 $07 BEL Bell Control-G G G
0001000 8 $08 BS Backspace Control-H or Left-Arrow-H H H
0001001 9 309 HT Horizontal Tab Control-I or Tab 1 1
0001010 10 $0A LF Line Feed Control-] or Down-Arrow-] J J
0001011 11 $0B VT Vertical Tab Control-K or Up-Arrow K K
0001100 12 $0C FF Form Feed Control-L L L
0001101 13 30D CR Carriage Return Control-M or Return M M
0001110 14 SOE SO Shift Out Control-N N N
0001111 15 $OF SI Shift In Control-O 0] (o]
0010000 16 510 DLE Data Link Escape Control-P P P
0010001 17 811 DC1 Device Control 1 Control-Q Q Q
0010010 18 512 DC2 Device Control 2 Control-R R R
0010011 19 $13 DC3 Device Control 3 Control-S S S
0010100 20 314 DC4 Device Control 4 Control-T T T
0010101 21 815 NAK Neg. Acknowledge Control-U or Right-Arrow U U
0010110 2 $16 SYN Synchronization Control-V v v
0010111 23 $17 ETB End of Text Blk. Control-W W W
0011000 24 $18 CAN Cancel Control-X X X
0011001 25 $19 EM End of Medium Control-Y Y Y
0011010 26 $1A SUB Substitute Control-Z V4 z
0011011 27 $1B ESC Escape Control-{ or Escape [[
0011100 28 $1C s File Separator Control-\ \ \
0011101 2 $1D GS Group Separator Control-]] 1
0011110 30 SIE RS Record Separator Control-A A A
0011111 31 $1F us Unit Separator Control-_ _ _
Table E-6

Special characters. high bit off

Beta Draft E9 /' 10/86

Apple lics Hardware Reference

ASCH
Binary Dec Hex Char Interpretation What to Type Pri Alt
0100000 32 $20 Sp Space Space bar
0100001 33 §21 ! ! !
0100010 34 §22 " " "
0100011 35 $23 # # #
0100100 36 $24 $ $ $
0100101 37 $25 % % %
0100110 38 $26 & & &
0100111 3 $27 ! Apostrophe ' '
0101000 40 §28 (((
0101001 41 $29)))
0101010 42 $2A * . -
0101011 43 $2B + e -
0101100 44 $2C ; Comma P
0101101 45 $2D - Hyphen -
0101110 46 $2E . Period :
0101111 47 $2F / / /
0110000 48 $30 0 0 0
0110001 49 $31 1 1 1
0110010 50 $32 2 2 2
0110011 51 $33 3 3 3
0110100 52 $34 4 4 4
0110101 53 $35 5 5 5
0110110 54 $36 6 6 6
0110111 55 337 7 7 7
0111000 %6 $38 8 8 8
0111001 57 $39 9 9 9
0111010 S8 $3A : :
0111011 9 $3B : H ;
0111100 60 $3C < < <
0111101 61 $3D = = -
0111110 62 $3E > > >
0111111 63 $3F ? ? ?
Table E-7
Uppercase characters, high bit off

Ascll

Binary Dec Hex Char Interpretation What to Type Pl Al
1000000 64 $40 @ @
1000001 65 $41 A A
1000010 66 $42 B B
1000011 67 $43 C C

Beta Draft &0 9/10/86

1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111

AN S

AR R

N

FTRIACLBBRIRRERBERRY

S44
$45
$46
$4
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$s52
§53
$54
$55
$56
§57
$58
$59
$SA
$5B
$3C
$sD
$SE
$SF

T ITNARKEGLOHYRO RO ZEIN AT I OTEG

Appendix E: Conversion Tables

Opening bracket
Reverse slant
Closing bracket
Caret

Underline -

P oTNNXEEOENYI0TOZIIRNRSSIANTEY

* If the high bit is set, the MouseText characters are replaced with their equivalent in the primary
character set with that value.

Table E-8
Lowercase characters, high bit off
ASCH

Binary Dec Hex Char Interpretation What to Type P Alt
1100000 9 $60 E Grave accent
1100001 97 $61 a ! a
1100010 %8 %02 b ” b
1100011 0 $63 fe # c
1100100 100 $64 d $ d
1100101 101 $65 e % e
1100110 102 $66 f & f
1100111 103 $67 g ' g
1101000 104 368 h (h

Beta Draft EnN 9/10/86

Apple llcs Hardware Reference

1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111
L

Befa Draft

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
12
123
124
125

127

$69

$6B
$6C
36D
$6E
$6F
$70
$71

$72

$74
$75
$76
§77
$78
$79
$7A

$7C
$7D

$7F

i\-ﬁ___-—-‘,N-.qxeqcu-q;n_oo-co:B.—z_u.......

g
H

Opening brace
Vertical line
Closing brace
Overline (tilde)
Delete/rubout

Ei2

+

-

1

WO WA D N

NV oA

1~ ——" N4 gedc~LraoamOopppg—x—""

=]
=

9/10/86

Appendix F

Frequently Used Tables

This appendix contains frequently-used tables from throughout the
manual.

Befa Draft F1 . . 17/56

Apple llgs Hardware Reference

Beta Draft 2 Q/17/86

Glossary

Glossary

This glossary defines technical terms used in this book. Boldfaced terms within a
definition are also defined in the glossary.

accumulator: The register in a computer’s central processor or microprocessor where
most computations are performed.

ACIA: Acronym for Asynchronous Communications Interface Adapter, a type of
communications IC used in some Apple computers. See SCC.

acronym: A word formed from the initial letters of a name or phrase, such as ROM
(from read—only memory).

ADC: See analog-to-digital converter.

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal integers or as hexadecimal integers. A 64K system has addresses
ranging from 0 to 65535 (in decimal) or from $0000 to $FFFF (in hexadecimal). The letter
X in an address stands for all possible values for that digit. For example, $Dxxx means all
the addresses from $D000 through $DFFF.

American Simplified Keyboard: See Dvorak keyboard.
American Standard Code for Information Interchange: See ASCIIL

analog: (adj) Varying smoothly and continuously over a range, rather than changing in
discrete jumps. For example, a conventional 12-hour clock face is an analog device that
shows the time of day by the continuously changing position of the clock’s hands.
Compare digital.

analog RGB: A type of color video monitor that accepts separate analog signals for the
red, green, and blue color primaries. The intensity of each primary can vary continuously,
making possible many shades and tints of color.

analog signal: A signal that varies continuously over time, rather than being sent and
received in discrete intervals. Compare digital signal.

analog-to—-digital converter (ADC): A device that converts quantities from analog to
digital form. For example, computer hand controls convert the position of the control dial
(an analog quantity) into a discrete number (a digital quantity) that changes stepwise even
when the dial is turned smoothly.

Apple key: A modifier key on the Apple IIGS keyboard, marked with both an Apple
icon and a spinner, the icon used on the equivalent key on some Macintosh keyboards. See
Open Apple.

AppleTalk: Apple’s local-area network for Apple II and Macintosh and the LaserWriter
and ImageWriter II. Like the Macintosh, the Apple [IGS has the AppleTalk interface built
in.

Beta Draft gl-1 9/15/86

Apple IIGS Hardware Reference

AppleTalk connector: A piece of equipment, consisting of a connection box, a short
cable, and an 8—pin miniature DIN connector, that enables a Apple IIGS to be part of an
AppleTalk network.

Apple II: A family of computers, including the original Apple I, the Apple I Plus, the
Apple lle, the Apple llc, and the Apple IIGS.

Apple Ilc: A transportable personal computer in the Apple II family, with a disk drive
and 80-—column display capability built in.

Apple Ile: ' A personal computer in the Apple II family with seven expansion slots and an
auxiliary memory slot that allow the user to enhance the computer’s capabilities with
peripheral and auxiliary cards.

Apple IIe 80-Column Text Card: A peripheral card that plugs into the Apple Ile’s
auxiliary memory slot and enables the computer to display text as either 40 or 80 characters
per line.

Apple Ile Extended 80—Column Text Card: A peripheral card that plugs into the
Apple Ile’s auxiliary memory slot and enables the computer to display text as either 40 or
80 characters per line while extending the computer’s memory capacity by 64K.

Apple II Plus: A personal computer in the Apple II family with expansion slots that
allow the user to enhance the computer’s capabilities with peripheral and auxiliary cards.

ASCII: Acronym for American Standard Code for Information Interchange, pronounced
ASK-ee. A code in which the numbers from 0O to 127 stand for text characters. ASCII
code is used for representing text inside a computer and for transmitting text between
computers or between a computer and a peripheral device.

aspect ratio: The ratio of an image’s w1dth to its height. For example, a standard video
display has an aspect ratio of 4:3.

asynchronous: Not synchronized by a mutual timing signal or clock. Compare
synchronous.

Asynchronous Communications Interface Adapter: Sece ACIA.

auxiliary slot: The special expansion slot inside the Apple Ile used for the Apple Ile
80-Column Text Card or Extended 80—Column Text Card, and also for the RGB
monitor card. The slot is labeled AUX. CONNECTOR on the circuit board.

back panel: The rear surface of the computer, which includes the power switch, the
power connector, and connectors for peripheral devices.

baud: A unit of data transmission speed: the number of discrete signal state changes per
second. Often, but not always, equivalent to bits per second. Compare bit rate.

bit: A contraction of binary digit . The smallest unit of information that a computer can

hold. The value of a bit (1 or () represents a simple two—way choice, such as yes or no,
on or off, positive or negative, something or nothing.

Beta Draft gl-2 /1586

Glossary

bit image: A collection of bits in memory that have a rectilinear graphical representation.
The display on the screen is a visible bit image.

bitmap: A set of bits that represents the positions and states of a corresponding set of
itemns; for example, dots in an image. See bit image.

bit rate: The speed at which bits are transmitted, usually expressed as bits per second, or
bps. Compare baud.

block I/O device: A type of device that reads or writes information in organized groups
called blocks, which are typically 512 bytes long. A disk drive is a block device.

boot: Another way to say start up. A computer boots by loading a program into
memory from an external storage medium such as a disk. Boot is short for bootstrap load,
a term suggestive of the difficulty of initial loading of loader programs into early computers
that didn’t have built-in firmware in ROM.

bootstrap: See boot.

buffer: A holding area in the computer’s memory where information can be stored by
one program or device and then read at a different rate by another; for example, a print
buffer.

bus: A group of wires or circuits that transmit related information from one part of a
computer system to another. In a network, a line of cable with connectors linking devices
together. A bus network has a beginning and an end. (It’s not in a closed circle or T

shape.)

byte: A unit of measure of computer data or memory, consisting of a fixed number of
bits. On Apple II systems, one byte consists of eight bits, and a byte can have any value
between 0 and 255. The value can represent an instruction, letter, number, punctuation
mark, or other character. See also kilobyte, megabyte.

carriage return: An ASCII character (decimal 13) that ordinarily causes a printer or
display device to place the next character on the left margin.

carry flag: A status bit in the microprocessor, used as an additional high—order bit with
the accumulator bits in addition, subtraction, rotation, and shift operations.

cathode-ray tube: A display device.

central processing unit (CPU): The part of the computer that performs the actual
computations in machine language. See microprocessor.

character: Any symbol that has a widely understood meaning and thus can convey
information. Some characters—such as letters, numbers, and punctuation—can be
displayed on the monitor screen and printed on a printer.

chip: See integrated circuit.

circuit board: A board containing embedded circuits and an attached collection of
integrated circuits (chips).

Beta Draft gl-3 9115186

Apple 11GS Hardware Reference

clock chip: A special chip in which parameter RAM and the current setting for the date
and time are stored. This chip is powered by a battery when the system is off, thus
preserving the information.

CMOS: Abbreviation for complementary metal oxide silicon, one of several methods of
making integrated circuits out of silicon. CMOS devices are characterized by their low
power consumption. CMOS techniques are derived from MOS techniques.

code: (1) A number or symbol used to represent some piece of information. (2) The
statements or instructions that make up a program.

column: A vertical arrangement of graphics points or character positions on the display.
component: A part; in particular, a part of a computer system.

composite video: A video signal that includes both display information and the
synchronization (and other) signals needed to display it. See NTSC, RGB monitor.

computer: An electronic device that performs predefined (programmed) computations at
high speed and with great accuracy. A machine that is used to store, transfer, and
transform information.

computer language: See programming language.

configuration: (1) The total combination and arrangement of hardware
components—CPU, video display device, keyboard, and peripheral devices—that make up
a computer system. (2) The software settings that allow various hardware components of a
computer system to communicate with each other.

Control key: A specific modifier key on Apple II-family keyboards that produces
control characters when used in combination with other keys.

control registers: Special registers that programs can read and write, similar to soft
switches. The control registers are specific locations in the I/O space ($Cxxx) in bank
$EO; they are accessible from bank $00 if I/O shadowing is on.

controller card: A peripheral card that connects a device such as a printer or disk drive
to a computer’s main logic board and controls the operation of the device.

CPU: See central processing unit.

cursor: A symbol displayed on the screen marking where the user’s next action will take
effect or where the next character typed from the keyboard will appear.

DAC: See digital-to-analog converter.

data: information transferred to or from or stored in a computer or other mechanical
communications or storage device.

data bits: The bits in a communication transfer that contain information. Compare start
bit, stop bit.

Beta Draft gl4 9/15/86

Glossary

data format: The form in which data is stored, manipulated, or oansferred. For
example, when data is transmitted and received serially, it typically has a data format of one
start bit, five to eight data bits, an optional parity bit, and one or two stop bits.

Data Carrier Detect (DCD): A signal from a DCE (such as a modem) to a DTE (such
as an Apple IIc) indicating that a communication connection has been established. See
Data Communication Equipment, Data Terminal Equipment.

Data Communication Equipment (DCE): As defined by the RS-232-C standard,
any device that transmits or receives information. Usually this device is a modem.

Data Set Ready (DSR): A signal from a DCE to a DTE indicating that the DCE has
established a connection. See Data Communication Equipment, Data Terminal
Equipment.

Data Terminal Equipment (DTE): As defined by the RS-232-C standard, any device

that generates or absorbs information, thus acting as an endpoint of a communication
connection. A computer might serve as a DTE.

Data Terminal Ready (DTR): A signal from a DTE to a DCE indicating a readiness to
transmit or receive data. See Data Communication Equipment, Data Terminal
Equipment.

DCD: See Data Carrier Detect.
DCE: See Data Communication Equipment.

Delete key: A key on the upper-right corner of the Apple Ile, Apple Ilc, and
Apple IIGS keyboards that erases the character immediately preceding (to the left of) the
cursor. Similar to the Macintosh Backspace key.

digital: (adj) Represented in a discrete (noncontinuous) form, such as numerical digits or
integers. For example, contemporary digital clocks show the time as a digital display (such
as 2:57) instead of using the positions of a pair of hands on a clock face. Compare
analog. '

digital oscillator chip: an integrated circuit that contains thirty-two digital oscillators,
each of which can generate a sound from stored digital waveform data.

digital signal: A signal that is sent and received in discrete intervals. A signal that does
not vary continuously over time. Compare analog signal.

digital-to-analog converter: A device that converts quantities from digital to analog
form.

DIN: Abbreviation for Deutsche Industrie Normal, a European standards organization.

DIN connector: A type of connector with multiple pins inside a round outer shield.

Beta Draft gl5 9/15/86

Apple 11GS Hardware Reference

direct page: A page (256 bytes) of memory in the Apple IIGS that works like the zero
page in a 6502 system but can reside anywhere in bank $00, rather than always starting at
location $0000. Co-resident programs or routines can have their own direct pages at
different locations.

disk controller card: A peripheral card that provides the connection between one or
two disk drives and the computer. (This connection, or interface, is built into the Apple
Ilc, the Apple IIGS, and all Macintosh—family computers.)

Disk II drive: An older type of disk drive made and sold by Apple Computer for use
with the Apple II, Il Plus, and Ile. It uses 5.25-inch floppy disks.

display: (1) A general term to describe what you see on the screen of your display device
when you’re using a computer. (2) Short for a display device.

display device: A device that displays information, such as a television set or video
monitor.

dithering: A technique for alternating the values of adjacent pixels to create the effect of
intermediate values. Dithering can give the effect of shades of gray on a black—and—white
display, or more colors on a color display.

DOC: See digital oscillator chip.

DSR: See Data Set Ready.

DTE: See Data Terminal Equipment.

DTR: See Data Terminal Ready.

Dvorak keyboard: An alternate keyboard layout, also known as the American
Simplified Keyboard, which increases typing speed because the keys most often used are
in the positions easiest to reach. Compare QWERTY keyboard.

e flag: One of three flag bits in the 65C816 processor that programs use to control the
processor’s operating modes. The setting of the e flag determines whether the processor is
in native mode or emulation mode. See m flag, x flag.

effective address: In machine-language programming, the address of the memory
location on which a particular instruction operates, which may be arrived at by indexed
addressing or some other addressing method.

8-bit Apple II: Another way of saying standard Apple II, that is, any Apple II with an
8-bit microprocessor (6502 or 65C02).

