
APPLE
PROGRAMM ER'S
AND DEVELOPER'S
ASSOCIATI ON

290 SW 43rd. Street
Renton, WA 98055
206-251-£548

'ApplellGs
Hardware
Reference
. Manual

APDA·Draft
21 Nov., 1986

APDA#: K2SHWR

'--

Apple IIGS

Hardware Reference

APDA Draft

21 November, 1986

Apple Technical Publications

This document contains preliminary material. It does not include

• final editorial corrections
• final artwork
• an index

It may not includefinal technical changes.

W® APPLE COMPUTER,INC.

Copyright © 1986 Apple Computer. Inc. All rights reserved.

Apple lIes Hardware Reference

This manual is copyrighted by Apple orby Apple's suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in pan, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased may be sold, given, or lent to another per.;on. Under the law, copying includes translating into
another language.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

© 1986 Apple Computer, Inc.

Apple, the Apple logo, AppleTaJk, DuoDisk, ImageWriter, LaserWriter and ProDOS are registered
trademarks of Apple Computer, Inc. Apple IIGS, Apple DeskTop Bus, Macintosh, SANE and UniDisk are
trademarks of Apple Computer, Inc.

Simuhaneously published in the United StateS and Canada.

APDADraji ii 11121186

Apple lies Hardware Reference

Contents
iii Table of Contents

List of Illustrations and Tables
viii List of Illustrations
x List of Tables

xi Foreword

Chapter 1: Introduction to the Apple IIGS
1-1 Removing the cover
1-2 Peripheral expansion slots
1-2 Connectors
1-2 Two serial ports
1-3 Disk drive port
1-4 RGB video connector
1-4 Composite video conector
1-5 Apple DeskTop Bus
1-5 Game connector
1-6 A closerlook
1-7 Apple II compatibility
1-8 New features
1-9 Terminology
1-9 Memory allocation .
1-10 Summary

Chapter 2: Mega II: Maintaining Apple II Compatibility
2-2 The Mega II custom IC
2-3 The Apple lIe
2-3 RAM upgrade
2-3 Apple I/O
2-2 The keyboard
2-3 Reading the keyboard
2-6 Apple II video
2-7 Video output
2-7 Text modes
2-9 Text character sets
2-10 4O-co1umn versus SO-column text
2-12 Graphics modes
2-12 Lo-Res graphics
2-13 Hi-Res graphics
2-15 Double Hi-Res graphics
2-16 Video display pages
2-18 Display mode switching
2-20 Addressing display pages directly
2-27 The text window
2-28 Secondary inputs and outputs
2-28 The speaker
2-29 Game I/O
2-29 The hand control signals
2-30 Annunciator outputs
2-30 Switch inputs

.APDADraft iii 11121186

Apple /ICS Hardware Reference

2-31 Analog inputs
2-31 Summary of secondary I/O'!ocations
2-32 Standard Apple II memory
2-33 Main memory map
2-34 RAM memory allocation
2-35 Reserved memory pages
2-35 Page zero
2-36 The 6502 stack
2-36 The input buffer
2-36 Link-address storage
2-36 The display buffers
2-37 Bank-switched memory
2-38 Setting bank switches
2-40 Reading bank switches
2-41 The State register
2-42 Auxiliary memory
2-44 Memory mode switching
2-46 Peripheral expansion
2-46 Selecting a device
2-46 The Slot register
2-47 Peripheral-card memory spaces
2-48 Peripheral-card I/O space
2-48 Peripheral-card ROM space
2-49 Expansion ROM space
2-51 Peripheral-card RAM space
2-51 I/O programming suggestions
2-52 Finding the slot number with ROM switched in
2-52 I/O addressing
2-53 RAM addressing
2-54 Other uses of I/O memory space
2-55 Switching I/O memory
2-56 Developing cards for slot 3
2-57 Interrupts
2-57 What is an interrupt?

Chapter 3: The FPI: New Features
3-2 The FPI subsystem
3-2 Memory allocation
3-3 The State register
3-3 Shadowing
3-5 The Shadow register
3-8 The Speed register
3-10 RAM control
3-10 ROM
3-10 I/O processing
3-10 The S lot register
3-12 Synchronization
3-13 The Mega II cycle
3-14 Mega II auxiliary bank access
3-14 Real-time clock Ie interface

Chapter 4: Video
4-1 The Video Graphics Controller
4-2 Apple II compatibility

APDADrajt iv 11121186

.....•

4-3 New video display features
4-4 Text and background color
4-4 Border color
4-4 To color or not to color ...
4-5 New graphics display modes
4-6 Super Hi-Res graphics
4-6 The Super Hi-Res graphics buffer
4-8 Scan-line control bytes ($9DOO--$9DC7)
4-9 Color palettes ($9EOO-$9FFF)
4-10 Pixels
4-11 The New-Video register
4-13 Color-Fill mode
4-13 VGC interrupts
4-14 VGC Interrupt register
4-15 VGC Interrupt-Clear register
4-16 Graphics summary

Chapter 5: Peripheral Expansion Slots
5-2 The expansion slots
5-5 Apple II compatibility
5-5 Direct memory access
5-5 I/O in the Apple IIGS
5-5 Slot I/O cards
5-6 DMA canis
5-6 Expansion slot signals
5-6 The buffered address bus
5-7 The slot data bus
5-13 Interrupt and DMA daisy chains
5-13 Loading and driving rules
5- 13 S urnrnary

Chapter 6: Apple IIGS Sound
6-1 Sound synthesis
6-2 Accessing the DOC
6-3 The Sound Control register
6-4 Address Pointer register
6-5 Write operation
6-5 Read operation
6-5 Playing back the sound
6-6 The DOC registers
6-6 The Oscillator Interrupt register ($EQ)
6-7 The Oscillator Enable register ($El)
6-7 The NO Converter register ($E2)
6-7 The Oscillator Control register ($AO-$BF)
6-9 The Data register ($60--$7F)
6-9 The Volume register ($4O-$5F)

Apple lies Hardware Reference

6-9 The Frequency High and Frequency Low registers ($00--$3F)
6-9 The Waveform register ($CO-$DF)
6-10 Sound input and output specifications
6-12 S urnmary

Chapter 7: Apple DeskTop Bus
7 -1 Introduction
7-2 The input bus

APDADraft v 11121186

Apple llGS Hardware Reference

7-3 The ADB microcontroller
7-3 The keyboard GLU
7-3 Keyboard GLU registers
7-3 System Status register
7 -5 Key board Data register
7-5 Modifier Key register
7-6 Mouse Data register
7 -6 Command/Status register
7 -7 Bus communication
7-8 Signals
7 -8 Attention and sync
7-8 Reset
7-9 Service request
7-9 Reset .
7 -9 Transactions
7-10 Apple DeskTop Bus peripheral devices
7 -10 Commands
7- 11 Talk
7-11 Listen
7 -11 Device registers
7-11 Collision detection
7 -11 Error conditions
7 -12 Network layer (ADB types) .
7-12 Nonnal devices
7 -12 Extended sddress devices
7 -13 Register 3
7 -13 Service request

Chapter 8: The Disk Port
8-1 Introduction
8-1 Apple II compatibility
8-2 The disk port connector
8-2 TheIWM
8-3 The Disk Interface register

Chapter 9: The Memory Expansion Slot
9-1 Introduction
9-1 Extended RAM
9-2 Extended RAM Mapping
9-2 MSIZE
9-3 Ghosting
9-3 ExtendedROM
9-4 Address multiplexing

APDADraft vi 11121186

. ~- -

Apple lIGS Hardware Reference

Chapter 10: Power Supply
10-1 Introduction
10-1 Function
10-1 Specifications
10-2 Power connector

Chapter 11: 6SC816 Microprocessor
11-1 Introduction
11-2 65C816 Features
11-3 The 16-bit 65C816
11-4 Microprocessor differences
11-4 The registers
11-5 The accumulator
11-5 X Index register
11-5 Y Index register
11-5 Data bank register
11-5 S tack pointer
11-5 Program Status register
11-5 Program counter
11-5 Program bank register
11-6 Direct register
11-6 Emulating the 6502
11-6 The e bit
11-6 The m bit
11-6 The x bit
11-7 Operating speed
11-7 Summary
11-8 65C816 data sheets

A-I Appendix A: Roadmap to the Apple IIGS Technical Manuals

B-1 Appendix B: International Keyboards

C-I Appendix C: Character Generator

D-I Appendix D: Schematic Diagrams

E-I Appendix E: Conversion Tables

107 Appendix F: Frequently Used Tables

Glossary

APDADraft vii 11121186

Apple IlGS Hardware Reference

List of Illustrations and Tables

List of Ilustrations

Illustration Title

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 3-1
Figure 3-2
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12

The Apple JIos
Releasing the snaps to remove the cover
The Apple lIas with cover removed
The Apple IIos connectors
Pin configuration of a serial pon connector
Apple lIos block diagram
Bank memory map
The Apple IIos block diagram
40-column text display
80-column text display
Hi-Res display bits
Map of 40-column text display
Map of 80-column lext display
Map of Lo-Res graphics display
Map of Hi-Res graphics display
Map of Double Hi-Res graphics display
Game I/O connector
Memory for bank $EO
RAM allocation map
Bank-switChed memory map
Slate register
Memory map with auxiliary memory
Slot register
Expansion ROM enable circuit
ROM disable address decoding
I/O memory map
The Apple JIos block diagram and the FPI. ..
The Apple JIOs memory map
The Shadowed memory map
The Shadow register
The Speed register
The SIOI register
clIO cycles, 14M cycles, and M-Stales
The Control register
Block diagram of the Apple liaS and video . . .
Screen Color register
Border Color register
ColorlMonochrome register
Super Hi-Res graphics display buffer
Scan-Line control byte format
Color palette format
Pixel data byte format
Color selection in 640 mode
New Video register
Scan-Line interrupt
VGC Interrupt register

APDADraft viii

Page

11 /21186

Apple IlGS Hardware Reference

Figure 4-13
Figure 4-14
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 8-1
Figure 8-2
Figure 8-3
Figure 9-1
Figure 9-2
Figure 9-3
Figure 10-1
Figure 11-1
Figure 11-2

VGC Interrupt-Clear register
Drawing pixels on the screen
Apple lIas block diagram
Peripheral expansion slot pin diagram
The data buses within the Apple lIas
Input/output clock and control signal timing
Slot I/O read and write timing
Read and write timing with /lNH active
/DMA read and write timing
Block diagram showing relationship of the sound ...
The Sound Control register
The Address Pointer registers
The Oscillator Interrupt register
The Oscillator Control register
The Waveform register
An example of a two-channel demultiplexer circuit
The ADB within the Apple lIas
TheADB bus
Mini-DIN connector pin configuration used in the ADB
System Status register
The Keyboard register
The Modifier Key register
The Mouse Data register
The Command/Status register
Bit representation via duty-cycle modulation
Attention and sync pulses
Service Request
Register 3
Keyboard register 3
Mouse register 3
Apple lIas block diagram
The disk port connector
Disk Interface register
Apple lIas block diagram
Extended RAM mapping
Example circuit for decoding extended memory card ...
Power supply connector
Apple lIas block diagram and the 65C816
65C816 registers

APDADraft ix 1lI21186

Apple llcs Hardware Reference

List of tables

Illustration Title

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18
Table 5-1
Table 6-1
Table 6-2
Table 6-3

Apple II-compatible features
Standard Apple II Video display specifications
Display character sets
La-Res graphics colors
Hi-Res graphics colors
Double Hi-Res grphics colors
Video display page locations
Display soft switches
Text window memory locations
Annunciator memory locations
Secondary I/O memory locations
Language Card bank select switches
Auxiliary memory select swi tches
Peripheral card I/O memory locations enabled by .. .
Peripheral card I/O memory locations enabled by .. .
Peripheral card RAM memory locations
Peripheral card I/O bse addresses
I/O memory switches
Expansion slot signals
OLU registers
Sound input and output electrical specifications
DOC register addresses

APDADraft x

Page

IlI21/86

Apple IlCS Hardware Reference

Chapter 4, Video, goes in depth into how to make the new Super Hi-Res graphics work for
you.

Chapter 5, Peripheral Expansion, provides descriptions of the J/O slots and the signals
available at an expansion slot. DMA and interrupts are described here also.

Chapter 6. Sound. shows you how to control the 32 digital oscillators and generate sound.

Chapter 7. Apple DeskTop Bus, provides details of the hardware and protocol required to
design and connect an input device (keyboard, mouse, graphics tablet, and so on) to this
input device.

The built-in disk drive port is described in Chapter 8.

Chapter 9 goes into detailed description of the memory expansion slot and how to design
and access a memory expansion card for this special slot.

Chapter 10 briefly describes the Apple IIGS power supply and lists its specifications.

The new 65C816 microprocessor is covered in Chapter II.

Appendix A contains a roadmap to the Apple IIGS technical suite of manuals. Read this
appendix to determine which books will help you to learn more about a programming
language, the Apple IIGS firmware, or other aspect of the computer.

Appendix B has all nine international keyboard layouts.

Appendix C shows you the contents of the character generator-all the characters the Apple
JIGS can display.

Appendix D contains the schematic diagrams showing all of the electrical components of
the main circuit board.

Appendix E has tables that show what a bit and a byte can represent. Conversion tables
between hexadecimal, decimal, and negative decimal, as well as 8-bit ASCII, are provided.

Appendix F contains some of the most frequently used tables taken from throughout the
manual.

A glossary follows the appendixes.

Some terminology

The Apple II and Apple® II plus are standard Apple II computers. In this manual,
reference is made to the Apple IIGS's compatibility with standard Apple II computers. This
means that the Apple IIGS will software written for an Apple II or Apple II plus computer.
A particular function of the Apple IIGS that is in common with the Apple® lie or Apple®
IIc, for instance, will be mentioned specifically as such.

Words that appear in boldface in the text are defined in the glossary. located at the back of
this manual.

APDADrajt xii 11121186

Apple lIe S Hardware Ref erence

Chapter 1

Introduction to the Apple IIGS

The Apple IIGS is a new computer in the Apple II family. While maintaining its roots in
the Apple lIe and Apple IIc, this processor also provides new features that make it the most
powerful Apple II yet. This first chapter describes generally how the Apple IIGS fits into
the Apple II family and tells what sets it apart from previous Apple II computers. Figure I­
I shows a photograph of the Apple IIGS.

lPIH.01'OORAIPIHI OIF 1'1HlE AlPlPlLlE fiGS

Figure 1·1. The Apple IIGS

Removing the cover
The Apple IIGS uses a two-piece case. The cover is hinged at the from and is secured at the
rear where the upper and lower halves meet. A snap lock is located at each side of the rear
panel as shown in Figure 1-2. To remove the cover, press in on each snap lock while
lifting up at the rear of the cover. Pivot the cover at the front and remove it completely.
The main logic board is now exposed for access to the expansion slots. Figure \-3 shows
the major components of the Apple IIGs.

Ji>IHI01'O OIF SNAlP-lLOCliCS A l' mE REAR OIF 1'HE COVER.

Figure 1·2. Releasing the snap locks to remove the cover

APDADraft /-1 11121186

Apple IIGS Hardware Reference

AERI AL PiHIO'li'O Of A PPlLlE lIlIGS, COVlElR lREMOVED. CAlLlLOU'li'S.

Figure 1-3. The Apple lIoS with cover removed

Peripheral expansion slots

The Apple IIoS, like the Apple lIe, has seven expansion slots at the rear of the main
logic board. These will accept most Apple II-compatible peripheral cards designed
for any of the Apple II computers. Note that the Apple IIoS does not have an auxiliary
slot as is found in the Apple lIe. For more infonnation on the peripheral expansion slots,
see Chapter 5, "Peripheral Expansion Slots."

Connectors

At the rear of the computer are several connectors. These connectors allow the computer to
be connected to an input device such as a keyboard or a mouse, or a peripheral device
such as a disk drive, a printer, a modem, a network, or the like. Figure 1-4 shows the
connectors.

lPIHIO'li'O OlF lRlEAlR lJ> ANJElL OlF AlJ>PLE lIlIGS WITH CAlLlLOmrS

Figure 1-4. The Apple IIos connectors

Two serial ports: The two RS-232-C and RS-422 compatible serial ports use mini­
DIN (Deutsche Industrie Nonnal) 8-pin connectors. To transmit and receive data to and
from a device connected to a serial port, use the finnware calls in the system read-only
memory (ROM). Figure \-5 shows the pin configuration of the serial ports.

To read about how to use the firmware in the Apple
IIOS ROM, refer to the Apple IIOS Firmware
Reference manual.

APDADraft 1·2 11121186

.... _ ..

Apple IIGS Hardware Reference

Figure 1-5. Pin configuration of a serial port connector

Pin

1
2
3
4
5
6
7
8

Descri ption

DTR
HSKI
TXData­
Ground
RXData­
TXData+
GPI
RXData+

Data terminal ready
Handshake in
Transmit data -
Ground reference and supply
Receive data -
Transmit data +
General purpose input
Receive data +

Table 1-1. Serial port signal description

Disk drive port: This connector will accept either 5.25-inch or 3.5-inch Apple disk·
drives made for the Apple II. This 19-pin connector is similar in function to the one on the
Apple IIc. For more information on the disk drive port, see Chapter 8, "The Disk Port".

RGB video connector: This connector provides analog red, green, and blue (RGB)
video signals for an analog-input RGB video monitor. Use only an analog input RGB
monitor with this 15-pin connector. See Chapter 4, "Video," for more infonnation.

Composite video connector: Composite color video is available at this connector.
A standard Apple composite color monitor can be used to display video. A television may
be used to display 4<k:olumn text or graphics: This requires a video modulator to connect
the Apple IIGS to a television. See Chapter 4, "Video" for a description of composite
video.

Apple DeskTop Bus: Connect Apple DeskTop BusThl (ADB) devices to this
connector. These devices may be ADB keyboards, ADB mouse devices, ADB graphics
tablets, or any other input device designed to the ADB specification. Do not attempt to
adapt input devices not designed for ADB to this connector. See Chapter 7, "Apple
DeskTop Bus," for more information on using this connector.

Game connector: Connect a standard Apple II game paddle or joystick to this
connector. Do not adapt an ADB device to this connector. ADB devices are completely
different, and should not be used. See chapter 2 for more information on game connectors
and signals.

A closer look

You can think of the Apple IIGS system as containing two separate and unique subsystems.
These subsystems are not mutually exclusive; on the contrary, the subsystems share several
components without which they could not function. In particular, both share the

APDADraft 1-3 1112 1i815

Apple lles Hardware Riference

microprocessor, inputloutput (1/0), memory, video, and expansion support
circuitry.

The frrst subsystem consists of the pans of the computer that make the Apple IIGS
compatible with other Apple II products. These are

• the 65C8l6 microprocessor

• the Mega II custom integrated circuit (IC)

• 128K of standard Apple II memory

• the Video Graphics Controller (VGC) and video generation circuitry

• buill-in peripheral devices and extemall/O slots

This subsystem is referred to as the Mega II portion of the system, after the controlling
device.

While the Digital Oscillator Chip (DOC) sound synthesizer and support circuitry are
new to the Apple II family of computers, they fall under control of the Mega II side of the
computer.

The second subsystem consists of components of the computer that are new to the Apple II
famil y. These are

• the 65C816 microprocessor

• the Fast Processor Interface (FPI) custom IC

• 256K (expandable to 8Mb) of dynamic random-access memory (RAM)

• 128K (expandable to 1Mb) of read-only memory (ROM)

This subsystem is referred to as the FPI portion of the system, because of the controlling
device, the FPI.

Note that the 65C816 microprocessor is listed as a component of both subsystems. Being
a new microprocessor, it has many new instructions that provide this computer with new
capabilities. Also, the 65C816 emulates the 6502 microprocessor and will recognize the
6502 instruction set, which means it will run most existing Apple II software.

Figure 1-6 shows the Apple IIGS computer in block form. Note the dotted division
separating the two subsystems. Although this is a logical division, it is not absolute: The
FPI ponion has access to the expansion slots, the Video Graphics Controller and other
components on the Mega II side.

APDADraft 14 /J121 ISt)

I
I
I L _______ _

Apple lies Hardware Ref erence

Figure 1-6. Apple IIGS system block diagram

The rest of this chapter describes the FPI and Mega II subsystems in more detail and
explains how they function together.

Apple II compatibility
The Apple IIGS is compatible with the Apple n family of processors. Here are some of the
features the Apple IIGS shares with the Apple lIe and I1c:

• 6502 processor compatibility, which is maintained by the 65C816 microprocessor
used by the Apple I1GS

• Apple 11 graphics, which includes Lo-Res mode, Hi-Res mode, and Double
Hi-Res mode color video graphics

• 128K of main RAM memory

• built-in Applesoft BASIC

• two built-in serial ports

• seven peripheral expansion slots, compatible with the IIe

• a built-in disk interface port that will accept either 5.25-inch or 3.5-inch disk drives

APDADraft 1-5 II !2l!86

Apple lies Hardware Reference

• built-in Apple II Monitor fmnware

• 40-column and SO-column text display capability

a game I/O pon for joysticks and game controllers like the lIe

New Apple I1gs features
Although the Apple IIGS has many features in common with previous Apple II products, it
has several new features that enhance its performance. Here are a few examples:

• The 16-bit CMOS 65CSI6 microprocessor, which uses a superset of the 6502
instruction set, includes 11 new address modes and 36 new instructions, and is
compatible with 6502 code.

Complementary Metal Oxide
Semiconductor (CMOS) is the silicon material
[hat [his microprocessor is made from. This material
allows the device to be faster and to require less
power.

To learn more about the 6502 and the 65C02
microprocessors. refer to the Apple ffe Technical
Reference manual and the Apple fie Technical
Reference manual, respectively.

• high processing speed, which is selectable between 1.024 MHz or 2.S MHz

• Super Hi-Res video graphics mode, which offers either 320- or 640-pixel
horizontal resolution, displaying 16 colors per line; these colors may be chosen
from a possible 4096

• analog ROB color video outputs

• 12SK of RAM, which may be expanded to a maximum of 8Mb that can be achieved
by using an optional expansion card in the memory expansion slot; a maximum of
1Mb of ROM can be utilized by using an expansion card

• built-in AppleTa1k® network firmware

• built-in real-time clock (RTC) with a backup battery, which is accessible through
the Con trol Panel

• selectable display border, text, and background colors

• a sound synthesizer IC with 32 independant oscillators and 64K of dedicated RAM

• a detachable, full international keyboard with keypad

Apple DeskTop Bus, whose protocol provides for input devices such as graphics
pads, mouse devices, and keyboards

• enhanced Monitor firmware which supports the 65C816 microprocessor

APDADraft 1-6 1l!211/!6

Apple lIes Hardware Reference

• a control panel screen, which provides users with means for setting system
parameters

Terminology

The terms Mega II subsystem and Apple II-side refer to the ponion of the Apple IIgs that
provides the Apple II compatibility. The terms FPl subsystem and /6-bit side refer to the
ponion of the computer system that provides those features which are new to the Apple II
family: Everything that makes the Apple IIGS not an Apple IIe or IIc.

Important: Throughout this manual you will need to manipulate bits within
registers and soft switch locations in order to achieve some result. Some bits in
these registers or soft switches must be left alone, or the system could crash. These
bits are labeled "Reserved; do not modify." In order to manipulate the desired bits
and leave those reserved ones untouched, you must use a read-modify-write
technique. Either of two assembly-language corrunands can be used to accomplish.
this: the test-and-set-bit (TSB) command or the test-and-reset-bit (TRB) command.
Both of these allow you to modify anyone bit and leave the others untouched.

To read about using the TSB and TRB instructions,
refer 10 "Programming the 65816" by David Eyes.

Memory allocation
Note that the Apple IIGS has three separate quantities of RAM: 256K available to the FPI;
128K (half of the on-board RAM) available to the Mega II; 64K dedicated to the DOC.
Figure 1-7 shows the system memory map.

APDADraji /-7 11121186

Apple IfGS Hardware Reference

$00 64K
On-board 128K RAM and 1/ 0

$01 64K

$02-7F 8Mb Memory expansion card. RAM area

$8o--DF 6Mb Reserved--currently unused
I

$EO 64K
On-board Mega II 128K RAM

$E1 64K

$E2-EF , 896K , Reserved--currently unused

$FO-FD 896K Memory expansion card. ROM area

$FE 64K
Main board fast ROM area

$FF 64K

Figure 1-7. Bank memory map

A minimum Apple IIas system includes 256K of RAM and 128K of ROM. The 128K
ROM space is expandable to 1 megabyte.

Note: 128K of the main RAM (banks $()() and $01) correspond to the main 64K and
auxiliary 64K memory banks of the Apple IIe and Apple IIc with some exceptions: they
lack the standard Apple II language-card space, I/O space, and video display buffers. To
provide these memory spaces, the Apple lIas shadows, or duplicates, accesses to the
language-card, I/O, and video locations in banks $00 and $0 I into the equivalent locations
in banks $EO and $El. For more information on how shadowing works, see Chapter 3,
"New Features."

APDADraft /·8 11 /21186

Apple lIGS Hardware Reference

Chapter 2

Maintaining Apple II Compatibility
The Apple IIOS maintains compatibility with the rest of the Apple II computers by vinue of
the Mega II custom Ie. This chip contains most of the components from the Apple lIe (and
many from the IIc) and makes it possible for the Apple IIOS to run application programs
written for the IIe.

This chapter describes the function of the Mega II Ie and therefore the Apple IIe. Although
each topic (video, I/O, memory, and so forth) can also be found elsewhere in this manual,
only those standard Apple II-compatible features are covered in this chapter. To read about
the new features of the Apple IIOS, see the chapter for each feature.

This chapter also contains detailed descriptions of all of the hardware and firmware that make
up the Apple IIe, and therefore, all that makes the Apple IIos compatible with the Apple lIe.
Table 2-1 lists come comparisons of the features found on the Apple IIOS, Apple lIe, and the
Apple IIc.

This chapler contains a lot of infonnation about the way
the Apple IIGS works, but it doesn't tell you how to use
a Apple lIGS. For that infonnalion, you should read the
other Apple lIGS manuals, especially the Apple nGS
Owner's Guide.

To read about the new Apple nGS sound synthesizing
capability, see Chapter 6, "Apple nGS Sound.·

To read about the new Apple lIGS Super Hi-Res
graphics, see Chapter 4, "Video."

APDADraft 2-1 11121'80

Apple IIGS Hardware Reference

Table 2-1. Apple II-compatible features

Feature Apple lie Apple lie Apple IIGS
Memory 64K 128K 256K*

Serial ports Expansion card only 2 built in 2 built in

Disk port Expansion card only I built in I built in

Text display 40-column (80 optional) 40- and 80-column 40- and 80-column

Graphics Standard Apple II Standard Apple II Standard and new
graphics modes graphics modes graphics modes

Keyboard Built-in Built in Detachable input bus device

Peripheral Seven none seven
expansion slots

Memory One, for use with none one, for use with
expansion slot with 8O-column card! memory expansion card

*while the Apple IIGS has 256K on-board memory, programs written for previous Apple II
models will utilize a maximum of 128K.

The Mega II Custom Ie
The Mega II is a custom integrated circuit made up of several circuits previously found in the
Apple lIe. The following make up the Mega II:

• memory management unit (MMU) custom IC

• input/output unit (IOU) custom IC

• character generator ROMs (eight character sets)

• video circuitry

The Mega II has virtually all the functions of an Apple lIe on a chip; it supports a slotted
microcomputer architecture as well as the new peripheral devices built into the Apple IIGS.
Apple II system components not found on the Mega II are the microprocessor, RAM and
ROM memory, the slots, and the 16-pin game I/O connector. Figure 2-1 shows the Mega II
and its relationship to the other parts of the Apple IIGS.

APDADraft 2-2 II /21/86

.----,

Apple lies Hardware Reference

i
L----------1 r--'-..,

'~"r-+++-I -
--

Figure 2·1. Relationship of the Mega II within the Apple IIGS

TheApplene
• The Apple lIGS emulates many features of the Apple lIe:

• the 6502 microprocessor running at 1.024 MHz

• 128K of RAM

• 40-column text and SO-column text display

• video graphics, induding:

Lo-Res graphics

Hi-Res graphics

Double Hi-Res graphics

• peripheral card VO including direct memory access (DMA)

Although the Apple IIG S is capable of running the
processor at a higher clock speed, some standard Apple
II application programs must be executed at the
l.024MHz clock speed for timing reasons.

APDADraft 2-3 1lI21186

Apple lies Hardware Reference

To read more about built-In I/O
routines in the Apple IIGs. see
the Apple IIGS FlrmwQre
Reference manual.

APDADraft

RAM upgrade

The Apple lIe is a 64K machine, expandable ro 128K through the
use of auxiliary memory cards like the Extended SO-Column
Text Card. The Apple lIGS has 256K of main memory,
mounted on the circuit board.

The RAM les on the lie circuit board have been replaced by ten
64K x4 ICs on the lIes main logic board. This memory is divided
into the 128K access able by the Mega II in which standard Apple
II programs are run, and 128K of fast system memory available
for programs that were developed for the Apple lIes. Also nOle
that there is 64K of RAM dedicated to sound generation that is nOl
directly accessable by application programs.

Apple IT I/O
This section describes the VO devices built into the Apple lies in
terms of their functions and the way they are used by programs.
The built-in VO devices are:

• the keyboard

• the video-dis pia y generator

• the speaker

• the game input and output

At the lowest level, programs use the built-in I/O devices by
reading and writing to dedicated memory locations. This
section lists these locations for each I/O device. [t also gives the
locations of the internal soft-switches that select the different
display modes of the lIes.

~. Built-In I/O routines: This method of input and
output-loading and storing directly to specific locations in
memory-is not the only method you can use. For many of
your programs, it may be more convenient to call the built­
in I/O routines stored in the Apple lIes firmware.

The keyboard
The keyboard uses the Apple DeskTop Bus (ADIl) to
communicate with the processor. All input devices are
connected to the ADB and are controlled by the keyboard
microcontroller. This controller supports reading of the
keyboard by standard Apple II application programs.

The Apple lIes keyboard has automatic repeat, which means thai
if you press any key longer than you would during normal typing,
the character code for that key will be sent continuously until you

2-4 11121 /86

. ~-.

Table 2-2
Keyboard memory locations

Hex

Loc:atlon

Oeclmal

SCOOO

SC010

49152 -16384

49168 -16368

APDADraft

Apple lIes Hardware Reference

release the key. You may also hold down any number of keys
and still press another key; this is known as N-key rollover.

Apple IIGS computers manufacrured for sale outside the United
States have a slightly different standard keyboard arrangement.
The different keyboards are shown in Appendix B.

Reading the keyboard

The keyboard encoder and ROM generate all 128 ASCll
(American Standard Code for Information Interchange) codes,
so all the special character codes in the ASCII character set are
available from the keyboard. Application programs obtain
character codes from the keyboard by reading a byte from the
keyboard data location shown in Table 2-2.

Description

Keyboard data and strobe

Any-key-down flag and dear-strobe switch

Your programs can get the code for the last key pressed by
reading the keyboard data location. Table 2-2 gives this
location in two different forms , The hexadecimal value,
indicated by a preceding dollar sign ($), is used in assembly
language; the decimal value is used in Applesoft BASIC. The
low-order seven bilS of the byte at the keyboard location
contain the character code; the high-order bit of this byte is the
strobe bit, described below.

Your program can find out whether any key is down, except the
Reset, Control, Shift, Caps Lock, Apple, and Option keys, by
reading from location 49152 ($COOO). The high-order bit (bit 7)
of the byte you read at this location is called any-key-down; it is
I if a key is down and 0 if no key is down. The value of this bit is
128; if a BASIC program gets this information with a PEEK, the
value is 128 or greater if any key is down, and less than 128 if no
key is down.

The strobe bit is the high-order bit of the keyboard data byte.
After any key has been pressed, the strobe bit is high. It remains
high until you reset it by reading or writing at the clear-strobe
location. This location is a combination flag and switch; the flag
tells whether any key is down, and the switch dears the strobe
bit. The switch function of this memory location is called a soft
switch because it is controlled by software. In this case, it
doesn't matter whether the program reads or writeS, and it
doesn't matter what data the program writes: the only action

2-5 11/21/86

Apple IIGS Hardware Reference

See the Apple JIGS Firmware
Reference manual for
information on firmware for
reading the keyboard.

that OCCurs is the resetting of the keyboard strobe. Similar soft
switches, described later, are used for controlling other
functions in the Apple computer.

Important Any time you read the any-key-down flog. you also clear
the keyboard strobe. If your program needs to read both
the nag and the strobe. it must read the strobe bit first.

To learn how to read the registers
within the ADB microcontroller,
see Chapter 7, "Apple DeskTop
Bus."

To read about the reset routine,
see the Apple IIGS FIrmware
Reference manual.

To read more about the ADB, see
Chapter g, "Apple DeskTop
Bus ."

APDADraft

After the keyboard strobe has been cleared, it remains low until
another key is pressed. Even after you have cleared the strobe,
you can still read the character code at the keyboard location.
The data byte has a different value, because the high-order bit is
no longer set, but the ASCII code in the seven low-order bits is
the same until another key is pressed. Appendix C contains the
ASCII codes for the keys on the keyboard.

There are several special function keys that do not generate
ASCII codes. For example, pressing the Control, Shift, or Caps
Lock key directly alters the character codes produced by the
other keys. In the Apple IIGS, the state of these modifier keys is
available by reading a register within the ADB microcontroUer.

The Control-Apple-Reset key combinatio('(is different from all
other keys on the ADB keyboard only in that it generates a
special key code. When the ADB microcontroller detects the
reset code, the program currently running in memory is halted.
If the Control-Reset-Esc key combination are pressed, the
system halts whatever program it's running, asserts the RESET
line, and restarts the computer. This restarting process is called
the reset rouHne.

Apple II video
The Apple nGS can display video in several different ways,
displaying text as well as color graphics. The standard Apple II
text and graphics modes are discussed here, while the new
graphics mode, Super Hi-Res graphics, is discussed in Chapter
4, ·Video."

2-6 1I 121186

Apple lles Hardware Reference

Video output
The primary output device is the video display. You C3.n usc any
ordinary video monitor, either color or black and while, to
display video information [rom the Apple IlGS. An ordinary
monitor is one that accepts composite video compatible with
the standard set by the National Television Standards
Committee (NTSC). If you use standard Apple II color graphics
with a monochrome (single-color) monitor, the display will
appear as that color (black, for example) and various patterns
made up of shades of that color.

If you are using only 40-column text and graphics modes, you
can use a television set for your video display. If the 1V set has
an input cormector for composite video, you can COCUleC(it
directly to your computer; if it does not, you'll need to attach a
radio frequency (RF) video modulator between the Apple IlGS
and the television set.

Important The Apple IIGS con produce on SO-column text
disploy. However. If you use on ordinory color or
block-ond-whlte television set. SO-column text will be
too blurry to reod. For 0 cleer SO-column disploy. you
must use 0 high resolution video monitor with 0
bondwfdth of 7 MHz Of greoter.

The specifications for the video display are summarized in
Table 2-3.

The video signal produced by the Apple IlGS is NTSC­
compatible composite color video. It is available at twO places,
the RCA-eype phono jack and at the RGB video connector, both
on the back of the computer. Use the RCA-eype phono jack to
connea a composite video monitor or an external video
modulatofj use the RGB video connector to connect an analog
input RGB monitor.

The Apple IIgs can also display Super Hi-Res
graphics, although it is not a standard Apple \l
video display mode. To read about Super Hi-Res
graphics, see Chaper 4, "Video."

APDADraft 2-7 !Il2/186

Apple llcs Hardware Reference

Tobl" 2-3
Standard Apple " Video display specificatlons

Dispay modes:

Text copcxity:

Charadei' set

Display formats:

lo·Res color graphics:

Hi·Res color graphics:

Ooubkt HI·Res color graphics:

APDADraft

40-column text; map: Figure 2-5
SO-column text; map: Figure 2-6
Low-Res color graphics; map: Figure 2-7
Hi-Res color graphics; map: Figure 2-8
Double Hi-Res color graphics; map: Figure 2-9

24 lines by 80 columns (character positions)

128 ASCII characters (see Appendix C for a list of display characters)

Normal, inverse, /lashing, MouseText (Table 2-4)

16 colors (Table 2-S) 40 horizontal by 48 vertical; map: Figure 2-7

6 colors (Table 2-6) 140 horizontal by 192 vertical (restricted);
Black and white: 2SO horizontal by 192 venical; map: Figure 2-8

16 colors (Table 2-7) 140 horizontal by 192 venical (no restrictions);
Black and white: 560 horizontal by 192 vertical; map: Figure 2-8

The Apple IIGS can produce seven different kinds of standard
Apple II video display:

• text, 24 lines of 40 characters

• teX~ 24 lines of 80 characters

• Lo-Res graphics, 40 by 48, in 16 colors

• Hi-Res graphics, 140 by 192, in 6 colors

• Hi-Res graphics, 280 by 192, in black and white

• Double Hi-Res graphics, 140 by 192, in 16 colors

• Double Hi-Res graphics, S60 by 192, in black and white

The two text modes can display all 128 ASCII characters:
uppercase and lowercase letters, numbers, and symbols. The
Apple IIGS can also display MouseText characters.

Any of the graphics displays can have 4 lines of text at the
bonom of the screen. The text may be either 40-column or 80-
column, except that Double Hi-Res graphics may have only SO­
column text at the bottom of the screen. Graphics displays with
text at the bottom are called mixed-mode displays.

The Lo-Res graphics display is an array of colored blocks, 40
wide by 48 high, in any of 16 colors. In mixed mode, the 4 lines
of text replace the bottom 8 rows of blocks, leaving 40 rows of 40
blocks each.

The Hi-Res graphics display is an array of dots, 2SO wide by 192
high. There are 6 colors available in Hi-Res displays, but a given
dot can use only 4 of the 6 colors. If color is used, the display is
140 dots wide by 192 high. In mixed mode, the 4 lines of text
replace the bottom 32 rows of dots, leaving 160 rows of 280 dots
each.

2-8 JI /21186

APDADraft

Apple IlGS Hardware Reference

The Double Hi-Res graphics display uses main and auxiliary
memory to display an array of dots, 560 wide by 192 high. All
the dots are visible in black and white. If color is used, the
display is 140 dots wide by 192 high with 16 colors available. In
mixed mode, the 4 lines of text replace the boltom 32 rows of
dots, leaving 160 rows of 560 (or 140) dots each. In mixed
mode, the text lines can be 80 columns wide only.

Text modes
The text characters displayed include the uppercase and
lowercase letters, the ten digits, punctuation marks, and special
characters. Each character is displayed in an area of the screen
that is seven dots wide by eight dots high. The characters are
formed by a dot matrix five dots wide, leaving two blank columns
of dots between characters in a row, except for MouseText
characlers, some of which are seven dots wide. Except for
lowercase letters with descenders and some MouseText
characters, the characters are only seven dots high, leaving one
blank line of dots between rows of characters.

The normal display has white dots on a medium blue
background. (Other color text on other color backgrounds is
also possible. See Chapter 4, 'Video," for more information.)
Characters can also be displayed as blue dots on a white
background; this is called Inverse format.

Text character sets

The Apple JIGS can display either of two text character sets: the
primary set or an alternate set. The forms of the characters in
the two sets are actually the same, but the available display
formats are different. The display formats are

• normal

• inverse

• flashing, alternating between normal and inverse

With the primary character set, lhe Apple llGS can display
uppercase characters in all three formats: normal, inverse, and
flashing. Lowercase letters can be displayed in normal format
only. The primary character set is compatible with most
software written for other Apple II models, which can display
text in flashing format but don't have lowercase characters.