80—column text card: A peripheral card that allows the Apple II, Apple II Plus, and
Apple Ile to display text in 80 columns (in addition to the standard 40 columns).

emulate: To operate in a way identical to a different system. For example, the 65C816

microprocessor in the Apple IIGS can carry out all the instructions in a program onginally
written for an Apple II that uses a 6502 microprocessor, thus emulating the 6502.

Beta Draft gl6 9115186

Glossary

emulation mode: A manner of operating in which one system imitates another. In the
Apple IIGS, the mode the 65C816 is in when the Apple IIGS is running programs written
for Apple II’s that use the 6502.

Escape character: An ASCII character that, with many programs and devices, allows
you to perform special functions when used in combination keypresses.

Escape key: A key on Apple II-family computers that generates the Escape character.
The Escape key is labeled Esc. In many applications, pressing Esc allows you to return to
a previous menu or to stop a procedure.

even parity: In data transmission, the use of an extra bit set to 0 or 1 as necessary to
make the total number of 1 bits an even number; used as a means of error checking.
Compare MARK parity, odd parity.

expansion slot: A socket into which you can install a peripheral card. Sometimes called
a peripheral slot. See aIsQ auxiliary slot.

Extended 80-Column Text Card: Sece Apple Ile Extended 80-Column Text
Card.

firmware: Programs stored permanently in read—only memory (ROM). Such programs
(for example, the Applesoft Interpreter and the Monitor program) are built into the
computer at the factory. They can be executed at any time but cannot be modified or erased
from main memory.

frequency: The rate at which a repetitive event recurs. In alternating current (AC)
signals, the number of cycles per second. Frequency is usually expressed in hertz (cycles
per second), kilohertz, or megahertz.

game I/O connector: A 16—pin connector inside all the open models of the Apple II,

originally designed for connecting hand controls to the computer, but also used for
connecting some other peripheral devices. Compare hand control connector.

GLU: Acronym for general logic unit, a class of custom integrated circuits used as
interfaces between different parts of the computer.

graph: A pictorial representation of data.

graphics: (1) Information presented in the form of pictures or images. (2) The display
of pictures or images on a computer’s display screen. Compare text.

hand controls: Peripheral devices, with rotating dials and push buttons. Hand controls
are used to control game—playing programs, but they can also be used in other applications.

hand control connector: A 9-pin connector on the back panel of the Apple Ile ,

Apple Ilc, and Apple [IGS computers, used for connecting hand controls to the computer.
Compare game I/O connector.

Beta Draft gl-7 9/15/86

Apple [IGS Hardware Reference

handshaking: The exchange of status information between a DCE and a DTE used to
control the transfer of data between them. The status information can be the state of a
signal connecting the DCE and the DTE, or it can be in the form of a character transmitted
with the rest of the data. See Data Set Ready, Data Terminal Ready, Data Carrier
Detect, XON, XOFF.

hertz: The unit of frequency of vibration or oscillation, defined as the number of cycles
per second. Named for the physicist Heinrich Hertz and abbreviated Hz. See kilohertz,
megahertz,

hexadecimal: The base—16 system of numbers, using the ten digits 0 through 9 and the
six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary form, because each hexadecimal digit corresponds to a sequence of four bits.
Hexadecimal numbers are usually preceded by a dollar sign ($).

high—order byte: The more significant half of a memory address or other multi-byte
quantity. In the 6502 microprocessor used in the Apple II family of computers, the
low—order byte of an address is usually stored first, and the high—order byte second.
(In the 68000 microprocessors used in the Macintosh family, the high—order byte is stored
first.)

Hi—Res: A high-resolution display mode on the Apple II family of computers,
consisting of an array of points, 280 wide by 192 high, with 6 colors.

Hz: See hertz.

128K Apple IL: Any standard Apple II with both main and auxiliary 64K banks of
RAM. That includes all models of the Apple IIc and some models of the Apple Ile,
including those with the Extended 80-Column Text Card installed. The Apple IIGS is not a
128K Apple II in the strict sense, even though it includes both 64K banks of RAM and is
capable of running programs designed for a 128K Apple II.

IC: See integrated circuit.

icon: An image that graphically represents an object, a concept, or a message.

index register: A register in a computer processor that holds an index for use in indexed
addressing. The 6502 and 65C816 microprocessors used in the Apple II family of
computers have two index registers, called the X register and the Y register.

indexed addressing: A method used in machine-language programming to specify
memory addresses. See also memory location.

input: (n) Information transferred into a computer from some external source, such as the
keyboard, a disk drive, or a modem.

input/output (I/O): The process by which information is transferred between the
computer’s memory and its keyboard or peripheral devices.

instruction: A unit of 2 machine-language or assembly-language program
corresponding to a single action for the computer’s processor to perform.

Beta Draft gl-8 9/15186

GTE

Microcircuits

G65SC802
G65SC816

CMOS 8/16-Bi£ Microprocessor Family

Features

» Advanced CMOS design for low power consumption and increased
noise immunity

e Emulation mode for total software compatibility with 6502 designs
Full 16-bit ALU. Accumulator, Stack Pointer, and index Registers
Dnrect Register for “zero page™” addressing

e 24 addressing modes (including 13 original 6502 modes)

Wait for Interrupt (WA} and Stop the Clock (STP) instructions for
reduced power consumption and decreased interrupt latency

* 91.nstructions with 255 opcodes

e Co-Processor (COP) instruction and associated vector

* Powerful Block Move instructions

Features (G65SC802 Only)

* B-Bit Mode with both software and hardware (pin-to-pin) com-
patibility with 6502 designs (64 KByte memory space)

* Program selectable 16-bit operation
® Choice of external or on-board clock generation

Features (G65SC816 Only)
» Full 16-bit operation with 24 address lines for 16 MByte memory
* Program selectable 8-Bit Mode for 6502 coding compatibility.

* Vaiid Program Address (VPA) and Valid Data Address (VDA) outputs
for dual cache and DMA cycle steal implemeantation

Vector Puil (VP) output indicates when interrupt vectors are being
fetched. May be used for vectoring/prioritizing interrupts

® Abort interrupt and associated vector for interrupting any instruction
without modifying intérnal registers

s Memory Lock (ML) for multiprocessor system implementation

L]

General Description

The GB5SCB802 and G65SC816 are ADV-CMOS (ADVanced CMOS) 16-
bit microprocessors featuring lolal software compatibility with 8-bit
NMOS and CMOS 6500 series microprocessors. The G655SC802 is pin-
to-pin compatible with 8-bit 6502 devices currently available, while also
providing full 16-bit internal operation. The G65SC816 provides 24 ad-
dress lines for 16 MByte addressing, while providing both 8-bit and 16-bit
operation.

Each microprocessor contains an Emulation (E) mode for emulating
8-bit NMOSand CMOS 6500-Series microprocessors. A software switch
determines whether the processor is in the 8-bit emulation mode or in
the Native 16-bit mode. This allows existing 8-bit system designs (o use
the many powerful features of the G655C802 and G65SCB16.

The G65SC802 and G65SC816 provide the system engineer with many

powerful features and options. A 16-bit Direct Page Register is provided

to augment the Direct Page addressing mode, and there are separate

Program Bank Registers for 24-bit memory addressing. Other vaiuable

features include:

® An Abort input which can interrupt the current instruction without
modifying internal registers.

* Valid Data Address (VDA) and Valid Program Address (VPA) outputs
which facilitate dual cache memory by indicating whether a data or
program segment is being accessed.

* Vector modification by simply monitoring the Vector Pulil (W} output.

* Block Move instructions.

GTE Microcircuits' GB5SC802 and G655C816 microprocessors offer the
design engineer a new freedom of design and application, and the many
advantages of state-of-the-art ADV-CMOS technology

Simplitied Block Diagram

INDEX X & Y/STACK)
POINTER REGS ()

ALU (18)

ACCUMULATOA
(18

AQ-AM € 1

ADOARESS BUFFER

PROGRAM
COUNTER [18}

CONTROL

DIRECT REG.
(L]
PROGAAM/DATA
BANK REGS (8)

18-BIT INTERNAL OATA BUS

-

DO-D7 (903) <:>
DO/BAD-DY/BAT {I6)

DATA BUS/A" 4K
ADDAESS BUFFER

K— »

BE (8%)

—

-
- = o g =
l# 1§ 18 a3
INTERRUST
COMTROL
F_ —— - ﬂ w: RDY
INSTRUCTION NG | Lall
OECODE ANO
SIGHALS AND CLOCK GEM. |——-—— #1(0UT) (802)
COMTRGL
2 (DUT) (863}
\—.- aw
_~a F—’ STNC (802)
——~ VP (816)
e YOA {04)
sYSTAM
CONTROL | g WL (118.0IP AND PLCC. 802 PLCC)
il VP (§16 OIP AND PLCT, 802 PLCC)
cru
ATATUR =l p—iie= [(878 DI# AND PLCC. 307 PLEC)
G - WX (85)
5 (00D

ADVANCE INFORMATION

This is advanced information and specifications
are subject to change without notice.

Absoiute Maximum Ratings: (Now 1)

| Rating Symbol Value |

| Supply Vottage Voo 03Vta+7.OV |

| Input Voltage Vin -0.3V 10 Voo +0.3V
Operating Temperature | Ta 0°C to +70°C

| Storage Temperature O Ts -55°C to +150°C

This device contains input protection againsi damage due to high static
voltages or electric fields; howsver, pracautions shouid be taken to avoid
application of voltages higher than the maximum rating.

Noltes:

1. Exceeding these ratings may cause permanent damage. Functionat
operation under these conditions is not implied.

DC Characteristics (All Devices): voo = 5.0v +5%, Vss = 0V, Ta = 0°C to +70°C

. . Perameter Symbol Min Max Unit
hngut High Voltage = . ViH
RES, RDY, IRQ, Data, SO, BE 20 Voo + 0.3 v
ABORT, NMI, 92 (IN) 0.7 Voo Voo + 0.3 v
r Input Low Voltage - viL
RES, RDY, IRQ, Data, SO, BE -0.3 08 v
ABOQORT, NMI, ¢2 (IN} -0.3 0.2 v
Input Leakage Current (Vin = 0 1o Vop) N
RES, NMI, iRQ. SO, BE, ABORT (Internal Puliup) -100 1 uA
RDY (internal Pullup, Open Drain) -100 10 uA
@2 (IN) — -1 1 WA
Address, Data, R/W (Off State, BE = 0) -10 10 LA
Output High Voltage (loH = -100uA) Vo
SYNC, Data, Address, R/W, ML, VP, M/X, E, VDA, VPA,
@1 {OUT), ¢2 (OUT) ‘ 0.7 Voo R A
Output Low Voltage (loL = 1.6mA) _ _ Vou ;
SYNC, Data, Address, R/W, ML, VP, M/X, E, VDA, VPA,
@1 (OUT), ¢2 (OUT) — 04 \
Supply Current f = 2 MHz loo - 10 , MA
{No Load) =4 MHZ - 20 ‘ mA
f=6MHzZ — 30 mA
f=8MHz — 40 mA
Standby Current (No Load; Data Bus = Vss or VDD; ™ i
@2(IN) = ABORT = RES = NMI = TRQ = SO = BE = Vop) - 10 ik
Capacitance (Min = OV, Ta = 25°C, f = 2 MHz)
Logic, @2 {IN) __ CiN - 10 pF
Address, Data, R/W (Cft State) C1s -~ 15 pF
AC Characteristics (G858C802): Voo = 5.0V £5%, Vss = OV, Ta = 0°C to +70°C
2 MHz 4 MHz 6 MHz 8 MHz B
Parameter Symbol | Min | Max | Min | Max [Min [Max | Min | Max | uni |
Cycle Time teve 500 | oCc | 250 | oc | 167 | boc | 125 | oc | ns |
Clock Pulse Width Low tPWL 0.240 10 0.120 10 0.080 10 0.080 10 us
Clock Pulse Width High tPwH 240 2 120 = 80 = 60 = nS
Fall Time, Rise Time te, tR — 10 - 10 - 5 — 5 nS
Delay Time. @2 (IN) to ¢1 (QUT) top1 - 40 - 40 — 40 — 40 nsS
Delay Time, 92 (IN) to $2 (OUT) tog2 = 40 = 40 — 40 = 40 | ns
Address Hold Time taH 10 - 10 - 10 — 10 - nS
Address Setup Time A0S - 100 - 75 — 60 — 40 .| nS
Access Time tacc 365 - 130 — 87 — 70 - nS
Read Data Hold Time tDHA 10 — 10 —_ 10 - 10 - nS
Read Data Setup Time tosA 40 - 30 —_ 20 - 15 — nS
Wnite Data Delay Time tMDS — 100 - 70 - 60 - 40 nS
Lqute Data Hold Time toHwW 10 — 10 — 10 - 10 - nS
Processor Control Setup Time - tPCS 40 — 30 - 20 — 15 - nS
Processor Contro!l Hold Time tPcH 10 = 10 — 10 — 10 —_ nS
E Output Hold Time fen 10 - 10 - 5 — 5 — nS
E Output Setup Time tes 50 - 50 —_ 25 == 15 - ns
Capacitive Load (Address, Data, and R/W) Cext — 100 — 100 | — 35 — 35 pF

AC Characteristics (G65SC816): voo = 5.0V +5%, Vss = OV, Ta=0°C to +70°C

f 2 MHz 4 MHz 6 MHz 8MHz | 1
i Parameter Symbol | Min | Max | Min | Max | Min | Max : Min | Max | Unit |
L Cycle Time teve 500 | DC | 250 | DC | 167 | DC | 125 | DC [nS |
_ Clock Pulse Width Low tPwi 0.240 10 | 0.120 10 | 0080 10 | 0060 10 | uS |
Clock Pulse Width High (PWH 240 = 120 » 80 = 60 = | nS ,
Fail Time, Rise Time tF, tR — 10 - 10 - 5 - 5 nS
| AD-A15 Hold Time taH 10 — 10 - 10 — 10 — nS
| AO-A1S Setup Time taDSs = | W0 | = 75 | — 60 | — 40 | nS
| BA0-BA7 Hold Time t8H 10| — 10| — W | — 0| — | ns
! BAD-BAT7 Setup Time 1BAS — 100 — 90 -~ 65 - a5 nS
! Access Time tacc 365 - 130 - 87 - 70 = ns
Read Data Hold Time toHR 10 — 10 —_ 10 — 10 — nS
Read Data Setup Time tosk 40 — 30 - 20 - 15 — | nS
Write Data Delay Time tMDS - 100 - 70 — 60 — | 40 \ nS i
Write Data Hold Time toHW 0| — H | - 0 | - 10| — ns |
ﬁrocmcr Control Setup Time tecs 40 — 30 - 20 - 15 - nS
Processor Control Hold Time tPCH 10 — 10 - 10 - 10 — nS
E,MX Output Hold Time 1eH 10 - 10 - 5 - 5 = "S—i
E.MX Output Setup Time tes 50 — 50 — 25 — 15 - nS
Capacitive Load (Address, Data, and R/W) CExT - 100 — 100 - 35 — |, 35 | pF
BE to High Impedance State tBHZ — 30 — 30 - 30 — 30 nS
BE to Valid Data t8vo - 30 — 30 - 30 — 30 nS
Timing Diagram (G65SC802)
fcve o t—— IF
?2 (IN) —————— d
I
o] e 1PwL = st tPWH
——m] fem—— 1R
T \ /_
o1(0UT) _-_—/_____ D91 tDe1 K
22(0UT) ——g—\"“— Doz
u \
“ ——
———— {Ar ——
RAR, SYNC, |
AD-A1S
..w Y.
tans RS tacc s toSA
READ DATA b | | Aeaooata
1DMR ————pn{ e e [—— (DS
WRITE DATA b- L~ WRITE DATA
1DHW = s las— tPCS
SO PCH —a f——
IRQ, NMI, RES, '
RDY
e et {PCH . tPCS
_-4 = Ty ——— | —
. e
1

Timing Notes: 1. Typical output load = 100 pF

2. Voltage levels are Vi < 0.4V, V1 > 2.4V
3. Timing measurement points are 0.8V and 2.0V

Timing Diagram (G655C816)

tere |] —
@2 (IN) .___:E J&
= -
IF — et |ty - tPwL E e T TV ¥ S —
e AN ———te! t— IR
A/W, ML, VP
AO-A15, VDA, VPA
- 1aos Yo, tace |t 1038
READ DATA, . b F
BAQ-BA7 : Sxs-Ba7 s 3 READ DATA
{onR | b —— (S
Lt ———— 18AS ———do e [tan
WRITE DATA
. AQ-DAT
BAQ-BAT h BAQ-8 | WRITE DATA
10HW ——- g — let—— tuos p_—
IRQ, NMI, AES,
ROY
! — f-- tPcH
ABORT N ¥
trcg —o= lemp—
]
M/X
L‘— ten i | 84 ht——— 1ES
1S | e
|

Timing Notes:
1. Typical output load = 100 pF
2. Voitage levels are Vi < 0.4V, Vi > 2.4V
3. Timing measurement points are 0.8V and 2.0V

Functional Description

The G65SCB802 offers the design engineer the opportunity to utilize both
existing software programs and hardware configurations, while also
achieving the added advantages of increased register lengths and faster
execution times. The G65SC802's “ease of use™” design and implementa-
tion features provide the designer with increased flexibility and reduced
implementation costs. In the Emulation mode, the G655C802 not only
offers software compatibility, but is also hardware (pin-to-pin) com-
patible with 6502 designs ... plus it provides the advantages of 16-bit
internal operation in 6502-compatibie applications. The G65SC802 is an
excellient direct replacement microprocessor for 6502 designs.

The G655SC816 provides the design engineer with upward mobility and
software compatibility in applications where a 16-bit system configura-
tion is desired. The G655C816's 18-bit hardware configuration, coupled
with current software allows a wide setection of system applications. In
the Emulation mode, the G65SCB16 offers many advantages, including
full software compatibility with 6502 coding. in addition, the G655C816's
powaerful instruction set and addressing modes make it an excellent
choice for new 16-bit designs.

Internal organization of the G65SCB02 and G65SCB816 can be divided
into two parts: 1) The Register Section, and 2) The Control Section. In-
structions (or opcodes) obtained from program memory are executed
by implementing a series of data transfers within the Register Section.
Signals thal cause dala transfers to be executed are generated within the
Control Section. Both the G65SC802 and the G65SC816 have a 16-bit
internal architecture with an B-bit external data bus.

Instruction Register and Decode

An opcode enters the processor on the Data Bus, and is laiched into the
Instruction Register during the instruction fetch cycle. This instruction s
then decoded, along with timing and interrupt signais, to generate the
various instruction Register control signails.

Timing Control Unit (TCU)
The Timing Control Unit keeps track of each instruction cycle as it is ex-

ecuted. The TCU is sattozeroeach time an instruction fetch is executed.
and is advanced at the beginning of each cycle for as many cycies as is
required to complete the instruction. Each data transfer between regis-
ters depends upon decoding the contents of both the Instruction Regis-
ter and the Timing Control Unit.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place within the 16-bit ALU. In
addition to data operations, the ALU atso calculates the effective address
for relative and indexed addressing modes. The result of a data operation
is stored in either memory or aninternal register. Carry, Negative, Over-
flow and Zero flags may be updated following the ALU data operation.

Internal Registers (Refer 1o Figure 2, Programming Model}

Accumiulator (A)

The Accumulator is a general purpose register which stores one of the
operands, or the result of most arithmetic and logical operations. In the
Native mode (E=0), when the Accumulator Select Bit (M) equals zero, the
Accumulator is established as 16 bits wide. When the Accumulator Select
Bit (M) equals one, the Accumulator is 6 bits wide. In this case, the upper
8 bits (AH) may be used for temporary storage in conjunction with the
Exchange AH and AL instruction.

Data Bank (DB)

During the Native mode (E=0), the 8-bit Data Bank Register holds the
default bank address for memory transfers. The 24-bit address 18 com-
posed of the 16-bit instruction etfective address and the 8-bit Data Bank
address. The ~egister vaiue is multiplexed with the data value and s pres-
ent on the Data/Adc ress lines during the first half of a data transter mem-
ory cycle for the G65SCB16. The Data Bank Register is initialized to zero
during Reset.

Direct (D)

The 16-bit Direct Register provides an address offset for all instructions
using direct addressing. The etfective bank zero address is formed by
adding the 8-bit instruction operand address to the Direct Register. The
Direct Register is initialized to zero during Reset.

Index (X and Y)

There are two index Registers (X and Y) which may be used as general
purpose registers or to provide an index value for caiculation of the ef-
fective address. When executing an instruction with indexed addressing,
the microprocessor fetches the opcode and the base address, and then
modifies the address by adding the Index Register contents to the ad-
dress prior to performing the desired operation. Pre-indexing or post-
indexing of indirect addresses may be seiected. In the Native mode (E=0),
both Index Registers are 16 bits wide (providing the Index Select Bit (X)
equals zero). If the Index Select Bit (X) equals one, both registers will be
B bits wide.

Processor Status (P) :

The 8-bit Processor Status Register contains status flags and mode select
bits. The Carry (C), Negative (N}, Overfiow (V), and Zero (Z) status flags
serve to report the status of most ALU operations. These status flags are
tested by use of Conditional Branch instructions. The Decimal (D), IRQ
Disable (1), Memory/Accumulator (M), and Index (X) bits are used as
mode select flags. These flags are set by the program to change micro-
processor operations.

The Emulation (E) select and the Break (B} flags are accessible only
through the Processor Status Register. The Emulation mode select tlag
is selected by the Exchange Carry and Emulation Bits (XCE) instruction.

Table 2, G65SC802 and G655C816 Mode Comparison, illustrates the
features of the Native (E=0) and Emuiation (E=1) modes. The M and X

fiags are always equal to one in the Emulation mode. When an interrupt
occurs during the Emulation mode, the Break flag is written to stack mem-
ory as bit 4 of the Processor Status Register.

Program Bank (PB)

The 8-bit Program Bank Register holds the bank address for all instruc-
tion fetches. The 24-bit address consists of the 16-bitinstruction effective
address and the 8-bit Program Bank address. The register value is muiti-
plexed with the data value and presented on the Data/Address lines during
the first half of a program memory read cycle. The Program Bank Regis-
ter is initialized to zero during Reset.

Program Counter (PC)

The 16-bit Program Counter Register provides the addresses which are
used lo step the microprocessor through sequential program instruc-
tions. The register is incremented each time an instruction or operand is
fetched from program memory.

Stack Pointer {S)

The Stack Pointer is a 16-bit register which is used to indicate the next
available location in the stack memory area. It serves as the effective ad-
dress in stack addressing modes as well as subroutine and interrupt pro-
cessing. The Stack Pointer allows simple implementation of nested sub-
routines and multiple-level interrupts. During the Emulation mode, the
Stack Pointer high-order byte (SH) is always equal to 01. The Bank
Address is 00 for all Stack operations.

] INDEX X i
(18 BITS)
F
INDEX ¥
2| K KD e o
E o e 1]
g STACK POINTER INTERAUPT
a (S) (18 BITS} LOGIC h—— W1 - voo
AD-A7 51: C e
a <:>] — RES - s
(=] m
- -
ALU
K (18 BITS) : Sl n — A
E D
®a P
Hi
I TIMING
<:> E CONT, [RODY
-
z
L TRANSFER
a SWITCHES]
[~
E m
] 2
5| .2 A |
& 2 ACCUMULATOR - a8 bt 02 (IN)
AB-AS § g {A) (18 ©ITS) e —_— v
o = a w w CLOCK
2 2 g 3 o? 8 GEN- [1 (OUT) (802)
a - a it g ERATOR
=] 3 = Bu a§ — 2 (OUT) (802)
a s
<« o PROG. COUNTER a zz 2
z (PCHM BITS) - S o =
- 4 = | 83| S§
: Eolez| g
DIRECT (0) £ 3 52 = _
(18 BITS) z 2 z z — W
By =
= PROG. BANK (PB) & SYNC (302)
w (8 BITS)
& E L= VPA (316}
[~
@ DATA BANK (DEB) —e= VDA (818
g @ 3ITS) graTeM o
NT. v
DO-D7 (802) g <: T~ cO! ML (0
D-/8A0-C7/BAT (818) a STATUS (P)
: : — — [5o
o« -
-1 DATA
g T PREDECODE e
2 PREDECODE .
= INSTRUCTION REGISTER
) — | | Femicres = uxo
I 55 (s02) Note: 1. 816 DIP and PLCC.

BE (816)

Figure 1. Biock Diagram — Internal Architecture

802 PLCC.

Signal Description

The loliowing Signal Description applies to both the G65SC802 and the
G655C816 except as otherwisae noted.

Abort (ABORT)—G65SC818

The Abort input prevents modification of any internal registers during
execution of the current instruction. Upon completion of this instruc-
tion. an interrupt sequence is initialted. The location of the aborted
opcode is stored as the return address in Stack memory. The Abort
vector address is 0OFFF8, 9 (Emulation mode) or OOFFE8, 9 (Native
mode). Abort is asserted whenever there is a low level on the Abort
input, and the @2 clock is high. The Abort internal latch is cleared dur-
ing the second cycle of the interrupt sequence. This signal may be used
to handie out-of-bounds memory references in virtual memory systems.

Address Bus (A0-A15)

These sixteen output lines torm the Address Bus for memory and 1/0
exchange on the Data Bus. When using the G65SC816, the address lines
may be set to the high impedance state by the Bus Enable (BE) signai.

Bus Enable (BE)

The Bus Enable input signal allows external control of the Address and
Data Buffers. as weil as the R/W signal. With Bus Enable high, the R/W
and Address Buflers are active. The Data/Address Buffers are active
during the first haif of every cycle and the second half of a write cycle.
When BE is iow, these buffers are disabled. Bus Enable is an asynchro-
nous signai.

Data Bus (D0-D7)—G65SC802

The eight Data Bus lines provide an 8-bit bidirectional Data Bus for use
during data exchanges between the microprocessor and external mem-
ory or peripherals. Two memory cycles are required for the transfer of
16-bit values.

Data/Address Bus (D0/BA0-D7/BA7)—GE5SCE16

These eight lines multiplex bits BAO-BAT with the data value. The Bank
address is present during the first haif of a memory cycle, and the data
value is read or written during the second half of the memory cycle.
The Bank address external transparent latch should be latched when
the ¢2 clock 1s high or RDY is low. Two memory cycles are required to
transfer 16-bit values. These lines may be set to the high impedance
state by the Bus Enabie (BE) signal.

Emulation Status (E)—G65SC816 (Also Applies to G65SC802,
44-Pin Version)

The Emulation Status output reflects the state of the Emulation (E) mode
flag in the Processor Status (P) Register. This signal may be thought of
as an opcode extension and used for memory and system management.

interrupt Request (IRQ)

The Interrupt Request input signal is used to request that an interrupt
sequence be initiated. When the IRQ Disabie (1) flag is cleared, a low in-
put logic level initiates an interrupt sequence after the current instruc-
tion is completed. The Wait lor Interrupt (WAI) instruction may be ex-
ecuted to ensure the interrupt will be recognized immediately. The Inter-
rupt Request vector address 1s 00FFFE,F {(Emulation mode) or 00FFEE,F
(Native mode). Since TRQ is a level-sensitive input, an interrupt will
occur if the interrupt source was not cleared since the last interrupt.
Also. no interrupt will occur if the interrupt source is cleared prior 10
interrupt recognition.

Memory Lock (ML)—G65SC818 (Also Applles to

G85SC802, 44-Pin Version)

The Memory Lock output may be used to ensure the integrity of Read-
Modify-Write instructions in a multiprocessor system. Memory Lock
indicates the need to defer arbitration of the next bus cycle. Memory
Lack is low during the last three or five cycies pf ASL, DEC, INC, LSR,
ROL, ROR, TRB, and TSB memory referencing instructions, depending
on the state of the M flag.

Memory/Index Select Siatus (M/X)—G8E55C818

This multiplexed output reflects the state of the Accumulator (M) and
index (X) select flags (bits 5 and 4 of the Processor Status(P)Register).
Flag M is valid during the ¢2 clock ppsitive transition.Instructions PLP,
REP. RTI and SEP may change the state of these bits. Note that the
M/X output may be invalid in the cycle foliowing a change in the M or
X bits. These bits may be thought of as opcode extensions and may
be used for memory and system management.

Non-Maskable Interrupt (NMI)

A high-to-low transition initiates an interrupt sequence after the current
instruction iscompleted. The Wait for interrupt (WALI) instruction may be
executed to ensure that the interrupt will be recognized immediately. The
Non-Maskable interrupt vector address is 00FFFA,B (Emulation mode)
or 0OFFEA.B (Native mode). Since NMI is an edge-sensitive input, an
interrupt will occur if there is a negative transition while servicing a pre-
vious interrupt. Also, no interrupt will occur if NMI remains low.

Phase 1 Out (91 (OUT))—GE55SC802

This inverted clock output signal provides timing for external read and
write operations. Executing the Stop (STP) instruction holds this clock
in the low state.

Phase 2 In (92 (IN))

This is the system clock input to the microprocessor internai clock gen-
erator (equivalent to @G {IN) on the 6502). During the low power Standby
Mode, @2 (IN) should be held in the high state to preserve the contents
of internal registers.

Phase 2 Out (p2 (OUT))—GE55C802

This clock output signal provides timing for externai read and write op-
erations. Addresses are valid (after the Address Setup Time (Taos)) tol-
lowing the negative transition of Phase 2 Out. Executing the Stop (STP)
instruction hoids Phase 2 Out in the High state.

Read/Write (R/W)

When the R/W output signal is in the high state, the microprocessor is
reading data from memory or /0. When in the low state, the Data Bus
contains valid data from the microprocessor which is to be stored at the
addressed memory location. When using the G655SC8186, the R/W signali
may be set to the high impedance state by Bus Enable (BE}

Ready (RDY)

This bidirectional signal indicates that a Wait for Interrupt (WAI} instruc-
tion has been executed allowing the user to halt operation of the micro-
processor. A low input logic level will hait the microprocessor in its cur-
rent state (note that when in the Emulation mode, the G65SCB802 stops
only during a'read cycle). Returning RDY 1o the active high state allows
the microprocessor to continue following the next Phase 2 In Clock
negative transition. The RDY signal is internally pulled low following the
execution of a Wait for Intarr%%t_g;?n mstmctcon and then returned to
the high state when a RES NMI, or IRQ external interrupt is
provided. This feature may be used 10 eliminate_interrupt latency by
placing the WAI instruction at the beginning of the IRQ servicing routine.
If the IRQ Disable flag has been sel, the next instruction will be execuled
when the IRQ occurs. The processor will not stop after a WAI instruction
it RDY has been forced to a high state, The Stop (STP) instruction has
no etfect on RDY.

Reset (RES)

The Reset input is used to initialize the microprocessor and start pro-
gram execution. The Reset input butfer has hysteresis such thata simple
R-C timing circuit mey be used with the internal pullup device. The RES
signal must be held low for at least two clock cycles after Voo reaches
operating voltage. Ready (RDY) has no eltect while RES is being held low.
During this Reset conditioning period, the following processor initializa-
tion takes plece:

Registers
D = 0000 SH = 01
DB = 00 XH = 00
PB = 00 YH = 00

N V. M X D 1 2 CIE

P = | =« 1 1 0 1 * #/1| % =Notlinitialized
STP and WAI instructions are cleared.

Signais
E =1 VDA =0
M/X =1 V¢ =1
RAW =1 VPA =0
SYNC= 0

When Reset is brought high, an interrupt sequence is initiated:
e R/W remains in the high state during the stack address cycles.
® The Reset vector address is 00FFFC,D.

Set Overllow (50)—G65SC802
A negative transition on this input sets the Overflow (V) flag, bit 8 of the
Processor Status (P) Register.

Synchronize (SYNC)—G65SC802

The SYNC output is provided to identify those cycles during which the
microprocessor is fetching an opcode. The SYNC signal is high during
an opcode fetch cycle, and when combined with Ready (RDY). can be
used for single instruction execution.

Valld Data Address (VDA) and

Vslid Program Address (VPA)—G6E5SC816

These two output signals indicate the type of memory being accessed by

the address bus. The following coding applies:

VDA VPA
0 0 Internal Operation—Address and Data Bus available.

Address outpuils may be invalid due to low byte addi-

tions only.

Valid program address—may be used for program cache
control.

1 0 Valid data address—may be used for data cache control.
Opcode fetch—may be used for program cache control
and single step control.

VoD and Vss

VoD is the positive supply voltage and Vss is system ground. When
using only one ground on the GB85SCB802 DIP package, pin 21 is
preferred.

Vector Pull (VP)—G65SC816 (Also Applies to G655C802,
44-Pin Version)

The Vector Pull outputindicates that a vector location is being addressed
during an interrupt sequence. VP is low during the last two interrupt
sequence cycles, during which time the processor reads the interrupt
vector. The VP signal may be used to select and prioritize interrupts from
several sources by modifying the vector addresses.