The alternate character set displays characters in either normal
or inverse format In normal format, you can get

• uppercase letters

• lowercase letters

• numbers

• special characters

2-9 11121186

Apple JIGS Hardware Reference

Table 2-4
Display character sets

In inverse format. you can get

• MouseText characters

• uppercase letters

• lowercase letters

• numbers

• special characters

You select the character set by means of the alternate-text soCt
switch, SETALTCHAR, described later in this chapter in the
section "Display Mode Switching." Table 2-4 shows the
character codes in hexadecimal for the primary and alternate
character sets in normal, inverse, and flashing Cormats.

Each character on the screen is stored as one byte of display
data. The low-order six bits make up the ASCI! code of the
character being displayed. The remaining two (high-order) bits
select inverse or flashing format and uppercase or lowercase
characters. In the primary character set, bit 7 selects inverse or
normal format and bit 6 controls character flashing. In the
alternate character set, bit 6 selects between uppercase and
lowercase, according to the ASCII character codes, and flashing
format is not available.

Hex Primary character set Alternat. character set

Values Character type

$OO-$lF Uppercase letters

$20--$3F Special characters

$40--$5F Uppercase letters

$60-$7F Special characterS

$80-S9F Uppercase letters

$AO--$BF Special characters

SCO-$DF Uppercase letters

SEO-$FF Lowercase letters

APDADraft

Format Charact.r type Format

Inverse Uppercase letters Inverse

Inverse Special charaaers Inverse

Flashing MouseText Inverse

Flashing Lowercase letters Inverse

Normal Uppercase letters Normal

Normal Spedal characters Normal

Normal Uppercase letters Normal

Normal Lowercase letters Normal

40-colwnn versus SO-column text

The Apple JIGS has two modes of text display: 40-column and
8O-column. The number of dots in each character does not
change, but the characters in SO-column mode are only half as
wide as the charaaers in 40-column mode. Compare Figures 2-2
and 2-3. On an ordinary color or black-and-white television set,
the narrow charaaers in the 8O-column display blur together;
you must use the 4O-column mode to display text on a television
set.

2-10 11 121186

APDADraft

Apple fIes Hardware Reference

J LI ST 0 ,1 0 0

10 REM AP PLESOFT CHARACT ER DEMO
20
30

40

50
60
65
70

8 0

TEXT : HOM E
PRI NT pRI NT " Appl esofc c hara c ter Demo "
PRINT: P RINT "Which cha r act er set--"
PR I NT: I NPOT " Prima ry (P) o r Al ternat.e (A) ? ";A S

IF LEN (AS) < 1 THEN 50
LET AS - LEFTS IAS,I)
IF A$ ~ "P " TH EN POKE 49166, 0
IF AS "l\"THEN POKE 49 1 61 , a

90 PRINT PRI NT " ... p r inting the same line , f ir s t."
10 0 PRI NT" in NORMAL. t he n I NVERS E , then FLASH:": P RINT
)

Figure 2-2
40-column lext display

) LIST
10 REM APPLESOFT CHARACTER DEMO
2 a TEXT : HOME

30 PRINT PRINT "Apple s o ft Cha racter Demo "

40 PRINT : PRINT "Which charac ter set --"
50 PRINT : I NPUT " p rima r y (P) or Alte rnate (A) ?";AS

60 I F LEN IASI < 1 THEN 50
65 LET A$ - LEFTS IAS, I)
70 IF A$ - "P" THEN POKE 49166, 0
80 IF AS - "AU THEN POKE 491 67 , 0
90 PR I NT: PRINT "printing t h e s ame l ine, f i r st"

10 0 PRI NT" i n NORM1\L, t hen IN VERSE, the n F LASH : ": PR I NT

15 0 NORMAL : GOSUB 100 0
160 INVERS E : GQSUB 10 00

170 FLASH! GOSUB 10 00

180 NORM1\L : PRINT: PR I NT P RINT " P res s any key t. o r e pea1: ."

1 90 GET AS
20 0 GO TO 10

1000 PRINT : PRI NT " SAMPLE TEXT: No~ i s t he t ime--12: DO "

11 0 0 RETURN

Figure 2-3
50-column lext display

Graphics modes
The Apple I1GS can produce standard Apple II video graphics in
three different modes. All the graphics modes treat the screen
as a rectangular array of spotS. Nonnally, your programs will use
the fearures of some high-level language to draw graphics dotS,
lines, and shapes in these arrays; this section describes the way
the resulting graphics data are stored in memory.

Lo-Res graphics

In the Lo-Res graphics mode, the Apple I1GS displays an array of
48 rows by 40 columru of colored blocks. Each block can be any
of 16 colors, including black and white. On a black-and-white

2-11 11121186

Apple lies Hardware Reference

APDA Draft

monitor or television set, these colors appear as black, w hile,
and 3 shades of gray. There are no blank dots between blocks;
adjacent blocks of the same color merge to make a large r shape.

Data for the Lo-Res graphics display are stored in the same pan
of memory as the data for the 40-column text display. Each bYle
contains data for 2 Lo-Res graphics blocks. The 2 b locks are
displayed one atop the other in a display space the same size as a
40-column text character, 7 dots wide by g dots high.

Half a byte--! bits, or 1 nibble-is assigned to each graphics
block. Each nibble can have a value from 0 to 15, and this value
determines which 1 of 16 colors appears on the SCreen. The
colors and their corresponding nibble values are shown in
Table 2-5 . In each byte, the low-order nibble sets the color for
the top block of the pair, and the high-order nibble sets the
color for the bottom block. Thus, a byte containing the
hexadecimal value $D8 produces a brown block atop a yellow
block on the screen.

Table 2-5
la-Res graphics colors

Nibble volue Nibble volue

Dec Hex COlor Dec Hex Color

0 $00 iliad< 8 $(ll Brown

1 $01 Deep red 9 $00 Orange

2 $02 Dark blue 10 $OA Light gray

3 $03 Purple 11 $OB Pink

4 $04 Dark green 12 $DC Light green

5 $05 Dark gray 13 $OD Yellow

6 $06 Medium blue 14 $OE Aquamarine

7 $07 Light blue 15 $Of White
NOle: Colors may vary, depending on the controls on the
monitor or 1V set.

As explained later in the section ' Video Display Pages," the text
display and the La-Res graphics display use the same area in
memory. Most programs that generate text and graphics cle ar
this part of memory when they change display modes, but it is
possible to store data as text and display them as graphics, or
vice versa. All you have to do is change the mode switch, .
described later in this chapter in the section "Display Mode
Swilching," without changing the display data . This usually
produces meaningless jumbles on the display, but some
programs have used this technique to good advantage for
producing complex La-Res graphics displays quickly.

2-12 11121186

APDADraft

Apple JIGS Hardware Reference

Hi-Res graphics

In the Hi-Res graphics mode, the Apple lIes displays an array of
colored dots in 192 rowS and 280 columns . The colors available
are black, white, purple, green, orange, and blue, although the
colors of the individual dots are limited, as described later in
this section. Adjacent dots of the same color merge lO form a
larger colored area.

Data for the Hi-Res graphics displays are slOred in either o f two
BI92-byte areas in memory. These areas are called Hi-Res
Page 1 and Page 2; think of them as buffers where you can put
data to be displayed. Normally, your programs will use the
features of some high-level language to draw graphics dots,
lines, and shapes to display; this section describes the way the
resulting graphics data are stored in memory.

The Hi-Res graphics display is bit-mapped: each dot on the
screen corresponds to a bit in memory. The 7 low-order bits of
each 'display byte control a row of 7 adjacent dots on the screen,
and 40 adjacent bytes in memory control a row of 280
(7 times 40) dots. The least significant bit of each byte is
displayed 'as the leftmost dot in a row of 7, followed by the
second least significant bit, and so on, as shown in Figure 2-4.
The eighth bit (the most significant) of each byte is not
displayed; it selects 1 of 2 color sets, as described later.

Rgw.2-4
Hl-Qes display bits

Bits In DiLl 8~·te

o

Dots on GraphiCS Screen

On a black-and-white monitor, there is a simple
correspondence between bits in memory and dots on the
screen. A dot is white if the bit controlling it is on (I), and the
dot is black if the bit is off (0). On a black-and-white television
set, pairs of dots blur together; alternating black-and-white dots
merge to a continuous grey.

On an NTSC color monitor or a color television set, a dot whose
controlling bit is off (0) is black. If the bit is on, the dot will be
white or a color, depending on its position, the dots on either
side, and the setting of the high-order bit of the byte.

Call the leftmost column of dots column ° and assume (for the
moment) that the high-order bits of all the data bytes are off (0).
If the bits that control dots in even-numbered columns (0, 2, 4,

2-13 11121186

Apple lleS Hardware Reference

\
\

APDA Draft

and so forth) are on, the dots are purple; if the bits lhal control
odd-numbered columns are on, the dots are green-but only if
the dots on both sides of a given dot are black. If two adjacent
dots are both on, they are both white.

You select the other twO colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: The dots in even-numbered columns are blue, and the
dots in odd-numbered columns are orange-again, only if the
dots on both sides are black. Within each horizontal line of
seven dots controlled by a single byte, you can have black,
white, and one pair of colors. To change the color of any dot to
one of the other pair of colors, you must change the high-order
bit of its byte, which affects the colors of all seven dots
controlled by the byte.

In other words, Hi-Res graphics displayed on a color monitor or
television set are made up of colored dots, according to the
following rules:

• Dots in even columns can be black, purple, or blue.

• Dots in odd columns can be black, green, or orange.

• If adjacent dots in a row are both on, they are both white.

• The colors in each row of seven dots controlled by a single
byte are either purple and green, or blue and orange,
depending on whether the high-order bit is off (0) or on (I).

These rules are summarized in Table 2-6. The blacks and whites
are numbered to remind you that the high-order bit is different.

Table 2-6
HI-Res graphics colors

Bit. 0-6 Bit 7 011 Bit 7 on

Adjacent columns off Black 1 Black 2

Even rolumns on Purple Blue

Odd rolumns on Green Orange

Adjacent columns on White 1 White 2
Note: Colors may vary depending on the controls on the
monitor or television set.

The peculiar behavior of the Hi-Res colors reflects the way NTSC
color television works. The dots that make up the Apple ues
video signal are spaced to coincide with the frequency of the
color subcarrier used in the NTSC system. Alternating black­
and-white dots at this spacing cause a color monitor or 1V set to
produce color, but 2 or more white dots together do not
Effective horizontal resolution with color is J 40 dots per line (280
divided by 2).

2-14 11121186

APDADraft

Apple lIes Hardware Reference

Double Hi-Res graphics

In the Double Hi-Res graphics mode, the Apple IIGS displays an
array of colored dolS 560 columns wide and 192 rows deep.
There are 16 colors available for use with Double Hi-Res
graphics (see Table 2-7).

Double Hi-Res graphics is a bit-mapping of the low-order 7 bilS
of the bytes in the main-memory and auxiliary-memory pages at
$2000-$3FFF. The bytes in the main-memory and auxiliary­
memory pages are inLedeaved in exactly the same manner as the
characters in SO-column text: Of each pair of identical
addresses, the auxiliary-memory byte is displayed first, and the
main-memory byte is displayed second. Horizontal resolution
is 560 dots when displayed on a monochrome monitor.

Unlike Hi-Res color, Double Hi-Res color has no restrictions on
which colors can be adjacent. Color is determined by any 4
adjacent dots along a line. Think of a 4-dot-wide window
moving across the screen: At any given time, the color
displayed will correspond to the 4-bit value from Table 2-7 that
corresponds to the window's position (Figure 2-9). Effective
horizontal resolution with color is 140 (560 divided by 4) dotS
per line.

To use Table 2-7, divide the display column number by 4, and
use the remainder to find the correct column in the table: abO is
a byte residing in auxiliary memory corresponding to a
remainder of zero (byte 0, 4, 8, and so ON; mbI is a byte
residing in main memory corresponding to a remainder of one
(byte 1, 5, 9 and so' on), and similarly for ab3 and mb4.

2-15 11 /21 /86

Apple I/(;S Hardware Reference

APDA Draft

Table 2-7
Double HI-Res graphics colors

RQpeated
Color abO mbl ab2 mb3 bit pattern

IlIad< $00 $00 $00 $00 0000

Deep red $08 Sll $22 $44 0001

Brown $44 $08 $1I $22 0010

Orange $4C $19 $33 $&5 0011

Dark green $22 $44 $08 $11 0100

Dark gray $2.A $55 $2A $55 0101

Green $66 $4C $19 $33 0110

Yellow $6E $5D $33 $77 0111

Dark blue $1I $22 $44 $00 1000

PuIpIe $19 $33 $66 $4C 1001

Light gray $55 $2A $55 $2A 1010

Pink $5D $3B $77 $6E 1011

Medium blue $33 $66 S4C $19 1100

Ught blue $3B $77 $6E $5D 1I01

Aquamarine $77 $6E $5D $38 1I 10

While $7F S7F $7F $7F Jill

Video display pages
The Apple IIGS generates its video displays using data stored in
specific areas in memory. These areas, called display pages,
serve as butTers where your programs can put data [a be
displayed. Each byte in a display butTer controls an object at a
certain location on the display. In text mode, the object is a
single character; in La-Res graphics, the object is two stacked
colored blocks; and in Hi-Res and Double Hi-Res modes, it is a
line of seven adjacent dots.

The 40-column text and La-Res graphics modes use 2 display
pages of 1024 bytes each. These are called text Page 1 and text
Page 2, and they are located at 1024-2047 (S0400-$07ff) and
2048-3071 ($08QO-S013ff) in main memory. Normally, only
text Page 1 is used, but you can put text or graphiC5 data inlO (ext
Page 2 and switch displays instantly. Either page can be
displayed as 40-column text, Lo-Res graphics, or mixed mode (4
rows of [ext at the bOltom of a graphics display).

The SO-column text mode displays twice as much data as the 40-
column mode-1920 bytes-but it cannot switch pages. The 80-
column text display uses a combination page made up of text

2-16 11121186

Tabl .. 2-&
Video display page locations

Display
Display mode page

4O-column tex~ 1
Lo-Res graphics 2'

BO-column text 1
2'

Hi-Res graphics 1
2

Double High-Res It
graphics 2t

Apple IIeS Hardware Reference

Page 1 in main memory plus another page in auxiliary memory
located on the SO-column text card. This additional memory is
not the same as text Page 2-in fac~ it occupies the same
address space as text Page 1, and there is a special soft switch
that enables you to store data into it. (See the next section,
"Display Mode Switching.") The built-in firmware I/O routines,
described in Chapter 3, take care of this extra addressing
automatically; that is one reason to use those routines for all
your normal text output

The Hi-Res graphics mode also has 2 display pages, but each
page is 8192 bytes long. In the 40-column texl and Lo-Res
graphics modes each byte controls a display area 7 dots wide by
8 dots high. In Hi-Res graphics mode each byte controls an area
7 dots wide by 1 dot high. Thus, a Hi-Res display requires 8
times as much data storage, as shown in Table 2-8.

The Double Hi-Res graphics mode uses Hi-Res Page 1 in both
main and auxiliary memory. Each byte in those pages of
memory controls a display area 7 dots wide by 1 dot high . This
gives you 560 dots per line in black and white, and 140 dots per
line in color. A Double Hi-Res display requires twice the total
memory as Hi-Res graphics, and 16 tim", as much as a Lo-Res
display.

Lowest address Highest address

Hex Dec Hex Dec

$0400 1024 $07FF 2047
$0800 2048 $OBFF 3071
$0400 1024 $07FF 2047
$0800 2048 $OBFF 3071
$2000 8192 $3FFF 16383
$4000 16384 $5FFF 24575

$2000 8192 $3FFF 16383
$4000 16384 $5FFF 24575

• This is not supported by firmware; for instructions on how to switch pages, refer to the next section,
"Display Mode Switching."

t See the section 'Double Hi-Res Graphics," earlier in this chapter.

APDADraft

Display mode switching

You select the display mode that is appropriate for your
application by reading or writing to a reserved memory location
called a soft switch. In the Apple IlCS, most soft switches have
three memory locations reserved for them: one for turning the

2-17 11/21/86

Apple IIGS Hardware Reference

Table 2-9
Display soft switches

Name Acnon

CLR80COL W

SET80COL W

CLR80VlD W

SET80VlD W

CLRALTCHAR W

SETALTCHAR W

RD80COL R7

RDVBL BAR R7

RDTEXT R7

RDMIX R7

RDPAGE2 R7

RDHIRES R7

ALTCHARSET R7

RDSOVID R7

RDDHlRES R7

TXTCLR RtW

TXTSET RtW

MIXCLR RtW

MIXSET RtW

TXTPAGEI RtW

APDADrqft

Hex

$COOO

$COO]

$COOC

$COOD

$COOE

$COOF

$COI8

$COI9

$COIA

SCOIB

$COIC

SCOlD

$COIE

$Q)IF

$C07F

$COSO

$C051

$C052

$C053

$C054

switch on, one for uuning it off, and one for reading the curren!
state of the switch.

Table 2-9 shows the reserved locations for the soft switches that
control the display modes. For example, to switch from mixed
mode to full-screen graphics in an assembly-language program.
you could use the insrrucrion
'STA $C052

To do this in a BASIC program, you could use the instruction
POKE 49234,0

Some of the soft switches in Table 2-9 must be rcad. some must
be written to, and for some you can use either action. When
writing to a soft switch, it doesn't matter what value you write; the
action occurs when you address the location, and the value is
ignored.

FuncHon

Disable SO-column store

Enable SO-column store

Disable SO-column hardware

Enable SO-column hardware

Normal lower case character set; flashing upper case char. set

Normal, inverse character set; no flash

Read CLR/SETSOCOL switch ($COOO/ l) I ~ SO-column store
enabled

Read vertical blanking: I = not VBL

Read TEXT switch: I ~ text mode enabled

Read MIXED switch: I = mixed mode enabled

Read PAGE2 switch: 1 = text page 2 seleaed

Read HIRES switch: I - Hi-Res mode enabled

Read AL TCHAR switch: I = alterna te character set in use

Read SOCOL switch: I - 80-column hardware in use

Read DHIRES switch: I - DHlRES mode selected

Select standard Apple 11 graphics mode, or if MIXSET on,
mixed mode

Select text mode only

Clear mixed mode

Select mixed mode

Select text Page I

2-18 11121186

TXTPAGE2 MV

LORES MV

HIRES MV

DHIRES (AN3) R/W

DHIRES (AN3) R/W

$C055

$CO;6

$COS7

$COSE

$COSF

Apple lIGS Hardware Reference

Select text Page 2 or, if 8OSTORE on, Page I in auxiliary memory

Select La-Res graphics mode

Select Hi-Res graphics mode or, if DHIRES is on,
select Double Hi-Res graphics mode

Turn Double Hi-Res graphics mode on

Turn Select Double Hi-Res graphics mode off

NOle: W means write anything to the location, R means read the location, R/W means read or write,
and R7 means read the location and then check bit 7 .

APDADraft

• :. By the way· You may not need to deal with these functions
by reading and writing directly to the memory locations in
Table 2-9. Many of the fu nctions shown here are selected
automatically if you use the display routines in the various
high-level languages on the Apple lIGs.

Any time you read a soft switch, you get a byte of data. However,
the only information the byte contains is the state of the switch,
and this occupies only one bit-bit 7, the high-order bit. The
other bits in the byte are always O.

If you read a soft switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is on,
the value will be equal to or greater than 128; if the switch is off,
the value will be less than 128. .

Addressing display pages directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you to write
statements that control the text and graphics displays.
Similarly, if you are programming in assembly language, you
may be able to use the display features of the built-in VO
firmware. You should store directly into display memory only if
the existing programs can't meet your requirements.

The display memory maps are shown in Figures 2-5, 2-6,2-7, 2-
8, and 2-9. All the different display modes use the same basic
addressing scheme: Characters or graphics bytes are stored as
rows of 40 contiguous bytes, but the rows themselves are not
stored at locations corresponding to their locations on the
display. Instead, the display address is transformed so that 3
rows that are 8 rows apart on the display are grouped together
and stored in the first 120 locations of each block of 128 bytes
($80 hexadecimal). By folding the display data into memory
this way, the Apple lIGS, like the Apple II, stores all 960
characters of displayed text within IK of memory.

The Hi-Res graphics display is stored in much the same way as
text, but there are 8 times as many bytes to store, because 8 rOws
of dolS occupy the same space on the display as 1 row of
characters. The subset consisting of all the first rows from the
groups of 8 is stored in the first 1024 byteS of the Hi-Res display

2-19 1I121186

Apple flCS Hardware Reference

APDADraji

page. The subset consisting of all the second rows from the
groups of 8 is stored in the second 1024 bytes, and so on for a
total of 8 times 1024, or 8192 bytes. In other words, each block of
1024 bytes in the Hi-Res display page comairu J row of dots out
of every group of 8 rows. The individual rows are stored in sets of
3 40-byte rows, the same way as the text display.

All of the display modes except SO-column mode and Double
Hi-Res graphics mode can use either of 2 display pages. The
display maps show addresses for each mode's Page 1 only. To
obtain addresses for text or Lo-Res graphics Page 2, add 1024
($400); to obtain addresses for Hi-Res Page 2, add 8192 ($2000).

The 8O-column display and Double Hi-Res graphics mode work
a little differently. Half of the data are stored in the normal text
Page 1 memory, and the other half are stored in memory on the
SO--column text card using the same addresses. The display
circuitry fetches bytes from these 2 memory areas
Simultaneously and displays them sequentially; first the byte
from the SO--column text display memory, then the byte from the
main memory. The main memory stores the characrers in the
odd columns of the display, and 'the SO-column text display
memory stores the characters in the even columns.

To store display data in the SO-column text display, first turn on
the SETBOCOL soft switch by writing to location 49153 ($COOI),
With SETBOCOL on, the page-select switch, TXTPAGE2, selects
between the portion of the SO-column display memory in Page I
of main memory and the portion stored in the SO-column text
display memory. To enable the SO-column text display, turn the
TXTPAGEZ soft switch on by reading Or writing at location 49237
($C055).

2-20 ///2//86

Apple lles Hardware Reference
Figure 2-5
Map of 40-column text display

. . ~ -. -.. - . - . - . - ' . . - _.
IJ \.100 1021

1 1180 1152

2 1500 1280

3 S580 1108

1 $6IXl 1536

5 $680 Hi&!

6 S100 1192

- S180 1920 ,
8 1428 10&1
9 14A8 1192

10 s:i28 1320

II s:iAB 1448

12 1628 1576 .
13 16A8 1104

14 1728 1832

15 17AB 1960

16 S450 1104
17 1400 1232
18 S550 1380

19 s:ioo 1488

W S650 1616
21 1600 1744

22 1750 1872

23 1700 :roJ

'-'

APDADraft 2-21 11 /2/ 186

Apple lIes Hardware Reference

Figur .. 2-6
Map o f 80-column text d isplay

~am ~emory -

I SOl SOl 102 103 104 S06 106

Row 0 I 2 ~ 3 4 5 6
~

'l 1100 \021 :
I ,

I~ 121 122 523 121 .\25 126 sr i
,- 32 33 34 35 :J6 :r. 38 iJ

H
i I I , i

! l® 1152 : ; ; i . I I i I
.

I
., 5500 1250 j

, I I I I I . I ;

:J 15!O 1408 i I ; I , : ,

1 1600 1536 I I I I I I , I ;

5 1680 16&1 I I I I : I • ;

6 1700 1792 , I I I I , $780 1920 I I ! ,
i

8 $128 1064 I I I I

9 14A8 1192 i
,

! ,
10 J528 1320 i ! I i ;

II J5A8 1448 I ; I

12 S628 1576
, ,

;

13 16A8 1104 I I
14 5128 1832 I I I ,- ~.

15 I1A8 1960
,

i ,
16 1450 1104 I I i i

11 1400 1232 I i ii
18 S550 1360 i , I

19 $500 1488 ! I I .
~ S550 1616 I ;

i
21 1600 1144 , I ! I

22 1150 1812 I : !

23 1100 ~ I I I
~" 101 102 103 104 106 $011 fIJI

o 1 2 3 4 5 6 1
.~uxiliary !,fernery I

m 121 122 523 124 125 126 121
_\32 33 34 35 36 37 38 39

APDADraft 2-22 //12 //86

Apple IIGS Hardware Reference

Figure 2-7
Map of La-Res graphics display

:; -= ~l = ::::: -::; 'z ~ 3: ~ "!E -= i' -= ± ~ =. = .!.! :::; :! == :: ~ = ~ ::: :: =. -= ::: == i:=1::: :q ::: .:-: ';;: ~ :.:-: ~~ ~~~~~~~~~~~~~~ ________________ w~~~~~~~

_ . . - _ _. . . - . . .

" ql~1 l()~"

,
~ ... ~. U52 -

1 ~;)11I 1 1280
0 15,;0 Il08 , 1600 1536

10 1680 16&l '
l~ .1700 1792
14 !780 1920
16 Sl28 1064
18 SlA8 1192

20 S528 1320

t2 SM8 14018
24 5628 1576
26 16A8 17114

28 S728 1832
~ S7A8 1960

32 14.50 1104

34 S400 1232
36 5550 1360
38 1500 10188

-10 S650 1616
42 5600 1744
44 S750 1872
46 S700 200l

APDADraft 2-23 1lI2Z/86

Apple [[CS Hardware Reference

Figure 2-8
Mop of Hi-Res graphics d isplay

R " "
. ~ " -. "

, I ~2\w "jl~:! ! I ' i
1 ~~t~l) -i:J).1 : I , , I , ; , I

! ;21l)) s·ws; ! I i ! ! , i I

:3 S~!~ '--61 ,' , I I ! I ' I

• 11:K,() 070. I 1 , , , I , : I

; ~~2S0 S8:lZ I I I , ,
6 11300 8960 i !

- EJ80 908l' I ,
I I

S SlO'l8 8232

9 320 .~8 8300

10 S2128 8488 ~~ II S21A8 8616 ~~
12 S2228 8144

t \ I I
13 $Z2 .~8 88;2 I • 0 .SOCOJ

14 S2328 900l I I I .1024
S23A8 912S 1\ .10400

15
16 S2050 82i2 I .2048 .10800
Ii S2000 S400
18 S2150 8528 I .:m2 · ·\OCOO

19 12100 S6ii6

I 20 S2250 8;84
.4006 .SIOOO

21 12200 8912 I I .5120 .SI400
22 S2350 !XJ.IO \
23 12300 9168 .1 I I .6144 .SlSOO

\1

~ I I I .,.jI68 .SICOO

APDADraft 2- 24 II /21 /86

Apple llGS Hardware Reference

Rgur.2·9
Map o f Double Hi·Res graphics display

.
J ~lain Memory I - - - - -I SOO 10 I 102 103 S04 105 106 \ 120 121 122 123 524 125 126 p-

Ro :-0 1 2 3 4
~

5~ 6 ~32 13~34~35 ·16 37 :38 :)9

I) I~CI)) .. q9~ I I I
.

i ;
I I l ' f I I I I

I 1 !!080 8J20 ; I I I
, ; I ! I i I I

, .

I ;
.) lZIoo 8-H8 ' I , I I I I 1

,
I

,
I I I ; ,

85T6 I
I I

,
I ,

3 !2lBO 1 , , , I . I ,
4 IL?IXJ 8704

, I ' I Ii! , ,
I ,

5 12280 8832 I I ! I
1 . I ,

6 52:KlO 8960 1 I .
,

I I I 7 12380 9088 1 . ,
8 S2028 8232 I

, I I

9 S20M 8360 I

~
, ;

, ,
10 S2l2B 8488 '-'-'- , I i

11 S21AB 8616 '- I I I i

12 S2228 8744 I I I I ~ o ~ SIXXXl .;....
13 S22A8 8872

I I ~S0400 ~ 14 S2328 !ml ~1024

15 123A8 9128 I I ~2048 ~10800 _
16 S2060 8272

~IOCOO -17 S2000 8400 I I ~:m2 -18 12150 8528

I I ~SI000 -19 S2l 00 8656 ~4096

0- -
I I 20 S2250 8784 I ~5120 ~SI400 ~

21 12200 8912

I I I ~SI800 t 22 S2380 9040 ~6144

23 S2300 9168

1 I T 1 ~SICOO -b ~7168
~ SOl 102 S03 S04 106 106 JI1T

o 1 2 3 4 5 6 7 \
Auxiliary Memory - - - --

APDADraft 2-25 1lI2l!86

Apple lIes Hardware Reference

APDA Draft

Warning

The text window

After you have started up the computer or afler a reset, the
firmware uses the entire display, However, you can resrrict
video activity to any rectangular portion of the display you wis h .
The active portion of the display is called the lext window.
You can set the top, bottom, left side, and width of the text
window by storing the appropriate values into four locations in
memory. Using these memory locations allows you to control
the placement of text in the display and to protect other portions
of lhe screen from being written over by new text.

Memory location 32 ($20) contains the number of the leftmost
column in the text window. This number is normally 0, the
number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is 39 ($27); in an
80-column display, the maximum value is 79 (S4F).

Memory location 33 ($21) holds the width of the text window.
For a 40-column display, it is normally 40 ($28); for an 80-
column display, it is normally 80 ($50) .

Be careful not to let the sum of the wIndow width and the
leftmost posl~on In the window exceed the width of the
display you are using (40 or 80). If this happens. It is possible
to put characters Into memory loca~ons outside the display
page, possibly deslroylng programs or data.

Memory location 34 ($22) contains the number of the top line of
the text window. This is normally 0, the topmOSt line in the
display. Its maximum value is 23 (SI7) .

Memory location 35 ($23) contains the number of the bottom
line of the screen, plus 1. It is normally 24 ($18) for the bottom
line of the display. Its minimum value is 1.

After you have changed the text window boundaries, nothing is
affected until you send a character to the screen.

Warning Any ~me you change the boundaries of the text window,
you should make sure that the current cursor position
(stored at CH (S24) and CV (S25)) Is inside the new window.
If it Is outside. It Is possible to put characters Into memory
locations outside the display page. possibly destroying
programs or data,

Table 2- 10 summarizes the memory locations and the possible
values for the window parameters.

2-26 II /21/86

Apple lies Hardware Reference

Table 2-10
Text window memory locations

Window

parameter

Left edge

Width

Top edge

Bottom edge

APDADrajt

Minimum Normal values Maximum values

Location value 40 col. BOccI. 40 col. SO col.

Oec Hex Dec Hex Oec Hex Dec He. Dec Hex Dec Hex

32

33

34

35

$20 00

$21 00

$22 00

523 01

$00 00 SOO 00 $00 39 $27 79 $4F

$00 40 $28 80 $50 40 $28 80 $50

$00 00 SOO 00 $00 23 $17 23 $17

$01 24 $18 24 $18 24 $18 24 $18

Secondary inputs and outputs
In addition to the primary I/O devices-the keyboard and
display-there are several secondary input and output devices in
the Apple IIGS. These devices are

• the speaker (outpuO

• the aru1Unciator (outpuO

• the switch (input)

• analog hand controls CinpuO

These devices are similar in operation to the soft switches
described in the preceding section: You control them by
reading or writing to dedicated memory locations. Action takes
place any time your program reads or writes to one of these
locations; information written is ignored.

Important Some ot !hesa devices toggle-change state-each tlme
!hey are accessed. It you wr1te using an assembly-language
Indexed store operation. the microprocessor activates the
address bus twice during successive clock cycles. causing a
device !hat taggles each time It Is addressed to end up
bock In lis original state. For !hIs reason. you should read.
rather than write. to such devices.

The speaker
The Apple IIGS has a small speaker mounted toward the front of
the bottom plate. The speaker is conneaed to a soft switch that
toggles; it has two states, off and on, and it changes from one to
the other each time it is accessed. (At low frequencies, less than
400 Hz or so, the speaker clicks only on every other access.)

If you switch the speaker once, it emits a dick; to make longer
sounds, you access the speaker repeatedly. You should always
use a read operation to toggle the speaker.

2-27 11121186

Apple lles Hardware Reference

APDADraji

Important If you write to this soft switch using an assembly language
indexed-write command, it switches twice in rapid succession.
The resulting pulse is so short that the speaker doesn't have time
to respond; it doesn't make a sound.

The soft switch for the speaker, SPKR, uses memory location
49200 ($C030). You can make various tones and buzzes with the
speaker by using combina[lons of timing loops in your program.

GameVO
The Mega II supports paddles 0, 1, 2, and 3, and switches 0, 1, 2,
and 3, which are available through the 16-pin DIP game
connector located below slot 4 and the 9-pin connector that is
located at the rear panel. Annunciator outputs ANO through AN3
are provided by the Siotmaker IC and are available only through
the 16-pin DIP connector. Figure 2-10 shows the two Apple IIGS
game connectors, J9 and J21. Connector J21 is located on the
main logic board just forward of expansion slot 4. Connector)9
is located at the rear of the main logic board. Table 2-11 lists the
locations of the game va signals at the two connectors.

2-28 11121186

+5v 1
SWO 2
SW1 3

SW2 4
+5v 5

POLO 6

POL2 7

G\ID 8

APDADraft

Apple !lGS Hardware Reference

J21 J9

16 N.C. 0 (\j

~ -' -' > ~

0 0 II) ~
15 ANO a. a. + CI)

14 AN1 5 4 3 2 1

13 AN2
00000
0000

12 AN3 9 8 7 6
1 1 POL3 C') ~

0 (\j -' -'
10 POL1

0 0 ~ ~ a. a. CI) CI)

9 SW3

Figure 2-10. Game VO connectors

Table 2-11
Game I/O signals

Pin numbell

.121 R SIgnal

1 2 +5 volts
2 7 SWO; switch input 0
3 1 SW1; switch input 1
4 6 SW2; switch input 2
5 +5 volt pull p
6 5 PDLO; analog input 0
7 4 PDL2; analog input 2
8 3 POW"'- and signal ground
9 SW3; switch input 3
10 8 PDL1; analog input 1
11 9 PDL3; analog input 3
12 AN3; digital output 3

13 AN2; digital output 2
14 ANI; digital output 1
15 ANO; digital output 0
16 N . C.

The hand control signals

Several inputs and outputs are available at the 16-pin IC
connector on the main logic board: 3 I-bit inputs, or switches,
and 4 analog inputs, along with 4 one-bit outputs. You can
access all these signals from your application program. Note
that the SW3 signal is new to the Apple IIGS.

Ordinarily, you connect a pair of hand controls to the 16-pin
connector. The rotary controls use two analog inputs, and the

2-29 1/12/ /86

Apple llGS Hardware Reference

APDADrajr

push-buttons use 2 I-bit inputs. However, you can also use these
inputs and outputs for many other jobs. For example, 2 analog
inputs can be used wim a 2-axis joystick. Figure 2-10 shows 'he
connector pin numbers.

The Apple DeskTop Bus will accept ADB-type hand controls,
joysticks, and graphics tablets as well as keyboards and mouse
devices mat have been designed specifically for the ADB. The
ADB microcontroller handles mouse and keyboard input
devices transparently; that is, simply reading the standard
locations will return the current values of these devices. See
Chapter 7, "Apple DeskTop Bus." for more information.

Annunciator outputs

The four I-bit outputs are called annunciators. Each
annundator can be used to turn a lamp. a relay, or some similar
elecU'onk device on and off.

Warning When driving a device wllh the annunciator outputs, be
sure not to load anyone output with more Ihan one
standard TIL load.

Each annunciator is controlled by a soft switch, and each switch
uses a pair of memory locations. These memory locations are
shown in Table 2-12. Any reference to the first location of a pair
turns the corresponding annunciator off; a reference to the
second location turns the annunciator on. There is no way to
read the state of an annunciarot.

Table 2-12
Annunciator memory loca~ons

Annunciator Addra ..

No. Pin- stata o.clrnal Hu

0 15 Off 49240 $COS8

On 49241 $COS9

1 14 Off 49242 $COSA

On 49243 $COSB

2 13 Off 49244 $C05C

On 49245 $COSD

3 12 Off 49246 $COSE

On 49247 $C05F

• Pin numbers given are for the 16-pin IC connector on the
circuit board.

2-30

.--.

11121lS6

APDADraft

Apple lies Hardware Reference

Switch inputs

The four I-bit inputs can be connected to the output of anOlhc r
electronic device or to a pushbutton. When you read a byte
from one of these locations, only the high-order bit-bit 7-is
valid information; the rest of the byte is undefined.

The memory locations for these switches are 49249 through
49251 (SC060 through $C063), as shown in Table 2-13.

Analog Inputs

The 4 analog inputs are designed for use with lSOK ohm variable
resislOrs or po[entiomerers. The variable reSLS[anCe is
connected between the + 5V supply and each input, so that it
makes up part of a timing circuit. The circuit changes stale when
its time constant has elapsed, and the time constant varies as the
resistance varies. Your program can measure this time by
counting in a loop until the drmi[changes stare, or limes out.

Before a program can read the analog inputs, it must first reset
the timing circuits. Accessing memory location 49264 ($C070)
does this. As soon as you reset the timing circuits, the high bits
of the bytes at locations 49252 through 49255 ($C064 through
$C067) are set to 1. Within about 3 milliseconds, these bits will
change back to 0 and remain there until you reset the timing
circuits again. The exact time each of the 4 bits remains high is
directly proportional to the resistance connected to the
corresponding input. If these inputs are open-no resistances
are connected-the corresponding bits may remain high
indefinitely.

To read the analog inputs, use a program loop that resets the
timers and then increments a counter until the bit at the
appropriate memory location changes to O. High-level
languages, such as BASIC, also include convenient means of
reading the analog inputs: Refer to your language manuals.

Summary of secondary I/O locations
Table 2-13 shows the memory locations for all of the built-in I/O
devices except the keyboard and display. As explained earlier,
some soft switches should be accessed only by means of read
operations; those switches are marked.

2-31 1112 1186

Apple lIGS Hardware Reference

APDADraft

Tobie 2-13
Secondary 1/0 memory locations

Address

Soli switch Oecimal He. DefinItion

SPKR 49200 SC030 Toggle speaker (read only)

SETANO 49241 $C059 Set annunciator 0

CLRANO 49240 $C058 Clear annunciawc 0

SETANI 49243 $COSB Set annunciator 1

CLRANI 49242 $C05A Clear annunciator 1

SETAN2 49245 $C05D Set annuncia[Qr 2

CLRAN2 49244 $Cose Clear annunciator 2

SETAN3 49247 $C05F Set annunciator 3

CLRAN3 49246 $COSE Clear annunciator 3

BU1N3 49248 $C060 Read switch 3 (read only)

BIlTNO 49249 $C061 Read switch 0 (read only)

BU1NI 49250 $C062 Read switch 1 (read only)

BUIN2 49251 $C063 Read switch 2 (read only)

PTIUG 49264 $C070 Analog input reset

PADDUl 492S2 $C064 Read only

PADDLI 492S3 $C065 Read only

PADDU 49254 $C066 Read only

PADDL3 49255 $C067 Read only

Standard Apple n Memory
The 65C816 microprocessor in the Apple lIGS can emulate the
6502 microprocessor. Within the context of standard Apple II
programs however, we will assume that the microprocessor
addresses only 65,536 (64K) memory locations, and will limit
the discussion of memory in this chapter to the main and
auxiliary RAM banks. For information on the 65C816's ability to

address locations in other than the main or auxiliary banks, see
Chapter 3, "New features".

All input and output are memory mapped. This means that all
devices connected to the Apple lIGS appear to be a set of
memory locations (0 the computer. In this chapter, the I/O
memory spaces are described simply as blocks of memory.

All the RAM, ROM, and I/O devices are allocated locations in
the 64K address range. Since each device or function requires a
cenain block of memory. there are more devices and functions
than there are legal addresses, which means that the legal

2-32 Ili2l!86

APDADraft

Apple llGS Hardware Reference

addresses must be shared. This sharing is accomplished
through a technique called banle-swilching, which is explained
under the "Bank-Switched Memory" and "Auxiliary Memory"
sections in this chapter.