_eBITs | aBITS | eBiTS |

“on]
[[=]
[w [n]

00 sH s |
[an AL

(e |[von [rar |

o [oW | oL |

DB DATA BANK REGISTER
INDEX REGISTER (X)
INDEX REGISTER (¥)

STACK POINTER ()

ACCUMULATOR (A)
PROGRAM COUNTER (PC)
R (PB)

PROGRAM BANK REGIS
DIRECT REQGISTER (D)

ALWAYS 1IFE =1

BREAK
0 ON STACK AFTER INTERRUPT IFE - 1

EMULATION BIT 0 = NATIVE MODE
1 = 6502 EMULATION

1B E
PR P
NVYMXODI1 ZC OCESSOR STATUS REGISTER (P)
CARRY 1 = TRUE
ZERO 1 = RESULT ZERO
IRQ DISABLE 1 = DISABLE
DECIMAL MODE 1 - DECIMAL MODE

INDEX REG. SELECT 1-8BIT,0=168IT
MEMORY/ACC. SELECT 1-8BIT,0-168IT

L =LOW, H = HIGH OVERFLOW 1= TRUE
NEGATIVE 1 = NEGATIVE
Figure 2. Programming Model
Table 1. G65SC802 and G65SC816 Compatibility
Function G65SC802/818 Emulation | GE53C02 NMOS 6502
Decimal Mode:
* After Interrupts 0—-D 0-D Not initialized
e N, Z Flags Valid Valid Undefined
¢ ADC, SBC No added cycle Add 1 cycle No added cycle
Read-Modify-Write:
* Absolute Indexed, No Page Crossing 7 cycles 6 cycles 7 cycles
* Write Last 2 cycles Last cycle Last 2 cycles
* Memory Lock Last 3 cycles Last 2 cycles Not avaitable
Jump Indirect:
* Cycles 5 cycles 6 cycies 5 cycles
* Jump Address, Operand = XXFF Correct Correct Invalid
Branch or Index Across Page Boundary Read last program byte Read last program byte Read invalid address
0 — RDY During Write G655C802: tgnored until read Processor stops Ignored until read
G65SC818: Processor stops
Write During Reset No Yes No
Unused Opcodes No operation No operation Undetined
@1 (OUT), »2 (OUT), SO, SYNC Signals Available with G65SC802 only Available Available
RDY Signal Bidirectional Input Input

Table 2. G65SC802 and G65SC816 Mode Comparison

0 — RDY During Write

G65SC802: Ignored until read
G655C816. Processor stops

Processor stops

_

Write During Read-Maodily-Write Last 2 cycles

Function Emulation (E = 1) Native (E = 0)
Stack Pointer (S) 8 bits in page 1 16 bits
Direct Index Address Wrap within page Crosses page boundary
Processor Status (P): b I
e Bita e Always one, except zero in stack after X flag (8/16-bit Index)
hardware interrupt
* BitS Always one M flag (B/16-bit Accumulator)
Branch Across Page Boundary 4 cycles 3 cycles T
\ Vector Locations:
ABORT 00FFFB8.9 00FFES8.9
BRK O0FFFEF 0QFFESG,7
COoP 0OFFF4,5 00FFE4,5
IRQ 00FFFEF 00FFEE,F
NM! 0OFFFA,B 00FFEA.B
i RES 00FFFC,D 00FFFC,D (1 — E)
!’ Program Bank (PB) During Interrupt, RTI Not pushed, pulled Pushed and pulled

l
J

Last 1 or 2 cycles depending on M flag J

G655C802 and G65SC816
Microprocessor Addressing Modes

The G65SCB816 is capable of directly addressing 16 MBytes of memory.
This address space has special significance within certain addressing
modes, as follows:

Reset and Intarrupt Vectors
The Reset and Interrupt vectors use the majority of the fixed addresses
between O0FFEQ and OQFFFF,

Stack

The Native mode Stack address will always be within the range 000000
to OOFFFF. In the Emulation mode, the Stack address range is 000100
to 0001FF, The following opcodes and addressing modes can increment
or decrement beyond this range when accessing two or three byles:
JSL: JSR (a,x); PEA, PEl; PER; PHD; PLD; RTL; d,s; (d.s).y.

Direct

The Direct addressing modes are often used 10 access memaory
registers and pointers. The contents of the Direct Register (D) is
added to the offset contained in the instruction operand to produce
an address in the range 000000 to 00FFFF. Note that in the Emulation
mode, [Direct] and [Direct).y addressing modes and the PEI instruc-
tion will increment from OO0OOFE or O000FF into the Stack area, even
it D=0.

Program Address Space

The Program Bank register is not aflected by the Relative, Relative Long,
Absoiute, Absolute Indirect, and Absoiute indexed Indirect addressing
modes or by incrementing the Program Counter from FFFF. The only
instructions that aftect the Program Bank register are: RT), RTL, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al-
though code segments may not span bank boundaries.

Data Address Space

The data address space is contiguous throughout the 16 MByte address
space. Words, arrays, records, or any data structures may span 64
KByte bank boundaries with no compromise in code efficiency. As a
result, indexing from page FF «n the G65SC802 may result in data
accessed in page zero. The following addressing modes generate 24-bit
ellective addresses.

Direct indexed Indirect (d,x)
Direct Indirect Indexed (d),y
Direct Indirect (d)

Direct Indirect Long [d]

Direct Indirect Indexed Long [d].y
Absoiute

Absolute,x

Absolute.y

Absolute long

* Absolute long indexed
® Stack Relative Indirect Indexed (d,s),y

The following addressing mode descriptions provide additional detail as
to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the G65SC802
and GB5SC816 microprocessors. The “long” addressing modes may be
used with the G65SC802; however, the high byte of the address is not
available to the hardware. Detailed descriptions of the 24 addressing
modes are as follows:

1. Immediate Addressing—#

The operand is the second byte (second and third bytes wheninthe
16-bit mode) of the instruction.

Absolute—a

_ With Absolute addressing the second and third bytes of the instruc-
tion form the low-order 16 bits of the effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

Instruction: | opcode | addrl | addrh
Operand | l
Address: 0B

3. Absoiute Long—al
The second, third, and tourth byte of the instruction form the 24-bit
efective address.

N

addrh] addrl |

instruction: | opcode | addrl | addrh | baddr
oo | | |
Address: baddr addrh addrl

4. Direct—d

The second byte of the instruction is added to the Direct Register
{D} to form the eflective address. An additional cycle is required
when the Direct Register is not page aligned (DL not equal 0). The
Bank register is always 0.

Inatruction: r opcodej offset __]

’ Direct Register ’

offset ‘

. |

Operand I

Address: 00 1 effective address l

5. Accumulator—A

This form of addressing always uses a single byte instruction. The
operand is the Accumulator.

Ww65C802 and W65C816
Microprocessor Addressing Modes

The WE5C816 is capable of directly addressing 16 MBytes of memory.
This address space has special signiticance within certain addressing
maodes, as follows:

Reset and Interrupt Vectiors 2
The Rese! and Interrupt vectors use the majority of the fixed addresses
between OOFFEOQ and 00FFFF. = °~

Stack

The Stack may use memory from 000000 to 00FFFF. The effective ad-
dress of Stack and Stack Relative addressing modes will always be within
this range. -

Direct

The Direct addressing modes are usuaily used to store memory registers
and pointers. The effective address generated by Direct, Direct,X and
DhrectY addressing modes is always in Bank 0 {000000-00FFFF).

Program Address Space

The Program Bank register is not affected by the Relative, Relative Long,
Absolute. Absolute Indirect, and Absolute Indexed Indirect addressing
modes or by incrementing the Pragram Counter from FFFF. The only
instructions that atfect the Program Bank register are: RTI, RTL, JML,
JSL. and JMP Absolute Long. Program code may exceed 64K bytes al-
though code segments may not span bank boundaries.

Data Address Space

The data address space i1s canliguous throughout the 16 MByte address
space. Words, arrays, records. or any data structures may span 64 KByte
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bit eflective addresses:

Direct Indexed Indirect (d.x)

Direct Indirect Indexed (d).y

Direct Indirect (d)

Direcl indirect Long [d]

Direct Indirect Long indexed [d].y

Absolute a

Absolute a,x

Absolute ay

Absolute Long al

Absclute Long Indexed al x

Stack Reiative Indirect Indexed (d,s).y

T he foilowing addressing mode descriptions provide additional detail as
10 how effective addresses are caiculated.

® & & & & & & 0 0 0 0

Twenty-four addressing modes are available for use with the W65C802
and WB5C816 microprocessors. The “long” addressing modes may be
used with the W65CB802; however, the high byte of the address is not
available to the hardware. Detailed descriptions of the 24 addressing
modes are as follows:

1. Immediate Addressing—#
The operand is the second byte (second and third bytes whenin the
16-bit mode) of the instruction.

2. Absolute—a

with Absolute addressing the second and third bytes of the instruc-
tion form the low-order 16 bits of tne effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

Instruction: | opcode [addrl L addrh '
Operand | ‘
Address: DBR

3. Absolute Long—al
The second, third. anc fourth byte of the instruction form the 24-bit
effective address

addrh | addrl ‘

Instruction: | opcode [addrl E addrh I baddr T
Jpe-and 1 | i
Address: i baddr . addrh addrl

4. Direct—d

The second byle of the instruction 1s added to the Direct Register
{D) to torm the effective address. An additional cycle is required

when the Direct Register is not page aligned (DL not equal 0). The
Bank register 1s always 0.

Instruction: (opcode | offset

{ Direct Register i

+ { offset |

Operand i

i
Address: 00 ‘ effective address |

5. Accumulator—A

This torm of addressing always uses a single byte instruction. The
operand 15 the Accumulator.

6. Implled—i

Implied addressing uses a single byte instruction. The operand 1s
implicitly defined by the instruction.

7. Direct Indirect Indexed—(d),y

This address mode is often referred to as indirect.Y. The second
byte of the instruction is added to the Direct Register (D). The 16-bit
contents of this memory location is then combined with the Data
Bank register to form a 24-bit base address. The Y Index Registeris
added to the base address to tform the effective address.

instruction: [opcode | offset |

I
| Direct Register i

+ | offset |
00 | direct address l
then:
[00 { (direct address) 5
| oBR |
I base address
+ | | YReg !
Operand ' J
Address: effective address

8. Direct Indirect Long Indexed—[d],y

With this addressing mode, the 24-bit base address s pointed to by
the sum of the second byte of the instruction and the Direct
Register. The effective address s this 24-bit base address plusthe Y
Index Register.

Instruction: | opcode | offset |

‘ Direct Register [

+] otfset |

| 00 | direct address |
then:
‘ (direct address) l
+ l ! YReg |
Operand ‘
Address: effective address

9. Direct Indexed Indirect—(d,x)

This address mode is often referred to as Indirect.X. The second
byte of the instruction is added to the sum of the Direct Register
and the X Index Register. The result points to the low-order 16 bits
of the effective address. The Data Bank Register contains the high-
order B bits of the eflective address.

15. Program Counter Relative—r
This address mode, referred to as Relative Addressing, is usedonly
with the Branch instructions. If the condition being tested is met,
the second byte of the instruction is added to the Program Counter,
which has been updated to point to the opcode of the next instruc-
tion. The offset 1s a signed 8-bit quantity in the range from -128 to
127 The Program Bank Register is not affected.

16. Program Counter Relative Long—ri

This address mode, referred to as Aelative Long Addressing. is used
only with the Unconditional Branch Long instruction (BRL) and the
Push Effective Relative instruction (PER). The second and third
bytes of the instruction are added to the Program Counter, which
has been updated to point to the opcode of the next instruction. With
the branch nstruction, the Program Counter is loaded with the
result. With the Push Effective Relative instruction, the result is
stored on the stack. The offset and result are both an unsigned
16-bit quantity in the range 0 to 65535.

17. Absolute Indirect—(a)
The second and third bytes of the instruction form an address toa
pointer in Bank 0. The Program Counter is loaded with the firstand
second bytes at this pointer. With the Jump Long (JML) instruction,
the Program Bank Register is loaded with the third byte of the

pointer.

Instruction: [opcode | addri | adarh |
Indirect Address = | 00] addrh l addrl l
New PC = (indirect address)

with JML:

New PC = (indirect address)
New PB = (indirect address +2)

18. Direct Indirect—(d)
The second byte of the instruction is added to the Direct Register to
form a pointer to the low-order 16 bits of the effective address. The
Data Bank Register contains the high-order 8 bits of the effective
agdress.

Insuucuon:{ opcode T offset l

| Direct Register |
+ | ottser |
I 00] direct address ‘
then:
00 I (direct address)]
+| o8 |

Operand | ,

Address: effective address

19. Direct Indirect Long—[d]

The second byte of the instruction is added to the Direct Register to
form a pointer 10 the 24-bit effective address.

ottset |

Instruction: | opcode |

! Direct Register |
. | offset |
| o0 | direct address |
then:
Operand
Address: | {direct address) i

20. Absolute Indexed Indirect—(a,x)
The second and third bytes of the instruction are added to the
X Index Register to form a 16-bit pointer in Bank 0. The contents of
this pointer are loaded in the Program Counter. The Program Bank
Register 13 not changed.

agdrl | addrh 1

Instruction: opcode
I addrh ' adaadrl [
l _LXHeg 1
l o I address ‘
then:
PC = {address)
21. Stack—s

Stack addressing refers to ail instructions that push or pull data
fromthe stack, such as Push, Pull, Jump to Subroutine, Return from
Subroutine, Interrupts, and Return from Interrupt. The bank ad-
dress is aiways 0. Interrupt Vectors are always fetched from Bank 0.

22. Stack Relative—d,s

The low-order 16 bits of the effective address is formed from the
sum of the second byte of the instruction and the Stack Pointer. The
high-order 8 bits of the effective address is always zero. T he relative
offset is an unsigned 8-bit quantity in the range of 0 to 255.

insructon: [~ opcode | ofiser |

' Stack Pointer |
. | oftset |

Operand ’

Addreas: 00 | effective adaress |

23. Stack Relative Indirect Indexed—(d,s),y

The second byte of the instruction is added to the Stack Pointer to
form a pointer to the low-order 16-bit base address in Bank 0. The
Data Bank Register contains the high-order 8 bits of the base ad-
dress. The effective address is the sum of the 24-bit base address
and the Y Index Register.

Instruction: | opcode | offset |

| Stack Pointer |

i ‘ offset]

| 00 ! S + offset I
then:
| ‘ S + offset l
+f os |
l base address l
+ I i Y Reg [
Operand
Address: | effective address x

24. Block Source Bank, Destination Bank-—xyc

This addressing mode is used by the Block Move instructions. The
second byte of the instruction contains the high-order 8 bits of the
destination address. The Y Index Register contains the low-order
16 bits of the destination address. The third byte of the instruction
contains the high-crder 8 bits of the source address. The X Index
Register contains the iow-order 16 bits of the source address. The
Accumulator containg one less than the number of bytes to move.
The second byte of the block move instructions is alsc loaded into
the Data Bank Register.

Instruction: [opcode | dstonk | srconk |

dstbonk — DB
Source
Address: | srcbnk ‘ X Reg |
Destinati
Address: ‘ 0B | Y Reg ‘

Increment (MYN) or decrement (MVP) X and Y.
Decrement A, (if greater than zero), then PC-3 —~ PC.

10

Notes on G65SCB02/816 Instructions

All Opcodes Function in All Modes of Operation

It shouid be noted that all opcodes function in all modes of operation.
However, some instructions and addressing modes are intended for
GB65SC816 24-bit addressing and are therefore less useful for the
G65SCBO2. The following is a list of instructions and addressing modes
which are primarily intended for GE5SCB816 use:

JSL: RTL: [d]; [d].y; JMP al; JML; al; al.x
The following instructions may be used with the GB85SCB02 even
though a Bank Address is not multiplexed on the Data Bus:
) PHK; PHB; PLB

The foilowing instructions have "limited” use in the Emulation mode:

* The REP and SEP instructions cannot modify the M and X bits when
in the Emulation mode. in this mode the M and X bits will always be
high (logic 1).

® When in the Emulation mode, the MVP and MVN instructions only
move date in page zero since X and Y Index Register high byte is zero.

indirect Jumps

The JMP (a) and JML (a) instructions use the direct Bank for indirect
addressing, while JMP (a,x) and JSR (a,x) use the Program Bank for in-
direct address lables.

Swiiching Modes

When switching from the Native mode to the Emulation mode, the X
and M bits of the Status Register are set high (logic 1), the high byte of
the Stack is set to 01, and the high bytes ot the X and Y Index Registers
are set to 00. To save previous values, these bytes must always be
stored before changing modes. Note that the low byte ofthe S, X and Y
Registers and the low and high byte of the Accumulator AL and AH are
not affected by a mode change.

WA Instruction
The WAI instruction pulls RDY low and places the processor in the WAL
“low power" mode. NMI, IRQ or RESET will terminate the WAI condi-

tion and transfer control to the interrupt handler routine. Note that an
ABORT input will abort the WAI instruction, but will not restan the
processor. When the Status Register | flag is set (IRQ disabled), the IRQ
interrupt will cause the next instruction (following the WAI instruction)
to be executed without going to the IRQ interrupt handler. This method
resulls in the highest speed response to an IRQ input. When an inter-
rupt is received after an ABORT which occurs during the WAI instruc-
tion, the processor will return to the WAI instruction. Other than HES
(higﬂh_es: priority), ABORT is the next highest priority. followed by NMI
or IRQ interrupts.

STP Instruction

The STP instruction disables the ¢2 clock 1o all circuitry, When disabled,
the ¢2 clock is held in the high state. In this case. the Data Bus will
remain in the data transfer state and the Bank address will not be muiti-
plexed onto the Data Bus. Upon executing the STP instruction, the AES
signal is the only input which can restart the processor. The processor
15 restarted by enabling the ¢2 clock, which occurs on the falling edge
of the AES input. Note that the external oscillator must be stable and
operating properly before RES goes high.