Programmers often refer to the Apple IIGS memory in 256-byte
blocks called pages. One reason for this is that a I-byte address
counter or index register can specify I of 256 different locations.
Thus, page 0 consists of memory locations from 0 to 255 (SOO
to $FF), inclusive; page 1 consists of locations 256 to 511 ($0100
to $01FF). Note that the page number' is the high-order part of
the hexadecimal address. Don't confuse this kind of page with
the display buffers in Apple II computers, which are sometimes
referred to as Page I and Page 2.

Main memory map
The map of the main memory address space in Figure 2-1 I
shows the functions of the major areas of memory.

2-33 1lI2lJ86

Apple llGS Hardware Reference

APDADraft

Figure 2-11
Memory mop tor bonk SEO.

FFFF
Bank·

ROM Swit<:hed

RAM
[)(XX)

CrFF I I/O I COOO
BFFF

IlOOl
7FFF

Main

!WI

4000
3FFF

0000

RAM memory allocation
As Figure 2-11 shows, the major portion of the Apple IIGS
memory space is allocated to program storage (RAM). Figure 2-
12 shows the areas allocated to RAM. The main RAM memory
extends from location 0 to location 49151 (hex $BFFF), and
occupies pages 0 through 191 (hex $BF). There is also RAM
storage in the bank-switched space from 53248 to 65535 (hex
$0000 to $FFFF), described in the section "Bank-Switched
Memory" later in this chapter, and auxiliary RAM, described in
the section "Auxiliary Memory" later in this chapter.

2-34 1l!2l!86

APDADraft

figure 2·12
RAM alloca~on map

7fff

SfFF

Paae2 }
Page 1

Apple JIGS Hardware Reference

Hiah· Resolution
Grap/tia
DiIplay Burren

Text and Low·Resolution
GraphiCii Display Butlers

~~-J __ "" ___ Reserved Paaes

Reserved memory pages

Most of the Apple IlGS RAM is available for storing your
programs and data. However, a few RAM pages are reserved for
the use of the Monitor firmware and the BASIC interpreters. The
reserved pages are described in the following sections.

Important The system does not prevent your using these pages. but if
you do use them, you must be careful not to disturb the
system data they contain, or you will cause the system to
malfunc~on.

Directpoge

Several of the 6502 microprocessor's addressing modes require
the use of addresses in memory page zero, also called direCl

2-35 11121186

Apple lIes Hardware Reference

page. The Monitor firmware , the BASIC interpreters, DOS 3.3,
and ProDOS® all make extensive use of direct page.

To use indirect addressing in your assembly-language programs,
you must store base addresses in direct page. At Lhe same lime,
you must a void interfering with the other programs thai use
direct page-the Monitor program, the llASIC interpreters, and
!.he disk operating systems. The best way to avoid conflicts is [Q

save and restOre only those direct page locations you use.

The 65C816 slack

The 6SC816 microprocessor uses a stack to store subroutine
return addresses in last-in, first-out sequence. Many programs
also use the stack for temporary storage of the registers (via
PUSH and PUll instructions).

The 6SCSl6 uses the stack two wa ys-in emu Iation mode and
native mode. In emulation mode, the stack pointer is 8 bits long
and the stack is located in page 1 and can hold 256 bytes of
information. When you store the.257th byte in the stack, the
stack pointer repeats itself, or wraps around, so that the new byte
replaces the first byte stored, which is now lost This writing over
old data is called stack overflow, and when it happens, the
program continues to run normally until the lost information is
needed, whereupon the program terminates catastrophically.

In native mode, the stack pointer is 16 bits long, and the stack
can hold 64K of information at a time. To read more about
using the 6SC816 stack in native mode, see Chapter 11, "65C816
Microprocessor" .

Important Wraparound does not occur In 011 addressing modes.

APDADraft

The input buffer

The GETIN input routine, which is used by the Monitor program
and the BASIC interpreters, uses page 2 as its keyboard-input
buffer. The size of this buffer sets the maximum size of input
strings. (Note: Applesoft BASIC uses only the firSt 237 bytes,
although it permits you to eype in 256 characters') If you know
that you won't be eyping any long input strings, you can Store
temporary data at the upper end of page 2.

Link-address storage

The Monitor program, ProDOS, and DOS 3.3 all use the upper
part of page 3 for link addresses or vectorS.

BASIC programs sometimes need short assembly-language
routines. These routines are usually stored in the lower parr of
page 3.

2-36 II 12 1186

APDADraft

Apple JIGS Hardware Reference

The display buffers

The primary text and La-Res graphics display buffer occupie.s
memory pages 4 through 7 (iocations 1024 through 2047,
hexadecimal $0400 through $07FF). This entire 1024-byle area
is called text Page 1, and it is not usable for program and data
storage. There are 64 locations in this area that are not
displayed on 'he screen; these localions are reserved for use by
the peripheral cards.

Text Page 2, the alternate text and Lo-Res graphics display
buffer, occupies memory pages 8 through II Oocalions 2048
through 3071, hexadecimal $0800 through $OBFF). Most
programs do not use text Page 2 for displays, so you can use this
area for program or data storage.

The primary Hi-Res graphics display buffer, called Hi-Res
graphiCS Page 1, occupies memory pages 32 through 63
Oocalions 8192 through 16383, hexadecimal $2000 through
$3FFF). If your program doesn't use Hi-Res graphics, this area is
usable for programs or data.

Hi-Res graphics Page 2 occupies memory pages 64 through 95
Oocations 16384 through 24575, hexadecimal $4000 through
$5FFF).Most programs use this area for program or data
storage.

The primary Double Hi-Res graphics display buffer, called
Double HI-Res graphics Page 1, occupies memory pages 32
through 63 Oocalions 8192 through 16383, hexadecimal $2000
through $3FFF) in both main and auxiliary memory. If your
program doesn't use Hi-Res or Double Hi-Res graphics, this
area of main memory is usable for programs or data.

Bank-switched memory
The memory address space from 52K to 64K ($0000 through
$FFFF) is doubly allocated: It is used for both ROM and RAM.
The 12K of ROM in this address space contain the Monitor
program and the Applesoft BASIC interpreter. Alternatively,
there are 16K of RAM in this space. The RAM is normally used
for storing the operating system (purchased separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical : The Apple IIGS
is able to run software written for a standard Apple II because it
uses this pan of memory in the same way a standard Apple II
does. It's convenient to have the Applesoft interpreter in ROM,
but the Apple lIGS, like an Apple II with a language card, is also
able to use that address space for other things when Applesoft is
not needed.

You may also be wondering how 16K of RAl\If are mapped into
only 12K of address space. The usual answer is that it's done with

2-37 JlI21186

Apple IIes Hardware Reference

APDADrqft

mirrors, and that isn't a bad analogy: The 4K address space
from 52K to S6K ($0000 through $OFFF) is used twice.

Switching different blocks of memory into the same address
space is called bank switching. There are actually two examples
of bank switching going on here: First, the entire address space
from 52K to 64K ($0000 through $FFFF) is switched between
ROM and RAM, and second, the address space from 52K to 56K
(50000 to $OFFF) is switched between two different blocks or
RAM. (See Figure 2-13.)

HIT

RAM

EOOO ROM

DFFF
RAM RAM

000l

FIgure 2-13
Bank-switched memory map

Setting bank switches

You switch banks of memory in the same way you switch other
functions in a standard Apple II: by using soft switches. Read
operations to these soft switches do three things: select either
RAM or ROM in this memory space, enable or inhibit writing to
the RAM , and select the fust or second 4K bank of RAM in the
address space $0000 to $OFFF.

Warning Do not use Ihese switches without careful planning.
Careless switching between RAM and ROM Is almost certain
to have cataslTophlc effects on your program.

Table 2-14 shows the addresses of the soft switches for enabling
all combinations of reading and writing in this memory space.
All the hexadecimal values of the addresses are of the form
$C08,.. Notice that several addresses perform the same
function: This is because the functions are activared by single
address bits. For example, any address of the form $C08x with a
1 in the low-order bit enables the RAM for writing. Similarly,
bit 3 of the address selects which 4K block of RAM to use for the
address space $DOOO to $DFFF; if bit 3 is 0, the first bank of RAM
is used, and if bit 3 is I, the second bank is used.

When RAM is not enabled for reading, the ROM in this address
space is enabled. Even when RAM is not enabled for reading, it
can still be writren to if it is wrire..,nabled.

When you turn power on or reset the Apple IIGS, it initializes the
bank switches for reading the ROM and writing the RAM, using

2-38 11121/86

Tobie 2-14

Apple llGS Hardware Reference

the second bank of RAJ\>! . Note that this is different from the
reset on the Apple II Plus, which didn't affect the bank-switched
memory (the language card). On the Apple IIGS, you can't use
the reset vector (0 relurn control to a program in bank-switched
memory, as you could on the Apple II Plus.

Language card bank select switches

Name Action Hex Function

R $C080 Read this switch to read RAM , write-protect RAM ;
use $DOOO bank 2

RO,\1lN RR $C081 Read this switch twice to read ROM and write-enable RA,\! ;
use $0000 bank 2

R $C082 Read this switch to read ROM, write-protect RAM;
use $0000 bank 2

LCBANK2 RR $C083 Read this switch twice to read and write-enable RAM;
use $0000 bank 2

R $C088 Read this switch to read RAM, write-protect RAM;
use $0000 bank I

RR $C089 Read this switch twice to read ROM, write-enable RAM;
use $0000 bank 1

R $C08A Read this switch to read ROM, write-protect RAM;
use $0000 bank 1

RR $C08B Read this switch twice to read and write-enable RAM;
use $0000 bank I

RDLCBNK2 R7 $COII Switch status: $0000 bank 2 (I) or bank I (0)

RDLCRAM R7 $COI2 Switch status: RAM (I) or ROM (0)

SETSTDZP w $C008 Use main bank, page 0 and page I

SETALTZP W $COO9 Use auxiliary bank, page 0 and page 1

RDALTZP R7 $C016 Switch status: auxiliary (I) or main (0) bank

Note: R means read the location, W means write anything to the location, R/W means read or
write, and R7 means read the location and then check bit 7.

APDADraft

-:. Reading and writing to RAM banks: You can't read one
RAM bank and write to the other; if you select either RAJ\-!
bank for reading, you get that one for writing as well.

00> Reading RAM and ROM· You can't read from ROM in pan
of the bank-switched memory and read from RAM in the

. rest: specifically, you can't read the Monitor program in
ROM while reading bank-switched RAM. If you want to use
the Monitor firmware with a program in bank-switched RAM,
copy the Monitor program from ROM (Iocations $F800
through $FFFF) into bank-switched RAM . You can't do this
from Pascal or ProDOS.

2-39 U I21186

Apple llcs Hardware Reference

To see how to use these switches, look at the following section of an assembly-language program:

LOA

LOA

LDA

STA

LOA

STA

JSR

LOA

JSR

LOA

LOA

INC

JSR

LOA

I NC

LDA

JSR

LOA

LOA

INC

INC

LOA

JSR

APDADraji

sca S3 *SE LECT 2ND 4K BANK' READ/WRIT E

SCOB) *BY TWO CONSECUT IVE READS

HOD *5ET UP ...

BEGI N 'IIr ••• NEW ...

tSFF * ... MAIN-MEMORY ...

END * . . , PO INTERS ...

YO URPRG •.. . FOR 12K BANK

SCOBB ·SELECT 1ST 4K BANK

YOURPRG ·USE ABOVE POINTERS

SCOB8 ·SELECT 1ST BANK & WRITE PROTECT

tSBO

SUM

YOURSUB

SCOBO ·SELECT 2ND BANK , WRITE PROTECT

SUM

fPAT12K

YOURSUB

scoss -SELECT 1ST BANK & READ/WRITE

seOSB *BY TWO CONSECUTI VE READS

NUM -FLAG RAM I N READ/WRITE

sUM

IPAT4K

YOURSUB

The LDA instruction, which performs a read operation to the
specified memory location, is used for setting the soft switches.
The unusual sequence of two consecutive LDA instruaions
performs the two consecutive reads that write-enable this area of
RAM; in this case, the data that are read are not used.

Reading bank switches

You can read which language card bank is currently switched in
by reading the soft switch at SCOl1. You can find out whether the
language card or ROM is switched in by reading $C012. The
only way that you can find out whether or not the language-card
RAM is write-enabled is by trying to write some data to the card's
RAM space.

2-40 11121186

APDADraft

Apple JIGS Hardware Reference

The State register

The State register is a read/write register comaining eight
commonly-used standard Apple II soft switches. The byte-wide
format of the soft switch State register simplifies the process of
interrupt handling. Reading and storing this byte before
executing interrupt routines allows you to restore !.he system soft
switches (0 the previous state in minimum lime after returning
from the interrupt routine. Wrile operations to the Stare register
will slow the system momentarily. (See figure 2-14.)

Warning Be careful when changing bits within this register. Use only
a read-modlfy-wrlte instruction sequence when
manipulaflng bits. See flhe wamlng in Chapter 1.
-Introducflon to the Apple IIGs:

Figure 2-14. State register at $co6S

2-41

INTCXROM
ROMBANK
LCBNK2
RDROM
RAMWRT
RAMRD
PAGE2
ALTZP

11121186

Apple IlGS Hardware Reference

Bit Value Description

7

6

5

4

3

2

I

o

o

I
o

I

°
I

°
I
o

I
o

I

°

AJ.:rzp: If this bit is 1, then bank-switched memory, stack and zero page are in main
memory.
If this bit is 0, bank-switched memory, stack and zero page are in auxHiary memory.

PAGE2: If tltis bit is I, text Page 2 is selected.
If this bit is 0, text Page I is selected.

RAMRD: If this bit is I, auxiliary RAM bank is read-enabled.
If this bit is 0, main RAM bank is read-enabled.

RAMWRT: If this bit is 1, auxiliary RAM bank is write-enabled.
If this bit is 0, main RAM bank is write-enabled.

RDROM: If t!tis bit is I, the selected language-card ROM is read-enabled.
If this bit is 0, the selected language-card RAM bank is read-enabled.

LCBNK2, If this bit is I, language-card RAM bank I is selected.
If this bit is 0, the language-card RAM bank 2 is selected.

ROM BANK: ROM bank select switch (must always be 0). To maintain system
integriry, do not modify this bit.

INTCxROM: if thIs bit is I, the internal ROM at $CxOO is selected.
If this bit is 0, the slot card ROM at CxOO is selected.

Auxiliary memory
The auxiliary bank has a IK area of memo'ry that serves the
purpose of expanding the text display to SO columns. The other
63K can be used as auxiliary program and data storage. If you
use only 4O-column displays, the entire 64K bytes is available for
programs and data.

Warning Do not attempt to switch In the auxiliary memory from a
BASIC program. The BASIC interpreter uses several areas In
main RAM. Including the stack and the zero page. If you
switch to alternate memory In these areas. the BASIC
Interpreter fails and you must reset the system and start
over,

As you can see by studying the memory map in Figure 2-15. the
auxiliary memory is broken into two large sections and one small
one. The largest section is switched into the memory address
space from 512 to 49151 ($0200 through $BFFF). This space
includes the display buffer pages: As described in the section
"Text Modes" earlier in this chapter, space in auxiliary memory
is used for one-half of the SO-column text display. You can
switch to the auxiliary memory for this entire memory space, or
you can switch just the display pages: See the next section,
"Memory Mode Switching."

APDADraft 2--42 11121186

APDADraft

Apple llGS Hardware Reference

.;. SO/I swilches: If the only reason you arc using auxiliary
memory is for the 8O·column display, note that you can
slOre into the display page in auxiliary memory by using the
SET80COL and TXTPAGE2 soft switches described in the
section "Display Mode Switching" earlier in this chapter.

The other large section of auxiliary memory is switched inlO the
memory address space from 52K to 64K ($DOOO through $FFFF).
This memory space and the switches that control it are described
earlier in this chapter in the section "Bank-Switched Memory."
If you use the auxiliary RAM in this space, the soft switches have
the same effect on the auxiliary RAM that they do on the main
RAM: The bank switching is independent of the auxiliary RfuVl
switching.

"" "" p ... ---""----_ ..

Flgur. 2·11
Memory map with auxillart memory

• BaM ~: NOle thaI the soft switches for the bank­
swi!Ched memory, described in the previous section, do not
chanae when you switch to awtiliary RAM. In particular, if
ROM is enabled in the bank-switched memory space before
you swilch 10 auxiliary memory, the ROM will still be
enabled after you swilCh. Any time you swilch the bank­
swilched section of auxiliary memory in and ou~ you must
Wo rnaIa: swe that the bank switches are seI properly.

WheJl you switch in the auxili2ry RAM in the bank-switched
space, you Wo swilCh the r_ two paaes, from 0 to 511 ($0000
through SOlPP). This pan of memory contains paae zero, which
is used for important data and base addres.oes, and page 1, which
is the 6502 StaCk. 1be stack and zero paae "'" switched this way so
that system software running in the bank-swi!ched memory space
can maintain its own stack and zero paae while it manipulates the
<18K address space (from $0200 to SBFFF) in either main
memory or auxiliary memory.

2-43 11/21186

Apple llGS Hardware Reference

Memory mode switching
Switching the 48K section of memory is performed by two soft
swi[ches: The switches named RDMAlNRAM and RDCARDRA:\l
select main or auxiliary memory for reading, and the ones
named WRMAlNRAl"l and WRCARDRAl"l select main o r
auxiliary memory for writing. As sho,",'n in Table 2-15, there arC
two switches for each function- one to select main memory. and
the other to select auxiliary memory. Enabling the read and
write functions independently makes it possible for a program
whose instructions are being fetched from one memory space to
store data into the other memory space.

Warning Do not use these SWitches without careful planning.

APDADrqft

Careless switching between main and auxiliary memories Is
almost certain to have catastrophic effects on the opemtion
of the Apple fiGS. For example, If you switch to expansion
memory with no memory expansion card In the memory
expansion slot, the program that Is running will crash.

Writing to the soft switch at location SCOO3 turns RDCARDRAM
on and enables auxiliary memory for reading; writing to
location $COO2 turns RDMAINRAM on and enables main
memory for reading. Writing to the soft switch at location $COO5
turns WRCARDRAM on and enables the auxiliary memory for
writing; writing to location SC004 turns WRMAINRAM on and
enables main memory for writing. By setting these switches
independently, you can use any of the four combinations of
reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page I and Hi-Res
graphics Page I can be used as part of the address space from
S0200 to SBFFF by using RAM read and RAM write soft switches
as described above. These areas in auxiliary RAM can also be
controlled separately by using the switches described in the
section "Display Mode Switching" earlier in this chapter. Those
switches are named SETOOCOL, TXTPAGE2, and HIRES.

As shown in Table 2-15, the SETBOCOL switch functions as an
enabling switch: With it on, you can select main memory or
auxiliary memory by writing to either TXTPAGEI or TXTPAGE2.
With the HIRES switch off, the memory space switched by
TXTPAGE2 is text Page I, from S0400 to S07FF; with HIRES on,
TXTPAGE2 switches both text Page 1 and Hi-Res graphics
Page I, from S2000 to S3FFF.

If you are using both the auxiliary RAM control switches
(SET8OCOL, CLRBOCOL, TXTPAGE1, TXTPAGE2, and HIRES)
and the auxiliary display page control switches (RDMAINRAM,
RDCARDRAlM, WRMAlNRAM, and WRCARDRAM), the display
page control switches take priority. That is, if CLROOCOL is on,
the ·RAM read and write switches toggle the entire auxiliary and
main memory space from S0200 to SBFFF.

2-44 11121186

, ,

TobIe 2-15

Apple llGS Hardware Reference

If SET8OCOL is on, the RAM switches have no effect on the
display page; if SETSOCOL is on and LORES is on, TXTPAGEI
and TXTPAGE2 switches control text Page 1, regardless of the
settings of the RAM read and write switches. Likewise, if
SETOOCOL and HIRES are both on, TXTPAGEI and TXTPAGE2
control both text Page 1 and Hi-Res graphics Page 1, again
regardless of the RAM read and RAM write switches.

A single soft switch named AL TZP (for alternate zero page)
switches the bank-switched memory and the associated stack and
zero page a-rea between main and auxiliary memory. As shown
in Table 2-15, writing to location $COO9 turns ALTZP on and
selects auxiliary memory stack and zero pagej writing to the soft
switch at location $COO8 turns AlTZP off and selects main
memory stack and zero page for both reading and writing.

Auxiliary-memory select switches

location

Name Funetlon HIIX Decimal Note.

RDCARDRAM Read auxiliary memory $COO3 49155 Write
RDMAlNRAM Read main memory $COO2 49154 Write
RDRAMRD Read switch status $COI3 49171 Read (I-aux, O-main)

WRCARDRAM Write auxiJi.ary memory $COO5 49157 Write
w&"IAINRAM Write main memory $C004 49156 Write
RDRAMWRT Read switch status $C014 49172 Read (I-aux, O~main)

SET80COL On, access display page $C001 49153 Write
CLRBOCOL OtI use RAM switches, above $COOO 49152 Write
RD80COL Read switch status SC018 49176 Read (I =OO-co1. store on)

TXTPAGE2 Page 2 on (aux. memory) $C055 49237 Write
1XTPAGE1 Page 1 on (main memory) SC054 49236 Write
RDPAGE2 Read switch status SCOIC 49180 Read (I =page 2, O=page 1)

HIRES On, access Hi-Res pages SC057 49239 Write
LORES OtT, use RAM switches, above $C056 49238 Write
RDHIRES Rea d switch status SCOlD 49181 Read (I-HIRES on, 0=0£0

SETALTZP Aux. stack & zero page SC009 49161 Write
SETS1DZP Main stack & zero page $C008 49160 Write
RDALTZP Read switch status $C016 49174 Read (J -aux, O~main)

Note, R means read the locatIOn, W means wnte anything to the location, R!W means read or
write, and R7 means read the location and then check btt 7.

APDADraft

There are three more locations associated whh the auxiliary
memory switches. The high-order bits of the bytes you read at
these locations tell you the settings of the three soft switches
described above. The byte you read at location $C013 has its
high bit set to 1 if the aUXiliary memory is read-enabled, or 0 if

the 48K block of main memory is read-enabled. The byte a{
location $C014 has its high bit set to 1 if auxiliary memory is
write-enabled, or 0 if the 48K block of main memory is write-

2-45 1lJ21186

Apple IIGS Hardware Reference

enabled. The byte at location $COI6 has its high bit set to 1 if
ALTZP is on (the bank-switched area, stack, and page zero in the
auxiliary memory are selected), or 0 if ALTZP is off (these areas
in main memory are selected),

.:. Sharing memory: In order [0 have enough memory
locations for all the soft switches and remain compatible
with the Apple II and Apple II Plus, the soft switches listed in
Table 2-15 share their memory locations with the keyboard
functions listed in Table 2-2. The operations-read or
write-{shown in Table 2-15) for controlling the auxiliary
memory are just the ones that are not used for reading the
keyboard and clearing the strobe.

Peripheral expansion
The seven expansion slots on the main logic board are used for
installing circuit cards containing the hardware and firmware
needed to interface peripheral devices to the Apple lIGS. These
slots are not simple 'I/O ports; peripheral cards can access the
computer's, address, and control lines via these slots. The
expansion slots are numbered from 1 to 7. and certain signals,
described below, are used to select a specific slot.

Selecting a device
The Apple IIGS supports several built-in devices and traditional
slot-devices, with each device taking up one logical slot. Each
built-in peripheral device is assigned to a slot: and cards are
plugged into any of the seven peripheral slots. This allows
devices, such as a serial port, to be built onto the main logic
board', however, only one device (either the built-in peripheral
device or the slot peripheral device) can be selected at a time.

The Slot register
The Control Panel (accessible by pressing the Apple-Control­
Esc keys simultaneously) allows the user to select the appropriate
device for each logical slot. Enabling and disabling of internal
peripheral devices may also be achieved under software control
by setting the bits in the Slot Select register at location $C02D.
The bit representations are given in figure 2-16.

Warning To prevent the operating system from crashing. do not
manipulate the bits within the Slot Select register under
sottware control.

Warning Be careful when changing bits within this register. Use only
a read-modIfy-write Instruction sequence When
manipulatlng bits. See the wamlng In Chapter 1.
'Introduc~on to the Apple IiGS·.

APDA Draft 2-46 Il!211S6

.--

7 6 514131211101
L

Apple JIGS Hardware Reference

Reserved; do not modify

Slot 1 device select

Slot 2 device select

Reserved; do not modify

Slot 4 device select
Slot 5 device select

Slot 6 device select

Slot 7 device select

Figure 2-16. The Slot register at $C02D

Bit Value Description

7

6

5

4

3

2

1

o

o
1

o
1

o
I

o
1

o
1

o
1

Selects the internal-device (AppleTalk) ROM code for slot 7.
Enables both the slot-card ROM space Oocation $C700 to $C7FF) and I/O space
SCOFO to SCOFF.

Selects the .internal-device (5.2S-inch disk drive) ROM code for slot 6.
Enables both the slot-card ROM space Oocation $C600 to SC6FF) and I/O space
$COEO to $COEF.

Selects the internal-device G.5-inch disk drive) ROM code for slot 5.
Enables both the slot-card ROM space Oocation $CSOO to $CSFF) and va space
SCODO to SCODF.

Selects the internal-<ievice (mouse) ROM code for slot 4.
Enables the slot-card ROM space Oocation $C400 to SC4FF).

Reserved; do not modify.

Selects the internal-device (perial port) ROM code for slot 2.
Enables both the slot-card ROM space Oocation SC200 to SC2FF) and 1/0 space
$COAO to $COAF.

Selects the internal-device (serial port) ROM code for slot 1.
Enables both the slot-card ROM space Oocation $ClOO to $C1FF) and [/0 space
SC090 to SC09F.

Reserved; do not modify.

Note 1/ 0 space for slots 3 (SCOCO to SCOCF) and 4 (SCODO to $CODF) is always enabled.

APDADraft

Peripheral-card memory spaces
Because the Apple IIGS microprocessor does all its va through
memory locations, portions of the memory space have been

2-47 Il l21!86

Apple lies Hardware Reference

APDADraft

allocated for the exdusive use of the cards in the expansion ~

slots. In addition to the memory locations used for actual I/O,
there are memory spaces available for programmable memory
(RAM) in the main memory and for read-only memory (ROM or
PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are
described below. Those memory spaces are used for small
dedicated programs such as I/O drivers. Peripheral cards that
contain their own driver routines in firmware like this are called
intel/lgent peripherals. They make it possible for you to add
peripheral hardware to your Apple lIes without having to change
your programs, provided that your programs follow normal
practice for data input and OU[put.

Peripheral-card I/O space

Each expansion slot has the exdusive use of 16 memory
locations for data input and output in the memory space
beginning at location $C09O. Slot 1 uses locations $C09O
through $C09F, slot 2 uses locations $COAO through $COAP, and
so on through location SCOFF, as shown in Table 2-16.

These memory locations are used for different I/O functions ,
depending on the design of each peripheral card. Whenever the
Apple lIes addresses 1 of the 16 I/O locations allocated to a
particular slot, the signal on pin 41 of that slot, called IDEVSEL,
switches to the active Oow) state. This signal can be used to
enable logic on the peripheral card that uses the 4 low-order
address lines to determine which of its 16 I/O locations is being
accessed.

Table 2-16
Pa~pheral-card I/O memory locatlons ancbled by /DEVSEL

Slot Locations Slot Locations

1 $C09O-$C09F 5 $CODO--$CODF

2 $COAO-$COAF 6 $COEO-$COEF

3 $COBO-$CDBF 7 $COFO--$COFP

4 $CDCO-$COCF

Peripheral-card ROM space

One 256-byte page of memory space is allocated to each
accessory card This space is normally used for read-only
memory (ROM or PROM) on the card with driver programs that
control the operation of the peripheral device connected to the
card.

The page of memory allocated to each expansion slot begins at
location $Cnoo, where n is the slot number, as shown in Table 2-
17 and Figure 2-16. Whenever the Apple lIes addresses one of
the 256 ROM memory locations allocated to a particular slot, the

2-48 11121186

APDADraft

Apple IIGS Hard";a~e Reference

signal on pin I of that slot, called IIOSEL, switches to the active
(low) state. This signal enables the ROM or PROM devices on
the card, and the 8 low-order address lines determine which of
the 256 memory locations is being accessed.

Tabl .. 2-17
Peripheral-card I/O memory locattons enabled by !IOSEl

Slot locations Slot locotions

I SCIOD-$CIFF 5 $C500-$C5FF

2 SC200-$C2FF 6 $c600-$c6FF

3 $C300-$C3FF 7 $C700-SC7FF

4 $C400-$C4FF

Expansion ROM space

In addition to the small areas of ROM memory a!located to each
expansion slot, peripheral cards can use the 2K memory space
from $C800 to SCFFE for larger programs in ROM or PROM.
This memory spaoe is called expansion ROM space. (See the
memory map in Figure 2-11.) Besides being larger, the
expansion ROM memory space is always at the same locations,
regardless of which slot is occupied by the card, making
programs that occupy this memory space easier to write.

This memory space is available to any peripheral card that
needs it. More than one peripheral card can have expansion
ROM on it, but only one of them can be active at a time.

Each peripheral card that uses expansio·n ROM must have a
circuit on it to enable the ROM. The orcuit does this by a two­
stage process: First, it sets a flip-flop when the IIOSEL signal,
pin I on the slot, becomes active (low); second, it enables the
expansion ROM devices when the IIOSTI!.B signal, pin 20 on the
slot, becomes active (low). Figure 2-17 shows a typical ROM
enable circuit.

The IIOSEL Signal on a particular slot becomes active whenever
the Apple lIGS microprocessor addresses a location in the 256-
byte ROM address space allocated to that slot. The / IOSTRB
signal on all the expansion slots becomes active (low) when the
microprocessor addresses a location in the expansion-ROM
memory space, SC800 to $CFFE. The IIOSTI!.B signal is used to
enable the expansion-ROM devices on a peripheral card. (See
Figure 2-17.)

2-49 11/21186

Apple lIGS Hardware Reference

APOA Dmn

(I 0 SELECT' }-- S
£SABLE I

La[ch
(;em' }-- R 21\ Byte
C I, 0 STROBE'

E,ABLE 2
RO~

(.\ddreSS
AO to AIO

Figure 2-17
Expansion ROM enable circuit

A program on a peripheral card can get exclusive use of the
expansion ROM memory space by referring to location $CFFF in
its initialization phase. lbis location is spedal: All peripheral
cards that use expansion ROM must recognize a reference to
$CFFF as a signal to disable their expansion ROMs. Of course,
doing so also disables the expansion ROM on the card that is
about to use it. but the next instruction in the initialization code
sets the expansion ROM enable circuit on the card.

A card that needs to use the expansion ROM space must first
insett its sloe: address ($Cn) in location $07F8 (known as MSLOD
before it refers to $CFFF. 1bis allows interrupting devices to
reenable the card's expansion ROM after interrupt handling is
fmished. Once its slot address has been written in MSLOT. the
peripheral card has exclusive use of the expansion memory
space and its program can jump directly into the expansion
ROM,

Figure 2-18
ROM disable address decoding

To RESET, ROM Enable
F1il'"flOll

As described earlier. the expansion-ROM disable drcuit resets
the enable Dip·flop whenever the microprocessor addresses
location $CFFF, To do this. the peripheral card must detect the
presence of $CFFF on the address bus. You can use the /IOSTRB
signal for patt of the address decoding. since it is active for
addresses from $C800 through $CFFF, If you can afford to
sacrifice somc ROM space. you can simpliry thc address
decoding even further and save cirOlitry Illl the card. For
example. ir you give up the last 256 by" " "r expan,jtm HO,\1
~racc, YOlJr di,.:;ahlc cireuil nccd~ \0 d , ·r"l "! only addrc."''':c!' nf,l!c:

2-50 1/1": I SIj

APDADrafr

Apple lIes Hardware Reference

form $CFxx, and you can use the minimal disable-decoding
circuitry shown in Figure 2-18.

Peripheral-card RAM space

There are 56 bytes of main memory allocated to the peripheral
cards, 8 bytes per card, as shown in Table 2-18. These 56
locations are actually in the RAM memory reserved for the text
and Lo-Res graphics displays. but these panicular localions arc
not displayed on lhe screen ·and their caments are not changed
by the built-in output routine COUTl. Programs in ROM on
peripheral cards use these locations for temporary data storage.

Table 2-18
Perlpheral-card RAM memory locations

Ba ..

address

$0478

$04F8

$0578

$05F8

$0678

$06F8

$0778

$07F8

Slot number

2 3 4 5 6 7

$0479 $047 A $047B $047C $0470 $047E S047F

$04F9 $04FA $04FB $04FC $04FO $04FE $04FF

$0579 $057A $057B $057C $0570 $057E $057F

$05F9 $05FA $05FB $05FC $05FO $05FE $05FF

$0679 $067A $067B $067C $0670 $067E $067F

$06F9 $06F A $06FB $06FC $06FO $06FE $06FF

$0779 $077 A $077B $077C $0770 $077E $077F

$07F9 $07FA $07FB $07FC $07FO $07FE $07FF

A program on a peripheral card can use the eight base addresses
shown in the table to access the eight RA.M locations allocated
for its use, as shown in the next section, "VO Programming
Suggestions. "

I/O programming suggestions
A program in ROM on a peripheral card should work no matter
which slot the card occupies. If the program includes a jump to
an absolute location in one of the 256-byte memory spaces, then
the card will work only when it i5 plugged into the slot that uses
that memory space. If you are writing the program for a
peripheral card that will be used by many people. you should
avoid placing such a restriction on the use of the card.

Important To function properly no moiler which slot a peripheral card Is
Installed In. the program In the card's 256-byte memory
space must not make any absolute references to Itself.
Instead of using Jump Instructions. you should force

2-51 11I21186

Apple lIGS Hardware Reference

APDADraji

conditions on branch Instructlons. which use relative
addressing.

The first thing a peripheral card used as an lIO device must do
when called is (0 save the contents of the microprocessor's
registers. (Peripheral cards not being used as lIO devices do not
need to save the registers.) The device should save the registers'
contents on the stack, and restore them just before returning
control to the calling program. If there is RAM on the
peripheral card, the information may be stored there.

Finding the slot number with ROM switched in

The memory addresses used by a program on a peripheral card
differ depending on which expansion slot the card is installed
in. Before it can refer to any of those addresses, the program
must somehow determine the correct slot number. One way [0

do this is to execute a JSR (jump to subroutine) to a location with
an RTS (return from subroutine) instruction in it, and then
derive the slot number from the return address saved on the
stack, as shown in the following example.

Important Make sure the relun address Is located In Apple IIGS RAM.
not the memory on the peripheral card.

PHP sav e status

SEI inhibit inte rrupts

J SR KNOWNRTS - >a known RT S inst ru ct ion ...

; .. . that you set up

TSX get high byte o f the ...

LDA SOlOO,X ... return address trom stack

AND t$OF l o w-order d i g it is s l ot no.

PLP rest o re stat us

The slot number can now be used in addressing the memory
allocated to the peripheral card, as shown in the next section.

I/O addressing

Once your peripheral-card program has the slot number, the
card can use the number to address the I/O locations allocated
to the slot. Table 2·19 shows how these locations are related to
16 base addresses starting with $C080. Notice that the difference
between the base address and the desired I/O location has the
form $nO, where n is the slot number. Stamng with the slot
number in the accumulator, the following example computes
this difference by 4 left shiflS, then loads it into an index register
and uses the base address to specify 1 of 16 I/O locations.

2-52 IlJ21186

- '.

Table 2-19

Apple lieS Hardware Reference

ASL g Ei t n i nt o ...

ASL

ASL

ASL ... high-o rder nibb l e ...

TAX ... o f index register.

LDA $coao,X l o ad f ro m fi rst I IO l oca t i on

-:. Selecting your target: You must make sure that you get an
appropriate value into the index register when you address
I/O locations this way. For example, starting with 1 in the
accumulator. the instructions in the above example perform
an LOA from location $C090. the first I/O location allocated
to slot 1. If the value in the accumulator had been 0, the
LOA would have accessed location $C080. thereby setting
the soft switch that selects the second bank of RAM at
location SOOOO and enables it for reading.

Peripheral-card I/O base addresses

Base

oddr ...

SC080 SC090

$C081 $C091

SC082 Scon

SC083 $C093

SC084 $C094

SC08S SC09S

$C086 $C096

SC087 SC097

$C088 SC098

SC089 SC099

SC08A SC09A

SC08B $C09B

SC08C SC09C

SC08D $C090

SC08E SC09E

SC08F SC09F

APDADraft

Connector number

2 3 4 5 6 7

SCOAO SCOBO SCOCO SCOOO $COEO $COFO

SCOAI SCOBI SCOCI SCODl $COEI SCOFI

$COA2 $COB2 SCOC2 scom $COE2 scon
$COA3 $COB3 $COC3 SCOD3 SCOE3 $COF3

$COA4 $COB4 SCOC4 $COD4 $COE4 SCOF4

SCOAS SCOBS $COCS $CODS SCOES SCOFS

SCOA6 SCOB6 SCoC6 SCOD6 $COE6 SCOF6

SCOA7 SCOB7 SCOC7 SCOD7 $COE7 $COn

$COA8 $COB8 $COCS SCOD8 SCOE8 $COF8

SCOA9 $COB9 $COC9 $COD9 $COE9 SCOF9

SCOAA SCOBA SCOCA $CODA SCOEA SCOFA

SCOAB SCOBB $COCB SCODB SCOEB SCOFB

$COAC SCOBC SCOCC SCODC SCOEC SCOFC

$COAD $COBD SCOCO $COOD $COED SCOFD

SCOAE SCOBE $COCE SCODE $COEE SCOFE

SCOAF SCOBF SCOCF SCODF SCOEF SCOFF

RAM addressing

A program on a peripheral card can use the eight base addresses
shown in Table 2-19 to access the eight RA,\1 locations aliocated

2-53 1l/21186

Apple flcs Hardware Reference

APDADraft

for iLS use. The program docs lhis by pUlting iLS slot number into
the Y Index register and using indexed addressing mode wilh {he
base addresses. The base addresses can be defined as cons[anLs
because they are lhe same no malter which slot the peripheral
card occupies.

If you start with the correct slm number in the accumulator (by
using the example shown earlier), then the following example
uses all eight RAJ\.! locations allocated to the slm,

ny

LDA S0478,'/

STA $04FB,Y

LDA $0518, 'f

STA $OSF8,Y

LDA $0678, Y

STA S06FB,'f

LDA $0118.Y

sn S01FB,'f

WarnIng You must be very carelul when you have your pe~pheral­
card program store data at the base-address locations
themselves since they are temporary storage locations; the
RAM at those locations Is used by the disk operating system,
Always store the II~t byte of the ROM location 01 the
expansion slot that Is currently active (Sen) In location
S07F8 (MSLOT). and the fi~t byte 01 the ROM location of the
slot holding the controller card for the startup disk drive in
loca lion SOSF8,

Other uses of I/O memory space

The portion of memory space from location SCOOO through
SCFFF is normally allocated to va and program memory on the
peripheral cards, but in this computer there are built-in
functions that also use this memory space, Figure 2-19 shows the
division of address space [0 the built-in devices. The sof[
switches that conuol the allocation of Lhis memory space are
described in the next section,

2-54 II 12/186

APDADraft

$CFFF

$C800

$C700

$C600

$C500

$C400

$C300

$C200

$CIOO
$COOO

Peripheral
expansion ROM

Slot 7 ROM

Slot 6 ROM

Slot 5 ROM

Slot 4 ROM

Slot 3 ROM

Slot 2 ROM

Slot I ROM

Int",nal

Flgur.2-19
I/O memory map

Apple lIGS Hardware Reference

Internal ROM
and peripheral
expansion ROM

Internal ROM

AppleTalk ROM

5.25- disk ROM

3.5 - disk ROM
Mouse ROM

80<olumn HUM

Senal port HOM

Senal port ROM

soft switches and periph",al 1/0

Switching I/O memory
The built-in Ilmlware uses two soft switches to control the
allocation of the Va memory space from $COOO to $CFFF. The
locations of these soft switches are given in Table 2-20.

<0> /IIote: Like the display switches described earlier in this
chapter, these soft switches share their locations with the
keyboard data and strobe functions. The switches are
activated only by writing, and the states can be determined
only by reading, as indicated in Table 2-20.

2-55 II 12 lf86

Apple !lGS Hardware Reference

Tabl,. 2-20
I/O memory switches

Nan-.

SETSLOTC3ROM
SETINTC3ROM
RDC3ROM

SETSLOTCXROM
SETINTCXROM
RDCXROM

APDADrajt

Location

Function Hex Decimal Not ••

Slot RO M al $C300 $COOB 49163 Write
Inlernal ROM at $C300 $COOA 49162 Write
Read SLOTC3ROM switch $C017 49175 Read (1 a slol ROM enabled,

o - internal ROM enabled)
Slot ROM al $Cxoo $COO6 49159 Write
Internal ROM at $CxOO $COO7 4915B Write
Read SLOTCXROM switch $C015 49173 Read (1 = slol ROM enabled ,

o = internal ROM enabled)

When SETSLOTC3ROM is on, lhe 256-byle ROM area al $C300 is
available to a peripheral card in slot 3, which is Ihe slol
normally used for a terminal interface. Turning SETINTC3ROM
on disables peripheral-card ROM in slot 3 and enables the built­
in BO-column firmWare. The BO-column firmware is assigned to
slot 3 address spaoe because slot 3 is nonnally used with a
terminal interface, so the built-in firmware will work with
p<ograms that use slot 3 this way.

The bus and VO 'signals are always available to a peripheral card
in slot 3, even when the 8O-colwnn hardware and firmware are
operating. Thus it is always possible to use this slot for any VO
peripheral Ihat does not have buill-in firmware.

When SLOTCXROM signal is active (high), the VO memory
space from $C1oo to $C7FF is allocaled to Ihe expansion slots,
as described previously. Selling SLOTCXROM inactive (low)
disables the peripheral-card ROM and selects built-in ROM in
all of the VO memory space except the part from $COoo to
$COFF (used for soft switches and data VOl, as shown in
Figure 6-3.

~ NOle: Setting SLOTCXROM low enables built-in ROM in all
of the VO memory space (except the soft-switch area),
including the $C300 space, which contains the BO-column
firmware .

Developing cards for slot 3
In the original Apple He firmware, the internal slot 3 firmware
was always switched in if there was an BO-column card (either 1K
or 64K) in the aUXiliary SIOL This means Ihat peripheral cards
with their own ROM were effectively switched out of slot 3 when
the system was turned on.

2-56 11121/86

APDADraft

Apple IIGS Hardware Reference

In the Apple IIGS, only the Control Panel may d e termine
whether or not the peripheral card in slot 3 is selected.

When programming for cards in slot 3:

• You must support the A UXMOVE and XFER routines at $C311
and $C314. .

• Don't use unpublished entry points into the internal SCnOO
firmware, because there is no guarantee that they will stay the
same.

• If your peripheral card is a character VO device, you must
follow the Paseal1.1 fllll1ware protocol. See the Apple llGS
Firmware Reference manual for information on finnware
protocol.

Interrupts
The original Apple lie offered little fllll1ware support for
interrupts. The Apple IIGS firmware provides improved
interrupt support.

Interrupts are easiest to use with ProD OS and Pascal 1.2 because
they have interrupt support built in. DOS 3.3 has no built-in
interrupt support.

The main purpose of the interrupt handler is to support
interrupts in any memory configuration. This is done by saving
the machine's state at the time of the interrupt, placing the
Apple in a standard memory configuration before calling your
program's interrupt handler, then restoring the original state
when your program's interrupt handler is finished.

What is an interrupt?

An inten-upt is a hardware signal that tells the computer to stop
what it is currently doing and devote its atlention to a more
important task. Print spooling and mouse handling are
examples of interrupt use, things that don't take up all the time
available to the system, but that should be taken care of
promptly to be most useful.

For example, the Apple IIGS mouse can send an interrupt to the
computer every time it moves. If you handle that interrupt
promptly, the mouse pointer's movement on the screen will be
smooth instead of jerky and uneven.

Interrupt priority is handled by a daisy-chain arrangement using
two pins, INT IN and INT O UT, on each peripheral-card slot.
Each peripheral card breaks the chain when it makes an interrupt
request. On peripheral cards that don't use interrupts, these
pins should be connected together.

The daisy chain gives priority to the peripheral card in slot 7: If
this card opens the connection between INT IN and INT O UT, or

2-57 11121 /86

Apple lies Hardware Reference
if there is no card in this slot, interrupt requests from cards in
slots 1 through 6 can't get "through. Similarly, slot 6 controls
interrupt requests (IRQ) from slots 1 through 5, and so on down
the line.

When the IRQ' line on the Apple IIGS microprocessor is
activated (pulled low), the microprocessor transfers control
through the vector in locations $FFFE to $FFFF. This vector is
the address of the Monitor firmware's interrupt handler, which
determines whether the request is due to an external IRQ or a
BRK instruction and transfers control to the appropriate routine
via the vector. stored in memory page 3.

For further delails on handling interrupts in the Apple
IIGS, see the Apple IIGS Firmware Refereflce manual.

APDADrajr 2-58

- .

Il l21186

Apple lles Hardware Reference

Chapter 3

New Features
The Fast Processor Interface (FPI) is one of the two major subsystems that make up the
Apple IIGs. It provides these new features for the Apple II family:

• faster processor speed

• suppon of additional RAM

• I/O shadowing

Figure 3-1 shows the relationship of the FPI to other pans of the Apple IlGS. This chapter
describes the FPI subsystem and the new functions.

-
lidO", II ;;.----------,

-
~---------

-

=.. -
Figure 3-1. Relationship of the FPI subsystem to other system components

The FPI subsystem

During normal operation, the FPI side of the system runs at 2.8 MHz and the Mega II side
runs at 1.024 MHz. This allows faster processing without disturbing the standard 1.024
MHz speed for I/O, video timing nece,ssary for compatibility, and existing peripherals.

APDA Draft 3-1 11121i86

Apple llGS Hardware Reference

Data must be transferred and soft switches accessed between the Mega II and the FPL
When a program running on the FPI side of the system must access an I/O or Mega II
RAM location, the system slows down briefly to 1.024 MHz and synchronizes itself with
the Mega IT tiroirlg so that the access can be accomplished. When the access is ftnished. the
FPI side returns to the normal 2.8 MHz operating speed, and the Mega IT side continues at
1.024 MHz.

A combination of existing Apple II soft switches, Mega IT soft switches, and FPI control
registers controls the various functions of the FPL The control registers include:

• the State register

• the Shadow register

• the Speed register

Memory allocation

The FPI controller can access a minimum of 128K of RAM and is expandable to 8Mb.
This RAM is separate from the 128K RAM available to the Mega IT and is used for text and
graphics display buffers and system software. The FPI also has access to 128K of ROM,
expandable to 1Mb. The application program is free to use the remaining locations in
banks $0 and $1 and those in the RAM expansion banks. Figure 3-2 shows the system
memory map.

APDADrajr 3-2 /1 :2liSt)

,
SOO SOt sal S7F

SFf;:F ,.---..,....-....,..,., ... ,., ; .. ",.
" ... " .. . "

SCCOO I ,::::

••• I"~I ,., •• , • --

" ". " "
" "' " :: :: :: .. ". ..
:: t: :: .. ".... " " " "
" ".... "
" "... . · . . "
• • • " • I • •
• • • " • t • • .. ~.,J.....a..","~ .. '\"~Jo

Ban. Numbe.. Apple lies Hardware Reference

SEO SEt SFO. $I'D SFE SF;:

F $ _, ~ Bu"""AOM

mJo-., .1.() .SI'IIIm

Figure 3·2. TheApple nGS memory map

The State register

The State register is duplicated in the FPI IC, allowing access to eight of the commonly
used soft switches in a single rransfer, as shown in Figure 3-3. This means that reading
the State register at location $C068 allows you to read the state of the soft switches without
slowing the system down. Write operations to the State register will slow the system down
momentarily. Figure 3-3 shows the soft switches in the State register.

7 6 5

Shadowing

4 3 2 1 0 Soft switches

INTCXROM
ROM BANK
BANK2
RDROM
RAMWRT
RAMRD
PAGE2
ALTZP

Figure 3·3. State register at $C068

Shadowing is the process of duplicating the va addresses in another bank of RAM.
Shadowing may be enabled in any RAM memory bank. The va addresses are located in
banks $ED and $El, which is the low-speed Mega II main address space. By shadowing
these locations in the high-speed FPI address space, only writes to the va location require
the system to slow down.

APDA Draft 3-3 II 121'86

Apple lIGS Hardware Reference

An VO write actually writes to the VO address in both banks, the Mega II bank, $EO or
$EI, and the high-speed bank, $00 or $01 (when shadowing is enabled in $00 and $01
only). Shadowing, therefore, helps minimize the impact of video display updates on the
overall system sPeed: Only VO writes are done at low system speed; VO reads are done at
full system speed.

The shadowing options are

• enable shadowing for banks $00 and $01 only

• enable shadowing for all RAM banks (not recommended)

Note: Shadowing of banks other than $00 and $01 should not be attempted under
normal operating circumstances; firmware operating in other banks will be
corrupted if shadowing is enabled in those banks, resulting in a system crash.

Choose which banks you want shadowing enabled in by setting or clearing bit 4 in the
Speed register (described later in this chapter). This will duplicate the I/O locations and any
portions of the video buffers you select (via the Shadow register) in those shadow-enabled
RAM banks. Reads and writes can now be done from and to these VO locations in the
shadowed banks. Direct access to VO and the video buffers is not inhibited and may still
be accesed through banks $EO and $El. Figure 3-4 shows banks $El and $01, or any
other odd-numbered shadow-enabled bank.

Note that slowing of the system for each I/O write is very brief and won't affect program
execution speed significantly. Only continuous write accesses would actually be really
noticeable.

APDADra[r 34 1112/186

Apple lies Hardware Reference

Bank $E1 (64K) Bank $01 (64K)
$FFFF

$EOOO

$COOO

SACOO

S8000

$6000

S4000

$2000

S0800
S0400

$0000

-4- 1/0 space

Hi-Res
-4- graphics

Page 2

Hi-Res _ ~~~~~ 1<X><X><X><X><:I-4- graphics
Page 1

•
. ~ Text pag~==--. ~Texlpagl

SFFFF

SEOOO

$COOO

SACOO

S8000

$6000 32K Super Hi-Res
video buffer

$4000

S2000

$0800
$0400
$0000

Shadow register r. r . '@§II
Shaded areas of bank $E1 and $E1
are shadowed in banks $00 and $01
when shadowing is enabled.

76543210
r-reserved
'=see bit descriptions

The Shadow register above shows which
bits control shadowing of which areas.

Figure 3-4. Shadowed memory map

The Shadow register

The Shadow register, located at $C035, cOJ:ltrols which address ranges of each shadowed
high-speed RAM bank are duplicated in the Mega II RAM display areas. The Shadow
register also determines whemer or not me I/O space/language-card (IOLC) areas for each
bank are implemented. Figure 3-5 shows the format of the Shadow register, followed by a
list of each of me bits and their functions. .

APDADraft 3-5 11121 ·81)

Apple IIGS Hardware Reference

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipUlating bits. See the warning in
Chapter 1, "Ihtroduction to the Apple IIGs".

171615141312 1 0

L Inhibit shadowing text Page 1

Inhibit shadowing Hi-Res Page 1

Inhibit shadowing Hi-Res Page 2

Inhibit shadowing Super Hi-Res buffer

Inhibit shadowing auxiliary HIRES pages

Reserved; do not modify

Inhibit I/O and language-card operation
Reserved; do not modify

Figure 3-5. Shadow register at SC035

APDADraft 11 12 1186

Apple lies Hardware Reference

Bit Value Description

7 Reserved; do nO! modify.

6 o

1

The I/O and language-card (IOLC) inhibit bit: This bit conrrols whether the
4K range from $COOO to $CFFF acts as RAM or I/O. When this bit is 0,
I/O is enabled in the $Cxxx space and the RAM that would normally occupy
that space becomes a second $Dxxx RAM space, forming a language card.
When this bit is 1, the I/O space and language card are inhibited, and
contiguous RAM is available from $0000 through $FFFF.

For more information on I/O and the language card,
see Chapter 2, "The Mega II: Maintain ing
Compatibility.'·

5

4

3

2

1

o

I

o

1

o

o

o

1

o

Reserved; do not modify.

Inhibit shadowing for auxiliary Hi-Res graphics pages: When this bit is I,
all shadowing enabled for Hi-Res graphics pages I and 2 (as determined by
bits 0 through 3 in this register) is disabled for all shadowed auxiliary (odd)
banks. Shadowing of main bank Hi-Res graphics pages remains
uneffected.
When this bit is 0, all shadowing enabled for Hi-Res graphics pages (as
determined by bits 0 through 3 in this register) is enabled for auxiliary bank
Hi-Res graphics pages as well.

Super Hi-Res buffer inhibit: When this bit is I, shadowing is disabled for
the entire 32K video buffer.
When this bit is O. shadowing is enabled for the Super Hi-Res buffer.

Hi-Res graphics Page 2 inhibit: When this bit is 1, shadOwing is disabled
for Hi-Res video Page 2 and auxiliary Hi-Res video Page 2.
When this bit is 0, shadowing is enabled for Hi-Res video Page 2 and
auxiliary Hi-Res video Page 2. unless auxiliary page Hi-Res shadowing is
prohibited by bit 4 of this register.

Hi-Res graphics Page 1 inhibit: When this bit is 1. shadowing is disabled
for Hi-Res graphics Page 1 and auxiliary Hi-Res graphics video Page I.
When this bit is 0, shadowing is enabled for Hi-Res graphics Page 1 and
auxiliary Hi-Res graphics Page 1. unless auxiliary Page Hi-Res graphics
shadowing is prohibited by bit 4 of this register.

Text Page 1 inhibiL When this bit is 1. shadowing is disabled for text Page
1 and auxiliary text Page 1.
When this bit is O. shadowing is enabled for text Page I and auxiliary text
Page 1.

Note : Text Page 2 ($0800 through $OBFF) is never shadowed. If you need a text
display area or a code storage area, use Mega II banks $EO and $EI. These banks
are limited to 1.024 MHz operation, however.

Areas within each shadow-enabled 64K bank may be shadowed or not by setting the
corresponding bit or bits in the Shadow register. Shadowing may be turned off (no banks

APDA Draft 3-7 II i2 / ·Sf)

Apple IIGS Hardware Reference

shadowed) by setting all bits in the Shadow register. When the Shadow register is cleared
on reset, it defaults to shadowing all video areas.

Each bit in the Shadow register is active high, which means that the shadowing of the
selected area is inhibited if the corresponding bit is set. Programs that use the Shadow
register can rum off shadowing in unused video areas by setting the appropriate bits and
reclaim the free memory space in the unused video buffers in Mega II banks $EO and $E 1.

The Speed register

Th~ Speed register, located at $C036, contains bits that control the speed of operation and
that determine whether a specific area within a bank is shadowed. The Speed register is
cleared on reset or power up. Figure 3-6 shows the fonnat of the Speed register, followed
by a description of each bit.

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, "Introduction to the Apple IIGS".

7 6 15 4 3

APDADrafr

2 1 0

L Slot 4 disk motor·on detect
Slot 5 disk motor-on detect
Slot 6 disk motor-on detect
Slot 7 disk motor-on detect
Shadowing enabled in all RAM banks
Reserved; do not modify
Reserved; do not modify

Central processor speed

Figure 3-6. Speed register at $C036

3-8 11 /21 :Sf)

',,-

Apple lles Hardware Reference

Bit Value Description

7 1

o
System operating speed. When this bit is 1, the system operates at 2.B
MHz.
When this bit is 0, the system operates at 1.024 MHz (as in an Apple II).

5-6 Reserved; do not modify.

4 1

o
0-3 1

o

Bank shadowing bit: This bit determines memory shadowing in the RAM
banks. Shadow register bits 0 through 4 will determine which ponions, if
any, of the banks will be shadowed. To enable shadowing in all RAM
banks $00 through $7F, set this bit to 1.
To enable shadowing in banks $00 and $01 only, clear [his bit.

Disk II motor address detectors: To retain Apple II peripheral compatibility,
the motor-on detectors slow the system to 1.024 MHz whenever a Disk II
motor-on address is detected. When the disk motor-off address is accessed,
the system speed increases [0 2.B MHz again. For example, when bit 1 is
1, the FPI switches 10 slow mode (1.024 MHz) when address $COD9 is
accessed, and returns to normal speed (2.B MHz) following a $CODB
access. (See list of addresses below.)
When this bit is 0, the disk II motor detector is turned off.

Bits 0 through 3 detect the following address:

Slot
4
5
6
7

Motor-on
$COC9
$COD9
$COE9
$COF9

Motor-orr
$COCB
$CODB
$COEB
$COFB

Note: Drives designed for the Apple lIas system should use the speed bit (Speed
register bit 7) [0 change the processor speed when accessing disks, rather than [he
disk motor-on detectors (Speed bits 0 through 3). By using bit 7, you access
drives in slots other than slots 4 through 7 by changing the system speed manually.
Be aware that cenaal processor speed changes for drive compatibility may affect
application program timing; avoid using the motor addresses unless they are used in
a fashion consistent with the drive's cenaal processor speed requirements.

Note: Drives designed for previous Apple II computers will function as Apple lIaS
peripherals only if the system speed is slowed before disk access is attempted.

Note: For compatability with future Apple products, use fumware calls only to
manipulate bits 0 to 3 of the Speed register.

RAM control

The FPI alone controls the high-speed RAM. This high-speed memory consists of a
minimum of 128K RAM on the main logic board and additional expansion RAM on the
extended memory card for a total of BMb.

APDADraft 3-9 11 '2186

Apple IIes Hardware Reference

The FPI provides memory refresh for the high-speed RAM. which incorporates internal
refresh-address counters. This refresh scheme frees the address bus so that the FPI can
execute ROM cycles while RAM refresh cycles are occurring. thus allowing full speed
operation in the ~OM. These cycles occur approximately every 3.5 ~s and reduce the 2.8
MHz processing speed by approximately 8 percent for programs that run in RAM. When
running at 1.024 MHz, refresh cycles are executed during an unused portion of the
processor cycle and do not affect the processor speed.

ROM
The FPI provides control for 128K of on-board ROM and additional expansion-card ROM
for a total of 1Mb. The Apple IIGS on-board system ROM is located in banks $FE through
SFF. Banks SFO through $FD are reserved for ROM expansion. ROM that occupies this
address space may reside on the extended memory card only, along with additional
expansion RAM.

110 processing
Normally, all I/O write accesses are to the designated I/O space in bank $EO or $El. and
are written to all shadowed I/O space in the FPI. However, when FPI internal registers
(the direct memory access [DMA) Bank register, the Speed register, and the Shadow
register) are accessed, or when the interrupt ROM addresses ($C071 through $C07F) are
read, only the high-speed I/O space is written to. All reads access only the high-speed,
shadowed I/O space, eliminating the need to slow the system speed

Direct memory access (DMA) is a means of providing
fast I/O. A peripheral card in one of the expansion
slots can require DMA. For more information on
DMA. see Chapter 5. "Peripheral Expansion Slots."

The interrupt ROM code is available when shadowing is enabled and the inhibit I/O and
language-card operation (lOLC) bit in the Shadow register is set The SETINTCXROM
and SETSLOTCXROM soft switches do not affect interrupt ROM accesses.

The Slot register

The built-in Slot register, located at SC02D, is used to select which device is enabled for
each of the seven logical slots. That device can be either the internal or the peripheral slot
device. If the enable bit is 1, accesses for that slot ROM space (SCnxx) are directed to the
ROM on the slot card. If the enable bit is cleared, the built-in I/O device is selected. and the
system ROM code associated with the slot is executed.

The Control Panel (accessible by pressing and releasing the Apple-Control-Esc keys in
sequence) also allows the user to select the appropriate device for each logical slot. The bit
representations are shown in Figure 3-7, followed by a list of the bit descriptions.

Note: Slot 3 device hardware addresses are always available. However, the slot 3
ROM space is controlled by the SETSLOTC3ROM and SETINTC3ROM soft
switches to maintain compatibility with the existing Apple II prodUCts.

APDADraft 3-10 11!21 :8(j

Apple JIGS Hardware Reference

Warning: Be careful when changing bits within this register. Use only a read­
modify-VvTite instruction sequence when manipulating bits. See the warning in
Chapter 1, "Introduction to the Apple lIGS".

7 6 5 4 3 1 2 11 1 0 I
L Reserved; do not modify

Slot 1 liD ROM select
Slot 2 liD ROM select

Reserved; do not modify
Slot 4 liD ROM select

Slot 5 liD ROM select

Slot 6 liD ROM select

Slot 7 liD ROM select

Figure 3-7. The Slot register at SC02D

Bit Value Description

7

6

5

4

3

2

1

0

0 Selects the internal-device (AppleTalk) ROM code for slot 7.
1 Enables both the slot-card ROM space (location SC700 to SC7FF) and I/O

space SCOFO to SCOFF.

0 Selects the internal-device (5.25-inch disk drive) ROM code for slot 6.
I Enables both the slot-card ROM space (location $C600 to SC6FF) and I/O

space SCOEO to SCOEF.

0 Selects the internal-device (3.5-inch disk drive) ROM code for slot 5.
1 Enables both the slot-card ROM space (location SC500 to SC5FF) and I/O

space $CODO to SCODF.

0 Selects the internal-device (mouse) ROM code for slot 4.
1 Enables the slot-card ROM space (location SC400 to SC4FF).

Reserved; do not modify.

0 Selects the internal-device (serial port) ROM code for slot 2.
I Enables both the slot-card ROM space (location SC200 to SC2FF) and I/O

space $COAO to SCOAF.

0 Selects the internal-device (serial port) ROM code for slot 1.
I Enables both the slot-card ROM space (location SClOO to SClFF) and I/O

space SC090 to SC09F.

Reserved; do not modify.

Note: I/O space for slots 3 (SCOBO to SCOBF) and 4 (SCOCO to SCOCF) is always
enabled.

APDADraft 3-JI I l!2 /:86

Apple IlGS Hardware Reference

Synchronization

Whenever data need to be rransferred between the FPI and the Mega II, the FPI Ie must
first synchronize itself with the slower-running Mega II_ This may involve a single Mega
II cycle, as when a single I/O location in the Mega II must be accessed, or consecutive
Mega II cycles (extended periods of low-speed operation), as when Apple II software must
be run at the lower speed for compatibility. The FPI runs the processor at low speed by
generating one processor cycle for each Mega II cycle, thus running the processor at
precisely 1.024 MHz. This speed is necessary to suppon time-dependent Apple II
software.

In all Apple II computers, every sixty-fifth processor cycle is elongated, or stretched by
140 nanoseconds. This practice is required to keep the video display consistent.

cycle
number:

PHO
(1.024 MHz

65th PHO cycle streched
by 140 nanoseconds

1.63~ .. 64~

Figure 3·8. PHO cycles, 14M cycles, and M-States

The Mega II cycle

A Mega II cycle is a central processor or DMA cycle that requires access to the low-speed
side of the system. These are:

• all external and moSt internal I/O operations

• shadowed video write operations

• inhibited memory accesses

• Mega n memory accesses to banks SEQ and SEl.

A Mega II cycle consists of these steps:

1. A Mega II cycle begins when the FPI recognizes an address that requires access to the
slow side of the system, such as listed above.

2. Approximately 90 nanoseconds after the processor PH2 clock goes low, the location
address and bank address from the processor become valid. The FPI decodes these
addresses and determines the type of cycle to be executed before the PH2 clock rises.

3. If the cycle is a Mega II cycle, the FPI holds the PH2 clock high until it synchronizes
itself with the Mega II.

4. Memory or I/O access begins.

APDADraft 3-12 1112 J:8fJ

Apple lIes Hardware Reference

Mega II auxiliary bank access

To allow direct access to the Mega n auxiliary bank, the FPI passes the least significant bit
(isb) of the bank address to the Mega n during each Mega n cycle. If shadowing is
enabled or the software is addressing bank $EO or $E I, an odd-numbered bank address
will access the Mega n auxiliary memory automatically, without using the soft switches.
For this setup to work., the programmer must first set bit 0 in the Video-Control register at
$C029 to 1 (see Chapter 4, "Video," to read about the Video-Control register). Otherwise,
the Mega n ignores the bank: bit, and the soft switches must then be used to access the
auxiliary 64K through an even-numbered. shadowed bank:.

Real-time clock Ie interface
The real-time clock (RTC) chip provides the system with calendar and clock information as
well as parameter RAM preserved by battery power. These functions are performed
through two read/write registers: the control and data registers.

Note: The parameter RAM in the RTC is used for system parameters. and is not
available, nor should it be used by programs other than the system.

The control register (located at $C034), shown in Figure 3-9, serves a dual function: .as the
command register for the RTC and as the Border Color register. Refer to "Screen Border
Color" in Chapter 4 for more information on controlling the color of the display border.

Serial data communication to and from the RTC is carried out one byte at a time. (The
terms read and write an: used in perspective of the system: A read transfers data from the
clock chip, while a write transfers data to the clock chip.) To write to the clock chip, the
program must first write the data into the data register ($C033), then set the appropriate bits
in the control register ($C034). To read from the clock chip. set the appropriate control
register bits, and then read the data from the data register.

Note: To remain compatable with future Apple n products, use the fmnware calls to
read and write data to the RTC. See the Apple lieS Firmware Reference manual for
how to use the flIlDWan:.

Warning: Be can:ful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1, "Introduction to the Apple IIGS".

APDA Draft 3-13

Apple IlCS Hardware Reference

7 6 5 4 3 I 2

Border

1 0

color

• Rese

Last

.. Read

.. Start

rved ; do not modify

byte - 0

= 1, write - 0

"" 1, finished = 0

Figure 3-9. Control register at $C034

Bit Value Description

7

6

5

1
o

1
o

1

o

A read or write to the the clock chip begins by sening this bit to 1.
This bit is set to 0 automatically by the RTC when the data exchange is
complete. The program can detect that the exchange has been completed by
polling bit 7 for a O.

The read/write bit: Set this bit to 1 prior to a read from the RTC.
Set this bit to 0 prior to a write to the RTC.

The last-byte control bit: After the last byte has been read or written, this bit
must be set to 1. This last step is necessary to avoid corrupting the data in
the clock chip after the transactions are completed.
A data transfer typically involves an exchange of two or three bytes. Set
this bit to 0 before transferring any bytes to or from the RTC.

4 Reserved; do not modify.

3-0 Display border color: See ''Text and Background Color" in Chaptet 4,
"Video," for details on selecting the video display border color.

APDADrafr 3-14 I 112 Uili

Apple lIes Hardware Reference

Chapter 4

New Video
The Apple IIGS can display several video modes. These include display modes that are
compatible with the rest of the Apple II family (as well as some enhancements to these
existing modes) and some completely new display modes. These new video modes
provide higher resolution, greater color flexibility, and programming ease previously
unseen in the Apple II product line. Figure 4-1 shows a block diagram of the Apple liGS
and the relationship of the video components within the system.

This chapter describes:

• enhancements to the standard Apple II video modes

• new video fearures including the new video display modes

The Video Graphics Controller
The Video Graphics Controller (VGC) custom IC is responsible for generating all video
displayed by the Apple IIGs. The VGC provides these functions:

• supports and enhances existing Apple II video modes

• supports the new video modes

• provides interrupt handling for two interrupt sources

The VGC generates all video output in all video modes, while the Mega II is responsible
for maintaining the video RAM. All writes to the video display buffers in bank $EO and
$EI are done via the Mega II. Figure 4-1 shows the relationships of the VGC, Mega II ,
main, and auxiliary RAM. .

APDADraft 4·1 ll'~ I Sf)

Apple llGS Hardware Reference

....... _ L.C)«_.--

-

Figure 4·1. Diagram of the Apple nos and video components

The RGB video connector
Located at the rear of the main logic board is the RGB video connector. An analog RGB
video monitor may be connected to this cOMector. Figure 4·1 shows the pin diagram of
this COM ector, and table 4·1 describes the signal associated wi th each pin.

APDADraft

8 7 6 5 4 321 • • • • • • • • • • • • • • •
1514131211 10 9

Figure 4·2. The RGB video connector

4-2 1l!2I:S6

Pin Description

1 •
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Ground
Red
Comp
N.C.
Green
Ground
-5V
+12V
Blue
N.C .
Sound
NTSC/PAL
Ground
N.C.
N.C.

Apple IlGS Hardware Reference

Ground reference and supply
Red analog video signal
Composite synch signal
No connection
Green analog video signal
Ground reference and supply
-5 volt supply
+ 12 volt supply
Blue analog video signal
No connection
Analog sound output
Composite video output
Ground reference and supply
No connection
No connection

Table 4·1. The RGB video signals

Apple II compatibility
The Apple IIGS shares several display modes with previous Apple II computers. The
Apple IIGS suppons and enhances these existing Apple II video modes:

• 40-column and SO-column text modes

• mixed text/graphics mode

• Lo-Res graphics mode

• Hi-Res graphics mode

• Double Hi-Res graphics mode

For more information on Apple IT-compatible video,
refer to Chapter 2, "The Mega II: Maintaining
Compatibility .•

Enhancements to the existing Apple II video modes include:

• the ability to select unique text and background colors from any of the 16 Apple II
colors listed in Table 4-2.

• the ability to select the border color for the perimeter of the video image. You can
choose this color from any of the 16 Apple II colors listed in Table 4-2.

• the ability to display gray-scale video. This means that you can display color video
output on monochrome monitors in shades of gray rather than in dot patterns that
represent color. This ability increases contrast between graphics colors on a
monochrome monitor.

Table 4·2. Text and background colors

APDADraft 4-3 11 /2]'86

Apple lies Hardware Reference

$0 Black
$1 Deep Ted
$2 Dark blue
$3 Purple
$4 Dark green
$5 Dark gray
$6 Medium blue
$7 Light blue
$8 Brown
$9 Orange
$A Light gray
$B Pink
$C Green
$D Yellow
$E Aquamarine
$F White

Removing color from the composite video signal in 4(}.column and 80-column text modes
makes text more readable. Color is not removed when the computer is running in mixed
text/graphics modes, and the 4 lines of text at the bottom of the display will exhibit color
fringing on composite color monitors.

Color fringing is lhe rainbow-like effect that appears
around text cllaractcrs wtlen lhey are displayed in color
on most color monitors. Ttlis fringing is
unavoidable because lhe color detection circuitry of
most composite color monitors cannot respond fast
enougtl to lhe ctlanging of lhe color infonnation
during lhe text portion of lhe display. Displaying
text in black and wtlite makes it more readable.

New video display features
The Apple nGS brings new features to the existing Apple n video modes. These include:

• selectable screen border color

• selectable background color

• selectable tex t color

• selectable color or black-and-white composite video

These enhancements are described below. The new graphics modes-Super Hi-Res
graphics and color-fill graphics-are described in the next section.

Text and background color

The Apple nGS provides the capability of colored text on a colored background. To select
one of these new display options, write the appropriate color values to the Screen Color
register located at $C022.

APDADraft 4-4 1112/186

Apple IIGS Hardware Reference

The Screen Color register is an 8-bit dual-function register. First, the most significant 4
bits determine the text color. Second, the least significant 4 bits detennine the background
color. You can choose these colors from the 16 available Apple II colors given in Table 4-
2. The user can also select these colors from the Control Panel. Figure 4-3 shows the
format of the Screen Color register, followed by a description of each bit in the register.

7 6 5 4 3 I 2 1 0

Text Background

Figure 4-3. Screen Color register at $C022

Bit Value Description

7-4 Text color

3-0 Background color

Border color

The colored border area surrounds the video display text area. You may select a color for
the border by writing the appropriate color value to the Screen Border register located at
$C034. You can choose this color from the 16 Apple II colors listed in Table 4-2. .
Alternately, the user can select the border color from the Control Panel.

The Border Color register is an 8-bit read/write register serving 2 functions. First, the least
significant 4 bits detennine the border color. Second, the most significant 3 bits are the
control bits for the real time clock chip interface logic. Figure 4-4 shows the Border Color
register format, followed by a description of each bit.

Note: When you change the border color by writing to the Border Color register,
use values between $0 and $OF when writing to this register. This will ensure that
the RTC chip contents remain unaltered.

See the section on the Real Time Clock Interface in
Chapter 3. "New Features," for more infonnation on
the RTC.

7 6 5 4

RTe interface

3 2 1 0

Border

Figure 4-4. Border Color register at $C034

Bit Value Description

7-4 Real -time clock control bits (see "Real-Time Clock Interface" in Chapter 3)

3-0 Border color

APDADraft 4-5 lli21 1R15

Apple IlGS Hardware Reference

To color or not to color ...

The Apple IIGS video is displayed in either color or black and white. Figure 4-5 shows the
format of the Monochrome/Color register, followed by a description of each bit. Located at
SC021, this register controls whether the composite video signal consists of color or
gradations of gray. If bit 7 is a I, video displays in black and white; if it is a 0, video
displays in color.

If you are using a monochrome monitor, set this bit to 1. Displaying text in black and
white results in a better-looking, more readable display. The remaining bits are reserved;
do not modify them when writing to this location. You can also select color or
monochrome video from the Control Panel. Figure 4-5 shows the format of the
Monochrome/Color register, followed by a description of each bit in the register.

Important: This bit does not affect the RGB outputs.

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter I, "Introduction to the Apple lIGS",

7 6 5 4 3 2 1 0

Reserved; do not modify

• Color or monochrome select .
Figure 4-5. Monochrome/Color register at SC021

Bit Value Description

7 1
o

Composite gray scale video output
Composite color video output

6-0 Reserved.; do not modify

New graphics display modes
The Apple nGS has 2 video modes that are new to the Apple II family. These are the 320-
pixel and 640-pixel Supc2' Hi-Res graphics modes, which increase horizontal resolution to
either 320 or 640 pixels and increase vertical resolution to 200 lines,

A pixel is the smallest individually addressable video
or picture element (lienee the word piuf). The Apple
IIGS video screen displays different quantities of
pixels, depending on the video mode. In Super Hi·
Res graphics 640-mode, the screen conlains 128,000
pixels (640 pixels on each of 200 lines). In 320-
mode, half that number of pixels are displayed.

APDADraft 4.(j 11121 :86

Apple lIes Hardware Reference

Another new feature of Apple HaS video graphics is Color-Fill. an option that simplifies
the task of painting continuous color on anyone line.

Color·Fill mode leI.! you draw consecutive pixels on
a scan line in the same color faster and much more
conveniently than previously possible. Color-Fill is
available only in 320-5uper Hi-Res graphics.

Super Hi-Res graphics

The Apple lIas uses Super Hi-Res graphics to implement new video graphics features
previously unavailable in the Apple II family of computers. The VGC is primarily
responsible for supponing the Super Hi-Res video graphics. which provide these new
video capabilities:

• 320- or 64O-horizontal resolution selectable

• 200-line vertical resolution

• 12-bit color resolution that allows 4096 available colors to choose from

• 16 colors for each of the 200 lines -up to 256 colors per frame

• Color-Fill mode

• scan-line interrupts

• all new video mode features programmable for each scan line

• linear display buffer

• pixels contained within byte boundaries

The Super Hi·Res graphics buffer

The Super Hi-Res graphics display buffer contains 3 types of data: pixel data, scan-line
control bytes. and color palettes. Figure 4-6 shows a memory map of the display buffer.
This buffer resides in contiguous bytes of the auxiliary 64K bank of the slow RAM from
$2000 through $9FFF. Note that this display buffer uses memory space used for the
Apple II Double Hi-Res graphics buffers, but leaves the other graphics and text display
buffers untouched.

The next three paragraphs describe the color palettes, scan-line control bytes. and pixel data
bytes used in Super Hi-Res graphics mode.

APDADraft 4-7 II 12 /:86

Apple lIGS Hardware Reference

APDADraft

:::::::

Memory bank $E1

• • •

Color
palettes

Scan-line
control bytes

Pixel
data

• • • • •

$

$
$

$
$

- -:::: - -
· • • • •

• • • • •

$

9FFF

9EOO
90C7

9000
9CFF

2000

Figure 4·6. Super Hi-Res graphics display buffer

4-8 1 !i21 !86

Apple llCS Hardware Reference

Scan·line control bytes ($9DOO-$9DC7)

An added advantage of the new Apple IIos video graphics is the ability to select the Super
Hi·Res graphics HOriZOntal resolution for each video scan line. The 200 scan· line control
bytes (located from $9DOO through $9DC7 as shown in Figure 4-7) control the features for
each scan line. There is one 8-bit control byte for each of the 200 scan lines. For each
line, you can select

• the palette (16 colors) to be used on the scan line

• Color Fill mode on the SCan line

• an interrupt to be generated on the scan line

• either 320-pixel or 64O-pixel resolution for the scan line

The scan-line control byte bits and their functions are listed in Figure 4·7, and a description
of each follows.

Warning: Be careful when changing bits within this byte. Use only a read-modify­
write instruction sequence when manipulating bits. See the warning in Chapter 1,
"Introduction to the Apple IIoS".

7 6 5 4 3 2 1 0

Palette select code

~ Reserved; do n ot modify

e • Color-Fill mod
... Generate interr upt
• 320 or 640 mo de

Figure 4·7. Scan·line control byte format

Bit Value Description

7

6

5

4

0--3

1
o
1

o
1

o

Horizontal resolution = 640 pixels
Horizontal resolution = 320 pixels

Interrupt generated for this scan line (when this bit is aI, the scan line
interrupt statuS bit is set at the beginning of the scan line.)
scan line interrupts disabled for this scan line

Color-Fill mode enabled (this mode is available in Super Hi-Res 320-pixel
resolution mode only. In 640-pixel mode, Color-Fill mode is disabled.)
Color-Fill mode disabled

Reserved; do not modify

Palette chosen for this scan line

APDA Draft 4-9 II /21 i8ti

Apple lies Hardware Reference

The location of the scan-line control byte for each scan line is $9Dxx, where xx is the
hexadecimal value of the line. For example, the control byte for the ftrst scan line (line 0)
is located in memory location $9000; the control byte for the second scan line (line I) is in
location $9001 , and so fonh.

Note: The ftrst 200 bytes of the 256 bytes in the memory page beginning at $9DOO
are scan-line control bytes, and the remaining 56 bytes are reserved for future
expansion. For compatibility with future Apple products, do not modify these 56
bytes.

Color palettes ($9EOO-$9FFF)

A color palette is a group of 16 colors to be displayed on the scan line. Each scan line can
have I of 16 color palettes assigned to it. The 16 colors in each palette can be chosen from
any of the 4096 colors available. You can draw each pixel on the scan line in any of the 16
colors that make up the palette.

These colors are determined by a 12-bit value made up of 3 separate 4-bit values. Each 4-
bit quantity represents the intensity of each red, green, and blue. The combination of the
magnitudes of each of the 3 primary colors detennines the resulting color. Figure 4-8
shows the format of each of these 4-bit values that make up a paleue color.

7 6 5 4 3 2 1 0 Even byte

Green Blue

7 6 5 4 3 2 1 . 0 Odd byte

':Ieserved;
do not modify Red

Figure 4-8. Color palette format

The color palettes are located in video buffer locations S9EOO through $9FFF. There are
16 color palettes in this space, with 32 bytes per palette. Each color palette represents 16
colors, with 2 bytes per color. The palette indicated in the scan-line control byte is used to
display the pixels in color on the scan line. The staning address for each of the color
palettes and the colors within them are listed in Table 4-3. The 16 colors within a palette
have numbers SO through SF. Note that each color begins on an even address.