Trenfers from 8-Bit to 16-BH, or 16-Bit to 8-Bit Registers

All transfers from one register to another will resuit in a full 16-bit out-
put from the source register. The destination register size will determine
the number of bits actually stored in the destination register and the
values stored in the processor Status Register. The following are always
16-bit transfers, regardiess of tha accumulator size:

TCS; TSC: TCD; TDC

Stack Transfers

When in the Emulation mode, a 01 is forced into SH. In this case, the B
Accumulator will not be loaded into SH during a TCS instruction. When
in the Native mode, the B Accumulator is transferred to SH. Note that in
both the Emulation and Native modes, the full 16 bits of the Stack
Register are transferred to the Accumulator, regardless of the state of
the M bit in the Status Register.

1

Interrupt Processing Sequence

The interrupt sequence can also be initiated as a result of the Break or
The interrupt processing sequence is initiated as the direct result of hard- Co-Processor instructions within the software. The following histings
ware Abort, Interrupt Request, Non-Maskable Interrupt, or Reset inputs. describe the function of each cycie in the interrupt processing sequence:

Hardware Interrupt—ABORT, iRQ, NMI, RES Inputs

Cycle No. : % — —
E=0 E=1 Address " Data R/W SYNC | VDA | VPA YP Description
1 1 PC X 1 1 1 1 1 Internal Operation
2 2 PC X 1 0 0 0 1 Internal Operation
3 [1] S, PB 0 0 1 0 1 Write PB to Stack, S-1 - S
4 3 S PCH [2] 03] 0 1 0 1 Write PCH to Stack, S-1—~ S
5 4 S PCL 2] 03] 0 1 0 1 Write PCL to Stack, S-1— S
6 5 S P (4] 03] 0 1 0 1 Write P to Stack, S-1— S
7 6 VL (VL) 1 0 1 0 0 Read Vector Low Byte,0 — Pp,1 - P,00 — PB
8 7 VH (VH) 1 0 1 0 0 Read Vector High Byte

Soitware interrupt—BRK, COP Instructions

Cycie No. - _
E=0 E=1 Address Data R/W SYNC | YDA VPA YP Description
1 1 PC-2 X 1 1 1 1 1 Opcode
2 2 PC-1 X 1 0 0 1 1 Signature
3 [1] S PB 0 0 1 0 1 Write PB to Stack, S-1 —- S
4 3 S PCH 0 0 1] 1 Write PCH Lo Stack, S-1— S
5 4 S PCL 0 0 1 0 1 Write PCL to Stack, S-1—- S
6 5 S P 0 0 1 0 1 Write P to Stack, S-1— S
7 3 VL (VL} 1 0 1 0 0 Read Vector Low Byte, 0 — Po, 1— P1, 00— PB
8 7 VH (VH) 1 0 1 0 0 Read Veclor High Byte
Notes:
[1] Deiete this cycle in Emulation mode.
[2] Abort wriles address of aborted opcode.
[{3] R/W remains in the high state during Reset.
[4] In Emulation mode. bit 4 written to stack is changed to 0.
Table 3. Vector Locations
T Emulation Native Priority
Name Sourca (E=1) (E=0) Level
ABORT Hardware 00FFF8,9 O0FFES8,9 2
BRK Softwara 00FFFE,F 00FFEB,7 N/A
COP Software 00FFF4,5 00FFE4,5 N/A
iRQ Hardware OOFFFE,F OOFFEE,F 4
NMI Hardware O0FFFA,B OOFFEA.B 3
RES Hardware 0OFFFC.D 00FFFC,D 1
{(1—-E)

12

ADC
AND
ASL
BCC”
BCS®
BEQ
BIT
BMI
BNE
BPL
BRA
BRK
BRL
BVC
BVS
CLC
CLD
Crl
CLv
CMP*
cor
CPX
CPY
OEC*
DEX
DEY
EOR
iINC*
INX

ANY

JML®
JMP
JSL*
JSR
LDA
LDX
LDY
LSR
MVN
MVP
NOP
ORA
PEA

PE!

PER

Table 4. G65SC802 and G655C816 Instruction Set—Aiphabetical Sequence

Add Memory to Accumulator with Carry
“AND" Memory with Accumulator

Shift One Bit Left, Mamory or Accumulator
Branch on Carry Clear (Pc = 0)

Branch on Carry Set’(Pc = 1)

Branch if Equal (Pz = 1)

Bit Test

Branch if Result Minus (PN = 1)

Branch if Not Equal (Pz = Q)

Branch if Resuit Plus (PN = Q)

Branth Always

Force Break

Branch Always Long

Branch on Qverflow Clear (Pv = 0)

Branch on Overflow Set (Pv = 1)

Clear Carry Flag

Clear Oscimal Mode

Clear Interrupt Disable Bit

Clear Overfiow Fiag

Compare Memory and Accumulator
Coprocessor

Compare Memory and Index X

Compare Memory and Index Y

Decrement Memory or Accumulator by One
Decrement Index X by One

Decrement Index Y by One

“Exclusive OR" Memory with Accumulator
Increment Memory or Accumulator by One
Increment Index X by One

Increment Iindex Y by One

Jump Long

Jump to New Location

Jump Subroutine Long

Jump to New Location Saving Return Address
Load Accumutator with Memory

Load Index X with Memory

Lcad Index Y with Memory

Shift One Bit Right (Memory or Accumulator)
Block Move Negative

Block Move Positive

No Operation

"OR" Memaory with Accumutator

Push Effeclive Absolute Address on Stack (or Push Immediate
Data on Stack)

Push Effective Indirect Address on Stack (add one cycle
if DL ## 0)

Push Effective Program Counter Relative Address on Stack

‘Commion Mnemonic Allases

Enomonic Allas
BCC BLT
BCS BGE
CmP CPA
DEC A DEA
INC A INA
TCD TAD
TCS TAS
TDC TDA
TSC TSA
XBA SWA

PHA
PHB
PHD
PHK
PHP
PHX
PHY
PLA
PLB
PLD
PLP
PLX
PLY
REP
ROL
ROR
RTI
RTL
ATS
SBC
SEC
SED
SE!
SEP
STA
STP
STX
STY
sTZ
TAX
TAY
TCD*
TCs®
TDC*
TRB
TSB
TSC*
TSX
TXA
TXS
TXY
TYA
TYX
WAl
XBA®
XCE

Push Accumulator on Stack

Push Oata Bank Reqister on Stack

Push Direct Register on Stack

Push Program Bank Register on Stack

Push Processor Status on Stack

Push Index X on Stack

Push Index Y on Stack

Pull Accumulator from Stack

Pull Data Bank Register from Stack

Pull Direct Register from Stack

Pull Processor Status from Stack

Pull Index X from Stack

Pull Index Y form Stack

Reset Status Bits

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine Long

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disabte Status

Set Processor Status Bits

Store Accumulator in Memory

Stop the Clock

Store Index X in Memory

Store Index Y in Memory

Store Zero in Memory

Transter Accumulator to Index X

Transfer Accumulator to Index Y .
Transfer Accumulator to Direct Register -
Transfer Accumulator to Stack Pointer Register
Transfer Direct Register to Accumulator

Test and Reset Bit

Test and Set Bit

Transfer Stack Pointer Register to Accumulator
Transfer Stack Pointer Register 1o Index X
Transfer Index X to Accumulator

Transfer Index X to Stack Pointer Register

- Transfer Index X to Index Y

Transter Index Y to Accumulator
Transfer Index Y to Index X

Wait for Interrupt

Exchange AH dnd AL

Exchange Carry and Emulation Bits

**JSL should be recognized as equivalent to JSR
when it is specified with long absolute addresses.

JML is equivalent to JMP with long addressing forced.

13

Table 5. Arithmetic and Logical Instructions

Addressing Mode
OPERATION Q
z
E=1or E=0 E - - - = - =]
- . : =
MNE- E-0and and E 2 wm »l= |22 P | sl d]|F]% 2 STATUS u
MONIC | M/X| M/X=1 wxo |E{8|s|5 §|3|8|5|8|2 %8 % 5 E|3|3|3/nvuxnD1zc| ¥
ADC Pm |AL+B+Pc—AL| A+W+Pc—A | 88 85 | 75 72|61 | 71| 67 | 77 |6D | 7D | 79 |6F |[7F | 63| 73|N V Z C|ADC
AND Pm |ALAB ~AL | AAW —-A 29 25 | 35 32 (20|31 |27 (37 |2D (3D |39 |2F |3F | 23|33|N . Z . |AaND
ASL (2} | Pm [Pc-B-0 Pc—W--0 OA | 06 | 16 OE | 1E N .. .z C|ASL
BIT (1) | Pm |ALAB AAW 89 24 | 34 2Cc | 3¢ NV .z . |\IT
CMP Pm | AL-B A-W co C5 | D5 p2|C1|(DV|C7|D7|cD|DD | D9 |CF|DF|C3|D3|N Z C|CcmpP
CPX Px | XL-B X-W EO E4 EC N . ZCclcPx
CPY Px [YL-B Y-W co C4 cC N Z C|CPY
DEC (2) | Pm |B-1-B W-1-W 3A | C6 | D8 CE | DE N i o DEC
EOR Pm |ALYE ~AL | AW -A 49 a5 | ss 52 |41 |51 | 47 |57 |4D |SD |59 | 4F |5F | a3 |53 |N . .z |EoR
INC (2) | Pm |B+1-B Wl -W 1A | E6 | F6 EE | FE N . . Z |INC
LDA Pm | B—AL W-A AQ A5 | B5 B2 |A1 [B1 | A7 | B7 |AD | BD | B3 | AF [BF | A3 | B3|N . . Z |LDA
LDX Px | B—-XL WX A2 A6 86 AE BE N . . Z |wox
LoY Px |B-YL WY AD A4 | B4 AC |BC N . z .|LDY
LSA(2) | Pm |0-B-Pc 0—W-Pc 4A | 46 | 56 4E | 5E 0. Z C|LSR
ORA Pm |ALVB=AL | AVW-—A 09 05 | 15 12|01 (1 |o7 |17 oD |10|19|0F |1F|03[13|N . Z .|ORA
| ROL(2) | Pm |Pc—B—Pc PC-W—Pc 2A | 26 | 36 2E | 3E N . Z C|ROL
ROR (2) | Pm |PC~B-Pc |Pc~W—Pc 6A | 86 | 76 8E | 7E N Z C|ROR
SBC Pm | AL-B-Pc—AL| A-W-Pc—A | E9 ES | F5 F2 |EY |F1 | E7 | F7 |ED |FD | F9 |EF [FF|E3|(F3|NV ZC|sBC
STA (7} | Pm |AL-B A-W 85 | 95 92 (81 |91 |87 |97 (8D (9D |99 (8F (9F [B3|93|.[sTA
STX Px | XL—B X—=W 88 96 8E ... | sTX
STY Px | YL—B YW 84 | 94 ac i % 5 5 % % % 5 [[BTY
STZ(7) | Pm 0B 0-W 64 | 74 9C | 9€ e|sTZ
TRB(8) | Pm | ALAB—B AAW-—-W 14 1cZ.|TRB
TSB (8) | Pm | ALVB-B AVW-W 04 ocZ .|TsB
| — sddone cycle HDL » 0 — |
Emulation (E=1) or cycles 2 2 3 4 | 4| 5| 6 [5(3)] 8 6 4 |4(3) 4(3)i 5|5 47
Native (E=0) Mode.

8 bt (M/X=1) bytes 2| 1) 2| 2|2|2|2|2|2|2|a3a|] a|3|a]|a|2]|z

Native Mode (E=0), cycies 3 2 4 s§| 51617 6 7 7 5 5 5| 6| 5| 5|8

16:bot (M/X=0) bytes al 1|2 2)2(z2|2|2|2]2 3la 4| 2|2

V logical OR B byte per etfective address

A logical AND w word per effective address

¥ logical exciusive OR r relative offset

C; arnithmetic aadition A Accumulator, AL low half of Accumulator

- anthmetic subtraction X Index Register, XL low half of X register
not equal Y Index Register, YL low half of Y register

. status bit not affected Pc carry bit

M/X effective mode bit in Status Register (Pm or Px)
Ws word per stack pointer
Bs byte per stack pointer

Notes.

1.

BIT instruction does not affect N and V ftags when using immediate addressing mode. When using other addressing modes, theNand V flags
are respeciively set 1o bits 7 and 6 or 15 and 14 of the addressed memory depending on mode (byte or word).

. Forall Read/Modify/Write instruction addressing modes except accumuiator— s

Add 2 cycles for E=1 or E=0 and Pm=1 (8-bit mode).
Add 3 cycies for E=0 and Pm=0 {18-bit mode}.

3. Add one cycle when indexing across page boundary and E=1 except for STA and STZ instructions.
4. It E=1 then 1—SH and XL—SL. If E=0 then X—S regardiess of Pm or Px.
5. Exchanges the carry (Pc) and E bits. Whenever the E bit is set the following registers and status bits are locked into the indicated state:

XH=0, YH=0, SH=1, Pm=1, Px=1.

. Add 1 cycle f branch s taken. In Emulation (E=1) mode only—add 1 cycle if the branch is taken and crosses a page boundary.

Add 1 cycle in Emulation mode (E=1) for (dir),y; abs.x; and &8,y addressing modes.

. With TSB and TRB instruction, the Z fiag is set or cleared by the result of AAB or AAW.

For all Read/Modify/Write instruction addressing modes except accumulator—
Add 2 cycles for E=1 or E=0 and Pm=1 (8-bit mode).
Add 3 cycles for E=0 and Pm=0 (16-bit mode}.

Tabis 8. Branch, Transfer, Push, Pull, and implied Addressing Mode Instructions

Operetion Cperation Status
| Mremonic | Bytes | /X | Cycles 8 B Cycles 16 Bit Implied | Stack | Relative NVM X D | Z C| Mnsmonic
BCC (6) 2 — 2 PC+r—PC 2 PC+r—PC 90 BCC
BCS (8) 2 — 2 PC+r—-PC 2 | PC+r—PC B0 8Cs
BEQ (6) 2 — z PC+r—PC 2 PC+r—PC Fo BEQ
BMI (6) 2 | — |72 | PCar—-PC 2 | PC+—=PC | 30 BMI
BNE (6) 2 -_ 2 PC+r—PC 2 PC+r—PC Do BNE
BPL (8) 2 — 2 PC+r—PC 2 PC+r—PC 10 BPL
BRA (8) 2 — 2 PC+r—~PC 2 PC+r—PC 80 BRA
BVC (6} .2 — 2 PC+r—PC 2 PC_+r-PC 50 BVC
BVS (6) 2 - 2 PC+r—=PC 2 PC+r—PC 70 5 @ BVS
CLC 1 — 2 0—Pc 2 0—P¢ 18 5w s 0 CLC
I CLD 1 — 2 0--Pd 2 0—Pd D8 .0, CLD
CLi 1 — 2 | 0-Pi 2 |0-Pi 58 .0 Ll
CLV 1 - 2 0—Pv 2 0—Pv B3 . Q. oL CLvV
DEX 1 Fx 2 AL-1—-XL 2 X-1—X CA N . . w o DEX
DEY 1 Px 2 YL-1—-YL 2 Y-1—Y as N . & B DEY
INX 1 Px 2 XL+1-=XL 2 X+1—X E8 N . .2 INX
[INY 1 Px 2 YL+1—=YL 2 | Y+i-y c8 N . 2. MY
NOP i - 2 no operation 2 no operation EA NOP
PEA 3 — 5 W—-Ws, 5-2—5 5 same F4 PEA
PEI 2 — 8 W—Ws, §-2—-8 6 same D4 PEI
PER 3 — & W—-Ws, 5-2—5 6 same 62 PER
PHA i Pm 3 AL—-Bs, S-1-—-8 4 A—Ws, 5-2—~8 48 PHA
PHB 1 —_ 3 DB—Bs, 5-1—S 3 same 8B PHB
PHD 1 — 4 D—~Ws, 5-2—S 4 samer 0B PHD
PHK t — 3 PB—-Bs, S-1—-8 3 sama 4B PHK
PHP i — 3 P—8s, 5-1—5 3 same 08 PHP
PHX 1 Px 3 XL—Bs, §-1—-8 4 X—Wsg, 3-2—-§ DA PHX
I PHY 1 Px 3 YL-Bs, S-1—-S 4 Y—Ws, 5-2—S 5A by PR PHY
! PLA 1 Pm 4 $+1—-S,Bs—AL| 5 5+2—5, Ws—A 68 N . . Z . PLA
FLB 1 — 4 S+1—5,Bs—-DB/ 4 same AB N . - PLB
PLD i — 5 $+2—5, Ws—D 5 same 2B N e a5 PLD
PLP i - 4 S+1-S, Bs—P 4 same 28 NVMXDI12ZC PLF
PLX 1 Px 4 S+1-5, Ba—XL 5 §+2—8, We—X FA N . 2. PLX
PLY 1 Px 4 S+1—-8, Bs—YL 5 5+2--5, Ws—Y 7A N . b PLY
SEC 1 — 2 1-Pc 2 i=Pc 38 i 1 SEC
SED 1 - 2 1—-Pd 2 1-Pd F8 1 SED
SE! 1 - 2 1-Pi 2 | 1-Pi 78 1. SEI
TAX 1 Px 2 AL—XL 2 A—X AA N . . Z . TAX
TAY 1 Px 2 AL—-YL 2 A—Y AB N . .2 TAY
TCD 1 — 2 A—-D 2 A-D 58 N . 2. TCD
TCS 1 — 2 A—S 2 | A-S 1B - . w4 TCS
TDC i - 2 | D-A 2 | D-A 78 N . o B TOC
TSC 1 - 2 | S-A 2 |s5-A 38 N . o By TSC
TSX 1 Px 2 SL—XL 2 S—X BA N . o TSX
h‘l‘)m 1 Pm 2 XL—AL 2 X—A 8A N . L2 TXA
TXS 1 — 2 s@g note 4 - 2 X-5 9A .o L XS
XY 1 Px 2 XL—-YL 2 xX—=Y 9B N . .2 TXY
TYA i Pm 2 YL—AL 2 Y—-A aa N . 2. TYA
TYX 1 Px 2 YL—XL 2 Y—X BB N . i e s TYX
XCE 1 - 2 see note 5 2 see note 5 FB Cc XCE

See Motes on page 13.