Once you have filled the palettes with the colors to be used and selected the display modes
within each of the scan-line control bytes, you must choose which of the 16 colors that you
are going to display for each pixel.

APDADraft 4-10 l/l2/!86

Pixels

Apple !!CS Hardware Reference

Table 4-3. Palette and color starting addresses

~ Pal.tt.
Numt>er Color $0 Color $1 ...

$0 $9EOO-OI $9E02-03
$1 $9E20-21 $9E22-23
$2 $9E40-41 $9E42-43

$F $9FEO-El $9FE2-E3

Color $E Color $F

$9EIC-lD $9EIE-IF
$9E3C-3D $9E3E-3F
$9ESC-5D $9ESE-5F

$9FFC-FD $9FFE-FF

The Super Hi-Res graphics color information for each pixel is different for each of the 2
resolution modes: 4 bits represent each pixel color in 320-pixel mode; 2 bits represent the
pixel color in 640-pixel mode. Higher resolution comes with a slight penalty. however:
Although in 320 mode a pixel may be any of 16 colors chosen from the palette. a pixel may
be 1 of 4 colors in 640 mode.

The pixel data are located in the display buffer in a linear and contiguous manner; $2000
corresponds to the upper-left comer of the display. and S9CFF corresponds to the lower­
right comer. Each scan line uses 160 (SAO) bytes. Figure 4-9 shows the fonnat in which
the pixel color data are stored in both the 320-pixel and 640-pixel modes.

ens in byte

716151413121'10

640 mode I Pixl I Pix2 I Pix3 I Pix4 I
320 mode I Pixl I Pix2 I

Figure 4-9. Pixel data byte format

In 320-pixel mode. 4 bits determine each pixel color. and data are stored 2 pixels to a byTe
of the display buffer. Since 4 bits determine lhe pixel color. in 320 mode each pixel can be
any of the 16 colors from that palette_ .

In 640 mode. color selection is more complicated The 640 pixels in each horizontal line
occupy 160 adjacent bytes of memory. and each byte holds 4 pixels that appear side-by­
side on the screen. The 16 colors in the palette are divided into 4 groups of 4 colors each.
The fIrst pixel in each horizontal line can select I of 4 colors from the third group of 4 in
the palette. The second pixel selects from the fourth group of 4 colors in the palette. The
third pixel selects from the fIrst group of 4 colors. and the founh pixel selects from the
second group. as shown in Figure 4-10. The process repeats for each successive group of
4 pixels in a horizontal line. Thus. even though a given pixel can be 1 of 4 colors. different
pixels in a line can take on any of the 16 colors in a palette. Using a technique called
dithering, software for 640 mode can take advantage of this color selection scheme to
display 16-color graphics on the same screen with SO-column text.

APDADraft 4-11 II .'] / 'So

Apple IIGS Hardware Reference

Ditbering is a IeChnique for alternating the values
of adjacent pixels to create the effect of more colors.

Pixel Value

0

Px3
1

2

3

0

Px4
1

2

3

0

Pxl
1

2

3

0

1
Px2

2

3

Palene

Colorl

Color2

CoIor3

Color4

ColorS

CoIor6

Color1

ColorS

CoIor9

Colorl0

Color11

Color12

Color13

Color14

ColorlS

Color16

Figure 4·10. Color selection in 640 mode

The New· Video register

When a standard Apple n video mode (Lo-Res, Hi·Res or Double Hi-Res graphics) is
enabled, the Mega II accesses the video memory buffers and generates video. When Super
Hi-Res graphics is enabled, the Video Graphics Controller has sole access to the video
buffers. The bit to enable this access, along with the memory map configuration switch, is
in the New-Video register located at SC029. The bit descriptions for this register are
shown in Figure 4-11, followed by a description of each bit

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter I, "Introduction to the Apple DOS".

APDADraft 4-12 1l!2I (?if;

7 6 5 4 3 2 1 0

Reserved; do nol modify

•

Apple lIGS Hardware Reference

Color or black and while Double Hi-Res
Linearize Super Hi-Res video memory

Enable Super Hi-Res graphics mode

Figure 4-11_ New-Video register

Bit Value Description

7

6

5

o

I

o
I

Selects Apple II video mode. IT this bit is 0, aJJ existing Apple ll­
compatible video modes are enabled. The Mega II alone reads the video
memory during the video cycles and generates the video.
Selects Super Hi-Res video modes. If this bit is I, aJJ standard Apple II
video modes are disabled; either 320- (and Color-Fill mode) or 640-
resolution graphics are enabled (the selection of 320 or 640 is made in the
scan-line control byte for each line). Also when this bit is I, bit 6 is
oveITidden, and the memory map is changed to suppon the Super Hi-Res
graphics video buffer, as described below (see the description of bit 6).

If this bit is 0, the l28K memory map is the same as the Apple IIe.
If this bit is I, the memory map is reconfigured for use with Super Hi-Res
graphics video mode: the video buffer becomes one contiguous, linear
address space from $2(J()()....$9DOO (Figure 4-6 shows the Super Hi-Res
graphics buffer).

Note: Set bit 6 to 0 whenever using Double Hi-Res graphics mode. This is
necessary to ensure that the video display will function properly.

Note: See Otapter 2: ''TIle Mega ll: Maintaining Apple II compatibility," for a
description of the Apple lle memory map.

o
I

If this bit is 0, Double Hi-Res graphics is displayed in color (280 x 192, 16
color).
If this bit is I, Double Hi-Res graphics is displayed in black and white (560
x 192).

4-0 Reserved; do not modify.

APDADraft 4-13 !l12 /186

Apple lIes Hardware Reference

Color-Fill mode

Color-Fill mode, which is available in 320-pixel mode only, is used to rapidly fill a large
area of the video' display with a single color. In this mode, color $0 in the palette takes on
a unique defmition. Any pixel data byte containing the color value $0 causes that pixel to
take on the color of the previous pixel instead of displaying a palette color. This means that
only 15 unique palette colors ($I-$F) are available for each scan line rather than 16 colors.
For example, assume that A, B, and C represent 3 different palette colors, 4 bits per pixel.
These colors do not include color $0. The desired color pattern for a series of pixels on a
line might be as follows without Color-Fill mode:

AAAAAAAAAAAABBBBBBBBBBBBCCCCCCCCCCCC

The same color pattern would be created by using Color-Fill mode a follows:
AOOOOOOOOOOOBOOOOOOOOOOOCOOOOOOOOOOO

Method 2 would save time: The program only needs to fill the pixel area of the scan line
once with 0, and then write a color value into those locations where a color should begin or
change. In the example just given, only 3 bytes need be written to implement the 3 color
areas on the scan line using the Color-Fill method, as opposed to 12 pixels per color
without Color-Fill.

The only restriction of the Color-Fill mode is that the first pixel value on a scan line must
not be 0; if the first pixel value is 0, then an undetermined color results.

VGC interrupts
Video display in the Apple IIGS is enhanced by VGC-generated interrupts. The VGC
generates two internal interrupts: the one-second interrupt and the scan-line interrupt

A one Hz input signal from the RTC chip sets the one-second interrupt status bit. The
scan-line interrupt occurs at the beginning of a video display scan line that has the generate
interrupt bit set in the corresponding scan-line control byte. Scan-line interrupts are
generated when the computer is operating in the Super Hi-Res video graphics mode only,
and are not available in other video modes.

Figure 4-12 depicts the video screen consisting of the text display area and the display
border. The scan-line interrupt occurs at the beginning of the scan line, which is defined as
the beginning of the right-hand border area.

APDADraft 4-14 ! l!2 ! 1815

Apple lIGS Hardware Reference

Video display screen
~

~------------------ -----------------~ ...-________________ Scan-line interrupt
occurs here for each

First scan line begins here~scan tine
....-"--.,

-===============.,..,.;:::; ~~~---- .. -------- -----------------.--.-...... -..... ~~-:~::~~

Text display area

Border area

Figure 4-12. Scan-line interrupt

The VGC Interrupt register

The VGC Interrupt register (SC023) contains a status bit and an enable bit for each of the
three interrupts. When an interrupt occurs, the interrupt status bit for that interrupt is set.
The VGC interrupt bit (bit 7) is set and the interrupt request (IRQ) line is assened if the
in terrupt status bit and interrupt enable bit are set for one or more interrupts.

You enable an interrupt by writing to the appropriate positions in the VGC Interrupt
register; the interrupt source hardware sets the status bits. Software can directly manipulate
only the enable bits in the VGC Interrupt register; writing to the other bit positions has no
effect Figure 4-13 shows the format of the VGC Interrupt register and is followed by a
description of each register bit.

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter 1. "Introduction to the Apple IIGS".

APDADraft 4-15 11,2186

Apple llGS Hardware Reference

7 6 5 4 3 2 1 0

I ..

..

..

~

Reserved; do not modify
Scan-line interrupt enable
One-second interrupt enable
Reserved; do not modify
Reserved; do not modify
Scan-line interrupt status

One-second interrupt status

VGC interrupt status

Figure 4-13. VGC Interrupt register at $C023

Bit Value Description

7

6

5

o
I
o

I
o

VGC interrupt status. This bit is set when the interrupt bit and the status bit
are set for I or more of the interrupts.
This bit is 0 when all interrupts have been cleared.

One-second interrupt status: I = interrupt has occurred.
o = interrupt is cleared.

A scan line interrupt status: I = interrupt has occurred.
o = interrupt is cleared.

4-3 Reserved; do not modify.

2

I

o

I
o
I
o

One-second interrupt is enabled.
Interrupt is disabled.

scan line interrupt is enabled.
Interrupt is disabled.

Reserved; do not modify.

The VGC Interrupt-Clear register

Once an interrupt has occurred, the interrupt routine must proceed to clear the interrupt and
take some predetermined interrupt-handling action. To clear the scan line and one-second
status bits, write a 0 into the corresponding bit position in the VGC Interrupt-Clear register
at $C032. Bit 5 clears the scan-line interrupt and bit 6 clears the one-second interrupt in the
VGC Interrupt-Clear register shown in Figure 4-14. Writing a 1 into these positions or
writing into the other bit positions has no effect Figure 4-14 shows the format of the VGC
Interrupt-Clear register, and is followed by a description of each bit

APDA Draft 4-16 II C I Sf)

7

Apple IIes Hardware Reference

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter I, "Introduction to the Apple lIGS". ,

6 5 4 3 2 1 0

Reserved; do not m9d ify

.. Clear bit for scan-line interrupt

Clear bit for one-second interrupt

Reserved; do not modify

Figure 4·14. VGC Interrupt-Clear register at $C032

Bit Value Description

7 Reserved; do not modify.

6

5

1
o
1
o

Undefined result.
Write a 0 here to clear the one-second interrupt.

Undefined result.
Write a 0 here to clear the scan-line interrupt

4-0 Reserved; do not modify.

Graphics summary

The Apple lIGS suppons all previous Apple n graphics modes, and provides enhancements
to these modes. These are

• the ability to select unique text and background colors

• the ability to select the border color for the perimeter of the video image

• the ability to display gray-scale video

New graphics modes include:

• Super Hi-Res graphics mode in 320-pixel resolution

• Super Hi-Res graphics mode in 64O-pixel resolution

• Color-Fill mode

There are 16 palettes, each palette containing 16 preselected colors, located in the palette
area of the display buffer. Use these palettes to select the display colors for each pixel.

APDADraft 4-17 11 !2l!R6

Apple llGS Hardware Reference

There are 200 scan-line control bytes (1 control byte per scan line), which determine:

• either 32G-pixel mode or 64O-pixel mode

• Color-Fill mode or regular display mode

• which of the 16 palettes in memory are to be used in this scan line

• whether the current scan, line interrupt is enabled or disabled

The pixel data bytes are then loaded with the color infonnation for each pixel: There will be
4 bits per pixel in 320 mode, and there will be 2 bits per pixel in 640 mode.

Figure 4-15 shows the display screen and the pixels that make up each scan line. Also
shown are the pixel data bytes for both 640- and 320-pixel Super Hi-Res graphics mode.
The scan-line control bytes, 1 for each scan line, are shown at the right.

640·pixel mode:
Pixel data byte

~i,rllH·lki ':.I¥':.11

F'iX.I~

320·pixel mode:

Pixel data byte

1 :P i ~.I: 1 I >+1>1

Color palettes -•
Scan line

$9FFF

$9EOO

Video screen

Figure 4·15. Drawing pixels on the screen

APDADraft 4-18

Control bytes

$9000

$90C?

II C 1 .II)

Apple llGS Hardware Reference

Chapter 5

Peripheral Expansion Slots
The main logic board of the Apple IIGS has seven empty card
connectors or slots on it. These slots make it possible to add features
by plugging in peripheral cards with addition.l hardware. This chapter
describes the hardware that supports these slots, including me signals
available at me expansion slots. Figure 5-1 shows a block diagram of
the Apple IIGS and the relationship of the slots in the computer.

~CU. I-"'-H-H

I
I L ________ _

Figure 5-1. Diagram showing relationship of expansion slots and other components

Note: The Apple IIGS has seven expansion slots plus a memory expansion slot. This
memory expansion. slot is not the same as the seven expansion slots, nor should it be used
as such. Also, the memory expansion slot is not the same as the auxiliary slot in the Apple
lle, nor should it be used as such. The memory expansion slot is to be used for memory
expansion cards designed specifically for this slot. See Chapter 9, "Memory Expansion
Slot," for a description of this slot.

APDADraft 5-1 1112 Wil)

Apple lies Hardware Reference

The expansion slots
The 7 connectors lined up across the back part of the Apple IIGS main
circuit card are the expansion slo ts (also called periphe ral s lots o r
simply slots), numbered from 1 to 7. They are 50-pin card-edge
connectors with pins on O.lQ-inch centers. A circuit card plugged into
one of these connectors has aocess to all the signals necessary to
perform input and output and to execute programs in RAM or ROM on
the card. lhese signals are shown in Figure 5-2 and are described
briefly in Table 5-1.

eN)

(NC on slot 1) OMA IN
(NC on slot 1) INT IN

INMI
IIRQ

IRESET
IINH
-12V

-5V

2
27
28
29
30

_3J
32
33
34

25
24
23
22
21
20
19
18
17

+5V
OMA OUT (NC on slot 7)
INT OUT (NC on slot 7)
10MA
ROY
1I0STRB
NC (/SYNC on slol 7)
A2R/W
A15

(M2BO on slol 3; CREF on slol 7) NC
7M
Q3

PHl
IM2SEL

PHO

35
36
37
38
39
40

16
15
114
13
12
11

A14
A13
A12
All
Al0
A9

APDADraji

10EVSEl
07
06
05
04
03
02
01
00

+12V

41
42
4~
44
45
46
47
48
49
50

10
9

A8
A7

,8
7

A6
A5

6
Is

A4
A3

4
3

A2
Al

2 AO
1 IIOSEl

Figure 5·2. Peripheral expansion slot pin diagram

5-2 1112 USn

Apple lIes Hardware Reference

Table 5-1
Expansion slot signals

Pin SiglaI D.sc~p"on

1 /IOSEL

2-17 M-Al5

Normally high; goes low during <1>0 when the
65C816 addresses location $Cnxx, where 11 is
the connector number. This line can drive
10 LS (low-power Schottky) TTL (transistor­
transistor logic) loads."

Three-state address bus. The address
becomes valid during ¢II and remains vatid
during fllO. Each address line can drive
2 L5 TTL loads."

18 A2R1w Three-state read/write line. Valid at the same
time as the address bus; high during a read
cycle, low during a write cycle. It can drive
2 LS TTL loads."

19 / SYNC Composite horizontal and vertical sync, on
expansion slot 7 only. This line can drive 2 LS
TTL loads.·

20 /I05TRB Nonnally high; goes low during <1>0 when the
65C816 addresses a location between $C800
and $CFFF. This line can drive 4 LS TTL
loads.

21 ROY Input to the 65C816. Pulling this line low
during CPl halls the 6SC816 with the address
bus holding the address of the location
currently being fetched. This line has a
4700 ohm pullup resistor to +SV.

22 /DMA Input to the address bus buff Pulling this
line low during CPl disconnects the 65C816
from. the address bus. This line has a 3300
ohm pullup resistor to +5V.

23 INT am Interrupt priority daisy-chain output. Usua lly
connected to pin 28 (INT IN).

24 DMA am DMA priority daisy-chain output. Usually
connected to pin 27 (DMA IN).

25 +5'1 +~volt pow ... supply. A total of SOOmA is
available for all peripheral cards.

7£, GND System common ground.

27 DMA IN DMA priority daisy-chain input. Usually
connected to pin 24 (DMA OUT).

28 INT IN Interrupt priority daisy-chain input. Usually
connected to pin 23 ONT OUT).

APDA Draft 5-3 1112 US!)

Apple lIes Hardware Reference

'19 INMI

30 IIRQ

31 IRES

32 IINH

33 -12'1

35 0lEl'

35 IM2BO

37 Q3

38 <1>1

39 IM2SEL

41 IDEVSEL

42-49 DO-D7

APDADraft 54

Nonmaskable interrupt to 65C816. Pulling
this line low starts an interrupt cycle with the
interrupt-handling routine at location $03FB.
This line has a 3300 ohm pullup resistor to
+5V.

Interrupt request to 65C816. Pulling this line
low starts an interrupt cycle only if the
interrupt-<iisable (J) flag in the 65C816 is not
set. Uses the interrupt-handling routine at
location $03FE. This line has a 3300 ohm
pull up resistor to +5V.

Pulling this line low initiates a reset routine.

Pulling thi3 line low during <1>1 inhibits
(disables) the memory on the main circuit
board. This line has a 3300 ohm pullup
resistor to +5V.

-12 volt power supply. A total of 200mA is
available for all peripheral cards.

-5 volt power supply. A total of 200mA is
available for all periphe.-al cards.

3.58 MHz: color reference signal, on slot 7
only. This line can drive 2 LS TTL loads."

Mega II bank-O signal, on slot 3 only. This
signal goes law whenever the Mega II is
addressing the main bank of Mega II RAM.

System 7 MHz: clock. This line can drive
2 LS Tn loads.'

System 2 MHz: asymmetrical clock. This line
can drive 2 LS TTL loads."

Phase-l clock. This line can drive 2 LS TTL
loads.'

The Mega II select signal This signal goes low
whenever the Mega II is addressing a location
within the 128K of Mega II RAM.

Phase-O clock. This line can drive 2 LS TTL
loads."

Normally high; goes low during <1>0 when the
65C816 addresses location SCOnx, where n is
the connector number plus 8. This line can
drive 10 LS TTL loads."

Three-slate buffered bidirectional data bus.
Data become valid during <1>0 high and
remain valid until <1>0 goes low. Each data line
can drive 1 LS TTL load."

/1 /21186

Apple II compatibility

so +121/

Apple IIGS Hardware Referen ce

+ 12 volt power supply. A total of 2SOmA is
avaiJable for all peripheral cards.

"Loading limits are for each card.

The 7 1/0 slots in the Apple IIgs are almost identical to the slots in the Apple lIe, the only
exceptions being signals !M2SEL and M2BO. !M2SEL replaces ~PSYNC on pin 39, and M2BO is
available at pin 35, only at slot 3; CREF is still available at pin 35, slot 7.

The slots behave like their counterparts in the Apple II with only a few differences, the most
imponant being the behavior of the address bus. Since the Apple IIGS computer can operate at 2.8
MHz and has a 24-bit address, the address bus to the slots is not always valid as it was in the
Apple II. The signal!M2SEL indicates when a valid address for banks 224 or 225 ($EO or $El) is
present on the address bus and so should be used to qualify any address decoding that does not use
an I/O enable line. Since this memory space contains video buffers and I/O addresses, peripheral
video cards can make extensive use of these 2 signals.

Direct memory access

Direct memory access (DMA) suppons the full 24-bit address range. TIlis means that any
peripheral card using DMA may have direct address control of all 8Mb of memory (main and
expansion memory). TIlis is accomplished by loading the DMA bank register with the upper 8 bits
of the required 24-bit address.

During DMA cycles (memory access cycles that are controlled by a DMA peripheral card), the
address bus is turned off until the bank address has been latched. At this time, the address bus is
enabled, pointing "in" toward the FPI and 65C816. The FPI decodes the address and stored DMA
bank address to determine whether the cycle is to RAM, ROM, or Mega II. If the cycle is a DMA
to the Mega II (or slots), the Mega II select line is asserted by the FPI, and the FPI data buffers are
turned off if R/W is high. If the access is to the high-speed RAM, the data buffers are enabled
while cllO is high.

Note: To increase read/write data timing margins to the high-speed RAMs, the FPI generates
an early CAS signal for read cycles and a late CAS signal for write cycles. TIlis makes read
data available earlier and requires less write data setup time.

I/O in the Apple IIGS

The input and output functions are made possible by built-in I/O devices and the use of peripheral,
slot I/O, and DMA cards.

Slot I/O cards

Most 1/0 cards used in the Apple II also work in the Apple IIGS. Cards that use the 10SEL and
DEVSEL bus signals will work especially well, not having to deal with the larger address range of
the Apple IIGS.

The 65C816 processor operates with a 24-bit address; however, the I/O slots receive only a 16-bit
address. Therefore, cards that use the 16-bit address decode select method rather than the DEVSEL

APDADraft 5-5 11 !2! !SO

Apple lIeS Hardware Reference

and IOSEL signals will not work properly. These cards include the multifunction I/O cards that
emulate multiple I/O cards and most add-on RAM cards. In general, these types of cards will not
be needed because of the extensive built-in I/O and high-speed RAM expansion already provided.

Cards that use INI-llBIT will work properly if

• the system is running at I MHz
• they assert inhibit within 200 nanoseconds of the <1>0 falling edge

However, compatibility with this type of card must be detennined on an individual basis because
many Monitor firmware calls execute code in bank $FF and many cards are not designed to decode
bank information.

The FPI will ignore INlllBITs that occur when the system is running fast (2.B MHz), or when it is
not in a bank where I/O and language-card operation are enabled. This improves compatibility
with existing cards.

DMA cards

Many DMA cards that work successfully in previous Apple II models will work in the Apple lias ,
but may require changes in their firmware or associated software to function properly with the
DMA bank register. In general, DMA cards that assert and remove the DMA signal within the first
200 nanoseconds of the <1>0 rising edge will probably work properly; this allows sufficient time for
the Mega II select line to be activated by the FPI when video and I/O accesses are required.

NOfe: Normally the system should be running slowly when perfonning DMA; otherwise,
DMA to I/O or Mega II video areas will not work properly. However, DMA can be
performed while the system is running fast as long as the following warnings are heeded:

• Only high-speed RAM or ROM can be accessed (access to I/O, video, or the Mega II
banks does not work properly). .

• Fast DMA may cause a repeated cycle to occur to the location currently being accessed by
the processor. This could cause a malfunction if the processor is accessing I/O when the
DMA occurs; however, a repeated access to a RAM or ROM location will have no effect.

The 65CBl6 can be stopped indefinitely for DMA and does not require any processor refresh
cycles from a DMA card.

Expansion slot signals

Many of the expansion slot signals can be grouped into three general categories:

• those that constitute and suppon the address bus

• those that consititute and support the data bus

• those that support the functions of DMA and interrupts

These signals are described in the following paragraphs. For additional information, refer to the
schematic diagram in Appendix D.

APDADraft 5-6 11 121186

APDADraft

Apple Iles Hardware Reference

The buffered address bus

The microprocessor's address bus is buffered by two 74HCT245 octa l
three-state bidirectional buffers. The 65C816 Rlw line is also
buffered. The FP! disables these buffers when requested by any
peripheral card. This disables the address and Rlw lines so that
peripheral OMA circuitry ca n control the address bus. The OMA
address and A2RIW signals supplied by a p eripheral card must be
stable all during <bO of the instruction cycle, as shown in Figure 5-3.

Anothe r s ignal that can be used to disable nor-mal operation of the
Apple IIGS is I INH. Pulling IINH low disables all the memory in the
Apple IIGS except the part in the VO space from $CooO to $CFFF. A
peripheral card that uses either I INH or I OMA must observe proper
timing; in order to disable RAM and ROM properly, the disabling
signal must be stable all during ~ of the instruction cycle (refer to the
timing diagram in Figure 5-4).

The peripheral devices should use IIOSEL and I OEVSEL as enables.
Most peripheral ICs require their enable signals to be present for a
certain length of time before data are strobed into or out of the device.
Remember that I IOSEL and I OEVSEL are only asserted during <l>0
high .

The slol data bus

The Apple IIGS has three versions of the microprocessor data bus (see
Figure 5-3):

• the internal data bus DBUS, connected directly to the
microprocessor and the FP! chip and all main RAM

• the Mega II data bus MDBUS, connecting the Mega II, VGC,
serial communications controller (SeC), Integrated Woz
Machine (IWM), keyboard and sound general logic units
(GLUs) and the Mega 1I RAM main bank

• the .lot data bus, SOB US, common to all expansion slots

The 6SC816 is fabricated with MOS (Metal Oxide Semiconductor)
circuitry, so it can drive capacitive loads of up to about 130
picoFarads. If peripheral cards are installed in all 7 slots, the load ing
on the data bus can be as high as 500 pF, 50 the 74HCT245 buffer is
used to drive the data bus peripheral card loads. The same argument
applies if you use MOS devices on peripheral cards: They can't
prOVide enough drive current for the fully loaded bus, so you should
add buffers. A peripheral card must have the capacity to drive 2 LS
TTL loads per slo t pin, plus additional capacitance for the Apple IIGS
data bus.

5-7 11 /2 / /80

Apple lleS Hardware Reference

. 65816
microprocessor

FPI

~Megall
All segments of the data II :::-
bus are bi·directional ADBUS:> VGC

~e~~I<A'''''L-...J
auxita~~et~n\? only m~Frf'~hJoonly

Figure 5-3. The data buses within the Apple IIGS

APDADraft 5~

Expansion
Slots

II 121 1M

" - '

"-

PHO
,

PHl -1

7M

03 ---J

INMI,/IRO, A DY

Number

1
2
3
4
5
6
7
8
9

10
11
12

Apple lIeS Hardware Reference

1 2

~ 3 ~ ~

4

,...--...,.

~ ~
.----..

'---" '--'
-..-. 5 -- -..-. I+- 6 ~ 4-7 -..-. 8 4-

\
9 10 1+-11

-12-

Figure 5-4, Input/output clock and control signal timing

Description Min. (ns) Max. (ns)

<l>O low time 480
<l>O high time 480
<t> 1 high time 480
<t> 1 low time 480
7M low time 60
Fall time, all clocks 10
Rise time, all clocks 10
7Mhigh time 60
Q3 high time 270
Q310wtime 200
Skew, <l>O to other clock signals -10 10
Control signal setup time 140

Note: All clock signals present on the I/O slots are buffered by
the Slotmaker custom Ie. These clock signals are delayed
somewhat from the corresponding signals on the main board
because ofthis buffering. All timing parameters in the timing
diagrams in this chapter have been adjusted to account for this
delay.

APDADraft 5-9 11 121 /86

Apple lIeS Hardware Reference

PHO

IM2SEL

_1

ISEL

AT5-AO,

A2R/W

+5

07-00 (Write Data)

07-00 (Read DaTa)

Number

1
2
3

4

5
6
7
8
9

10

Figure 5·5. Slot I/O read and write timing

Description Min. (ns) Max. (ns)

!M2SEL low from <l>O low 160
!M2SEL hold time -10
I/O enable low from <l>O high 15
(DEVnJIOSELnJIOSTRB)
I/O enable high from <l>O low 10
(DEVnJIOSELnJIOSTRB)
Address and A2R/W valid from <l>O low 100
Address and A2R/W hold time 15
Write data valid delay 30
Write data hold time 30
Read data setup time to <l>O 140
Read data hold time 10

The standard Apple IIGS slot VO timing is shown in Figure 5-5. When
the computer is running in high.,.peed mode (2.8 MHz). the address
bus to the VO sloo is not valid d..-ing the entire ¢>() cycle. and
there tore cannot be used to perform unqualified address decoding.
The /M2SEL signal (which replaces the I1SYNC signal found at pin 39 in
previous Apple II models). indicates when a slow, synchronized
memory cycle is taking place and. therefore. when the value on 'he
address bus will remain valid during the current 4>0 cycle. This means
that cards that use the Apple II technique of 'phantom slotting' to put
multiple VO devices on one card must use I M2SEL to qualify their
address decoding.

APDADraft 5-10 f fl2l IS!;

---.

Apple lies Hardware Reference

PHD --.

IINH

:+--- 1 ---
--t ~2

IM2SEL - 3 - -- 4 -A lS·A O,

A2R/W X//.. V/ A

1+5 ... -. _6

07·00 (Wri te Data)

07·00 (Rea d Data)

Number

1
2
3
4
5
6
7
8
9

10

'''////////// V///////
-. _7 -. _8

'//////////////...1 ~////////

I+-- 9_ 1+-10

Figure 5-6. I/O read and write timing with /INH active

Description Min. (ns) Max. (ns)

/INH valid after <l>O low 175
/INH hold time 15
/INH low to !M2SEL low delay 30
/INH high to !M2SEL high delay 30
Address and A2R/W valid from <l>O low 100
Address and A2R/W hold time 15
Write data valid delay 30
Write data hold time 30
Read data serup time to <l>O 140
Read data hold time 10

Read and write cycles that are directed to the I/O slots by /INH
have the same timing parameters as nonnall/O read and write
cycles. When /INH is asserted, the computer responds as if a
Mega II memory cycle were being perfonned.

Cards that use the /INH signal will function properly only if the
computer is running at slow speed (1 MHz). If the computer is
running at high speed, the addresses that are seen by cards in the
I/O slots are not guaranteed to be valid during an entire <l>O cycle.
Also, since the upper 8 bits of the memory address are not
available to cards (only 16 address lines are available at the
slots). the potential of /INH is greatly reduced in this machine.

APDADraft 5-11 lli2 l!86

Apple JIGS Hardware Reference

PHO ~

IDMA

1- 1
-

1-2 -4

A1 S-AO,

A2R/W

IM2SEL

DMA Writ. data

DMA Read da ta

Number

1
2
3
4

5
6
7
8
9

10
11
12

~

JL-
I- 6'"

3 __ - 4 5- -
- 7 - - ~ -8

'l/.

4-94 - ~10

'//~////////////A V/////~

"'11--. ~12

Figure 5-7_ /DMA read and write timing

Description Min. (ns) Max. (ns)

/DMA low from «llow 120
/DMA high from «llow 120
AI5-AO and R/W float from/DMA 30
DMA address and A2R/W valid before 300
«l goes high
DMA address and A2R/W hold time 10
/DMA high to A 15-AO and A2R/W active 30
DMA address valid to /M2SEL low 30
DMA address float to /M2SEL high 30
«l high to write data valid 100
DMA write data hold time 10
DMA read data setup time 125
DMA read data hold time 30

DMA devices will work in the Apple I1GS computer only in slow mode
(1 MHz). If the computer is running at high speed (2.8 MHz). onty
DMA accesses to the high-speed memory banks 0 through 127 will
work AI 'O' es to the -low-speed memory (all 110 and video memory)
must be done at low speed (1 MHz), To do this. set the processor
speed bit in the Speed register at location $C036 before requesting
DMA.

DMA can be perfonned to or from any part of the Apple IIGS memory
map. provided that the DMA bank register is fLrSl set to the
appropriate bank,

.-

APDA Draft 5-12 II i2 /iSi)

- ,

Summary

APDADraft

Apple lies Hardware Reference

Interrupt and DMA daisy chains

The interrupt requests (/IRQ and INMI) and the direct-memory
access (/DMA) signal are available at all seven expansion slots. A
peripheral card requests an interrupt or a DMA transfer by pulling the
appropriate output line (pin 24) low. If two peripheral cards request an
interrupt or a DMA transfer at the same time, they will contend for the
data and addr""" buses. To prevent this, two pairs of pins on each
connector are wired as a priority daisy chain. The daisy-chain pins for
interrupts are INT IN (pin 28) and INT OlIT (pin 23), and the pins for
DMA are DMA IN (pin 27) and DMA OUT (pin 24), as shown in Figure
5-2.

Each daisy chain works like this: The output from each connector goes
to the input of the next higher numbered one. For these signals to be
useful for cards in lower numbered connectors, all the higher
numbered connectors must have cards in them. and all those cards
must connect DMA IN to DMA OlIT and INT IN to INT OUT.
Whenever a peripheral card uses pin IDMA, it must do so only if its
DMA IN line is active, and it must disable its DMA OUT line while it is
using IDMA. The INT IN and INT OUT lines must be used the same
way: Enable the card's interrupt circuits with !NT IN, and disable INT
OlIT wrenever IIRQ or INMI is being used.

Loading and driving rules

Do not overload any pin on the expansion slots; the driving capability
of each pin is listed under each signal description in Table 5-1. The
address bus, the data bus, and the A2R/W line should be driven by
three-slate buffers; remember that there is considerable distributed
capacitance on these buses and that you should plan on toler.ting the
added load of up to six additional peripheral. cards. MOS devices such
as PIAs (Peripheral Interface Adapters) and ACIAs (Asynchronous
Communications Interface Adapters) cannot switch such heavy
capacitive loads; connecting such devices directly to the bus will lead
to possible timing and level errors. Buffer all MOS output signals.

The total power supply current available for all seven expansion slots is

• 500mA at + 5V

• 250mA at +l2V

• 200mA at -5V

• 200mA at -12V

The support circuitty for the slots is designed to handle a DC load of 2
LS TTL loads per slot pin and an AC load of no more than 15 pF per
slot pin.

• The Apple lIGS expansion slots are almost identical to other Apple
" expansion slots. The exceptions, signals IM2BO and IM2SEL,
indicate accesses to slow RAM banks SEO and SEl, the location of
I/O and video buffers.

5-13

Apple lles Hardware Reference

APDADraft

• Expansion slot outputs are buffered to provide greater driving
capability. Peripheral cards must use buffers when driving the bus
on the Apple IIGS.

• The power supply provides ,Plwer to the peripheral cards. This
power is limited and must not be exceeded.

• The expansion slots are provided to allow an external device a
means to connect to the internal data and address buses. DMA
and interrupt requests are handled in a slot 7 to slot 1 priority
fashion. A card in the higher numbered slot has priority when
more than one device signals a request simultaneously.

5-14 11 121 !8(j

.-~

Apple lIGS Hardware Reference

Chapter 6

Sound
One of this computer' s outstanding features is its sound capability. By programming the
Apple IIGS you can utilize this powerful sound-synthesizing ability; your ability to generate
sounds is limited only by your imagination. This chapter covers the digital oscillator chip
(DOC), the individual oscillators, and the many registers associated with these oscillators.
Also covered is the sound general logic unit (OLU) and its associated registers.

Sound synthesis
Sound is synthesized by programming digital oscillators to produce waveforms that
simulate sounds (musical, human, or other) or generate unique ones. These waveforms
can be programmed manually (values placed in memory individually) or through
digitization of an outside analog input signal.

The Apple nGS uses the Ensoniq® 5503 digital oscillator chip, a programmable sound
synthesizer chip. This chip has 32 independent oscillators. volume control. and digitizing
capability. The synthesizer uses 64K of RAM dedicated to sound waveform storage. and
interfaces with the 65C816 microprocessor via the sound OLU. Commands and data are
transferred to the DOC via the OLU. and sound is output via the built-in speaker. external
speaker jack. or molex connector on the main logic board. Figure 6-1 shows the
relationship of the sound components to the rest of the computer.

APDADraft 6-1 II /2 1/86

Apple IIGS Hardware Reference

-

... ., .. _

Figure 6-1. Diagram showing relationship of the sound components in the system

As stated earlier, the Apple IIGS uses a toolbox of utilities to perform many different
functions: graphics, disk access, and sound. The following description of the DOC is
meant to familiarize you with the general principles of Apple IIGS sound generation. When
you program this computer for sound, using the toolbox utilities will result in the proper
use of the DOC and ensure software compatibility with future Apple II products.

To find out how to use the sound tools, refer to the
Apple IIGS Toolbox Reference manual.

Accessing the DOC
To program the DOC or build a wavetable in the sound RAM you must write command and
data bytes to registers within the chip. This process is facilitated by the GLU, which
serves as an interface between the microprocessor, the DOC, and the dedicated 64K x 8
dynamic RAM. This interface allows the DOC chip to run independent of the rest of the
system.

A wave table is a series of contiguous data bytes in
memory. The input signal is sampled, digitized, and
placed in memory as a continuous wavetable. This
wavetable will be used as data for the DOC which
will result in sound output.

APDADraft 6-2 II 12 1186

An alternate means of generating synthesized sound is
to manually build a wavecable in memory, one byte
at a time.

The sound GLU contains

• a Sound Control register

• a data register

Apple JIGS Hardware Reference

• a pair of Address Pointer (high and low address) registers

These registers and their addresses are listed in Table 6-1 and described in detail in the
sections that follow.

Table 6·1. GLU registers.

GlU Registe"

Sound Control register
Data register
Address Pointer register, low byte
Address Pointer register, high byte

The Sound Control register

Addr

SC03C
SC03D
SC03E
SC03E

Type

R/ W
R/w
R/W
R/ W

The Sound Control register controls whether the nllcroprocessor accesses the DOC internal
registers or the sound RAM. This register also controls whether or not the Address Pointer
registers auto-increment, that is, increment automatically after every RAM read or write,
thereby avoiding the necessity of reloading the pointers with addresses after each access.
Figure 6-2 shows the format of the Sound Control register, followed by a description of
each bit.

Warning: Do not use a read-modify-write command when altering bits in this
register.

7 6 5

APDADraft

4 3 2 1 0

..

..

..

Volume value
Reserved; do not modify
DOC or RAM access
Address Pointer count enable
DOC busy flag

Figure 6-2. The Sound Control register at $C03C

6-3 11121186

Apple llGS Hardware Reference

Bit Value Description

7

6

5

4

3---{)

1
o
1
o

1
o

The DOC is busy. Loop on this bit until it is clear.
The DOC is free . The DOC will respond to register reads and writes.

Address auto-incrementing is enabled.
Address auto-incrementing is disabled; Address Pointer registers hold the
last value.

All accesses are to the dedicated 64K RAM.
All accesses are to the DOC chip.

Reserved; do not modify.

Volume control; $0 is low volume, $F is high volume.

Address Pointer register

When accessing the sound RAM (bit 5 = 1 in the Sound Control register), the Address
Pointer register points to the address of the next byte in sound RAM. The high byte
Address Pointer register contains the high 8 bits of the 16-bit address, and the low byte
register contains the low 8 bits.

When accessing the sound DOC (bit 5 = 0 in the Sound Control register), the Address
Pointer register high byte is ignored by the DOC, and the low byte points to the DOC
register to be wrinen or read from. Figure 6-3 shows the format of the Address Pointer
registers.

Address Pointer register, low byte at $C03E
17161514131211101

Figure 6·3. The Address Pointer registers

APDADraft 64 11121186

Apple lIes Hardware Reference

Write operation

To write to the DOC or sound RAM:

I. Set the Sound Control register:

• to point to either the RAM or the DOC
• to enable or disable auto-incrementing in the Address Pointer registers

2. Then load the address pointer with the beginning location into which data are to be
written.

3. Data now written to the data register will be transferred by the sound GLU into the
corresponding memory (if you are accessing RAM) or DOC register (if you are
accessing the DOC).

If the auto-increment feature is enabled, the Address Pointer register is automatically
incremented to the next higher location or register after each write to the data register.

Important Do not use Indexed addressing mode when reading data
from or wrlHng data to the data register. Indexed
addressing mode generates a false read. which will cause
the sound GLU to lose synchronization.

Read operation

The sound RAM read operation is the same as the write operation with I exception­
reading from the data register lags by one read cycle. For example, if you want to read 10
bytes from the sound RAM, select the RAM by setting the control register bit and enabling
auto-incrementing. Then set the address pointer to the starting address and read the data
register II times, discarding the flrst byte read.

The DOC registers

The DOC contains three registers common to all oscillators. These are

• the Oscillator Interrupt register

• the Oscillator Enable register

• the Analog-to-Digital (AID) Convener register

Also, each oscillator has one of each of the following registers dedicated to it:

• an Oscillator ContrOl register

• an Oscillator Data register

• a Vol ume regis ter

• a Frequency register (low)

• a Frequency register (high)

• a Wavetable register

• an Address Pointer register (high)

APDADraft 6-5 11121186

Apple lies Hardware Reference

The Oscillator Interrupt register ($EO)

This register contains the status of the DOC interrupt request (IRQ) pin and the number of
the oscillator that generated the interrupt, if any. When an oscillator reaches the end of a
wavetable and the enable interrupt (El) bit for that oscillator has previously been set, the
IRQ line and bit 7 of the Interrupt register is then set, and the register number is entered in
bits I to 5 of the Oscillator Interrupt register. Figure 6-4 shows the fonnat of the Oscillator
Interrupt register, followed by a description of each of the bits.

I 7 I 6 5 I 4 3 2 1

Oscillator number

o I
l-+

•

Reserved; do not modify

Reserved; do not modify

Interrupt occu rred

Figure 6-4. The Oscillator Interrupt register at $EO

Bit Value Description

7

6

5-1

o

I
o

No oscillator has generated an interrupt.
One of the 32 DOC oscillators has generated an interrupt; this bit reflects the
status of the IRQ line.

Reserved; do not modify.

Interrupting oscillator number: When one of the 32 DOC oscillators
generates an interrupt, the number of the oscillator is contained here.

Reserved; do not modify.

The Oscillator Enable register ($E1)

The Oscillator Enable register controls the number of oscillators that are operating at a
particular time. To enable 1 or more oscillators; multiply the desired quantity of oscillators
by 2 and enter the number in this register. You may enter any number from 2 to 64 that
will enable the corresponding oscillators in sequential order (low-numbered oscillators
cannot be skipped in order to enable a higher-numbered one). A minimum of 1 oscillator is
always enabled, which is also the reset default.

The AID Converter register ($E2)

The AID Converter register contains the output value of the analog-to-digital convener. An
analog input signal can be sampled at pin 1 of the 7-pin molex connector (125). The result
of the conversion resides in the AID Converter register at the completion of the conversion.
Reading this register initiates the 3 I-microsecond conversion process. If this register is
read before the end of the conversion process, the value will be lost and a new conversion
will begin.

APDADraft 6-6

- --

11121186

Apple lIes Hardware Reference

The Oscillator Control register ($AO-$BF)

Each Oscillator Concrol register controls all functions of each oscillator. This register
controls:

• which of eight optional external analog multiplexer channels this oscillator will use

• whether or not this oscillator may generate an interrupt

• the oscillator's mode of operation

Figure 6-5 shows the format of this register.

I 7 6 5 4 3

Channel addre s

I 2 1 0

~

..
r

~

.. ..

Halt(ed) oscillator
Oscillator mode
Oscillator mode
Interrupt enable
Reserved; do not modify

Figure 6·5 . The Oscillator Control register

Bit Value Description

7 Reserved; do not modify.

6--4 Channel address bits: These bits determine to which demultiplexer output
channel (provided by optional external demultiplexer hardware) this
oscillator will be directed. Connecting a demultiplexer to the 7-pin molex
connector will allow you to use up to 8 separate sound channels. Figure 6-
7 shows an example of how the external demultiplexer circuitry may be
implemented.

3 1

o

2-1

Interrupts enabled: An interrupt flag will be set in the DOC's Oscillator
Interrupt register (OIR) and the DOC will assert the IRQ signal when an
oscillator generates an interrupt If the flag is already set (an oscillator
interrupt is currently being handled), the flag is pushed onto a fIrst-in, fIrst­
out buffer, and handled in that order.
Interrupts disabled: The interrupt flag will not be set in the Oscillator
Interrupt register when an oscillator generates an interrupt.

Oscillator mode. The oscillator may function in one of several available
modes. Selected the mode desired by setting these two bits as follows :

Bit 2 Bit 1 Mode
0 0 Free-run
0 1 One-shot
1 0 Sync
1 1 Swap

Each of these modes is described below.

APDADraji 6-7 11121186

Apple ffGS Hardware Reference

o

o

Free-run mode: The oscillator begins at the beginning of the wavetable and
repeats the same wave table. The oscillator will halt when the halt bit is set
or when a 0 is encountered in the table data.

One-shot mode: The oscillator begins at the beginning of the wavetable,
stepping tbrough it only once, and stopping at the end of the table.

Sync mode: Enable sync mode by selecting even/odd pairs of oscillators (a
lower even-numbered oscillator paired with an adjacent higher-numbered
oscillator). When the even-numbered oscillator begins its wavetable, the
odd-mate oscillator will syncbronize, also beginning its wavetable
simultaneously.

Swap mode: Uses even/odd pairs of oscillators (a lower even-numbered
oscillator paired with an adjacent higher-numbered oscillator). The enabled
oscillator runs in one-shot mode. When it reaches the end of its wavetable,
it resets its accumulator to 0, sets its halt bit, and clears the halt bit of its
mate.

Halt(ed) oscillator. This is a read/write bit. To halt the oscillator, set this
bit. Certain modes (sync, swap) will halt the oscillator and set this bit
automatically after completion.
Running oscillator. This bit is cleared if the corresponding oscillator is
currently enabled.

The data register ($60-$7F)

The data register is a read-only register and contains the last byte read by the oscillator from
the wave table.

The Volume register ($40-$5F)

The Volume register contains the oscillator's volume value. The current wavetable data
byte is multiplied by the 8-bit volume value to obtain the oscillator final output leveL

The Frequency High and Frequency Low registers ($OO-$3F)

The Frequency High register and Frequency Low register are concatenated to create a 16-
bit value. This frequency value detennines the speed at which the wavetable is read from
memory. This indirectly detennines the frequency of the output signal at the speaker. The
relationship between output signal frequency, wavetable scan rate, and the Frequency
register values is

Output frequency = [SR /211 7+RES}] * FHL
where

Scan rate (SR) = 894.886 KHz / (OSC+2)

and where RES is the resolution value in the Wavefonn register, FHL is the 16-bit
frequency value concatenated from the Frequency High and Frequency Low registers, and
OSC is the number of enabled oscillators.

APDADraft 6-8 1l/2l!86

Apple lIes Hardware Reference

The Waveform register ($CO-$DF)

__ The Waveform register controls the size of the individual wavetable each oscillator will
access. The size of this table may be between a minimum of 256 bytes and a maximum of
32K. Figure 6-6 shows the format of the Waveform register and is followed by a
description of each bit.

7 6

APDADraft

5 4 3 2 1

Table size Address

0

bus
I

~

resolution

See text; set to 0

Reserved; do not modify

Figure 6-6. The Waveform register format

6-9 11121186

Apple lies Hardware Reference

Bit Value Description

7

6

5-3

2-0

o

Reserved; do not modify.

Extended addressing: The Apple JIos uses only 64K for the sound RAM
and has no high memory bank available. Therefore, this bit must always be
set to O.

Table size: The waveform table may extend up to 32K in size, but in
discrete steps only, as listed in the table below. Wavetables must begin on a
page boundary ($OCOO, $ODOO, and so forth).

Table 6-2. Table size determination

Bit
5 4 ~ Table size

0 0 0 256
0 0 1 512
0 1 0 1024
0 1 1 2048
1 0 0 4096
1 0 1 8192
1 1 0 16384
1 1 1 32768

Unused locations within the wavetable should begin with a minimum of
eight zeros. Otherwise, the oscillator will halt when it encounters these
bytes and will not interpret them as data.

Address bus resolution: The wavetable may be one of eight sizes, as just
shown. The table is played back by using every byte as data, or only
intermittent bytes, as desired. The address resolution bits determine
whether or not every byte is used during playback. If the resolution bits are
000, all wavetable data bytes are read; if the resolution bits are 001, every
other byte is used; if they are 0 I 0, every fourth byte is used, and so on.
Table 6-3 shows how the different address bits to be used are selected.

Table 6-3. Table size determination

Resolution bits Address bits
2 1 0 used

0 0 0 1-16
0 0 1 2-17
0 1 0 3-18
0 1 1 4-19
1 0 0 5-20
1 0 1 6-21
1 1 0 7-22
1 1 1 8-23

APDA Draft 6·]0 1112//86

Apple lIGS Hardware Reference

Making sound

To generate sound, the DOC reads data bytes from a wavetable built in dedicated RAM.
Each oscillator acts as an address generator, pointing to successive data bytes which make
up a signal that is to be reproduced. Each data byte pointed to by an oscillator, is then
converted to an analog value by the A-to-D converter within the DOC. The resulting series
of values make up the output signal, which is then ftltered and amplified and output to the
speaker.

The data residing in the sound RAM can be placed there either byte-by-byte by manually
building the wavetable (trial-and-error method works best here; try a sound, and modify it
as you prefer), or fill memory with a digitized input signal.

The waveshape of the signal is determined by the actual values of the data bytes that make
up the wavetable. The pitch of the signal is determined by the speed with which the
wavetable is scanned by the DOC. This scan rate is the value contained in the Waveform
register of each oscillator, and is anived at using several factors. Figure 6-7 shows the
process which results in the scan rate.

only certain address bits are used. See text.

Figure 6-7. Generating the sound addresses

The 32 oscillators are time-domain multiplexed, that is, the DOC services each oscillator in
its tum. With all oscillators enabled, the DOC takes approximately 38 microseconds to
service all 32.

Digitized sound waves are built using consecutive data bytes (known collectively as a
wavetable) in dedicated sound RAM. Each of the 32 oscillator reads these bytes in
sequential order at a speed that is programmable. This speed determines the frequency at
which the waveform is reproduced, while the actual data in RAM determine the shape of
the output waveform. The volume for each oscillator is also programmable.

APDADraft 6-1/ 11121186

Apple IIGS Hardware Reference

Sound input and output specifications
The 7 -pin molex connector is used for sound input and output to and from the Apple lIes.
The elecrrical specifications for these inputs and outputs are listed below in Table 6-4.

Table 6-4. Sound input and output electrical specifications

Signal Name Pin Max. Units

AID input 1 2.5 V p-p, full-scale conversion
Analog ground 2
Analog output 3 -5 to +5 V p-p
Channel addr 0 4 1 LS TTL load
Channel addr 1 5 1 LS TTL load
Channel strobe* 6 1 LS TTL load
Channel addr 2 7 1 LS TTL load
Input impedance 1 3,000 ohms
Output impedance 3 10,000 ohms

* Channel strobe goes low when the channel address is valid.

Figure 6-8 shows an example of a demultiplexer circuit that can be used to produce stereo
(2-channel) sound using the output from the DOC available at the 7-pin molex connector J-
25. A more complex circuit would result in 15 unique sound channels.

ANALOG OIJIPUT MCJ4052
from pin 3 of
connector 125 XO

XI X channel I output
X2 to I<>-pass fllter
X3
YO
YI

CSTRB Y2
from pin 6 Y3

A Y channel 2 output
CAO B to I<>-pass filter
from pin 4

Figure 6-8. An example of a two-channel demultiplexer circuit

Summary
The Apple IIGS provides sound synthesis capabilities to the Apple II family. The sound
tool sets provide routines that manipulate the sound synthesizer. If you decide to bypass
the tools, you must address the registers within the DOC and the sound GLU, as weB as
the sound RAM. To do this you must:

I. Set the Sound Control register bits for DOC or RAM access with the Address Pointer
auto-increment option enabled.

APDADraft 6-12

.- .

Il 121 186

Apple lles Hardware Reference

2. Load the Address Pointers with the target address.

3. Read or write the data byte.

The addresses of the DOC registers for each oscillator are listed in Table 6-3.

Table 6-3. DOC register addresses

FrequencyFrequency Address
Oscillator Low High Volume Oata Pointer Control Waveform
number regi.5ter register register register register register register

$00 soo S20 S40 S60 S80 SAO SCO
SOl SOl S21 S41 S61 $81 SAl SCI
$02 S02 S22 $42 $62 S82 SA2 $C2
S03 $03 S23 S43 $63 S83 $A3 SC3
$04 $04 $24 $44 S64 $84 $A4 SC4
$05 S05 S25 S45 $65 $85 SA5 $C5
$06 $06 S26 $46 $66 S86 SA6 $c6
S07 S07 S27 S47 S67 S87 $A7 SC7
$08 $08 $28 $48 S68 $88 $A8 SC8
$09 $09 $29 $49 $69 $89 $A9 SC9
$OA SOA $2A $4A $6A S8A $AA $CA
S08 S08 S28 S48 S68 $88 $A8 $C8
SOC SOC $2C $4C $6C $8C $AC $CC
$00 SOC $20 $40 $60 $80 $AO SCO
SOE SOE S2E $4E $6E S8E SAE SCE
$OF $OF $2F $4F $6F $8F SAF $CF
$10 $10 $30 $50 S70 S90 $80 $00
$11 $11 $31 S51 S71 $91 $81 SOl
$12 S12 S32 S52 S72 S92 S82 S02
$13 S13 $33 $53 $73 $93 $83 $03
S14 S14 $34 $54 $74 S94 $84 $04
SIS $15 S35 S55 S75 $95 S85 S05
$16 $16 $36 $56 $76 $96 $86 $06
$17 $17 $37 $57 $77 $97 S87 S07
S18 $18 $38 $58 $78 S98 S88 $08
S19 S19 $39 S59 S79 $99 S89 S09
$lA $lA $3A S5A $7A $9A $8A $OA
$18 $18 $38 S58 $78 $98 $88 S08
SIC SIC $3C $5C S7C S9C S8C SOC
$10 S10 $30 550 570 590 $80 $00
$lE- $lE $3E $5E S7E $9E 58E 50E
$lF" $lF S3F S5F 57F $9F $8F $OF

-These oscillators are reserved for system use. Use of these oscillators may result in a system
crash.

Additional information
To learn more about synthesized music and sound, we recommend you read the following
book:

Chamberlin, Hal, Musical Applications of Microprocessors, Hasbrouck Heights, NJ,
Berkeley, CA: Hayden Books, 1985.

APDADraft 6-13

Apple lies Hardware Reference

Chapter 7

Apple DeskTop Bus
The Apple DeskTop Bus (ADB) is a method for connecting input devices (such as a
keyboard or a mouse) with the Apple liGS computer. The ADB consists of an ADB
microcontroller chip and the Apple DeskTop Bus cabling. Figure 7-1 shows the
relationship of the ADB components in the Apple liGS computer.

IIQI04 0

'" _.

-...

Figure 7-1. ADB components within the Apple IlGS

The ADB microcontroller controls devices on the bus by receiving commands from the
65C816 microprocessor, and then sending appropriate ADB commands to and receiving
data from the input devices on the bus. Microcontroller commands (those received from
the 65C816) are located in ROM. Figure 7-2 shows the relationship of ADB components
in the host to devices on the bus.

APDADraft 7-1 11121186

Apple IlGS Hardware Reference

- -- ;,. - -- ..;. - --.

\
ADB cabling • 65C816 H GLU l- ADB \

• •
•
•
•
•

m icroprocesso r microcontroller \ I I
-

\

The host computer :l Mousel I Keyboardl
\

Figure 7-2. The ADB components

Note: To keep compatability with future Apple II products using ADB, use the
Apple DeskTop Bus Tool Set in ROM. Directly accessing some of the ADB
registers may cause the system to crash.

To find more information about the ADS Tool Set,
refer to the Apple [fGS Toolbox Reference manuals.

This chapter describes the physical and network layers of the ADB as it is used in the Apple
lIGS computer. For the remainder of this chapter, the computer will be referred to as the
host and the input devices (for example, a keyboard or a mouse) connected to the bus as
devices .

The input bus
All input devices share the input bus with the host This bus consists of a 4-wire cable and
uses 4-pin mini-DIN jacks at the host and at each device. Figure 7-3 shows the pin
assignments of the connectors. ADB devices may use the +5 volt power supplied by the
bus, but muSt not draw more than 500 rnA total for all devices. All devices are connected
in parallel, using the signal, power, and ground wires. Cables should be no longer than 5
meters, and cable capacitance should not exceed 100 picoFarads per meter.

Host jack

Figure 7-3. Mini-DIN connector pin configuration used in the ADB

Pin Description

I Data
2 Reserved
3 +5 power supply at 500 rnA for all devices
4 Signal and power ground

APDADrajr 7-2 11 1211815

Apple lleS Hardware Reference

The ADB microcontroller
The AD B microcontroller is an intelligent controller IC that oversees the Apple DeskTop
B us. The M50740 microcontroller uses a superset of the 6502 instruction set, and contains
96 bytes of RAM and 3K of ROM. The ADB microcontroller operates asynchronously,
issuing commands on the bus and transmitting data to and receiving data from the bus
devices. Use the ADB commands in the ROM toolbox to communicate with the ADB.

To find out how to use the toolbox in the system
ROM, see the Apple Ilgs Toolbox Reference manual.

The keyboard GLU
The keyboard general logic unit (OLU) works together with the ADB microcontroller to
form an intelligent input-device interface. The keyboard OLU, located on the main logic
board, uses two independent data buses that serve as a communications interface between
the ADB microcontroller and the system bus. This interface is accomplished by using
multiple internal read/write registers to store keyboard data, key modifiers, mouse X and Y
coordinates, command data, and status information.

Keyboard GLU registers

The keyboard general logic unit contains seven data and control ·registers. These are used
for storing keyboard data and commands, key modifiers, mouse X and Y coordinates, and
status information. The registers are

• Keyboard data register ($COOO)

• Mouse Coordinate register ($C024)

• Modifier key register ($C025)

• ADB CommandlData register ($C026)

• ADB Status register ($C027)

All registers, except the status registers, have a status flag that is set to I when the register
is written to, and cleared to 0 when the register is read. Each of the keyboard data, mouse,
and data registers also have an interrupt flag that generates system interrupts, if interrupts
are enabled. These status and interrupt flags are located in the status register. The registers
are described in the following sections.

Keyboard Data register

The keyboard data register contains the ascii value of the last key pressed on the keyboard.
The high bit is set when a new key has been pressed. Figure 7-4 shows the fonnat of this
register and is followed by a description of each bit.

APDADraft 7-3 11121186

Apple JIGS Hardware Reference

7 6 o

ASCII code

'---------------. Key strobe

Figure 7-4. The keyboard data register at $COOO

Bit Value Description

7 This bit is 1 when a key has been pressed, and indicates that the ASCn
value in bits 6-D are valid. This bit must be cleared after reading the data by
reading or writing to address $Ca 10.

ASCII data from the keyboard.

MOllse Data register
The ADB mouse, when moved, generates movement data which is transmitted to the host.
This data, along with the mouse button status, is available in the mouse data register.
Figure 7-5 shows the fonnat of this register and is followed by a description of each bit.

Important: Read this register only twice in succesion. The first read rerurns X­
coordinate data, and the second read returns y-coordinate data. Reading this
register an odd number of times will result in an unknown effect.

7 6 5 4 3 2 1

Mouse movement

0

•

•
Delta movement sign bit

Current button status and
mouse coordinate indicator

Figure 7-5. The Mouse Data register at $C024

Bit Value Description

7

6

5-0

1
a
1
a

Current mouse status: Mouse button up.
Mouse button down.

Delta value sign bit: if this bit is a, the delta value is +.
If this bit is I, the delta value is-.

The relative mouse movement data is returned here. If you are reading this
register for mouse movement data, bit 7 tells you which data (X or Y­
coordinate) is represented here. If bit 7 is I, X-coordinate data is contained
in bits 5-0. If bit 7 is a, Y-coordinate data is contained in bits 5-0.

APDADraft 74 1l!2//86

Apple lies Hardware Reference

Modifier Key register
The Modifier Key register contains bits that reflect the status of the modifier keys. These
keys include the standard shift, control, repeat, command. Apple, and repeat keys, as well
as keys on the numeric keypad. Figure 7-6 shows the format of this register and is
followed by a description of each bit.

7 6 I 5 I 4 3 I 2 1 0

I L -"'

..
--. ..
..

~ ..

Shift key down
Control key down
Caps Lock key down
Repeat key down
Keypad key down
Updated modifier key latch
Command key down
Apple key down

Figure 7-6. The Modifier Key register at $C025

Bit Value Description

7

6

5

4

3

2

1

o

I
o
1
o
1

o
1
o
1
o
1
o
1
o
1
o

When this bit is 1. the Open Apple key has been pressed.
When this bit is 0, the Open Apple key has not been pressed.

When this bit is 1. the Closed Apple key has been pressed.
When this bit is 0, the Closed Apple key has not been Pressed.

When this bit is 1, the modifier key latch has been updated, but no key has
been pressed.

When this bit is 1, a keypad key has been pressed.
When this bit is O. a keypad key has not been pressed.

When this bit is 1, the Repeat function is active.
When this bit is O. the Repeat function is inactive.

When this bit is 1, the Caps Lock key has been pressed.
When this bit is 0, the Caps Lock key has not been pressed.

When this bit is 1, the Control key has been pressed.
When this bit is 0, the Control key has not been pressed.

When this bit is 1. the Shift key has been pressed.
When this bit is 0, the Shift key has not been pressed.

APDADraft 7-5 11121186

Apple IlGS Hardware Reference

ADB Command/Data register
The ADB command/data register is a dual-function register used to communicate with ADB
devices. To send a command to a device on the bus, write the command byte to this
register at address $C026. To check the status of an ADB device, read this register at the
same address. Figure 7-7 shows the format of the ADB command/data register when it is
read.

7 6 5 4 3 2 1

I
0 ..
-

•
•

•
•

Number of data bytes returned

Service Request valid

Buffer flush key sequence

Desktop Manager key sequence

Abort/CTRLSTB flush

Response/status

Figure 7 -7 The ADB command/data register at $C026.

Bit Value Description

7

6

5

4

3

2-0

1

o
1

o
1

o
.1

o
1

o

When this bit is I, the ADB microcontroller has received a response from an
ADB device previously addressed.
No response available.

When this bit is I, and only this bit in the register is I, the ADB
microcontroller has encountered an error and has reset itself. When this bit
is 1 and bit 4 is also I, this indicates that the ADB microcontroller should
clear the key strobe (bit 7 in the data register at $COOO).

When this bit is I, the Apple, Control, and Reset keys have been pressed
simultaneously. This condition is usually used to initiate a cold start up.
Reset key sequence has not been pressed.

When this bit is I, the Apple, Control, and Delete keys have been pressed
simultaneously. This condition will result in the ADB microcontroller
flushing all internally buffered commands.
Buffer flush key sequence has not been pressed.

When this bit is I, a valid service request is pending. The ADB
microcontroller will then poll the ADB devices and determine which has
initiated the request.
No service request pending.

The number of data bytes to be returned from the device is listed here.

APDADraft 7-6 11/21/86

Apple lIes Hardware Reference

ADB Status register

The ADB Status register, located at $C027, contains flags that relate to mouse and
keyboard data and status. Figure 7-8 shows the fonnat of the ADB Status register,
followed by a description of each bi!.

7 6 5 4 3 2 1 0

..

..

..

Command register full
Mouse X-V-Coordinate registers available

Keyboard interrupt enable/disable
Keyboard Data register full
Data interrupt enable/disable
Data register full

Mouse interrupt enable/disable

Mouse Data register full

Figure 7-8. ADB Status register at $C027

Bit Value Description

7

6

5

4

3

2

1

o

1
o
1
o
1
o
1
o
1
o
I
o
o
I

I
o

When this hit is I, the mouse data register at $C024 is fuIl (read-only bit).
When this bit is 0, the mouse data register is empty.

When this bit is I, the mouse interrupt is enabled (read/write bit).
When this bit is 0, the mouse interrupt is disabled.

When this bit is I , the data register is full (read-only bit) .
When this bit is 0, the data register is empty.

When this bit is 1, the data interrupt is enabled (read/write bit).
When this bit is 0, the data interrupt is disabled.

When this bit is I, the keyboard data register is full (read-only bit).
When this bit is 0, the keyboard data register is empty.

When this bit is I , the keyboard data interrupt is enabled (read/write bit).
When this bit is 0, the keyboard data interrupt is disabled.

Mouse X-Coordinate register available (read-only bit).
Mouse Y -Coordinate register available.

Command register full (read only bit)
Command register empty.

The command full flag is set to I when the system writes to the Command register and is
cleared to 0 when the ADB microcontrol1er reads the Command register.

APDA Draft 7-7 II 12 1186

Apple IIGS Hardware Reference

The keyboard data full flag is set when the keyboard writes data into this register; it is
cleared when the system reads the System Status register and the keyboard data register.

Bus communication
The host carries communication on the bus by sending either commands or data to a device.
A device can respond to commands by sending data to the host. This form of
communication uses strings of bits, each making up a packet. A data transfer or transaction
consists of a complete communication between the host and a device; for example, it may
be a command packet sent by the host to request data from a device followed by a data
packet sent from the device to the host.

Figure 7-9 shows how duty-cycle modulation represents bits on the bus. A low period of
less than 50 percent of the bit-cell time is interpreted as a 1. A low period of greater than
50 percent of the bit-cell time is interpreted as a O.

-

Duty cycle < 50%
bitcell represents 1

Duty cycle > 50%
bitcell represents 0

Figure 7 ·9. Bit representation via duty-cycle modulation

Signals

Certain transactions are neither commands nor data transactions. These are special
transactions that the host uses to broadcast status globally to all devices on the bus. There
are four special transactions in this group: attention, sync, reset, and service request.

Attention and sync

The start of every command is signaled by a long low attention period that the host sends
on the bus. This is followed by a Short high sync pulse that signals the beginning of the
initial bus timing. The falling edge of the sync pulse is used as a timing reference, after
which the first command bit follows. Figure 7-10 shows the format of the attention and
sync signals.

APDADraft 7-8 Il l21186

Apple IICS Hardware Reference

Attention Sync

-------------------~

Figure 7-10. Attention and sync pulses

Reset

Reset issues a break on the bus. Only the host may issue this signal, which signals all
devices to reset. By holding the bus low for a minimum of 2.8 milliseconds, a reset is
initiated.

Service request

A service request is used to signal the host that a device requires service, such as when
there are data to send to the host. Only a device can issue a service request. Following any
command packet, a requesting device can signal a service request by holding the bus low
during the low portion of the stop bit of the command transaction. TIlis lengthens the stop
by a minimum of 140 milliseconds beyond its normal bit-cell boundary. This lengthened
stop bit indicates to the host that a service request is desired. Figure 7-11 shows the format
of the service request signal.

-

normal Stop bit cell boundary
.'-....

•
•
•
•
•
•
•
•
•

140 milliseconds, which
indicates a service request

Figure 7 -11. Service Request

A device will signal a service request repeatedly until it is served. When a device has
requested service (at this point the host does not know which device sent the request), the
host will poll each of the devices by sending a Talk register 2 command.

When the host commands the requesting device to Talk, the device is considered served
and does not send a service request signal again until it needs to be served again. The host
can enable and disable the ability of a device to send a service request at any time. ADB
mouse devices are prohibited by the Apple IIGS from issuing service requests. All other
ADB devices rriay issue service requests.

APDADraft 7-9 llJ21 !86

Apple !lGS Hardware Reference

Reset
The host can reset all devices on the bus by holding tbe bus low for a minimum of 250
milliseconds. Upon detecting a reset on the bus, devices will reset and place tbemselves in
a mode to receive commands.

Transactions
A command (Talk, Listen, Flush) iIritiates a transaction. The sequence of tbe command is
as follows:

I . an attention signal

2. a sync signal

3. eight command bits

4. one stop bit

To synchroIrize the end of tbe transaction, tbe command transmits the stop bit after tbe last
command bit-cell. Then tbe transaction is complete and tbe host releases its control of tbe
bus (tbe bus is always floating in a high state until a device or tbe host iIritiate a
transaclion) .

ADB peripheral devices
Each device on tbe bus has an address. There is only one active talker on the bus at a time;
this may be tbe host or an addressed device. A device addressed to Talk (with data to send)
releases control of tbe bus after it sends the data. If a device has been addressed but has no
data. to send, it releases control of the bus immediately and allows tbe host to time out
(waiting for data, none arrives). The host may also send data to the addressed device in a
separate packet, after it sends a Listen command to the device.

Each peripheral device has a 4-bit command address tbat identifies its device type. A total
of 16 addresses are available, which means tbat a maximum of 16 uIrique devices may be
on the bus. A device always responds to its address when tbere is a power-on or a reset
signal.

Addresses
Each peripheral device is preassigned a 4-bit command address, which identifies its device
type. For example, all relative devices such as a mouse, power up at address 3. Most
devices have moveable addresses; tbe host can assign a new address to tbe device.
However, a device will always default to its assigned address upon power-on or after it
detects an ADB reset. Currently, 8 addresses are predefined and reserved. The other 8
addresses are available for moveable devices. This means that ADB can suppon up to 9
mouse devices at tbe same time, each one witb a unique address.

Commands
Only tbe host can send commands. There are two types of commands: tbe Talk command
is used for data transaction from a device to tbe host; tbe Listen command is used for a data
transaction from the host to a device.

APDADraft 7-10 1112111i6

Apple llcs Hardware Reference

A command is an 8-bit word that has a specific syntax (see Table 7-1):

• a 4-bit field that specifies the address of the desired device. The addresses range from
0-15 (A3-AO) .

• a 4-bit command and register address code.

Table 7-1. Command byte syntax

Bit
7 6 S 4 3 2 1 0 Command
x x x x 0 0 0 0 Send reset
A3 through AD D D D 1 Flush
x x x x D D 1 D Send reset
x x x x D D 1 1 Send reset
x x x x D 1 x x Send reset
A3 through AD 1 D r r Flush
A3 through AD 1 1 r r Hush

x = ignored
r = register number

Note: To allow for future expansion of the command structure, Apple has reserved
a group of instructions that are currently treated as no-ops (no operation
perfonned). Use of commands not listed above will result in possible
incompatability with future Apple products.

Talk

When the host addresses and requests a device to Talk, the device must respond with data
before the host times out (does not receive data within the specified time). The selected
device perfonns its data transaction and releases the bus.

Listen

When the host addresses and requests a device to Listen, it is enabled to receive the data
bits that the host places on the bus. The host perfonns its data transaction. After the stop
bit that follows the data is received, the transaction is complete and the device releases the
bus. If a listening device detects another command on the bus before it receives any data,
the original transaction is immediately considered complete and the device releases the bus.

Flush

The flush command is a device-independent command which requests that the device purge
all pending data from its buffer.

Send Reset

APDADraft 7-11 11121186

Apple IIcs Hardware Reference

Device registers
All devices have four locations to receive data. These are :

Register 0, Talk: Data register, device specific
Listen: Data register, device specific

Register I, Talk: Data register, device specific
Listen: Data register, device specific

Register 2, Talk: Data register, device specific
Listen: Soft addressed devices; device specific

Register 3, Talk: Status information, including the device address handler
Listen: Status information, including the device address handler

Collision detection
All devices must be able to detect collisions. If a device is attempting to output a bit and the
data line is forced (either high or low) by another device, it has lost a bit in collision with
the other device. If another device sends data before the device is able to assen its stan bit,
it has lost a collision. The losing device should immediatedly untalk itself and preserve the
data that were being sent for retransmission. The device sets an internal flag if it loses a
collision.

Note: Devices using internal clocks that operate within ± 1 percent should attempt
to assen their stan bit at" a random time within the limits of the line turnaround time.

Error conditions
If the bus hangs low, all devices reset themselves and output a 1. If a command
transaction is incomplete by staying high beyond the maximum bit-cell time, all devices
ignore the command and prepare for another attention signal.

Network layer
The network layer accommodates normal devices and extended address devices.

Normal devices

A nonnal device optionally has a device, called the activator, on it to indicate activity. The
activator can be a special key on a keyboard or a mouse button.

To aid in collision detection, the address ponion of the address field of register 3 is
replaced with a random number in response to a Talk R3 command. Normal devices will
change their register 3 to the data received when they receive a Listen R3 command, no
collision is detected, and activator inactive is true.

At the systems level, a host can change the address of normal devices by forcing the
collision of devices sharing the same address. By issuing a Talk R3 command and
following it with a Listen R3 command with a new address in bits 8 to 11 of the data, all
devices that did not detect a collision are moved to the new address. Typically, only one
device wil not detect a collision. This process can be repeated at new addresses until the

APDADraft 7-12 11121186

Apple llcs Hardware Reference

response to the Talk R3 command is a time-out. This can be used to identify and relocate
multiple devices of the same type after initialization of the system.

At the applications level, addresses can be changed by displaying a message requesting a
user to use the activator. The host then issues a Listen register 3 command to a new
address and all devices except the one with the activator being used are moved. This
method can be used to identify and locate individual devices in multiuser applications.
Cenain handlers have been reserved to facilitate both address changing methods.

Extended address devices

Extended address devices have the same command address and a unique 16-bit extended
address that is stored in the device. Their command address cannot be changed. On
power-up or RESET, they accept only the Listen register 2 command in which the data
match their extended address. When enabled, they respond to all commands addressed to
them. These devices become disabled after receiving a Listen register 2 command in which
the data do not match their extended address.

Register 3
The function of a device and the use of its data by the host are controlled by a handler that
is stored by the device in register 3. The host changes the handler with a Listen register 3
command. If the receiving device is able to function with the new handler, it is stored and
sent in response to a Talk register 3 command.

Handler $FF is reserved for the self test mode for all devices. Handler $00 in response to a
Talk is reserved to indicate a failed self test. Handler $00 sent with a Listen is reserved to
indicate that the device is only to change the address ponion ofregister 3. Figure 7-12
shows the fonnat of register 3.

15 131211 B 7 0

11111111111111111

[I I I I I I I I I I I I

Figure 7-12. Register 3

Register 0

Device handler
Device address

High-speed enable

Service request enable
o (Zero)

Register 0 is used to hold device data, and is read using the Read register 0 command.
Figures 7-13 and 7-14 show the format of register 0 as used in a keyboard and mouse
device.

APDA Draft 7-13 II 121 !86

Apple llGS Hardware Reference

i' 51 I I I I I I I 1
6

1 I I I I I °1

111111111111111

Figure 7-13. Keyboard Register 0

r I I I I I I I I I 151 I I I I °1

I1111111

Figure 7-14. Mouse Register 0

Service request

Keycode 1
Key released
Keycode 2
Key released

X move value
Moved right
·0·
Y move value
Moved up
Button pressed

The Listen R3 command is also used to enable and disable the service request. Service
request is enabled on the bus by setting the register 3 enable bit to I; it is disabled by setting
the bit to O. This is useful in systems where the service request response time in a polled
system is longer than desired. When only specific devices are required for an application,
the others can be disabled.

APDA Draft 7-14 11121186

Apple lIes Hardware Reference

Chapter 8

The Disk Port
The Apple JIGS computer can use either 5.25-inch 140K disk drives or the 3.5-inch 800K
disk drives. The disk port connector at the rear panel is compatible with both types of
Apple disk drives. This chapter describes the disk port connector of the Apple ilGS.
Figure 8-1 shows the Apple IIGS block diagram and position of the disk port within the
system.

'~.i=+++-l

Figure 8-1. Relationship of the disk port and other components

Apple II Compatibility
The Apple JIOS uses the same disk drive interface as the Apple IIc and IIe. Programs
written for both of these earlier computers will run on the Apple IIGS. The firmware
recognizes ProDos block device calls and SmartPort interface calls to both the Apple
UniDisk™ 3.5 and Apple DuoDisk® 5.25-inch disk drives.

To find out how to use the ProDos block device calls see the ProDos 8 Reference manual.
To find out how to use the SmartPort interface calls, see the Apple lIes Firmware
Reference manual.

APDADraft 8-1 11121186

Apple IIGS Hardware Reference

The disk port connector
The disk pon connector is located at the rear of the Apple IIGS case. It is a 19-pin
connector. Figure 8-2 shows the connector, and the signals and their descriptions are listed
below.

Pin

1,2,3
4
5
6
7,8
9
10
11
12
13
14
15
16
17
18
19

10 9 8 7 6 5 ' 4 3 2 1
• • • • • • • • • • • • • • • • • • •

191817161514131211

Figure 8-2. The disk port connector

Descri ption

GND
3.5DISK
-12V
+5V
+12V
DR2
WRPROTEcr
PHO
PHI
PH2
PH3
WREQ
HDSEL
DRI
RDDATA
WDATA

Ground reference and supply
3.5- or 5.25-inch drive select
-12 volt supply
+5 volt supply
+ 12 volt supply
Drive 2 select
Write protect input
Motor phase 0 output
Motor phase 1 output
Motor phase 2 output
Motor phase 3 output
Write request
Head select
Drive 1 select
Read data input
Write data output

Warning: The power connections on this disk port are for use by the disk drive
only. Do not use these connections for any other purpose. Any other use of these
supplies may damage the voltage regulator within the computer.

The IWM
The disk port interface is enhanced by the Integrated Woz Machine (IWM), which
simplifies the microprocessor's task of reading and writing serial data to and from each
disk drive. To perform disk operations, the microprocessor simply reads or writes control
and data bytes to or from the six IWM registers.

The disk port is mapped as an internal device at addresses $COEO through $COEF. These
are the same addresses as in the Apple IIc and lIe. Table 8-2 shows these locations and
their functions.

APDA Draft 8-2 11121186

-,

"-

Apple lIeS Hardware Reference

Table 8-2. Disk port soft switches

Address Description

$COEO
$COEI
$COE2
$COE3
$COE4
$COE5
$COE6
$COE7
$COE8
$COE9
$COEA
$COEB
$COEC
$COED
$COEE
$COEF

Stepper motor phase 0 low
Stepper motor phase 0 high
Stepper motor phase I low
Stepper motor phase I high
Stepper motor phase 2 low
Stepper motor phase 2 high
Stepper motor phase 3 low
Stepper motor phase 3 high
Spindle motor enabled
Spindle motor disabled
Drive 0 select
Drive I select
Q6 select bit low
Q6 select bit high
Q7 select bit low
Q7 select bit high

Soft switches Q6 and Q7 are select bits for accessing registers within the IWM. By setting
or clearing the Q6, Q7, and spindle motor bits, you may read or write to one of the
registers.

The Disk Interface register
The Disk Interface register ($C031) serves as a control register for the disk drive. By
writing to this register, you select the type of disk drive being used and the side of the disk
to be accessed.

This register uses only two bits, which are both cleared on reset When the Disk Interface
register is read, O's are returned in the unused positions (bits 5-{). Figure 8-3 shows the
format for this register. Descriptions of each bit are also listed below.

Warning: Be careful when changing bits within this register. Use only a read­
modify-write instruction sequence when manipulating bits. See the warning in
Chapter I, "Introduction to the Apple liaS".

I 7 6

APDADraft

5 4 3 2 1

Reserved; do not modify

0

_ ..
•

Read/write head

Disk drive type

Figure 8-3. Disk Interface register at $C031

8-3 1lI21/86

Apple !lGS Hardware Reference

Bit Value Description

7

6

5-0

1
o
1
o

Read/write head select bit: A 1 in this position selects head 1.
A 0 selects head O.

Disk drive select bit: A 1 in this position selects 3.5-inch disks.
A 0 selects 5.25-inch disks.

Resetved; do not modify.