15

Table 7. Other Addressing Mode Instructions

L

Op Status j
Mnemonic Addressing Mode Code|Cycles [Bytes NVM X D | Z C | Mnemonic Function
BRK stack 00 | 7/8 2 .01 BRK See discussion in Interrupt Processing
- Sequence section.
BRL relative long |.-82 [3 3 P BRL PC+r—PC where -32768<r<32767.
COoP stack 02 | 7/8 2 .01 cop See discussion in Interrupt Processing
Sequence section.
JML absolute indirect | DC |6 3 JML W—PC, B—PB
JMP absolute 4C | 3 3 JMP W-PC
JMP absolute indirect 6C |5 3 JMP W—PC
JMP absolute indexed indirecty 7C | 6 3 JMP w—PC
JMP absolute long 5C | 4 4 JMP wW-PC, B—-PB
JSL absolute long 22 | 8 4 JSL PB—Bs, S-1—5, PC—Ws, 5-2—-S, W—PC,
B-PB
JSR absolute 20 | 6 3 JSR PC—Ws, 5-2—5, W—PC
JSR absolute indexed indirect| FC | 6 k] JSR PC—-Ws, S-2—S, W—PC
MVN block 54 | 7/byte 3 MVN See discussion in Addressing Mode
section
MVP block 44 | 7/byte 3 f mom 2 & d on B MVP _
REP immediate c2 |3 2 |INVMXDI ZC REP PAB—-P
RTI stack 40 | 6/7 1 NVMXDI1 ZC RTI $5+1—5, Bs—P, 5+2—5, Ws—PC, if E=0
then S+1—S5, Bs—PB
RTL stack 68 | 6 1 RTL §$+2—5, Ws+1—-PC, S+1—-5, Bs—-FB
RTS stack 60 |6 1 S RTS 5+2-5, Ws+1-PC
SEP immediate E2 |3 2 INVMXDI1 ZC SEP PVB~P
STP implied 0B | 3+ 1 R STP Stop the clock. Requires reset to
continue.
WAI implied cB |3+ 1 WAI Wait for interrupt. RDY held low until
interrupt.
XBA implied EB | 3 1 N Z XBA Swap AH and AL. Status bits reflect’

final condition of AL.

See Notes on page 13.

16

Table 8. Opcode Matrix

base number of
byies

base number of

cycles

L] L
s !
]ﬁ B LSD [
' (7 I 1 2 3 4 5 8 7 8 |] L A -] c o —| E Fo
0 BRK s | ORA (d.x) | COPs QﬁA'd.s TSEd | ORAd | ASLd ORA [d} | PHPs | ORA # (ASLAPHDs| TSBa ORAa | ASLa | ORAal
28 2 6 2 8 2 4 25 23] 25 2 8 13| 22 [12|1 4| 3 8 3 4 36 4 5
1 BPL r | ORA (d).y | ORA (d) | ORA {d.8).y] TRBd |[ORAd.x]ASLd.x| ORA[d],y| CLCi [ORAay|INCA|TCSi| TRBa |ORA ax |ASL a,x |ORA al.x
2 2 25 2 5 7 25 2 4 2 6 2 6 1234 |1 212 3 6 3 4 37 4 5
2 JSRa|AND({dx)| JSLal | ANDd3 BITd | ANDd | ROLd | AND [d] | PLPs | AND# |ROLA|PLDs| BITa ANDa | ROLa | AND al
36 26| a8 2 4 23 | 23|25 2 6 1422|1215 34 34 |36 |45
4 | BMIT | AND (q).y | AND (d)|AND (c.s).y| BIT d.x JAND d.x|ROL d.x| AND (d]y | SECi [ANDay DECA| TSC: | BITax | ANDax [ROLax AND al.x
2 2 2 5 2 5 2 7 2 4 2 4 2 6 2 6 12 3 4 1 2|1 2 3 4 3 4 37 4 5
8 RTIs | EOR (¢,x) | reserve | EORds |MVP xya]| EORd | LSRd EOR[d] | PHAs | EOR® [LSRA|PHKs| JMPa EORa | LSRa | EORal
17 2 6 2 2 2 4 3 7 2 3 2 5 2 6 13 2 2 1 2|1 3 3 3 3 4 3 6 4 5
BYC r | EOR (d),y { EOR (¢) |EOR (d.8).y| MVN xya (EOR d,x|LSRd.x| EOR[d]y | CLIi [EORay|PHYs|TCD(| JMPal | EORax |[LSA ax EORalx
5_,2_1. 2 5 25 27 37 | 24|26| 26 |12 34 |val12| a4 | 34 |37 as
RTSs | ADC (d.x) | PERs | ADCds | STZd | ADCd | RORd}| ADC|[d] | PLAs | ADC#® |RORA|RTLs| JMP(a) | ADCa |RORa | ADCal
s16 2 6 3 € 2 4 2 3 2 3 2 5 2 6 1 4 22 12|18 35 J 4 3 6 4 5
7 8vSr | ADC {d},y | ADC (d){ADC (d.s),y| STZ d.x |ADC d.x|ROR d,x ADC [dl.y| SEli [ADCay|PLY s | TDC|JMP (ax)| ADC a,x [ROR a,x [ADC al.x
2 2 2 5 2 5 27 2 4 2 4 2 B8 2 6 1 2 3 4 1 4|1 2 3 6 3 4 a7z 4 5
BRAr| STA (d.x) | BRL STA ds STy d STAd | STXd STA[C] | DEYi| BiT# | TXAi|PHMBs| STYa STAa | STXa | STAal
a22 2 6 3 3 2 4 2 3 2 3 23 2 6 1 2 2 2 121 3 J 4 3 4 3 4 4 5
8CC | STA{d)y | STA(d) | STA(d8).y| STYdx |STAdx)STXdy| STA[d]ly | TYAi |STAay | TXSi|TXYi| STZa | STAax |STZax STAalx
922 2 6 2 5 27 2 4 2 4 2 4 2 B t 2 35 |1 211 2 3 4 3 5 3'5 4 5
A LDY # | LDA(0.x) | LDX# LDAd,s LDYd | LDAdJ j LDXd LDA [d] TAYi | LDA#S | TAXi [PLBs| LDYa LDAa |(LDXa | LDA A
2 2 2 6 2 2 2 4 23 2 3 2 3 2 6 1 2 22 |1 2|1 4 3 4 3 4 3 4 4 5
BCS | LDA (d).y | LDA (d) | LDA (d.g).y| LDYdx |[LDAdx}LDXdy| LDA(d)y | CLVi |[LDAay| TSXi|TYXi| LDYax | LDAax |[LDXay LDAalx
12 2 2 5 2 5 27 2 4 2 4 2 4 2 6 2 3 4 |1 21 2 3 4 3 4 3 4 4 5
c CPY48|CMP(dx)| REP# | CMPAds CPYJd |CMPd| DECA| CMP([d] | INYi | CMP# | DEXi|WAIi| CPYa CMPa |[DECa | CMPal
22 2 € 23 2 4 2 3 2 3 2 5 2 6 1t 2122|1213 3 4 3 4 36 4 5
BNE r | CMP (d),y { CMP (d)|CMP (d.s).y| PEls |CMP d.x]DEC d.x| CMF [d]l.y| CLD i [CMP ay|PHX s| STPi | JML (a} | CMP a.x [DEC a.x [CMP al.x
Dla 2| 25 25| 27 26 |2a4|26| 26 |12|34 13|13 36 | 3as |37]|45
£ CPX#|SBC(dx)| SEP# | SBCds | CPXd | SBCd | INCd | SBC[d] | INXi | SBC#¥ |NOPi|XBAi| CPXa SBCa | INCa | SBCal
2 2 2 6 2 3 2 4 2 3 2 3 25 2 8 1 .2 2 2 (1 2|1 3 3 4 3 4 3 6 4 5
BEQ | SBC (d).,y | SBC (d)}|SBC (ds).y] PEAs |[SBCdx|INCdx| SBC[d],y| SED: |SBCa.,y PLXs|XCEi|JSR (ax)| SBC ax |INC ax |SBC al,x
F22 25 2 5 27 3 5 2 4 2 6 2 6 12 3 4 1 4|1 2 3 6 3 4 3 7 4 5
0 1 2 3 4 5 8 7 8 2 A B c s) E F
[_lymbol addresaing mode symbol addressing mode
immediate) [d] direct indirect long
A accumulator [d).y direct indirect indexed long
r program countear relative a absolute
a program counter relative long ax absolute indexed (with x)
] implied ay absolute indexed (with y)
8 stack al absolute long
d dirsct al,x abaoiute indexed long
d.x direct indexed {with x) das stack reiative
dy direct indexed (with y) (d.8)y slack refalive indirect indexed
{d) direct indirect (a) absolute indirect
{d.x) diract indexed indirect {a.x) absolute indexed indirect
{dhy direct indirect indexed xya block move
(legend f
mstruction addressing
mnemonic mode

17

2

n

2c

2a

"l

LR

o3

ab

w

.5

e 6a

ADDRESS MODE
Immediata—»

ILDY CPY.CPX LOX ORA
AND EQR.ADC BIT LDA,
CMP.SBC REP SEP)

114 Op Codes)

i2and 3 oylas)

12 and 3 cycles)
Apsolute—a
(BITSTYSTZ LDY
CPYCPX STX LDX

ORA AND EOR ADC.
STALDA CMP SBC)

(16 0p Cooes)

(3 byres)

(4 and § cycles) X
Absolute (R-M-W)—a

s

|ASL.ADL LSA ROR
DEC.INC. TSB.TRB)|
{8 Op Codes)

(3 byles)

(6 and & cycles)

in
3
im

Absolute (JUMP)—a
{aMPjiaC

1 Op Coda)

3 byles)

(Acycles)

Absoiute (Jump 0
subfouling) —a

(JSR)

i1 Op Code)

1 bytes)

16 eycles)

(drftmrani ordev from NGSO2)
Absolute Long—ai
(ORA AND EOR.ADC
STA LDA CMP SBC)
(8 Op Codes)

14 bytes)

{5 and 6 cycles)
Absoiute Long (JUMP)—al
1JMP)

(1 Op Code)

i4 oyren)

(4 cycles)

(L]

Absoluta Long (Jump to
Subroutine Lbng) —al
JSL)

(1 Op Code)

(4 bytes)

(7 cyches)

Direct—d

(BIT STZSTY.LOY
CPY CPX.STX.LDX.
QORA AND.EOR.ADC
STA.LDA CMP SBC)
116 Op Codes)

12 bytes)

134 ang 5 cycles)
Direct {R-M-W)—d
(ASL AOL LSAROR
DEC INC TSB.TAB)
(6 Op Codes)

12 Dytes}

(56.7 and B cycies)

(2)

in

2

in
(3)
in

Accumulalor—A

(ASL {NC ROL DEC LSA.RQR)
16 Op Coges)

i1 oyte)

(2 cycies)

Impliea—i

\DEY. INY, INX DEX. NOP.
XCE. TYA TAY TXA TXS
TAX.TSX TCS TSC.TCOD.
TOC TXY TYX.CLC SEC.
CL1LSE(CLV.CLD SED}
{25 Op Coces)

i! byle)

(2 cycles)

Impisgd—i

(XBA)

(1 Op Coae)

i1 bylel

{3 cycies)

Warl For interrupl
(WAL

11 Op Codel

1 byle)

td cycles)
Stop-The-Clock
15TP)

1+ Op Cooe}

(1 byte)

(3 cycles)

9

TRO.NMI

RES:
RES-0
AES:0

RES+)
See 21a Stack
[Hardware intefrupl)

1
2

i

prwwn -

—AUN- PUAUN- cBBAON -

Ne vpRpERN -

- -

-

B SN UL

FUPN —aNpUusuN—

1
1
1

PR

-t el s e ok L I L - W G ey -t e e s b e

[P

- -

1
1
1

T T e Tl == DOOOO = o -

- D00 OC = = -

1
o
o

-—00 =

e - - - - - —~ 000 = = =000 = -—==000 — -~ 00 = = Q== 00 =

- Q= =G =-=-00 =

-0 0 - Q-

- E-E-R-X-1

1
1
1

o
1
1

<]
]

A - OO0QO 0 = = =

_—— - OO = - 2000 == -

OO0 =+ “00=00 ===

O= 000000 = =

-0 0 = Q0 -

- 00000 -~

Table 9. Detailed Instruction Operation

PBR.PC
PBRPC+1
PBR,PC-2

PBRPC
PBRPC*1
PBR.PC-2
DBR.AA
DBR.AA+1

PBR.PC
PBR.PC+1
PBR,PC+2
OBR.AA
DBR,AA+1
DBR.AA+1
DBRAA*1
DBA.AA
PBR.PC
PBRPCH
PBR.PC+2
PBR. NEW PC

PBR PC
PBRPC:|
PBAPC2
PBRPC+2
0s

0.5-1

PBA NEW PC
PBA.PC
PBRPC+1
PBRPC+2
PBRPC+3
AAD AA
AAB.AA«1
PBR.PC
PBRA.PC+1
PBAPC.2
PBR.PC+I
NEW PBR,PC

PBR.PC
PBR.PC+1
PBAPC-2

0.0°00¢1

PBR.PC
PBR.PC+1
PBR,PC+1
0.0-00
0.0+00+
0,0+DO+1
0.0+D0O=1
0.0+DO
PBA.PC
PBRPC-1

PBRA PC
PBR,PC+1

PBR.PC
PBAPC+t
PBR.PC+1

ADY

PBA.PC

PEAPC~t
PBR.PC-!
PBR,PC+1

- - -

1 PBRPC

1 PBAPC-I
1 PBRAPC+
I PBRPC:!
1 PBA.PC+1
1 PBRPC+!
I PBAPC+1

Op Code
1oL
IOH

Op Code

AAH
Dais Low
Data High

Op Code
AAL

AAM

Data Low
Data High
[[#]

Dala High
Data Low
Op Code
NEW PCL
NEW PCH
New Op Code

Op Code
NEW PCL
NEW PCH
10

PCH

PCL

New Op Code
Op Cooe
AAL

AAH

AAB

Dala Low
Daia Hign
Op Code
MNEW PCL
NEW PCH
HEW BR

Hew Op Code
1

Op Code
NEW PCL
NEW PCH
PBR

o

NEW PBR
PCH

PCL
New Op Code
Op Code

Do

10

Cata Lpw
Data High

Op Code

10
Daws Low
Data High

Data High
Data Low

Op Code
[e]

Op Code-
Q0

Op Cooe
0

Op Code
le]

10
IRO(BRK)

AES(BAK)
AES(BAK)
RES(BAK)
BEGIN

CYCLE VP, WL, YDA, YPA ADDRESS BUS DATABUS RW

~

108

o e vl gs-....- I L

12a

a3~~~ -00mw=0=wa

-

LdF]

.- OO == -

g

17a.

*170.

- e . —— -

1720

ADDRESS MODE
Owact Indwect Indexed—(d).y
(ORA AMO EOR,ADC,
STA LOCA.CMPSBC)
(8 Op Cooes)

(2 byres)

(5.6.7 and 8 cycies)

2

{4

n
Cirect Indirect
Indexed Long—i{d].y
{ORAAND.EOR ADC,
STA,LDA,CMP.SBC)
(8 Op Codes)
(2 bytes)
{6.7 ana 8 cycles)

0]

)
Direct Indexed indirect—(d.x)
(ORA,AND,EQR.ADC,
STALDA.CMP SBC)
(8 Op Codes)
(2 bytes)
(6.7 and B cycles)

@

mn
Direct,X—d,x
(BIT.STZSTY.LODY,
ORAAND.EORADC,
STALDACMP 38C)
(12 Op Codes)
(2 bytes)
(4.5 and 6 cycles)

(2}

m

. Direct,X (R-M-W)—d.x

(ASL AOL.LSR.ROR,
DEC.INC)

{6 Op Codes}

(2 byres)

(6.7.8 and B cycies)

e

8}
(3
)

Oirect, Y —d.y
(STHLOX}

{2 Op Codes)

(2 Dyvem)

(4,5 and B cycles)

2

n
Absoiute X —a.x
(BITLDY.STZ,
ORAAND,EQORADC,
STA LDA,CMP SBC)
(11 Op Coges)
3 bytes)
(4.5 and 6 cycies)
Absoiute, X (R-M-W}—ax
{ASL,ROL.LSR,AOR,
DEC.INC)
(6 Op Coves)
(3 oyres)
(7 and 9 cycies)

4)
m

(1
3
m

Apsolute Long X —al.x
(ORAAND.ECRADC,
STALDA.CMP.SBC)
(8 Op Codes)

(4 bytes)

(S and 6 cycies)
Absolute, ¥ —a.y
{LDX.ORAAND.EOR.ADC.
STALDA CMP.SBC)
{9 Op Codes}

(3 bytes)

(4,5 and 6 cycles}
Reislive-r
{BPL.BMI.BVC.BVS.BCC,
BCS.BNE.BEQ.BRA)
(9 Op Codes)

(2 bytes)

(2.3 and 4 cycles)
Relatve Long—1
{BAL)

{1 Op Cooe)

(3 bytes)

(4 cycies)

Absoiute Indirect —(a)
(JMP)}

(1 Op Coode)

(3 oytes)

(5 cyciea)

n

4

4]

(5
(6)

Absaiule Indirect —(8}

{JML)

{1 Op Cocs)
(3 bytea)

(B cycies)

. Duwrect iIndirect —{d}

(ORA AND.EOR.ADC,
STA,LDA CMP SBC)
18 Op Codes)

{2 bytes)

(5,6 anc 7 cycles)

-3

=

-4

LrCRN - PROAURN S PRRACRNS PO ELRN 2

L Lt L L o A o

~RENC PR ERAENS NumgpapNs

PUBURN- —COUAUN= —NBLN= ~aWN=

I

sl

S wh ek s w8 Ak e e ks s ah ek aa

-k ke e o o ol s et e e

ok = e ws e it o s st s wm ok bt o wh me e

I i L i e i A S

- A S m St e —————— - - B

st tma e D000 0 = -

- A - - - OOQ OO - ==

- m e s e s s e b e mh s kA = = =

r

YDA, YPA ADDRESE BUS DATA BUS

1 1 PBRPC Op Coos

0 1 PBRPCH co

0 0 PBRPC# 1o

t 0 0000 AAL

1 0 0.0+DO+" AAH

0 0 DBAAAHAAL-YLIO 1
1 0 DBRAA-Y Oatn Low o
1 0 DBRAA-Y+) Data ngh 10
11 PBRAPC Op Cooe 1
0 1 PBAPCH DO [
0 0 PBRPC-1 10 1

1 0 00+DO AAL 1

I 0 0D+DO+1 AAH 1

1 0 00-00-2 AAB 1
T 0 AABAA+Y Data Low 110
1 0 AABAA+Y+] Data High 170
1 ' PBRPC Op Coos 1
0 1 PBRPCst DO 1
0 0 PBRPC+! 10 1
o 0 PBRPC+1 10 1
10 0.0+D0+x AAL 1

1 0 0.0:DOsRe1 AAH 1

! 0 DBRAA Osla Low 10
I 0 CBRAA-Y Daamgn 10
1 1 PBRPC Op Code 1
0 1 PBRPC+ Do 1
0 0 PBAPC+ o 1
0 0 PBAPC+ 0 1
1 0 0.0+DO+X Data Low 10
10 00+DO=X+1 Dalamigh 10
1 1 PBRPC Op Codas 1
0 1 PBAPC DO 1
0 0 PBAPC+1 10 1
0 0 PBRPC+t 10 1
10 0D-DO-X Dats Low 1
I 0 00:DO+X+1 Dala High 1
0 0 0.0+DO+X+1 (o] 1
10 0.0+DO=X+1 Osia High 0
1 0 00+DO+x Oata Low 0
1 1 PBARPC Op Code 1
0 1 PBRAPC+ Do T
0 0 PBAPCH w0 v
0 0 PBRPC+ 10 ., 1
1 0 00D+DO+¥ Data Low 0]
10 00+DO+Y*1 DataHgh 10
1 1 PBAPC Op Code 1
0 1 PBRPC+ AAL 1
0 1 PBRPC+2 AAH 1
0 0 DBRAAAHAAL-XL (O 1
1 0 DBRAA+X Date Low 10
1 0 OBAAA+X+1 Dais High 10
1 1 PBAPC Op Code !
0 1 PBRPC+1 AAL 1
0 1 PBAPC.2 AAH 1
0 0 DBRAAHAAL+XLIO 1
1 0 DBRAA-X Data Low 1
1 0 DBRAA-Xx+1 DataHigh 1
0 0 OBRAA+X+1 10 1
I 0 DBRAA+X+} Data Hign 0
1 0 DBRAA-X Data Low 0
1 1 PBAPC Op Code 1
0 1 PBRPC-1 AAL 1
0 1 PBRAPC2 AAH 1
0 1 PBRPC3 AAD 1
1 0 AABAA*X Data Low 10
1 0 AABAA+X+1 Date High 10
1 1 PBRPC Oc Coae 1
9 t PBAPC+ AAL 1
0 1 PBAPC+2 AAH 1
0 0 DBRAAHAAL+YLIO 1
1 0 DBRAA+Y Data Low [201]
1 0 DBRAAsY+| Dats High 140
1 1 PBRPC Op Coos 1
0 ' PBRPC+ Oftset 1
0 0 PBRPCe2 10 1
0 0 PBRPC-2+OFF 10 1
1 | PBRMNewPC New OpCode !

1 1 PBRAPC Op Cooe]
0 1 PEAPCH Oftest Low 1
0 1 PBRAPC+2 Oftest High !
0 0 PBRPC+2 10 1
I 1 PBRNewPC NewOpCods 1
v 1 PBAPC Op Code !
0 1 PBAPC+ AAL T
0 1 PBAPCs2 AAH 1
10 0AA NEW PCL 1
10 0AAsY NEW PCH]
1 1 PBANEWPC OpCode]
1 1 PBRPC Op Code 1
0 1 PBAPC-1 AAL 1
0 1 PBAPC2 AAH 1
10 0AA NEW PCL 1
10 0AA« NEW PCH 1
1 0 0AAs2 NEW PER 1
1 1 MNEW PBRAPC MNew Op Coda 1
1 1 PBRPC Op Code 1
0 1 PBAPCH Do 1
0 0 PBRAPC- 0 1
1 0 0000 AAL 1
1 0 00D-00+1 AAH 1
1 0 DBR.AA Qs Low 10
1 0 DBRAA+ Onla Low 170

Table 9. Detailled Instruction Operation {continued)

%

ACDRIES HOOE CYCLE VP, ML, VDA, VPA ADDRES2OUA DATABUS AW ADDRESS MODTE CYCLE YF, ML YOA.YPA ADDRESS BUB DATABUS R
Direet Indirect Long —[d] 1 f 1 1 1 PBRPC Op Code 1 *23. Stack Rgiative Indirect ! 11t 1 PBAFC Ob Cooe 1
(ORAAND.EOR,ADC 2 1 1 0 1 PBRPCH DC 1 Induxad —(d,B}y 2, 1 1 @ 1 PBAPCH 50 1
STALDA CMPSBC) (2) 2e T 1 0 0 PBAPCH [Le] 1 (QRAAND ECR.ADC. 3 1 1 0 0 PBAPCH 10 1
i8 Qo Codes) 3 o1 1 0 aD+DQ AAL 1 STA.LDA.CMP.S8C) 4 1 1 1 0 0S50 AAL 1
(2 bytes) 4 1 f 1 0 00-DOA AAH 1 {8 Co Codes) 5 Pt 1 0 05+50+1 AAH 1
(E 7 and 8 cyciea) 5 1 1 1 0 Cc0-00-2 AbD 1 (2 bylas) a LA | o 0 0.5+80+1 [[o3 1
5 i 1 o AABAA Data Laer 1 {7 and B Cycles) 7 1 1 ¢ DBRAAY Data Low 10
(M Ba 1.1 1 0 AAB.AA+] Data Hioh 170 (I 7a 1T 1 1 0 DBRAA+Y+| ~Dalarign LY
Absoiute Indoeed Indwect —(ax}~1- -7 1 1 1 PBAPC Op Code) W24n. Block Move Positive M I v 1 1 PBAPC Op Cooe 1
14MP) F 1 ' ¢ 1 PBAPGH AAL 1 {forward) —uye 2 + 1 4 1 PBAPC- DBA 1
11 Op Code} 2 1 i & 1 PBRPCsZ AAH 1 (MY P) 3 1 1 0 1 PBRAPC+Z SBA 1
{3 bytes) 4 1 1] 9 PBAPC-Z 0Q 1 {1 Cp Goga} N-2 | 4 1 1 1 2 SBAX Sourcs Dala 1
{6 cycies) 5 1t 8 1 PBR.AASX MNEW PCL 1 {1 bytas) Byte | § 1 1 1 0 OBAY Dast Data a
& 1) 0 1 PBARAATXHT NEWPCH 1 {7 cycles) C=2 |6 1 1 0 D0 DBAY le] 1
! 1t 1 1 PBR NEWPC NewQpCode 1 x = SQurce Addrass L7 1 1 0 0 DBAY 1 1
F - = Dasunaion M [1 1 PBR.PC Op Code 1
Absoiule indazad Indirect [t 1 1 1 PBAPC Op Coda 1 ¥
{Sump to Sudrouline indexad 2 1 1 0 1 PBAPCH AAL 1 G =Numper o BytegtoMowa -1 | 2 11 @ 1 PBRPC+! DBA 1
Indirsct) — () 3 L 1 1 0 os PCH 0 xy Decramant 3 11 % 1 PBAPCH SBA 1
JSAY : 4 V1 % 0 084 pCL o MVF 19 usad whan the N-1 |4 1Y 1 Q0 SBAX-1 Source Data 1
i1 Op Code) 5 1 1 9 1t PBRPC+2] deatinstion 3lart address Bv_te 5 1T 110 PeAy-) Dt Data 0
(3 bytes) & 1 1 0 0 PBAPC2 1 isiigher (move positiv) ©°1 j 11000 pRAT 19 !
(8 eyclas) 71 1 0 1 PBRAAMY 1 ihan the source sizn addrags, - 1 1 0 0 DBAY 0 !
i ~
b BRI Ol

19

w20k

212

2

21c

*21s

21

w2th

2N

*21)

w22

ADGRESY MODE

Cirect ingirsct Lang —(d)
{ORA AND EOR.ACC
STALDA.CMP.53C)

i3 Op Coges)

{2 byies}

(6.7 ana & cyclea)

2)

Absoluta Indesed Indect —{8,X) -
(JMP)

(1 Op Code)

(3 bytes;

(6 cycies}

Abaoiute indexed IAdireet
{Jump o Subrouline Indaxsd
Indireet] —ia.x)

(JSR)

it Op Coda)

{3 bytes)

(8 cycles)

Stack (Hardwarg

Inlernupls) =5 (3}

(IRQ.MMI.ABQAT.AES) (7)

(4 hardware nterrupta) {10}

10 bytaw) 410}

{7 and 8 cyciss) (105{t1}

Stack {Soliwgre

Inzafrugte) —< (3)

[BRH.COF) 4]

(2 Op Cocas) :

(2 oytes)

17 2nd B cycles)

Stack {Return lrom

Inegrrupi}—~8

RTY {31
Cp CoGaj

(% bytg}

(6 and 7 cyctes)

{cuftgreni order irom NS502) (7)
Slack (Return from
Subroutina}—s

(ATS)

(t Op Codu)

{1 bylay

{8 cychken}

Stack (Baluen trom
Subrouune Long) —3
(RTL)

i1 Qp Cods)

{1 byt

(& cyciys)

Stach (Fuah)—s
{PHP. PHA BHY PHX.

PHD.PHK PHB) (k)]
{7 Op Codes)

(1 byte)

{3 and 4 cycios)

Stsck {Pull) —a

(PLP FLA.PLY.PLX.PLD.PLB)
{Ditterent than NE502)

(& Op Codes)

1 byts) th
|4 and 5 cyies)

Sragk {Push EHoctive

Ingirect Adaress) —9

{PEI 2)
it Om Code)

(2 bytes)

18 g T cyciaa)

Sisck (Puzh Efflescuye
Apsciuto Addrosa} —3
(FEA)

{1 Op Code;

(3 oyies)

(5 cyclas)

Stack (Puan EHacuve
Program Counisr Flelatve
Adcrass) —a

(PER)

11 Op Cooey

(3 oyes)

6 CyCisg;

Slack Rslatve —d.9
{CRA AND.EOR ADL
STALDA CMF SBC)
18 0p Codes)

12 bytas)

i4 and 5 cyclas)

WEPN = =D RauN= “QUBWN = “ NP AUN- —ONOVANN= ~GNANAUN — @S AN B W~ —mung_u_»- govewpn-

gren-

AW - 'mm&gug_»-

o -

pruwn—- o

- DD e -k e

-t a st e - - -

- ——-

,
1
1
1
i
1
1
1
1
t
1
i
1
1
i
I
1
1
1
T
t
1
1
1
I
t
1
1
1
1
1
1
1
i
3
1
1
I
1
1
1
1
1]
1
1
1
1
i
3
1
1
1
[
1
1
|
1
1
1
1
1
1
1
1
]
1
1
1
1

-k e e -l - -

4 M A0 A ed e e 0n H s e a0 ~ 0000 -0 200000~ - mamED =

- D 2 e 00— 2« Q=200

- =D 0=

- A DO === . O =

-00 Q0 =

VOA VFA AODRESS BUS DATABUS RW
PBRAPC Op Coda 1
PBR,PC-1 [s]v] 1
PBRPC+1 10 1
0.0-D0 AAL]
0.0-00+1 AAH 1
0.0+00+2 AAB i
AAB AA Data Low 110
AAB AA+T Data Hign 10
PBR,PC Op Cooe I
PBA,PC+1 AAL 1
PBAPC+2 AAH 1
PBR.PC+2 10 1
PEAAAX NEW PCL 1
PBRAACX"] NEW PCH '
PBR. NEW PC New Op Code 1
PBRPC Op Code 1
PBRPC+1 AAL \
0.s PCH 2
2.5-1 PCL 0
PBR,PC+2 AAM 1
PBR,PC-2 [e] 1
P8R, AA+X NEW PCL 1
PBRAA«X*1 NEW PCH 1
PBANEW PC New OpCode 1
PBR.PC 10 1
PBAPC 0]
0s PBA 0
0.5-1 PCH a
0.5-2 PCL 0
0.5-3 P 0
0.VA AAVL 1
Q. VA AAVH 1
0.AAY New Op Code 1
PER.PC Op Code i
PBA,PC+1 Signature 1
0s PBR 1]
051 PCH a
as-2 PCL a
05-3 (COP Laichas) F 0
0.¥A AAVL 1
0.VA+1 AAVH 1
QAMY New Op Code 1
PBRA,PC Op Code 1
PBR.PC+1 [le] 1
PBR,PC+1 10 1
0541 P 1
0,5+2 Mew PCL 1
0.543 Newr PCH 1
0.5+4 PBA 1
PBANgw PC New Op Coda |
PBR.PC Op Code 1
PERPC#1 1o 1
FBR,PC+1]=] '
0541 MNew PCL-1 1
0.5+2 New PCH 1
052 10 1
PBRA, Mpw FC MNew Op Code 1
PBAPC Op Code 1
PBR.PC+1 10 1
FBR.PC+1 10 1
0.3¢1 NEW PCL i
C.5+2 NEW PCH 1
0.5+3 MNEW PER '
NEW PBR,PC New OpCode 1
PBR,PC Op Code 1
PBR.PC+1 10 1
0s Roguter High 0
0.5-1 Regster Low 0
PBA.PC Op Codle 1
FBR.PC+1 10 1
PBAPC1 10 1
0.5+1 Aegisier Low |
05+2 Regisier Figh 1
PBER.PC Op Code t
PBR.PC+1 00 1
PEA.PC* 1Q 1
0.0+00 AAL 1
0.0+00"1 AAH 1
0s AAH a
0.5-1 AAL Q
PBR.PC Op Coce |
PER.PC1 AAL 1
PBR.PC-2 AAR 1
0.S AAH 0
0.5 AAL 0
PBA.PC Op Code 1
PBA.PC+1 Offsat Low 1
PBR.PC~2 Offsat Fgh 1
PBR.PC-2 10 1
0s PCH+ Offast 0

- CARRY
0s-1 PCL. » Othost 0
PBR.PC Op Cooe 1
PBRPC+1 SO 1
PBRA.PC+1 [+ 1
0.5+50 Oata Low 1/0
0.5+50+1 Qate High 140

-

CPO+ ~00D0GCO =~ ~O0O00 = ~000000 = ~000000 == =0000000 = « =0 1uDCmm —-wB=ec OOOO0OEA = -+

[-N-N-N-

OO0 === DOO0OOGQ ==

CO0== 0O 00 % = =

Table 8. Detailed Instruction Operatlon (continued)

ADDRESS MODOE
#23. Stack Aziauve Indwact

Ingexed —(d.s).y

(ORA AND EQA.ACC.