APDADraft 84 11121186

Apple ffGS Hardware Reference

Chapter 9

The Memory Expansion Slot
The extended memory card slot allows you to add a memory card holding up to 8Mb of
RAM and 896K of ROM memory. It suppons additional memory only and is not to be
used for any other purpose. RAM cards of 1Mb or 4Mb can be constructed by using
256Kilobit x I-bit or IMegabit x I-bit RAM ICs. Figure 9-1 shows a block diagram of the
Apple IIGS, and the relationship of the memory expansion slot with the rest of the computer
system.

I

I L ______ _

_. ---
..........---1 L.G'-_.-

Figure 9-1. Diagram showing location of expansion memory in the system

Extended RAM
Up to 4Mb (64 banks of 64K each) of RAM can be designed in the extended memory card.
This would be organized as 4 rows (8 chips per row) of RAMs with each TOW holding
either 256K or 1Mb. This requires the use of 256 kilobit x 4 bit (resulting in 1Mb total) or
1 megabit x I bit RAMs (yielding 4Mb total).

To control and select individual rows of RAM, the FPI provides /CRAS (card TOW address
strobe), /CCAS (card column address strobe), CROWO (card TOW select 0), and CROWl
(card TOW select 1) signals. Signals /CRAS and /CCAS are the basic memory timing

APDADraft 9-1 1112 1186

Apple lIes Hardware Reference

signals cornman to most dynamic RAMs. Signals CROWD and CROWl are row selects
that, when taken as a pair, indicate the row number to be accessed. Typically, CROWD
and CROWl are used as the select signals for a dual 1-of-4 decoder (74F139 or equivalent)
that demultiplexes ICRAS and ICCAS into a separate /RAS and ICAS for each 8-chip
segment.

Extended RAM mapping

Figure 9-2 depicts a 1Mb extended RAM card using 4 rows of 256K per row totaling 1Mb.
The RAM banks above bank $11 are ghosts (repeat images) of the RAM in banks $2
through $1l. A panially populated card causes holes in the memory map unless there is an
option on the card to alter the address decoding. Therefore, contiguous memory for banks
$2 through 11 is available only for 256K, 512K, and 1Mb expansion cards.

Main Board RAM

MSIZE

Expansion Card RAM
Bank numbers $12-$7F are ghost banks;
addressing these will result in access to

f----i a corresponding bank $2 through $11 :

$12,22,32,42,52,62,72
$13,23,33,43,53,63,73
$14,24,34,44,54,64,74

•

•

•

•
$1E,2E,3E,4E,5E,6E,7E
$1F,2F,3F,4F,SF,6F,7F
$20,30,40,50,60,70
$21,31,41,51,61,71

Figure 9-2. Extended RAM mapping

A new input to the memory expansion slot, MSIZE, flags the type of memory chips being
used on the memory expansion card.

If the MSIZE pin is tied to ground (when using 256 kilobit RAMs), the FPI multiplexes 18
address bits onto RA~ and generates the CROW0-1 row selects for rows of 256K. If

APDADraft 9-2 J1I2J186

Apple lleS Hardware Reference

the MSIZE pin is not connected (for 1 megabit RAMs), the FPI multiplexes 20 address bits
onto RA0-9 and generates the CROWO-l row selects for rows of 1Mb.

Ghosting

The RAM expansion card is enabled for accesses in banks $2-$80, but only provides 1
megabyte of actual RAM (banks $2-$11). Foureight-IC rows of RAMs on the card are
individually selected by CROWO and CROWL For a 1Mb card with 256 K rows (MSIZE
: 0), the selected RAM row number is given by the bank number mod 4. For banks $0-$1
(main board RAM), the extended memory card is not accessed. This method of card and
row selection causes multiple images or ghosting of the RAM areas on the card; whenever
locations above $FFFFFF are addressed, locations in a corresponding low bank ($2-$11)
are accessed.

Extended ROM
Additional ROM space up to 896K is available in banks $FO to $FD. To accomplish this,
an additional bank-address latch-decoder is required on the memory card. The FPI
provides a signal (CROMSEL.L) that selects one bank; however, the card must provide the
additional decoding to select individual ROMs within the selected bank.

The extended memory card connector provides a group of signals to support dynamic RAM
and additional general purpose signals to support ROM decoding and selection. Table 9-1
lists these signals.

Signal
FRAO-FRA9

CROWO,1
CRAS.L
CCAS.L
FR/W
DO-D7
CDIR.L

CROMSEL.L
PH2CLK

MSIZE
AIO-Al5
14M
VCC

Table 9·1. Memory card interface signals

Description
10 bits of multiplexed RAM address for RAM cyc1es­
the least significant 10 bits of ROM address.
2 bits select I of 4 RAM rows.
RAM/RAS strobe.
RAM/RAS strobe.
Write enable to RAMs. R/W from microprocessor or DMA.
8 bits of bidirectional data-microprocessor data bus
Card data buffer direction control. Signal goes high when reading
card data
Card ROM select. Low for accesses to banks $FO-$FD.
Microprocessor clock. Rising edge indicates valid bank address on
DO-D7.
Output from card. Indicates RAM row size.
The 6 high-order address bits. Used with ROMs.
14 MHz clock signal.
+5v ±5%. 600mA maximum.

To control and select individual rows of RAM located on the ROM card, the FPI provides
the /CRAS, /CCAS, CROWO. and CROWl signals. The /CRAS and /CCAS signals are
for basic memory timing common to most dynamic RAMs. The CROWO and CROWl are
row select signals that, when taken as a pair, indicate the row number to be accessed.
Typically. CROWO and CROWl are select signals for a duall-of-4 decoder (74F139 or
equivalent) that demultiplexes /CRAS and /CCAS into a separate /RAS and /CAS for each
row. Figure 9-3 shows a typical circuit for RAM row selection.

APDADraft 9-3 ///2//86

Apple llGS Hardware Reference

CRAS.L

CCAS.L

CROWO
CROW1

3.3 Kn

_ J1_

- J2--- --- ...

~
+5V

~ 74F139

3a
Ea

2a
'1 a

1a
I- AOa

Oa
3b

Eb 2b

'1b 1b

Ob Ob

...,
()
... ...,
....
....
I'"
()
... ...,

p-

IRAS3

IRAS2
IRAS1
IRASO
ICAS3
ICAS2
ICAS1
ICASO

IRAS, ICAS for
each row of RAMs

Figure 9-3. Example circuit for decoding the extended memory card RAS/CAS signals

Address multiplexing
The FPI multiplexes the RAM addresses onto either 8, 9, or 10 RAM address lines to
provide support for RAM with 64 kilobit, 256 kilobit, or 1 megabit RAM ICs. The main
logic board RAMs (banks $0 and $1) are 64 kilobit chips requiring 8 address lines. The
RAM expansion card can support 256 x 1-, 256 x 4-, 1M x 1-, or 1M x 4-bit RAMs. The
expansion card manufacturer indicates word size of the RAMs on the memory card by the
MSIZE signal from the card. (See MSIZE, above.)

APDADraft 94 1I 121186

Apple llGS Hardware Reference

Chapter 10

Power Supply
The Apple IIOS power supply has the same four-supply, switching, load-sensing design as
the Apple II, II plus and lie models used. The following sections describe the design of
this unit.

Function
The power supply changes high-voltage alternating current (AC) into low-voltage direct
current (DC). The Apple IIos does this by using a switching-type power supply that
allows a simple, maintenance-free operation.

Warning: The power supply contains dangerously high voltages, and should be
opened by an authorized Apple service technician only.

This power supply also contains special load-sensing circuitry; whenever it detects a short
or a no-load condition, the supply will no longer provide voltages to the computer. This
condition is easily recognized: The supply will emit two audible chirps per second. This
condition will persist until you correct the situation or tum the power supply off.

Specifications .
The Apple IIos power supply operates on regular household 120-volt alternating current.
The supply provides +12 volts, -12 volts, +5 volts, -5 volts, and 2 ground return lines.

The power input requirements are 107 to 132V AC. The power output specifications are as
follows:

• +12 volts at 1.5A
• -12 volts at 0.25A
• +5 volts at 2.5A
• -5 volts at 0.25A

APDADraft 10-1 11121186

Apple llcs Hardware Reference

Power connector
The connector is a 6-pin, molex-type, keyed in-line socket. Figure 10-1 shows its pin-out,
followed by a description of each pin.

1 5 6 7

Figure 10-1. Power supply connector

Pin Description

I Ground
2 Ground
3 N.C.
4 +5 volt supply
5 + 12 volt supply
6 -12 volt supply
7 -5 volt supply

APDADraft 10-2 11121186

Apple IlGS Hardware Reference

Chapter 11

65C816 Microprocessor
The microprocessor is the intelligence of the computer system. It is this device that
recognizes the instructions encoded by the programmer and manipulates the other devices
in the system (VGC, the Mega Il, the DOC) that result in output such as video and sound.
Figure 11-1 shows the Apple IlGS block diagram and the relationship of the
microprocessor to the rest of the computer.

'-'-..... L.e~_·_
I -
L _____ _

...

:r,." -
Figure 11-1. The 65C816 in the Apple IlGS system

The Apple IlGS uses the l~bit 65C816 microprocessor, a CMOS design based on the
6502 chip. The microprocessor provides this computer with greater computing power in
these ways:

• 8Mb address range increases potential progam and data size

• 16-bit internal data registers increase data-handling capability

• 2.8 MHz processor speeds computations

This chapter describes the new features of this microprocessor and its capability to emulate
the 6502. Also, each of the 65C816 internal registers is described briefly.

APDADraft 11-1 1112] /86

Apple llGS Hardware Reference

65C816 features
The new 65C816 microprocessor shares many characteristics with the 6502 and 65C02
used in other Apple II-family computers. It also introduces new features not found in
other Apple II computers. These are

• 16-bit accumulator

• 16-bit X and Y Index registers

• relocatable zero page

• relocatable staCk

• 24-bit internal address bus

• 8-bit data address bank register

• 8-bit program address bank register

• 11 new addressing modes

, 36 new instructions, for a total of 91 (a1l256 operation codes)

• fast block-move insttuctions

, ability to emulate the 6502 8-bit microprocessors

For detailed descriptions of these features. refer to the
manufacturer's clara sheet at the end of this chapter.
To learn how In implement these features. refer 10 the
ApplelIGS Assembkr Refere"ce manual.

The 65C816 microprocessor shares some features with the 6502 and 65C02 micro­
processors used in previous Apple II models. Table 11-1 lists some of these features .

Table 11·1. Some 6500 family ties

Characteristic Year available

xEDs~t'on
Address bus bits
Data bus bits
Maxirrum memory
Largest stack
Defined opcodes
Addressing modes
Relocatable direct (zero) page?
6502 software compatible?
Fast block move instructions?

'year available
thigh 8 bits multiplexed onto data bus

NMOS is an abbreviation for N-doped Metal OxilU
Semiconductor. which is one of several methods of
semiconduclOr inlegrated-circuit fabrication.

APDADroji 11·2

6502 65C02
1975' 1983'

NMOS N~OS 8
16 16
8 8

64K 64K
256 256
151 178
13 15
No No
Yes Yes
No No

65816
1985'

CMOS
16
24t
8

16M
64K
256
24
Yes
Yes
Yes

11121186

Apple llGS Hardware Reference

The 65C816 is software compatible with the 6502 family of microprocessors. Actually,
the 65C816 has an emulation mode, in which it becomes an 8-bit 6502. By emulating the
6502, the 65C816 can execute most programs written for Apple II computers.

The 16-bit 65C816
In the Apple IIGS, the 65C816 normally operates in either of two modes: 6502 emulation
mode and 65C816 native mode. Figure 11-2 shows the sizes of the registers in emulation
mode and in native mode. In emulation mode, the accumulator and index registers are 8
bits wide, and existing Apple II programs run the same as they do on any other Apple II
model. In native mode, the accumulator and index registers are 16 bits wide. The 65C816
also has several new and more powerful addressing modes that take advantage of its 24-bit
addressing. The new addressing modes operate in either native mode or emulation mode,
although the shorter registers in emulation mode make some of them ineffective.

I
I

I
24

Note: Native mode can also work with 8-bit data registers with an additional
accumulator, the B register. Apple does not recommend 8-bit native mode, but
some internal routines use it, and developers are free to use it if they choose.

6502 emulation mode 65816 native mode

00 A Accumulator A

00 I X I X Index register X

00 I y I Y Index register Y

00 Data bank register I DBR

00 01 S Stack pointer I 00 S

P Program Status
register

P

PC Program counter PC

PBR Program bank register I PBR

00 0000 Direct register 00 D

I I I I I
16 8 0 24 16 8

Register length in bits Register length in bits

lR em~lationh mOdea lrese bitf are
e va ues sown n are no

Figure 11-2. 65C816 registers

APDADraft 11-3

I

I

I
0

11 12l!S6

Apple lles Hardware Reference

Microprocessor differences
The 65C816 microprocessor differs from the 6502 in several ways. This section describes
some of those differences and their impact on program execution.

The registers

The 65C816 contains all the registers found in the 6502. In addition, the new
microprocessor has three additional registers that make it a more powerful chip. These new
registers provide additional addressing capability and greater data-handling capability. The
nine registers within the 65C816 are described below.

To learn how to use the registers in the 6SC816. see
the Apple llGS Assembler Reference manual.

The accumulator

The accumulator (also known as the Arithmetic Logic Unil-ALU) is a 16-bit register that
holds all values while arithmetic and logical calculations are performed- The result of a
calculation within this register affects the status bits in the Program Status register. In
emulation mode, the upper 8 bits are filled with O's that cannot be altered.

X Index register

The X Index register is a 16-bit register that is used as an address offset value when
calculating an effective address. When the x bit is set, the upper 8 bits are filled with O's
that cannot be altered.

Y Index register

The Y Index register is a 16-bit register that is used as an address offset value when
calculating an effective address. When the x bit is set, the upper 8 bits are filled with 0' s
that cannot be altered.

Data bank register

The data bank register is an 8-bit address register that contains the most significant byte of
the effective 24-bit address in all addressing modes. In emulation mode, it contains O's that
cannot be altered.

Stack pointer

In the previous Apple computers, the stack was located at $100 through $lFF in memory.
In the 65C816, the stack can be located anywhere in bank $00, but may not exceed 64K.
The stack pointer contains the address of the next available stack location. The stack
"grows" in a downward direction (toward lower addresses just as with a 6502 stack);
PUSH and PULL instructions place and remove bytes from the "top" of the stack (actually
the lowest address) and grows down toward lower addresses.

APDADraft 114 1l!21 Ilia

Apple llGS Hardware Reference

Program Status register

The Program Status register is an 8-bit register that contains status bits that are set or
cleared as a result of the condition of the accumulator after each operation within the
accumulator. Also. this register contains the e and m bits that control the emulation and
native modes. In emulation mode, this register remains unchanged in size.

Program counter

The program counter is a 16-bit register that is concatenated with the program bank register
to obtain the resulting 24-bit address of the next instruction to be fetched for execution. In
emulation mode, this register remains unchanged in size. (See the program bank register
address description. below.)

Program bank register

The program bank register is an 8-bit register that contains the most significant byte of the
24-bit program counter address. In emulation mode, this register is available, although
limited in its use, and remains unchanged in size. (See the program counter description,
above.)

Direct register

In the previous Apple computerS, the zero page (called the direct page in the 65C816) was
located in the low $100 bytes of memory, and could not be moved. In the 65C816, the
direct page can be located anywhere in bank $00. The starting (low-byte) address of the
direct page is detennined by the Direct register. This address can be any value from $0000
through $FFOO. Although the direct page can begin anywhere in bank $00, there is a one­
cycle penalty when it does not begin on a page boundary (when the low byte of the Direct
register is not $(0).

Emulating the 6502
As mentioned earlier. the 65C816 is capable of emulating a 6502 microprocessor. In
emulation mode, the 65C816 will execute the complete 65C816 instruction set (which
includes all 6502 instructions), but many of these insauctions will be of limited use
because of the reduced width of the registers. For instance, addresses are 24 bits wide in
native mode but are limited to 16 bits in emulation mode, and data registers that are 16 bits
wide in native mode are reduced to 8 bits. Note in Figure 11-2 that cenain bits in some of
the registers are filled with specific values that cannot be altered when the m bit is set

To emulate the 6502 microprocessor, set the e bit to 1. You may then run programs that
were written for the 6502.

The e bit

The e bit in the Status register controls whether the 65C816 functions like a 6502
(emulation mode) or like a 65C816 (native mode). When this bit is a 1. the 65C816
executes only those instructions within the 6502 microprocessor.

APDADraji /J-5 lJ121!86

Apple lIes Hardware Reference

In emulation mode, the microprocessor addresses 64K of memory, ignoring the program
bank register. In native mode, the microprocessor addresses up to 8Mb by using the
program bank register.

The m bit

The m bit in the Status register controls whether the accumulator and memory locations are
8 or 16 bits wide. When the m bit is set, references to the accumulator and memory
locations are 8 bits wide. When the m bit is cleared, references to the accumulator and
memory locations are 16 bits wide.

In emulation mode (e bit ~ I) the m bit is forced to I, and all references to the accumulator
and memory are 8 bits wide.

The x bit

The x bit in the Status register controls whether the X and Y registers are 16 bits or 8 bits
wide. When the x bit is set, references to the X and Y registers are 8 bits wide. When the
x bit is cleared, references to the X and Y registers are 16 bits wide.

Operating speed

The Apple IIGS can run the 65C816 processor at one of two speeds: 1.024 MHz and 2.8
MHz. The FPI controls the clock input signal to the microprocessor and selects the
appropriate speed as indicated by the clock speed bit in the Speed register.

Summary

The new 65C816 16-bit microprocessor provides these improvements over the 6502:

• 16-bit accumulator

• 16-bit X and Y Index registers

• relocatable zero page

• relocatable stack

• 24-bit internal address bus

• 8-bit data address bank register

• 8-bit program address bank register

• 11 new addressing modes

.36 new instructions, for a total of 91 (all 256 opcodes)

• fast block-move instructions

• ability to emulate the 6502 8-bit microprocessors

APDADraft 11-6 /1 /2 /186

Apple lIes Hardware Reference

65C816 data sheets

In the following pages are the data sheets from two manufacturers of the 65C816
microprocessor.

APDADraji Jl-7 11121186

....... CMOS W65C816 and W65C802
16-81t Microprocessor Family
F •• lures
• Advanced CMOS design for low power consumption and increased

noIse immunity .
.. Single 3-6V power supply, 5V specified
• Emulalion mode: allows complete hardware and software

compatibility with 6502 designs
• 24-bit address bus allows access to 16 MByt85 01 memory space
• Full 16-bit ALU, Accumulator. Stack Pointer, and Index Registers
• Valid Dala Address (VOA) and Valid Program Address (VPA) output

allows dual cache and cycle steal DMA implementllion
• Vector Pull (VP) output indicates when interrupt vectOrs are being

addressed. May be used to im~ement vectored interrupt design
• Abort (ABORT) input and aSSOCiated vector supports virtual memory

system oesign
• Separate program and data bank registers allow program

segmentation or full 16-MByte linear addressing
• New Direct Register and stack relative addre~ing provides capability

for re-entrant, re--cursive and re-Iocatable programming
• 24 addressing mOdes-13 original 6502 mOdes, plus 11 new

addreSSing modes with 91 instructions using 255 opcodes
• New Wait for Interrupt (WAI) and Stop the Clock (STP) instructions

further reduce power consumption, decrease interrupt latency and
allows synchronization with external events

• New Co-Processor instruction (COP) with ataociated vector sup­
ports co-processor configurations, i.e .. floating point proceeaors

• New blOCk move ability

W65C816

General Descripllon
WOC's W65C802 and W65C816 are CMOS 16-bit microprocessors fea­
turing total software compatibility with their &obit NMOS and CMOS 65(».

series predecessors. The W65cao2 is pin-t~in compatible with &-bit
devicn currently available, whHe the W65C816 extends addressing to a
full 16 megabytes. These devices offer the many advantages of CMOS
technology. including increased noise immunity. higher reliability. and
greatly reduced power requirements. A software switch determines
whether the processor is in the &obit "emulatico" mode. or in the native
mode. thus allowing existing systems to use the expanded 'eatures.

As shOwn in the processor programming model. the Accumulator. ALU.
X and Y Index registers, and Stack POinter register have all OMn ex­
tended 10 16 bits. A new 16-bil Direct Page register augments theOirect
Page addressing mode (formerly Zero Page addressing) . Separate
Program Bank and Data Bank registers allow 24-bil memory addressing
with segmented or linear addressing.

Four new signals provide the system designer with many options. The.
ABORT input can interrupt the currently executing instruction without
modifying internal register. thus anowing ";rtual memory syatem design.
Valid Data Address (VOA) and Valid Program Address (VPA) outputs
facilitate dual cache memory by indicating whether a data segment or
program segment is accessed. Modifying a vector is .made easy by
monitoring the Vector Pull (VP) outpul

Note: To assist the design engineer. a Caveat and Application Infor­
mation section hu been included within this data sh~_

W65C816 Proce .. or Programming Model PIn Conftguratlon ,..-------
I... __ .!!'!:S __ I BITS I niTS

r iiBi. Bin;. Re9 X Rogioter Hi + X Register Low
L __ J~B~) __ (XH) (XL)

rB~aBank Re9 Y Register Hi (t) Y Register Low
L __ J~£I) __ (YH) (Yl)

r----- --
Stack Register Hi(S, Stacie Reg. low

I 00 (SH) (SL) L _______

0 =6502 AccumulatOt' + Accumulator
Registers (B) (A)

ogram Bank Reg pr~ram (PC) Counter
(PBR) (H) (PCl)

r--
Direct Reg. Hi (9) Direct Reg. Low I

I 00 L _______ (DH) (OL)

SlBtus Regl.ler Coding

STATUS REG. (P)

N V
EMULATION 1 - 6502

O=NATIVE

CARRY
ZERO

IRQ DISABLE
DECIMAL MODE

INDEX REG. SELECT
MEMORY SELECT

OVER FLOW
NEGATIVE

1 = TRUE
1 = RESULT ZERO
1 = DISABLE
1 = TRUE
1 =8BI,0= 'SBIT
1-S BI1;O= ISBIT
• =TRUE
1 = NEGATIVE

-. • - •
" • .. n

"- "

·.I~§~fil~~'V
...... 100 ••

•

-
• 0-.­
Jf _'" · ~
.~

n
,." .or

-. -. - .
" .
At u

''''_ It .. "
" "
"" "u

,e'~IIIAK'11:1

,.~ih~lIIil, -,;;,.
•

'1:1.111111811:8

a • • ~ ; I I ~ ; ~ ~

•

• 0
" _ 'III .­
• DI/ t
u
D_ n _ -­.M_

.. ...
• t locn'I

M ..
" ••
••
.n

" --..
M
•• .n

For notes. I'8fer to Packaging Information Metion.

... -

[PM-1M]THE WESTERN DESIGN CENTER. INC.
2 1 66 E~st: S,.o n r:load. M eSG. A,...zona S!!I2D3. 602·962·454!!1

Advance Information Data Sheet:
This is advanced information and
specifications are subject to change
without notice.

R S,_
Supply Voltage -Input Voltage VI.

Operating Temperature T.
Storage Temperature Ts ,

.

V

-0.3V to .. 7.0V

- 0.3V to Voo "0.3V

O°C to "70°C

-!i!i-C to " '50- C

This device contains input protection against damage due to high static
voltaget or efectric fields; however, prec.utions thould be ra~en to avoid
application of ...o.tag" htgher than the maximum rating.

Not":

1. Exceeding theM ratings may cause permanent damage. Functional
operation under these conditions is not implied.

DC Characterlilici (Ail Devlc.I): Voo = 5 OV + 5'110 VSS' OV TA = O·C to 070·C -

I P.r.rnet ... Symbol Min M .. Un"
! InP.YLHlgh Vo.!!!ge VIH i i RES. RD~Q. D.t • • SO. BE. 2.0 Veo • 0.3 V

i ~2 (IN). NMI. ABORT 0.7 Voo '100" 0.3 I V I
! In~ow Vott!Sle Vll I

RES. RD~Q. D SO. BE. -0.3 0.8
I

I V ,
~2 (IN) . NMI. ABORT - 0.3 0.2 V i

I InE.!:!..U-ea~aae Current ('v'IN '" a to Voo) liN i I
RES. NMI. IRO. SO. BE. ABORT (Internal Pull uP) -100 1

I
pA

I
ROY elnternal Ftullup. Open Drain) - 100 10 "A
~2 (IN) · 1 1 I ~A
Address. o.ta. R/ W (Off State. BE .. 0) - to 10 I ~A

Output Hign Voltage (10M =~~~ VOH I
SYNC. Data. Address, R/W. ML. VP. MIX, E. VDA. VPA. I
~t (OUT). ~2 (OUT) 0.7 Veo - V

Output low Voltage (101.. = U'TIA)_ VOt.
SYNC. Data. Address. R/W, ML. VP. MI X. E. VOA, VPA, ..
~t (OUT). ~2 (OUT) - 0.' V

Supply Current (No load) 100 • mA/MHz

Standb~rr~(!i2.load, Data Bua '" Vss or Voo ISB - I
RES. NMI. IRQ. SO. BE. ABORT. ~2 = VOO) ,0 " A

Capacitance (VtN = OV. TA Z 25° C, I z 2 MHZ)
logic, _2 (IN) C,. - 10 pF
Address. Data, R/W (Otf State) Crs - 15 pF

Pin Funcllon Table

PIn DHCfIpMan PIn -pilon
A()-AI5

Ad __
NC No Connection

ABORT Abort Input NMI Non-Maa~ab" Interrupt

BE But Enable RoV Ready

~2 (IN) Ph_ 2 In ClOCk RES R t

~1 (OUT) Phase 1 Out ClOCk RIW AMCIIWrite

~2 (OUT) Phue 2 Out ClOCk SO Set Overflow

DO-D7 D 8u. (G65$C802) SYNC Synchronize

DO/BAG-D7/eA7 Data Bu.. Multiplexed (G65SC816) VoA Valtd Data Addr ...

E emu~tion Select VP Vec;tor Pull

IRQ Interrupt Requat VPA Valid Program Address

ML Memory LOCk Voo Positi .. Power Supply (05 VoIb)

MiX Mode Se4ect (PM or Px) VSS Internal logic Ground

a

AC Characteristics (W65C816)' Voo - 5 OV +5'11 Vss' OV T. - O'C 10 +70'C - -

P.r.meter
Cycle Time

I Clock Pulse Width low

Clock Pulse Width High
- .

Fall Time, Rise Time --
AO-A 15 Hold Time

. AO-A 15 Setup Time

! 8AO-8Al Hold Time

I BAO- SA7 Setup 'lime
I Access Time I

I Read Data Hold Time I
r

Read Data Setup Time

Write Data Delay Time

Write Data Hold T ime

Processor Control Setup Time

Processor Control Hold Time

E.MX Output Hold Time

E.MX Output Setup Time

I Capacitive Load (Address. Data. and RIW)

BE to High Impedance Stale

BE to Valid Data

Timing Diagram (W65C816)

lP2 (IN)

,,-~ 1,," --=::;.:.r IfOWl

A/W, iiii., Vii
AO-A 15, yoA. YPA

ReA~ DATA,
BAo-BAT

WRITE DATA.
BAO·8AT

IRQ, NY" m,
ROY

IDH"-:::;:

1I»M_

. ~

~

.....
~
I--

ZMH& 4MHI 6MHI

Symbol MIn Mu Min M .. Min Mal

teye 500 DC 250 DC 167 DC

IPwl 0.240 10 0.120 10 0.050 10
lOW>< 240 ~ 120 ~ 80 ~

IF. tR - 10 - 10 - 5
IAH 10 - 10 - 10 -

tAOS - 100 - 75 - 60

Ie" 10 - 10 - 10 -
10 .. - 100 - 90 - 65
lAce 365 - 130 - 87 -

IOHA 10 - 10 - 10 -

leSA 40 - 30 - 20 -
tMDS - 100 - 70 - 60

tDHW 10 - 10 - 10 -
Ipcs 40 - 30 - 20 -
IPC" 10 - 10 - 10 -
IEH 10 - 10 - 5 -
IE. 50 - 50 - 25 -

CexT - 100 - 100 - 35

18HZ - 30 - 30 - 30

levo - 30 - 30 - 30

tCTC

.
j

-==:;::J ~

lAce:

8A~8AT

-- f--.OH
IAo0.847 W///~ WRnEDATA

- 1--

t
'''''"- ~

8MHI

Min M •• Unit

12~ DC nS
0.060 10 ~S

60 ~ nS
- 5 nS
10 - nS

- 40 nS
10 - nS
- 45 nS
70 - nS
10 - nS
15 - nS
- 40 nS
10 - nS
15 - nS
10 - nS
5 - nS

15 - nS
- 35 pF

- .30 nS
- .30 nS

I--- ••

"I

f.--- to."

AfADDAT"

f---
X C - 1--.", •

, r
III' "YI77777lIIIIIII/ !7lllll111111 IN XYlll11/////////////IIIIIII!7lJJ: .. --- -~ IE. ...

f--
1--- - f---

• u_

E '(1!////////////////////////l/;; r-

Timing Notes:
1. Voltage leyels are Vl < O.4V, VI-4 > 2.4V

2. Timing measurement points are O.BV and 2.0V

3

AC Characteristics (W65C802)- voo - 50V +5% Vss ~ OV TA ' O'C '0 '70'C -
, ,
, Per.met.r ,

Cycle Time

, Clock Pulse WIdth Low

Clock Pu lse W id th HIgh

i Fall Time, Rise T ime .-,
Delay Time, ¢2 (I N) '0 ¢, (OUT)

,
Delay Time. flJ2 (IN) to 412 (OUT) i

r Address Ho ld Time

r Address Setup Time

i Access Time

i Read Data Hold Time

i Read Data Setup Time

! Write Data Delay Time

, Wnte Oata Hold Time

r Processor Control Setup Time

! Processor Control Hold Time

i Capacitive Load (Address. Data. and A/ W)

Timing Diagram (W65C802)

¢2(IN)

¢'1 (OUT)

412 (OUT)

,,-

_---:::.: .L
1--- ... ' r ... ·
I

L..--IAH_

,""

R/W, SYNC,
... 0· ... 15 W/////~

REA.D DATA.

WRITE DATA

iRQ, NMI, RES,
ROY

,.""-

tDHW_

I 'AO. I

f--
"-

,

I

2 MHz

Symbol Min M ••

teye 500 DC
If>Wl 0.240 '0
tpWH 240 ~

IF. tR - '0

'o¢' - 20

10¢2 - 40

'AH '0 -

lAos - '00
lAce 365 -
tOHR '0 -
tOSR 40 -
,~os - '00
IOHW '0 -
tpes 40 -
!PCH '0 -

CexT - '00

'CYO

-- 1---"

'Ace

-
- ~IPC.

j

4MHz 6MHz I 8 MHz i , ,
Min Max Min M •• M'n I M •• I Unit I
250 DC '67 DC I '25 DC I oS

0 .120 '0 0.080 ,0 0.060 '0 I ~S ,
'20 ~ 80 ~ 60 ~ I oS
- '0 - i 5 - 5 i oS I
- 20 - 20 - 20 oS I
- 40 - 40 I - I 40 oS I ,
,0 - ,0 i - '0 - nS I
- 75 - 60 - 40 I oS i

'30 - 87 , - 70 - nS I
'0 - '0 - '0 - i oS I
30 - 20 - '5 - I oS !
- 70 - 60 - 40 I nS I

I

'0 - '0 - '0 i - i nS i
30 - 20 - '5 - I nS !
10 - '0 - '0 I - I nS i

- '00 - 35 - i 35 I pF I

f-,-IF

I:-
".H

!--, ...
REACDATA

f--,
F WRITEOAU

!PCH_ I--
};: k= - ~!PCH - f- 11'<'

Timing Notes:
, . Voltage levels are Vl < O.4V, VH > 2.4V
2. T iming measurement points are O.SV and 2.0V

4

- '.

Functional Description

The W65CB02 offers the design engineer the opportunity to utilize both
eXisting software programs and hardware configurations. while also
-::h,evlng the added advantages of increased register lengths and faster

'- ,(acullQn limes. The W65C802's "ease of use" desIgn and implementa­
tion features provide the designer with increased flexibility and reduced
Implementation cOSts . In the Emulation mode. the W65CB02 not only
offers software compatibility. but is also hardware (pin-to·pin) com­
patible With 6502 desIgns ... pillS it 'provides the advantages of 16-bit
Inlernal operation in 6502-compatible applications. The W65C802 is an
excellent direct replacement microprocessor for 6502 designs.

The W6SC816 prOvides the deSign engineer with upward mobility and
software compatibilitY.ln applications where a 16-bit system configura­
ti on IS deSired. The W65CS16's 16-bit hardware configuration, coupled
wllh current software allows a wide selection ot system applications. In
the Emulation mode. the W65C816 offers many advantages, inCluding
full software compatlblilly with 6502 coding. In addition, the W65CS16's
powerful Instruction set and addressing modes make it an e)(cellent
choice for new 16-bit designs.

I nternal organization of the WS5CS02 and W65CS16 can be divided into
two parts: 1) The Register Section. and 2) The Control Section. Instruc­
tiOns (or opcodes) obtained from program memory are e)(ecuted by
Implemenling a senes of data transfers within the Register Section.
Signals that cause data transfers to be executed are generated within the
Control Section. Both the W65CS02 and the W65CS1S have a 1S-bit
Internal arChitecture with an S-bit external data bus.

Instrucllon Register and Decode
An opcode enters the processor on the Data Bus, and is latched into the
Inslruction Register during the instruction fetch cycle. This instruction
is then decoded. along with liming and interrupt Signals, to generale the
vatlous Instruction Register control SignalS.

Timing Control Unit (TCU)
The Timing Control Unit keeps track of each instruction cyeteas it is ex­
ecuted. The TCU is seilo zero each time an instruction fetch is e)(ecuted,
and is advanced at Ihe beginning of each cycle for as many cycles as IS
1Quired to complete the instruction. Each data transfer between regis­

. ars depends upon decoding the contents 01 both the Instruction Regis­
ter and the Timing Control Unit.

Arithmetic and Logic Unit (ALU)
All anlhmetlc and logiC operations take place within the 16-bit AlU. In
addition to data operations, the AlU also calculates the effective address
for relative and indexed addressing modes. The result 01 a data operation
IS stored In either memory or an internal register. Carry, Negative, Over­
flow and Zero flags may be updated following the AlU data operation.

Internal Registers (Rerer to Programming Model)

Accumulators (A, B, C)
The Accumulator is a general purpose register which stores one of the
operands. or the result of most arithmetic and logical operations. In the
Native mode (E=O), when the Accumulator Select 8it (M) equals zero,
the Accumulator is established as 16 bits wide (A + B = C). When the
Accumulator Select Bit (M) equals one. the Accumulator is S bits wide
(A). In this case. the upper S bits (8) may be used for temporary storage
In conjunction WIth the Exchange Accumulator (XBA) instruction.

Oata Bank Regl.ter (DBR)
During modes of operation, the B-bit Data 8ank Register holds the de­
fault bank address for memory transfers. The 24·bit address is composed
of the 16-blt instruction effective address and the 8-bit Data Bank ad·

5

dress. The register value is multiplexed with the dala value and is preSent
on the Data/Address lines during the first half 01 a data transfer memory
cycle lor the W65CS16. The Data Bank Register is initialized to zero dur­
ing Reset.

Direct (0)
The 1S-bit Direct Register provides an address offset for aU instructions
using direct addressing. The effective bank zero address is formed by
adding the B-bit instruction operand address to the Direct Register. The
Direct Register is inilialized to zero during Reset.

Ind •• (X and V)
There are two Index Registers (X and Y) which may be used as general
purpose registers or to provide an index value for calculation of the ef·
fective address. When executing an instruction with indexed addressing,
the microprocessor fetches the opcode and the base address. and then
modifies the address by adding the Index Register contents to the ad­
dress prior to performing the deSired operation. Pre-inde)(ing or post­
indexing of indirect addresses may be selected. In the Native mode (E=O),
both Index Registers are 16 bits wide (providing the Index Select Bit (X)
equals zero) . If the Index Select Bit (X) equals one, both registers will be
S bits wide, and the high byte is forced to zero.

Procellor StatUI (P)
The S-bit Processor Status Register contains status flags and modeselect
bits. The Carry (C) , Negative (N), Overflow (V), andZero(Z}status flags
serve to report the status of most AlU operations. These status flags are
tested by use of Conditional Branch instructions. The Decimal (D), IRQ
Disable (I), Memory/Accumulator (M), and Index (X) bits are used as
mode select flags. These tlags are set by the program to Change micro-
processor operations. .

Ttle Emulation (E) select and the Break (B) flags are accessible only
ttlrough the Processor Status Register. The Emulation mode select flag
is selected by the ExchangeCarry and Emulation 8its (XCS) instruction.
Table 1, W65C802 and W65C816 Mode Comparison, il'lustrates the
features of the Native (E;O) and Emulation (E:l) modes. The M and X
flags are always equal to one in the Emulation mode. When an Interrupt
occurs during the Emulation mode, the Break flag is written to stack
memory as bit 4 of ttle Processor Status Register .

Program Bank Regllter (PBR)
The 6-bit Program 8ank Register holds the bank address 'or all instruc­
tion fetches. The 24-bit address consists of the 16-bit instruction effective
address and the S·bit Program Bank address. The register value is multi­
plexed with the data value and presented on the Data/Address lines during
the first half of a program memory read cycle. The Program Bank Regis.­
ter is initialized to zero during Reset. The PHK instruction pUShes the
PBR register onto the Stack.

Program Counter (PC)
The 16-bit Program Counter Register provides the addresses wtlich are
used to step the microprocessor through sequential program instruc­
tions. The regiseer is incremented each time an instruction or operand is
fetched from program memory.

Stack Pointer (S)
The Stack Pointer is a 16-bit register which is used to indicate the next
available location in the stack memory area, It serves as the effective ad­
dress in stack addressing modes as well as subroutine and interrupt pro­
cessing. The Stack Pointer allows simple implementation of nested sub­
routines and multiple·level interrupts. During the Emulation mode. the
Stack POinter high-order byte (SH) is always equal to one. The bank ad·
dress for all stack operations is Bank zero.

i
~
• w
~

AO • .,(; i

BIE (III,

.... " ¢

BE (116)

Q

•

.-~ 'NO" X ""J/Ll'- ,-
I v------1 . (II BITS) J'.rv

A] INDlElCY ~ ,".'fS)
~

STACK POINTER~ ~
(5) (16 BITS) ii

!

ALU
11' 8"5)

~~
VL-~fl'-,'­
~;v

~===:;~~

~ <=> ~:.~~~:: ~ ~ fl'-,
;::::::=~~ ,);;

ACCUMUU,TOA
(e) (11I1TS!
(A) (I BITS)
ta, II BITS)

';'V '-. ;
,,;;;

,,---..,/ ~
: ¢=[~====~ ~ : ~
~ PROO. COUNTER Q

i {PCI(Mi8ITSj 'r---,/ ~
A. ~ :'~

DIAECT (D. ~
'"r-~~(1~·:·:'f~"=~, A"~-~:,,/l

rn
ROG. BAHK (paA) ,,----r-..,.

L::=:)':":f::S:)=~
r ; ~

DATA BAHK (DB") /1.---'''
,'8ITS)

LLJJ==~/I~ __ ·"",~

-

A

f4-- A.OAT (Ill,

.NTIAAUPT
LOGIC

PAOCESSOR

w
Q

o
U

~;
Z<
2~

~i

-,~

r---- ~2 (IN)

CLOCK
E~:T"'oR --- <;!l1(OUT) (1021

___ r,e2 (OUT) (102)

~ t\.r---,
!: ~ _A/Iii"

_ ~.YHC (10:11

___ IIP"'(1111

SYSTfM r--- \tOA(III'

CONT.