STALDA.CMP.SBC)

{8 Op Codes)

{2 bytas)

{7 and 8 Cyclas)

mn

*242. Biock Move Positive

(farwarg; —xyc

(MVP)
(1 Op Code) N-2
(3 bytas} Byte
{7 cycles) c=2
% = Source Address
y = Dasnnaton
¢ :Number ol Bytes o Move -
1,y Dacrament
MVP 13 used when ine N-1
destnaton startaddress Byte
18 highsr {mora positive) ©°1
Lhan the source star address
FFFFFF
Ceoat. Stant N Byte
Lasl
ce Stan c=0
Dest. End
Scurce Eng
Q00000
#24p. Block Move Nagalive
(backward) —xyc
(MVN) N-2
(1 Op Coda) Byte
{3 bytss) C=2
T cycies)
x = Source Adaress
y = Destinstion
€ = Number of Byi2a 10 Move -
1y incrament
FFFFFF, ﬂ';;:
Souﬂm End c-1
Deat.End
Source Stan
Dest. Start
N Byts
Q00000 c-0
VN 15 uzad when tha
destination stan addressy

13 lower (more negative)
than 1he source start
address.

Notes.

CYCLE
1

arauntNonsuntianeon dunonewmn

r
-

Viioewsom -

M iopsundNaorun-

-t e ot -

, Bl
1
1
1
1
1
1
1
1
1
1
1
1
]
1
I
1
1
1
1
1
I
1
|
1
1
1
1
1
1
1

- -

VDA.VPA ADDRESS BUB DATa BUS

~ 0000~ 00 “-00=0B~=-D0=- —-0=-=-00 =

Ce-=-00 =

-~ 00 =-=-00 = 00— =00 ~

~ 0000 === 0000 +«==0000~—== O0D000 0 = =

0000~ =<

—~ 0000 === 00O — — —

PBAPC
PBAPC)
PBR+PC-1
05+50
05501
0.5+50+1
DBR AA+Y

DBR.AA+Y

PBR.PC
PBRPC+|
PBR.PC-2
SBA X
DBA, ¥
DBAY
DBA Y
PBR.PC
PBRPC-1
PBR PC-2
SBAX-)
DBA,Y-1
DBA.Y-1
DBA,Y- 1
PBR.PC
PBR.PC+1
PBRA.PC-2
SBAX-2
DBAY-2
DBAY-2
DBA Y-2
PBRAPC-3

P8A.PC
PBR PC+1
PBAPC+2
SBAX
DBA.Y
OBAY
DBAY

PBR.PC
PBR,PC+1

1

.

PBRPC+2 *

SBA Xt
DBA.¥*1
DAY+
CBA,¥*1
PBR.PC
PBRPC-1
PBR.PC+2
SBAX-2
DBA Y-2
DBA.Y+2
DBAY-2
PBA.PC+3

Op Code
s0

Daia Low
Data Fhgh
Op Codte
Daa

SBA

Source Data
Deat Data
0

[e}

Op Code
DBA

SBA

Source Data
Oes1 Data
o]

0

Op Code
[=1-1'Y

SBA

Source Data
Dest Data
o

10

naw Op Code

Op Code
DBA

SBA
Sourca Data
Dest Data
10

10

Op Code
DBA

SBA

Source Data
Dest Data
10

10

Qp Cooe
oBA

58a

Source Daia
Desr Data
0

0

New Op Coge

P I "'°"‘“""°""‘uo"““i|

1
1
l
1
0
l
1

1
1
1
i
0
1
1
1
1
1
1
o
[
[

(1) Add 1 byta (Tor immadsate only} lor M=0 or X=0 1@ 18 bit cala), add | cycle lor M0 or X:0
{2y Add 1 cycle 10r direct register low (DL) nol equat 0

3

(4) Aad 1 cycle lor indexing ecross page boundarws, or write, or X=0. Wlm-x— Y arin thg
emuigkion mode. this cycle containa invalid addressss.

(5) Add 7 cycla il brancii is taken

(6} Ada ¥ cycle Il branch 13 1akan acroas page boundaries in 6502 emulation mode (E: 1)
(7) Subtract 1 cycle for 6502 emulation mode (E=1)

&) Aaa ' cycle for REP.SEP

19) Want at cycle 2 for 2 cycies after Nl or TAT actve input
R/ remaing high curing Rasat,

(10}

(11} BRK bit 4 equala "0" in Emulation mode.

Aboreviations.
AAB Apsolute Acdress Bank
AAM Absoluts AGdreas Hhgh
AAL Apsolula Agdress Low
AAVH
AAVL
C Accumulator
D Dwect Roguater
DBA Oestnabon Bank Address
DBR Data Bank Reguier
DO Orrect Offsen
IDH Immad:ata Data =hgh
IDL Immediate Data Low
1Q Irgrnal Qparation
Status Regstar
Frogram Eank Registar
PC Program Counter
R-M-W Reao-Modily-Wria
S Stack Addraes
SBA Source Bank Addresz
SO Siack Otfael
VA Vector Adarass
wy Index Registers

b

PBR

Absolute Address Vecior High
Apsolule Aaaresa Vecior Low

& : New GESSCEE/502 Addressing Modas
2]

Special casa tor aborhing ihgiruciion. Thig i the last cycla which may be aborted or 1ha Status.
PBR or OBA rogsters will be updated.

Pin Function Table

Pin Description Pin Deascription
AQ-A15 Addraess Bus NC No Connection
ABORT Abort Input NMI Non-Maskable Interrupt
BE Bus Enable T RDY Ready
®2 UIN) Phase 2 In Clock RES Reset
@1 (OUT) Phase 1 Out Clock R/W Read/Write
| @2.10UT) Phase 2 Out Clock 50 Set Overflow
! D0-D7 _Data Bus (G655C802) SYNC Synchronize
DO/BAO-D7/BAT Data Bus. Multiplexed (G65SC816) VDA Valid Data Address
(S Emuiation Select VP Vector Pull
iRC Interrupt Request VPA Valid Program Address
l ML Memory Lock Voo Positive Power Supply (+5 Volts)
! M/X Mode Setect (P or Px) Vss Internal Logic Ground
Pin Configuration - G655C802
E B
s 3 s n 3 £ vas[] 1 %0 [RES
T SEap W o0 9 RDY] 2 3% [g2 (0um)
] |E - gls 13822 sroun 3)
/0""‘“"32233 mal] 4 37 g2 M)
= ® Nel] s ¥ [INC
™ o
M % ol 3 7] - Y Y T
SYNC | 8 3| W sync 7 u{IRw
voo | 9 37| Nc® voo T 8 30
AD | 10 3| Do Al 9 zOm
A1 35| D1 o b NP2
NC ™ | 42 | D2 aCn 103
GessCen2 A3 12 204
A2 (13 3 D A1 2808
Al |14 32|04 ASJ1e 27 o8
AL (1S 31| D8 ABLC]1S 2607
A5 |18 20| De AT 16 25 Ja18
As 17 4[JA1a
MY L A C1s 23 A9
2 e Al T88RER A0 19 212
~ s - N M W B A1 320 21 vea
<1235 82333 -
F 4
b= -
] x - 5 £ GG5SCB16
=] -1~ — S—
Ii‘-|52|¢|%‘i’!3 23c 8 VB 1 0 [T RES
— = rOY[T 2 ¥ [Cvoa
— RG] 4 7 [2 (IN)
» ok
- T E _ M s %[eE
vea | 9 3 “’“'m Nmic] s s{e
voo | 8 37 |NC veal] 7 MW
AD |10 38 | DO/BAD vool] & 33 [pvBAo
Al |1 35 [DI/BAY Al 9 321 0VBAY
ne™ |12 Gés5scsis - BA2 At w0 3 owsaz
c oY A2 30 DVBA2
A2 |13 31 | DVBAI A2 29) pa/BA4
Al |14 32 | D4/BAA A3 28 [Dw/BAS
A |18 31 | D/BAS AS[1a 27 [DW/BAS
AS |18 30 | DW/BAS As[]15 26) D/BAT
AS |17 29 | D7/BAT ATC18 25 [A8
T2 8sNRIA8KS AsLq17 2 A
A1 B A
s 292cE I o A0]19 2] A12
< . g ERRE AN 20 21 ves
Notes

1. Future G65SCB802/816 PLCC devices will have Vss added to this pin.
2. Future GB55C802/816 PLCC devices will have VDo added to this pin.
3. New signal pins on G65SC802 not available on 40-pin DIP version.

-~

an

Packaging Information

Ceramic Package

e
[coaT
Tl &
=l
i=e e B
! [__ _th-s, F.__ f
=]

1
i
T

Plastic Leaded Chip Carrier

D2
BOTH
SIDES

]

]

‘1

N

T/ L]
\
PINNO. 1
N
E E1
_‘L
R E— D, S5 R 55 L) N R R | 1
l D1
D
M P

Plastic & Cerdip Package

E

1

2

3

4

%ﬂ

i L
) L
| VU

40-PIN PACKAGE
L SYM- INCHES MILLIMETERS
BOL MiN MAX MIN MAX
@ _T‘ A - 0225 - 572
% 81 b 0014 0023 036 058
b1 0030 0070 076 178
E] c 0008 0015 020 038
D - 2098 — 53 24
o E 0510 0620 1295 1575
Et 0520 0630 121 16 00
o 0100 8SC 2 54 BSC
L 0125 0200 318 508
L1 0150 - g =
Q Q020 0060 95 152
S - o098 - 249
St 0005 - 013 =
52 0005 - 013 -
a o* 15 o 15°
f—e—]
44-LEAD CARRIER
SYM- INCHES MILLIMETERS
BOL MIN MAX MIN MAX
A 0.185 0.180 420 457
Al 0,090 0120 229 304
c 0.020 — 051 —
[*) 0.685 0.695 17 40 1765
=) 0650 0.6856 16510 | 16662
D2 0 500 REF 12.70 BSC
E 0.685 0695 17.40 17.65
E1 0.650 0.656 16.510 | 16.662
€2 0.580 0630 14.99 16 00
L] 0050 TYP 127 TYP
J — 0.020 - 051
J1 0.042 0 048 1.067 1219
M 0.020 0032 0661 0812
N 44 a
P 0013 0.021 0331 0533
z 0.042 0.056 107 1 42

N=NO.LEADS

YOU SHOULD CAREFULLY READ THE FOLLOWING
TERMS AND CONDITIONS BEFORE USING THIS
SOFTWARE, ANY DOWNLOADING, REPRODUCTION,
COPYING OR OTHER USE OF THE SOFTWARE WILL
CONSTITUTE ACCEPTANCE OF THESE TERMS AND
CONDITIONS.

SINGLE-COMPUTER END USER
SOFTWARE LICENSE AGREEMENT

APPLE COMPUTER, INC. ("Apple") provides this software
and licenses its use. Y ou asswne responsibility for the selection
of the software to achieve your intended results, and for the
installation and use of, and results obtained from, the software.

LICENSE
Pursuant to this license you may:

1. Use the software only on a single Apple computer. You
must obtain a supplementary license from Apple before
using the software in connection with systems and multiple
central processing units, computer networks or emulations
on mainframe or minicornputers. '

2. Download the software only on media that is compatible
with Apple manufactured computers.

3. Copy the software into any machine readable form for
backup purposes in support of your use of the software on
the single Apple computer,

4. Transfer the software and license to another party with a
copy of this Agreenient provided the other party reads and
agrees to accept the terms and conditions of this Agreement.
If you transfer the software, you must at the same time
either transfer all copies, whether in printed Gr*mactine-
readable form, to the same party or destroy any copies not
transferred. Apple granis a license to such other party under
this Agreement and the other party will accept such license
by its initial use of the sofrware. If you transfer possession
of any copy of the software, in whole or in part, to another
party, your license is automatically terminated.

This software is protected by United States copyright law.
You must reproduce the Apple copyright notice on any copy of
the software.

THIS SOFTWARE MAY BE ELECTRONICALLY DIS-
TRIBUTED ONLY BY AUTHORIZED ELECTRONIC
DISTRIBUTORS. IT MAY BE DOWNLOADED ONLY FOR
PERSONAL OR NON-COMMERCIAL USES ON APPLE
COMPUTERS AND MAY NOT BE REDISTRIBUTED OR
USED FOR COMMERCIAL PURPOSES WITHOUT AN
EXPRESS SOFTWARE DISTRIBUTION LICENSE FROM
APPLE. These licenses are available from Apple's Software
Licensing Department.

YOU MAY NOT MODIFY, REVERSE COMPILE, DISAS-
SEMBLE, NETWORK, RENT, LEASE, LOAN OR DIS-
TRIBUTE THE SOFTWARE, OR ANY COPY, IN WHOLE
OR IN PART. YOU UNDERSTAND THAT UNAUTHOR-
IZED REPRODUCTION OF COPIES OF THE SOFTWARE
OR UNAUTHORIZED TRANSFER OF ANY COPY OF THE
SOFTWARE MAY SUBJECT YOU TO A LAWSUIT FOR
DAMAGES, INJUNCTIVE RELIEF, AND ATTORNEY'S
FEES.

Apple reserves all rights not expressly granted to you.

Export law assurances

You agree and certify that neither the software and documen-
tation nor any direct product thereof (1) is intended 1o be used
for nuclear proliferation or any other purpose prohibited by the
United States Export Administration Act of 1979, as amended
(the "Act") and the regulations promulgated thereunder, and
(2) is being or will be downloaded, shipped, transferred or
reexported, directly or indirectly, mto any country prohibited
by the Act and the regulations promulgated thereunder.

Government End Users

if you are aéquiri.ng the software on behalf of any unit or
agency of the United States government, you agree that: (a) the

software is "Commercial Computer Software” as that term is

defined in Paragraph 27.401 of the DoD Supplement 1o the
Fcderal Acquisition Regulations (the "Supplement”) or is
within the equivalent classification of any other federal agen-
cies' regulations; (b) the sofiware was developed at private
expense, and no part of it was developed with goverment
funds; (c) the government's use of the software is subject to
"Restricted Rights” as that term is defined in clause
52.227-7013 (b)(3)(ii) of the Supplement or in the equivalent
clause of any other federal agencies' regulations; (d) the
software is a "trade secret” of Apple for all purposes of the
Freedom of Information Act; and (¢) each copy of the
software will contain the following Restricted Rights Legend:
"Restricted Rights Legend”

Use, duplication or disclosure is subject to restrictions as

set forth in subdivision (b)(3)(ii) of the Rights in

Technical Data and Computer Software clause at FAR

52.227-7013. Manufacturer: Apple Computer, Inc.

20525 Mariani Avenue, Cupertino, Calfornia 95014,

You agree to indemnnify Apple for any liability, loss, costs
and expense (including court costs and reasonable attorneys’
fees) erising out of any breach of the provisions of this
Agreement relating to use by the government. -

Term

The license is effective until terminated. You may terminate it
at any time by destroying the software together with all copies.
The license will also terminate upon conditions set forth else-
where in this Agreement or if you fail to comply with any of
the terms or conditions of this Agreement. You agree upon
such termination to destroy all copies of the software.

Disclaimer of Wagranty

The software is provided "as is" without warranty of any
kind, either express or implied, with respect to its merchant-
ability or its fitness for any particular purpose. The entire risk
as to the quality and performance of the software 1s with you.
Should the software prove defective, you (and not Apple or an
Apple authorized representative) assume the entire cost of all
necessary servicing, repair or correction.

Apple does not warrant that the functions contained in the
software will meet your requirements or that the operation of
the software will be uninterrupted or error free or that defecis in
the software will be corrected.

Some states do not allow the cxclusion of implied warranties,
so the above exclusion may not apply to you. This warranty
gives you specific legal rights and you may also have other
rights which vary from state to state.

Limitation of Remedies

In no event will Apple be liable to you for any lost profits,
lost savings or other incidental, special or consequential
damages arising out of the use of or inability to use any soft-
ware even if Apple or an authorized Apple representative has
been advised of the possibility of such damages, or for any
claim by any other party.

Some states do not allow the limnitation or exclusion of
liability for incidental or consequential damages so the above
limitation or exclusion may not apply to you.

Apple's liability to you for actual damages for any cause
whaltsoever, and regardless of the form of the action, will be
limited to the greater of $500 or the money paid for the soft-
ware that caused the damages or that is the subject matter of, or
is directly related to, the cause of action.

General

This Agreement, if any attempt to network, rent, lease, or
sublicense the software, or, except as expressly provided in
this Agreement, to transfer any of the rights, duties or obliga-
tions under this Agreement, becomes void.

The Agreement will be construed under the laws of the state
of California, except for that body of laws dealing with conflict
of laws. If any provision of this Agreement shall be held by a
court of competent jurisdiction to be contrary to law, that pro-
vision will be enforced to the maximum extent permissible,
and the remaining provisions of this Agreement shall remain in

full force and effect.