"I V STATUS (PI ~ L....-
(I BITS) 1-

/lA,----,1 L DATA
LATCH!

"PAEOlcc!'e: - i.'------' V

r-.... ML('II)

~ VP('Ui)

~1E('I'J

~ M, lftl"1

PAII!:DIECO~

• e------..L..~
'NSTRUCTION AEDISTIER

(Ii BIn)

v I •
~ 102

BIE II")

Figur. 1. Block DllIgr.m - Internel Archltectur.

Slgn.1 Description
The following Signal Description appHes to both the W65C802 and the
W6SC816 except as otherwise noted.

Abort (ABORT) WI5C818
The Abort input is used to abort instructions (usually due to an Address
Bus condit ion). A negative transition will inhibit modification of any in­
ternal register during the current instruction. Upon completion of this
instruction, an interrupt sequence is initiated. The location at the aborted
opcode is stored as the return address in stack memory. The Abort vector
address is OOFFFB.9 «Emulation mode) or OOFFE8.9 (Native mode). Note
that ABORT is a pulse-sensitive signal : i.e., an abort will occur whenever
there is a negative pulse (or level) on the ABORT pin during a rb2 clock.

Add,e •• Buo (AO-A 15)
These sixteen output lines 'orm the Address Bus for memory and 110
eXChange on the Data Sus. When using the W65Ce1e, the address lines
may be set to the high impedance state by the Bus Enable (BE) signal.

Bu. Enable (BE)-W65C816
The Bus Enable input signal allows external control of the Address and
Data Butters, as well as the R/W signal. With Bus Enable high. the R/ W
and Address Buffers at8 active. The Data/Address Buffers are active
during the first half ot every cycle and the second half of a write cyCle.
When BE is low, these buffers are disabled. Bus Enable is an asynchro­
nous signal.

Data BUI (DO-D7)-W85C802
The eight Data Bus lines provide an 8-bit bidirectional Data Bus for use
during data eXChanges between the microprocessor and external mem­
ory or peripherals. Two memory cycles are required for the transft·~ of
16-bit values.

Data/Add,nl BUI (DO/BAO-D7/BA7)-W65C816
Theseelghtlines multiplex address bits BAO-BAr With the data value. The

address IS present during the first half of a memory cyCle. and the data
value is read or written during the second half of the memory cycle. Two
memory cycles are required to transfer 16-bit values. These lines may be
set to Ihe high Impedance state by the Bus Enable (BE) signal.

Emulation Status (E)-WiSCS1!
The Emulation Status output rerlects the state of the Emulation (E) mode
Ilag In the Processor Status (P) Register. This Signal may be thought of
as an opcode extenSion and used for-memory and system management.

Interrupt Reque.t (IRQ) -
The Interrupt Request input signal is used to request that an interrupt
sequence be initiated. When the IRQ Disable (I) lIag is cleared, a low in­
put logiC level in itiates an interrupt sequence atter the current instruc­
lion IS completed . Tl;1e Wait tor Interrupt (WAI) instruction may be ex­
ecuted to ensure the Interrupt will be recognized immediately. The Inter­
rupt Request vector address isOOFFFE,F (Emulation mode) orOOFFEE.F
(Native mode). Since IRQ is a level-sensitive input. an Interrupt will
occur if the Interrupt source was not cleared since the last interrupt.
AlSO. no interrupt will OCCur il the interrupt source is cleared prior to
Interrupt recognition .

Memory Lock (ML)-W65C816
The Memory Lock output may be used to ensure the integrity of Read­
Modify-Write instructions in a multiprocessor syStem. Memory Lock
Indicates the need to defer arbitration of the next bus cycle. Memory
Lock is low during the last three or five cycles of ASL. DEC, INC. LSR,
ROL, ROR, TRB. and TSB memory referencing instructions. depending
on the state of the M flag.

M.moryllndel Select Statu. (M/X)-W65C816
Th iS multiplexed output rellects the state of the Accumulator (M) and
Index (X) select flags (bits 5 and 4 of the Processor Status (P) Register.
Flag M is valid during the Phase 2 clOCk negative transition and Flag X is
valid dunng the Phase 2 clock pOSitive transition. These bits may be
thought of as opcode extensions and may be used for memory and
system management.

Non-M bl. Intetrupt (NMI)
A negative transition on the NMI input initiates an interrupt sequence. A
high·ro·low transition initiates an interrupt sequence after the current
Instruct ion is completed. The Wait for Interrupt (WAI) instruction may be
executed to ensure that the interrupt Will be recognized immediately. The
Non-Maskable Interrupt vector address is OOFFFA.B (Emulation mode)
or OOFFEA.B (Native mode). Since NMI is an edge-sensitive input. an
interrupt will occur jf there is a negative transition while servicing a pre­
VIOUS interrupt. Also, no interrupt will occur if NMI remains low.

Ph ••• 1 Out (1/>1 (OUT»-W65C802
ThiS inverted clock output signal prov ides timing for external read and
write operations. Executing the Stop (ST?) instruclion holds this Clock
in the low state.

Ph ••• 2 In (1/>2 (IN»
This is the system c lock inpulto the microprocessor internal clock gen·
erator (eQuivalent to¢O (IN) on the6502). During the low power Standby
Mode, ¢2 (IN) should be held in the high state to preserve the contents
of internal registers. .

Ph ... 2 Qut (1/>2 (OUT»-W85C802
This clock output signal provides timing tor external read and write op­
eralions. Addresses are valid (after the Address Setup Time (TAOS)) fol·
lowing the negative transition of Phase 2 Out. Executing the Stop (STP)
instructIon holds Phase 2 Out in the High state.

R.ad/Wrlt. iRlW)
When the R/ W output signal is in the high state. the microprocessor is
reading data from memory or 1/0. When in the low state. the Data Bus
contains valid data from the microprocessor which is to be stored at the
addressed memory location . When using the W65C816. the RIW signal
may be set to the high Impedance state by Bus Enable (BE).

R.ady (RDY)
This bidirect ional signal indicates that a Wait for Interrupt (WAI) instruc­
tion has been executed allowing the user to halt operation of the micro·

7

processor. A low input logic Jevel will halt the microprocessor in its cur.
rent state (note that when in the Emulation mode. the W65C802 stops
only during a read cycle). Returning ROY to the active high state allows
the microprocessor to continue following the nelltl Phase 2 In ClOCk
negative transition, The ROY signal is internally pulled low fOllowing the
execution Of a Wait for Interrupt (WAH instruct.!2.!1. and then returned to
the high state when a RES. ABORT, NMI . or IRQ external interrupt is
provided. This 'eature may be used to eliminate interrupt latency by
placin~e WAllnSlruction at the beginning of the IRQ serviCing routine.
If the IRQ Disable tlaghas been set. the next instruction will beexecuted
when the IRQ occurs. The processor will not stop after a WAI instruction
if ROY has been 'orced to a high state. The Stop (STP) instruction has
no effect on ROY.

R ... t (RES)
The Reset input is used to initialize the microprocessor and start pro­
gram execution. The Reset input buffer has hysteresis such that a simple
R-C timing circuit may be used with the internal putt up deVice. The RES
signal must be held low for at least two clock CYCles after Voo reaches
operating voltage. Ready (ROY) has no effect while RES is being held low.
During th Is Reset conditioning periOd. the following processor initializa­
tion takes place:

Regl.t.,.
D 0000 SH 01
DBR 00 XH 00
PBR 00 YH 00

N V M X D Z C/E

P =1 • • 0 • "1' /'1 * = Not Initialized
------~~----~

STP and WAI instructions are cleared.

E
M/ X
Riiii 1
SYNC = 0

Slgn.l.
VDA 0
ilP 1
VPA = 0

When Reset is brought high. an interrupt sequence is initiated:
• R/W remains in the high state during the stack address cycles.
• The Reset vector address is OOFFFC.O.

S.t Oyerflow (SO)-W65CS02
A negative transition on this input sets the OverflOW (V) lIag, bit6 of the
Processor Status (P) Register.

Synchronize (SYNC)-W6SC802
The SYNC output is provided to identify those cycles during which the
microprocessor is fetching an opcode. The SYNC signal is high dunng
an opcode fetch cycle, and when combined with Ready (ROY), can be
used for single instruction execution.

Valid Data Addr ... (VDA) and
Valid Program Add (VPA)-W8SC818
These two output signals indicate valid memory addresses when high
(logic 1). and must be used for memory or I/O address Quali'icatlon.

VDA
o

o

VPA
o

o

VDD and Vss

Internal Operation-Address and Data Bus
available. The Address Bus may be invalid.
Valid program address-may be used for program
cache control.
Valid data address-may be used tor data cache
contrOl.
Opcode tetch-may be used for program cache
control and single step control .

Voo is the positive supply voltage and Vss is system logic ground. Pin 21
of the two Vss pins on the W65C802 should be used for system ground.

Vector Pull (VP)-W65C818
The Vector Pull output indicalesJmtt a vector location is being addressed
during an interrupt sequence. VP is low during the last two Interrupt
sequence c.l£!es. during which time the processor reads the interrupt
vector. The VPsignal may be used to select and prioritize interrupts from
several sources by mOdifying the vector addresses.

Table 1. W65C816 Compatibility Issues

I W65ca 16/80' we5CO. i NMOS 650' I

! 1 S (Stack) Always page 1 (E;:; 1).8 bits
16 bits when (E ::: 0) .

Always pag.e 1, 8 'Cuts
I Always page 1, 8 bits i

~

2 X (X Index Register) :lRdexed page zero always in Always page 0 I Always page 0

i . " page 0 (E " 1) ,
I

I

Cross page (E ;:: 0). I ,
3 Y tV Index Register) Indexed page zero always in Always page a ! Always page 0 I I pageO(E ~ 1). I Cross page (E " 0) . I

• A (Accumulator) 8 bils (M = 1). 16 bits (M - 0) 6 bits 8 bils I

5. P (Flag Reglstor) N. V, and Z flags valid in N. V, and Z flags valid in N, V, and Z flags invalid I I decimal mode. decimal mode. jn decimal mode. I
o :. a after reset or interrupt. o '" 0 after reset and o = unknown after reset !

interrupt ! o nol modified after Interrupt. I

I G. T im ing

I
i A. ASS. X ASl. lSR, ROL, 7 cycles 6 cycles 7 cycles I ,
i RQR With No Page Crossing

i , B. Jump Indirect

I I
I Operand'" XXFF 5 cycles 6 cycles 5 cycles and invalid page

i
,

I

I
crossing I

,

I
I

I C. Branch Across Page 4 cyCles IE;::: 1, 4 cycles 4 cycles i
I

I j 3 cycles (E =. 0)

I D. Decimal Mode No additional cycle Add 1 cycle No additional cyCle ,
I 7 BRK Vector OOFFFE.F(~I)BR~ FFFE,F ~K bit = a on slack F~F J!B..K bit = a on stack !
I I

on stack iIIAQ. NMI. ABORT. ifIRO.NMI. if IRO.NMI. I
I OOFFEG. 7 (E ~ 0) X ~ X on I

: Stack always.
I

I

! 8. Interrupt or Break PBR not pushed (E: 1) Not available Not available
I Bank Address ATI PBR not pulled (E = 1)
I

I PBR pushed IE ~ 0)

I RTI peR pulled (E ~ 0)

I 9. Memory Lock (ML) ML :: 0 during Read. Modify and ML = 0 during Modify and Write. Not available I
I I Write cycles. I

I 10. Indexed Across Page Extra read of invalid address. Extra read of last instruction

I
Extra read of invalid address. !

i Boundary (d).y : a.x; a.y (Nole I) fetch. I

I 11 ROY Pulled DUring Write Ignored (E:: 1) for W65C802 only. Processor stops Ignored I
Cycle. Processor stops (E:: 0).

I

I i

! 12. WAI and STP Instructions. Available Available I Not available

I 13. Unused OP Codes One reserved OP Code specified No operation
I

Unknown and some '"hang I
I as WDM will be used in future up" processor. I I

I
systems. The W65Ce16 performs I I
a no~operation.

, I. Bank Address Handling PBA = 00 after reset or interrupts. Not available Not available ;

15. R/ W Durrng Aead-MOdify~ E = I, R/W = a dUring Modify and R/ W = 0 only during Write cycle

I
A/W = 0 during Modify and I Write Instructions Write cysLes. Write cycles.

I
E;::: 0, R/ W = 0 only during I
Write cycle. i J

16. Pin 7 WG5C802 ~ SYNC. SYNC SYNC I
i

i W65C816 ~ VPA J
17 COP Instruction Available Not available Not available I

! Signatures OO-7F user defined

I I ,
Signatures 8O~FF reserved i

Note 1. See Caveat section tor additional information.

8

W65C802 and W65C816
Microprocessor Addressing Modes
The W65C816 is capable of directly addressing 16 MBytes of memory.
ThIs address space has special significance within certain addressing
modes. as tollows:

Relet and Interrupt Vector. .
The Rese! and Interrupt vectors use tt:te majority of the fixed addresses
between OOFFEO and OOFFFF. - . . . -

Slack
The Stack may use memory from 000000 to OOFFFF. The effective ad·
dress of Stack and Stack Relarive addressing mode::. ~ ... ill always be within
1t'lIS range

Direct
The Direct addressing modes are usually used toslore memory registers
and pointers. The erteet;ve address generated by Direct. Oirect,X and
Olfect,Y addressing modes is always in Bank 0 (OOOOOO-oDFFFF).

Program Addr ... Space
The Program Bank reg ister is not affected by the Rela1ive, Relative long,
Absolute. Absolute Indirect. and Absolute Indexed Indirect addressing
modes or by incrementing the Program Counter from FFFF. The only
Instructions that affect the Program Bank register are! RTf , RTl, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al­
though code segments may not span bank boundaries.

Data Addresl Space
The data address space is contiguous throughout the 16 MByie address
space. Words, arrays, records, or any data structures may span 64 KByie
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bil effective addresses:
• Direct Indexed Indirect (d,x)
• Direct Indirect Indexed (d),y
• Direct Indirect (d)
• Direct Indirect long (d]
• Direct Indirect long Indexed (d],y
• Absolute a
• Absolute a,x
• Absolute a,y
• Absolute Long al
• Absolute Long Indexed al,x
• Stack Relative Indirect Indexed (d,S),y

The following addressing mOde descriptions provide additional detail as
to how eUective addresses are calculated.

Twenty-lour addressing modes are available for use with the W65C802
and W65C816 microprocessors. The "Iong" addressing modes may be
used With the W65C802; however. the high byte of the address is not
available to the hardware. Detailed descriptions 01 the 24 addressing
modes are as follows:

1. Immediate Addressing-#
Tne operand IS the second byte (Second and third bytes when in the
16-blt made) of the Instruction.

2. Absolute-a
With Absolute addressing the second and third bytes olthe instruc­
t.on form the low-order 16 bits of the effective address. The Data
Bank Reglslereontains the hjgh~rder 8 bits of the operand address.

In.truclion: ope Ode addrl addrh
~~~J-~~~~~~ 

Opeflnd 
Address: DBA 

3. Absolute Long-al 

addrh addrl 

The second. third, and fourth byte of the instruction 'orm the 24-bil 
effective address. 

Instruction: L .o"p_C_O_d_O_-'---_._d_d_'_'_-'-_a_d_d_':-h_-'-_b_a_d_d_r_-" 
")pe!and 
Address: 

4.0irect-d 

baddr addrh addrl 

The second byte of the instruction is added to the Direct Register 
(0) to form the effective address. An additional cycle is required 

when the Direct Register is nOI page aligned (DL not equal 0) The 
Bank register is always O. 

Inl.ruelion: I opcode ortset 

Direct Register 

• offset 

Operand 
Addr ... : 00 effective address 

5. Accumulator-A 
This form of addressing always uses a Single byte instruction. The 
operand is the Accumulator. 

6. ImpUad-1 
Implied addressing uses a single byte instruction. The operand is 
implicitly defined by the instruction. 

7. Direct Indirect Indexed-(d),y 
This address mode is often referred to as Indirect,Y. The second 
byte of the instruction is added to the Direct Register (D) . The IS-bit 
contents of this memory location is then combined With the Data 
Bank register 10 form a 24-bit base address. The Y Index Register is 
added to the base address to form the effective address. 

I.tlrucllon: 1 opeode otlset , 
Direct Register /. 

• offset 1 

00 direct address i 
then: 

1 00 (direct address) 

·1 DBA 

1 base address 

Y Reg 

Operand 
Addr ... : effective address 

8. Direct Indirect Long Indexed-[dj,y 
With this addressing mode, the 24-bil base address IS pointed to by 
the Sum of the second byte of the instruction and the Direc:t 
Register. The effective address is this 24-bit base address piuS the Y 
I ndex Register. 

'n'lructlon: opcode offset 
L..:'::":":~J--:':"':':':"'---' 

then: 

Op .... nd 
Add,..,: 

00 

• 

• 

Direct Register 

offset 

direct address 

(direct address) 

Y Reg 

eHective address 

9. Direct Indexed Indlrect-(d,x) 
This address mode is often referred to as Indirect,X. The second 
byte of the instruction is added to the sum of the Direct Register 
and the X Index Register. The result points to the low~rder 16 bits 
of the effective address. The Data Bank Register contains the high­
order 8 bits of the effective address. 



Inalructlon: I opcode offset 

Direct Register I 
• offset I 

1 d~rect address I 
· 1 X Reg I 

00 1 address I 
then: 

1 00 (address) 

oBR I 
Operlnd 
Addr.a.: effective address 

10. Direct Indexed With X-d,x 
The second byte of the instruction is added to the sum 01 the Direct 
Register and the X Index Register to form the 16-bit effective 
address. The operand is always in Bank O. 

In •• ructlon: LI--"O",p"c"ad=e_ L --"o"".:s.:e,,t--, 

Direct Register 

.. offset 

I direct address 

.1 X Reg 

00 effective address 

11. Direct Indexed With Y-d,Y 
The second eyte olthe instruction is added to the sum 01 the Direct 
Register and the v Index Register to form the H, .. bit effective 
aadress. The operand is always in Bank O. 

Inllructlon: ILo.:p::..c.:ed=e'-.L..~o',,'s:.e.:t'-J 

Operand 
Addt ... : 00 

Direct Register 

• offset 

I direct address 

.. I V Reg 

effective address 

12. Absolute Indexed With X-a,x 
The second and third bytes of the instruction are added to the 
X Index Register to form the low-order 16 eUs 01 the effective ad­
dress. The Data Sank Register contains the higtrorder8 bits of the 
effect ive address. 

Ina.ructlon: L-=O.:P-=C-=O-=d-=e_.LI __ a-=d"d_'_' _.L_a_d_d_'h_--, 

Operlnd 
Add .... : 

oBR 1 add'h 

• 1 

effective address 

addri 

X Reg 

13. Abeolute Long Indexed With X-al,lI 
The second, thl d aMl~ fourth eytes of the instruction form a 24-bi. 
base address. Theeffective address is the sum ollhis 24-bil addresa 
and the X I ndex Register. 

10 

Inl.ructlon: [ opcode 1 addrl addrh baddr 

baddr 1 addrh addrl 

· 1 X Reg 

Operlnd 
Ad_: effective address 

14. Absolute Indexed With Y-a,y 
The second and third bytes 01 the instruction are added to the 
Y Index Register to form the low-order 16 bits of the effective ad­
dress. The Data Bank Register contains the high--order 8 bits of the 
eHective address. 

In.lnIctlon: I opcode I addrl addrh 

DBA I addrh addrl 

·1 Y Reg 

Ope'_ 
AddtIOI: eHective address 

15. Program Counter Relatlye-r 
This address mOde, referred to as Relative Addressing, is uS;8d only 
with the Branch instructions, It the condition being tested IS met, 
the second byte 0' the instruction is added lathe Program Counter, 
which has been updated to paint to the opcode of the next in8truc· 
tion. The offset is a signed 8-bit quantity in the range from -128 to 
127. The Program Bank Register is not affected. 

18. Program Counter RelaOYe Long-rl 
This address mode. reterred to as Relative Long AddresSing, is used 
only w\Ch the Unconditional Branch Long instruction (BRL) and the 
Push Effective Relative instruction (PER). The second and third 
bytes of the instruction are added to the Program Counter, which 
has been Updated to point to the opcode of the next instru·ctton. With 
the branch instruchon, the Program Counter is loaded with the 
result. With the Push Effective Relative instruction, the result IS 
stored on the stack. Theotfset IS asigned 16-bit quantity in the range 
tram -32768 to 32767. The Program Bank Register is not affected. 

17. At.olute Indlrect-Ca) 
The second and third bytes 01 the instruction form an address to a 
pointer in Bank O. The Program Counter is loaded with the 'irst and 
second bytes althis pOinter. With the Jump long (JMl) instruction, 
the Program Sank Register is loaded with the third byte of the 
pointer, 

InltrucUon: I opcede add" 

Indirect Address :. 

New PC :. (indirect address) 
with JMl: 

00 

New PC .,.. (indirect address) 
New PBR :. (indirect address "2) 

18. Direct Indirect-Cd) 

addrh 

addrh addrl 

The second byte at the instruction is added to the Direct Register to 
form a pointer to the low-order 16 bits of the effective address. The 
Data Bank Register contains the high·order a bits of the effective 
address. 

Inltructlon: 1 apcode offset 

Direct Register 

• otfset 

1 00 airect address 

then: 

1 00 (direct address) 

· 1 oBR 

Operlnd 
1 Addles.: effective address 

~. 



19. Direct Indirect Long-[d] 
Thesecond byte 01 the instruction is added to the Direct Register to 
form a pointer to the 24-bil effective address. 

Inltruc'lon: I opcode offset 
'------'-'-'--'-"-'----L--'-'''''-'-----' 

+ . 

00 
Ihen: 

~irecl Register 

cHset 

direct add,ess 

Oper.nd 
Add .... : (direct address) 

20. Ab.olute Indexed Indlrect-(a,x) 
The second and third bytes of the instruction are added to the 
X Index Register tcform a 16-bit pointer in BankO. Thecante"ts at 
this pointer are loaded in the Program Counter. The Program Sank 
Register is not changed. 

In.eructlon: 1,--,-o,-Pc_o,-d_e_-,--_ a_d_d_'I_--,--_a_d_d_'_h---, 

addrh addrt 

XAeg 

PBA address 

then: 

21 . Slack-. 
Slack addreuing refers to all instructions 1hat push or PUll data 
trom the stack, such as PUSh, Pull, Jumpto Subroutine. Return from 
Subroutine. Interrupts, and Return from Interrupt. The bank ad­
dress is a/ways O. Interrupt Vectors are always fetched from Bank O. 

22. Stack Relatlve-d,. 
The low-order 16 bits of the effective address is tormed from the 
sum of the second byte 01 Ihe instruction and the Stack Pointer. The 
high-order8 bits of the effective addr,," is always zero. The relative 
offset is an unsigned 8-bit quantity in the range of 0 to 255. 

In,'tuctlon: 1 opcode offset 

Stack Painter 

+ offset 

Op«and 
Addr..e; 00 effective address 

11 

23. Slack Relative Indirect Indexed-(d.a).y 
The second byte of the instruction is added to the Stack Pointer to 
torm a pOinter to the low-order 1S-bit base address in Bank O. The 
Data Bank Register contains the high-order 8 bits of the base ad­
drns. The effective address is the sum 0' the 24-bit base address 
and Ihe Y Intlex Register. 

InOlNctIon: LI -,-o"-pc,,,od:..:..:e_L-...:o...:ff..:S.:.o,,--..J 

Stack Pointer 

+ offset 

00 S + offset 

Ihen: 
5 + offset 

+1 DBA 

I-------b-.-.. --add---, .. --.----------

• YAeg 

effective address 

24. Block Source Bank, Destination Bank-xyc 
This addressing mode is used by the BloCk Move instrucllons. The 
second byte of the instruction.contalns the high-order 8 bits of Ihe 
destination address. The V index Register contains the low-order 16 
bits 0' the destination address. The third byte of the instruction 
contains the high-order 8 bits at the source address, The X Index 
Aegister contains the low-order 16 b/1s of the source' address. The 
C Accumurator contains one less than the number of by188 to move. 
The second byte of the block move instructions ie also loaded into 
the Oata Bank Register. . 

Inltruellon: I opcode dstbnk srcbnk 

Source 
A_: 
D .... nllllon 
Addreec 

dstbnk OBA 

srcbnk 

DBA 

X Aeg 

Y Reg 

Increment (MVN) or decrement (MVP) X and V. 
Decrement C (if greater than zero), then PC+3 - PC. 



ADC 
AND 
ASL 
BCC 
BCS 
BEQ 
BIT 
BMI 
8NE 
BPL 
BRA 
BRK 
8RL 
BVC 
BVS 
CLC 
CLD 
CLI 
CLV 
CMP 
COP 
CPX 
CPY 
DEC 
DEX 
DEY 
EOR 
INC 
INX 
INY 
JML 
JMP 
JSL 
JSR 
LOA 
LOX 
LOY 
LSR 
MVN 
MVP 
NOP 
ORA 
PEA 

PEl 

PER 

Table 2. W65C802 and W65CI11 InIVuction .. t-Alphabetlcal ~e 

Add Memory to Accumulator with Carry 
"AND" Memory with Accumulator 
Shilt One Bil LeU, Memo'ry or Accumulator 
Branch on Carry CleaqPc :: 0) 
Branch on Carry Set (Pc :: 1) 
Branch if Equal (PZ = 1) 
Bit Test 
Branch if Result Minus (PN = 1) 
Branch If Not Equal (pz = 0) 
Branch if Result Plus (PN = 0) 
Branch Always 
Force Break 
Branch Always Long 
Branch on Overflow Clear (Pv = 0) 
Branch on Overflow Set (Pv = 1) 
Clear Carry Flag 
Clear Decimal Mode 
Clear Interrupt Disable Bit 
Clear Overflow Flag 
Compare Memory and Accumulator 
Coprocessor 
Compare Memory and Index X 
Compare Memory and Index Y 
Decrement Memory or Accumulator by One 
Decrement Index X by One 
Decrement Index Y by One 
"Exclus ive OR" Memory with Accumulator 
Increment Memory or Accumulator by One 
Increment Index X by One 
Increment Index Y by One 
Jump Long 
Jump to New Location 
Jump Subroutine Long 
Jump to New Location Saving Return Address 
Load Accumulator with Memory 
Load Index X:wlth Memory 
Load Index Y with Memory 
Shift One Bit Right (Memory or Accumulator) 
Block Move Negative 
Block Move Positive 
No Operation 
"OR" Memory with Accumulator 
Push Effective Absolute Addr8Sson Stack (or Push Immediate 
Data on Stack) 
Push Effective Indirect Address on Stack (or Push Direct 
Data on Stack) 
Push Effective Program Counter Relative Address on Stack 

PH" 
PHB 
PHD 
PHK 
PHP 
PHX 
PHY 
PLA 
PLB 
PLD 
PLP 
~LX 
PLY 
REP 
ROL 
ROR 
RTI 
RTL 
RTS 
S8C 
SEC 
SED 
SEI 
SEP 
STA 
STP 
STX 
STY 
STZ 
T"X 
TAY 
TCO 
TCS 
TOC 
TRB 
TS8 
TSC 
TSX 
TXA 
TXS 
TXY 
TYA 
TYX 
WAf 
WDM 
XBA 
XCE 

Push Accumulator on Stack 
Push Data Sank Reglsler on Stack 
Push Direct Register on Stack 
Push Program Bank R~ister on Stack 
Push Processor Status on Stack 
Push Index X on Stack 
Push Index Y on Stack 
Pull Accumulator from StaCk 
Pull Data Bank Reg ister tram Stack 
Pull Direct Register from Stack 
Pull Processor Stah~' from Stack 
Pull Index X from Stack 
Pull Index Y form Stack 
Reset Status Bits 
Rotate One i i t Left (Memory Or Accumulator) 
Rotate One Bit Riwht (Memory or AccumulatOr) 
Return from Interrupt 
Return from Subroutine Long 
Return from Subroutine 
Subtract Memory from Accumulator With Borrow 
Set Carry Flag 
Set Oecirml Mode 
Sellnlerrupt Oisable Status 
Set Processor Status Bite 
Store Accumulator in Memory 
Stop the Clock 
Store Index X in Memory 
Store Index Y in ~ory 
Stora Zero in Memory 
Transfer AccumlHtor to Index X 
Transfer Accumul.a'or to Index Y 
Transfer C Accumulator to Direct Register 
Transfer C Accumulator to Stack POinter Register 
Transfer Direct Aegister to C Accumulator 
Test and Reset Bit 
Test and Set liit 
Transfer Stack Pointer Register to C Accumulator 
Transfer Stack Pointer ~ister to Index X 
Transfer Index X to Accumulator 
Trans'er Index X to Stack Pointer Register 
Transfer Index X to Index Y 
Transfer Index Y to Accumulator 
Transfer Index Y to Index X 
Wait for Interrupt 
Reserved tor Future Use 
Exchange B and A Accumulator 
Exchange Carry and Emulation Bits 

For animate mn.mon~., Me Table 7. 

E ::: 1 
OOFFFE.F -IRQrBRK 
OOFFFC.D-RESET 
OOFFFA.B -NMI 
OOFFFB.9 -ABORT 
OOFFF6.7 -(Reserved) 
OOFFF4.5 - COP 

Table 3. Vector Location. 

HardwarerSoltware 
Hardware 
Hardware 
Hardware 

Software 

E " O 
OOFFEE.F -IRO 
QOFFEC.D-~."'.d) 
QQFFEA.B-NMI 
OOFFE8.9 -~ 
OOFFE6.7 -BRK 
OOFFE4.5 -COP 

The VP output is low during the two cycles used for vector location access. 
When an interrupi is executed. 0 = a and I == 1 10 Status Register P. 

12 

Hardware 

Hardware 
Hardware 
Software 
Sottware 



.. 
s 
0 

0 1 2 

0 
BRK 5 ORA (d.lI) COP-s· 

, 2 8 2 6 2*. 

! 1 
BPL r ORA (dJ .y ORA (d) 

. ' 2 2 2 5 2'5 

2 JSR a AND (r;1 - ~1 JSI ., 3 6 2 6 • • 
3 

8MI r ANO (d) .y AND (d) 
2 2 2 5 2 '5 

ATls EOR (d,x) WO" • 1 7 2 6 2 * 2 

5 
BVe ( EOR (d).y EOR (d) 
2 2 2 5 2 '5 

6 
RTS s ACe (d .x) PERs , • 2 6 3 *. 

7 BVS r Ace (d ),y Ace (d) , 2 2 5 2'5 

, BRAr STA (d .x) BRL rl 
2'2 2 6 3*3 

9 
BCer STA (d).y STA (d) 
2 2 2 6 2'5 

A LOY. LOA (d .x) LOX. 
2 2 , • 2 2 

B 
BeS r LOA (dLY LOA (d) 
2 2 2 5 2'5 

CPy " CMP(d ... ' REP" C 2 2 2 • '*3 

0 
BNE r CMP (d).y eMP (d) , 2 2 5 2'5 

E 
CPX If SBC (d,xl SEP If 
2 , 2 6 2*3 

F 
8EO r SBC (CI.y SBC(d) 
2 2 2 5 2 - . 5 

• 1 2 

Table 4. Opcode Matrix 

LSD 

3 • • • 7 • • A • C 

ORA d,s TSB d ORA d ASL d ORA [d) PHP, ORA. ASL A PHDs T$8 a 
2*' 2'5 2 3 2 5 2*6 1 3 2 2 1 , 1 * 4 3'. 

ORA ld,'I,y TRB d ORA d,x ASL d,x ORAJdl.Y CLC i ORA a,Y INCA TCSi TRB a 
2 7 2'5 2 4 2 • 2 • 1 , 3 4 l' 2 1 * 2 3"6 

ANO d,s BIT d ANDd ROLd ANOldl PLPs AND" ROLA PLf' BIT a 
2*4 2 3 2 3 2 5 ,*. , 4 2 2 1 2 , 5 3 4 

ANO ld,'I,y 81T d,. ANDd,JI ROld,x ANoJdl,y SECi AND a,V DEC A TSC I BIT a,x 
2 7 2 '4 2 • 2 6 2 • 1 , 3 • 1 " 1 * 2 3 '4 

EOR d,s MVP xye EOAd LSA d EOR [d) PHA s EOR' LSRA PHK. JMPa 
2*4 3*7 2 3 2 5 2*. 1 3 , 2 1 2 1 * 3 3 3 

EOR lI','I.y MVN xyc EOR d,x LSR d,. EORJdl.y CUi EOA a,Y PHY 5 TeCi JMPal 
2 7 3*7 2 4 2 • 2 • 1 2 3 4 1 '3 , * 2 '*4 

AOe d:, srZd ADe d ROAd AO", [dl PLA s AOe" AORA ATl s JMP(a) 
2*4 2 '3 2 3 2 5 2 • , 4 2 2 1 , 1*6 3 5 

AOC ld"I,y $TZ d.;II AOCd.;II ~OR d,' AoCJd),y SEI j AOC a.y PLYs TOCi JMP (a,x) 
, 7 2'4 , 4 2 • 2 • 1 2 3 • l' 4 , *, 3'. 

STA d.s STYd STAd STX d STA [d) OeYi BIT. TXA i PHBs STY a 
'*4 2 3 2 3 , 3 2*6 1 2 2'2 1 2 1 * 3 3 • 

STA I/'.'I.y STY d,x STA d.x STX d.y STAJdl,y TYAi STA a.y TXSi TXY i STZ Il 
2 7 2 4 2 4 , 4 2 • 1 , 3 5 1 2 1 * 2 3'. 

LOA d,S LOY d LOAd LOX d LOAld) TAY i LOA If TAX i PLI' LOY a 
2 *. , 3 2 3 2 3 2*6 , 2 , , 1 2 , 4 3 4 

LOA ~d " I,y LOY d,x LOA d.x LOXd.y LOA;dl,y eLVI LOA a,y TSXi TYX i LOYa,x 
2 7 , 4 2 4 2 • , . 1 2 3 4 1 2 1 * 2 3 • 

CMPd,S CPYd CMPd DEed c"p [d) 'NY , CMP. OeXi WAli CPYa 
2*4 2 3 2 3 2 5 ,*. 1 2 2 2 , , l' 3 3 4 ' 

C"P ld,'I,y PEl s CMP d,x DECd.x C"PJdl .y CLOi CMP a,y PHX s STP i JML (a) 
2 7 2*. , • 2 6 2 • 1 2 3 4 "3 l' 3 3*6 

SBCd,1 CPx d SBCd INCd SBC Id) INX i SBC_ NOP i XBAi CPXa 
2*4 2 3 2 3 2 5 2*. 1 , 2 2 1 2 1 * 3 3 • 

SBC ~d,SI,y PEA s sse d.x INCd,x SSC;d),y seDi SBC a,y PLX s XCEi JSR (a.x) 
2 7 3*5 2 4 , 6 2 • 1 , 3 4 l' • 1 * 2 3*. 

3 • '5 • 7 • • A 8 C 

I~mbol ecldre .. ing mode .~mbol add,. •• lng mode 

• Immediate Idl direct indireci long 
A accumulator Idl.y direct indirecllong inde ... ed , program counler relat i'18 a absolute 

" program counter relative long a,' absolute indexed (with xl 
, Implied a,y ablolule inde.IICed (Wlt~ y) , stack a' absolute long 

d direel al ,x abSO'ut& long indexed 

d,' direct indexed (with x) d.' stack re'alive 

d.y direct indexed (with y) (d,sl.y stack relative indirect indexed 

(dl direct indirect (81 absolute indirect 
(d .... ) direct indexed Indirect (S,X) absolute indexed indirect 

(d),Y direct indirect indexed ,yo block move 

Op COde Matrix Legend 

INSTRUCTION 
MNEMONIC 

ADDRESSING 
MODE 

BASE 
NO. BYTES 

* ~ New W6fC8'6I802 Opcooes 
• ~ New W65C02 Opcod .. 
Blank = NMOS 6502 Opcodes BASE 

NO. CYCLES 

13 

.. 
• 
D 

D • , 
ORA a ASL a ORAal 
3 4 3 • 4*5 0 

QAAa.;II. ASL a,x ORAal. 
1 3 4 3 7 4*5 

AND. AOl a AN,IlaJ 2 3 • 3 6 
• 5 

AND a.x ROl a.x ANOal, 
3 3 4 3 7 4*5 

EORa LSA a EOAal 
4 

3 4 3 6 4*5 

EOA .,x LSR a,x EORal. 
5 

3 4 3 7 4*5 

ACea ADAa Ao~;a, 6 3 4 3 6 4 5 

AOCa.;II RORa .... AOCal. 7 3 4 3 7 • * 5 
STA a STX a STA al • 3 • 3 4 4*5 

STAa .... STZ a,;II STA al.x 
9 3 5 3~S 4*5 

LOAa LOX I LOAal A 
3 • 3 • 4 * 5 

LOA a,x LOX a.y LOAal ... 
B 

3 • 3 • • *5 
CMPa OECa CMPal 

C 3 4 3 • '*5 

CMPa.x OEC a,x CMPal, 
0 3 • 3 7 • * 5 

SeCa tNCa SBCal 
E 3 • 3 • 4*5 

SBC a,x INC a.x SBC al,x 
F 

3 4 3 7 4 * 5 

0 • , 



MNE· 
MONIC 

Table 5 Operallon, Operation Codes, and Status Regiater 

ao 
00 

~ 82 

,C3\03 IN 0 

. -, , -~ , - . 
M\,IP _ p 
A - M 

Noles· 

C> 

2E I" 2A 

E9' EO mE> 

"';", OF '85 

'C I" 

,~ 

36 3E 

7' 7E 

" F7 E1" FO'"'' F2 E7 

~ ' 

9' "I"" 90 .... 92 " 
0" 

I 811,mmeo'1II11 N llId \I fla gs nOI.tlected. When M · O. ""5 - N and M,. - II . 
2 Break e'l (8) U'I Slall.lS ,eg"t,r 11'1<1'(:1'1' l'Ia.d",.r. or JOttwar. orUk. 

3 . • • N ... W85C818180Z '''Nr~on. 
• • NIIw we5C02lnslruCbOlW 
Blink 2 NMOS 6502 

14 

8393 

N . 

I ~ . 
N . 

N . 

N . 
N . 
N 

!~ • 
N • 

IN 

'0' .. 
o . 0 

o . 
· Z C 

~~ 
· i STZ 

'" 
· ~ .. 
· Z . : 
· z 

• .&.cId \,I OR 
- Su~'act "'r E .. Clu ,"vfI OR 
fI ANO 



Table 6. Detailed Instruction Operallon 
"'OORUS MODf 

I 'm""",allt . 
CYCI.E iii, iiL YO", 'I ..... ... ODfllUI.UI 

PBR PC 
!I .. DV CPv CPII 1.011 OFIA. 
A~0.EOR. AOC.8IT.LO"" 
C/olPS8C AE" SEP) 
" a 0" Coo".) 
.2 a...., j 0.,11"1 
.2 • ...., 3cyelnl 

2. "'OW''''' . 
, e" ST V S 'l~OY 
CPY.CPII STlI 1.011 
OR ......... OEORAOC 
ST ... 1.0 '" CM" sec ) 
, 'e 00 C04a~ J 

13 !:Iv''', 
I'.nd ' eye"" 

20 "'0101",,, IA· .... ·WI • 

, "'S~ ROI. .I.SA ROA 
DeC INC.TS6 .TR61 
16 01' COCI", 
,3 0y,,,11 
16 ."d 8 CyCle.) 

2e "0.01",,. IJU .... P) • 
IJ I.AP ]( aCI 
I' 00 COd.) 
13 0r1U ) 
13 cycle,) 

2d . ... ~ .. I. (J .. ",P I I> 
..,t>rou",...) • 
. JSA) 
) ' 00 COOeI 
!l Oyl .. ' 
)6 c.,e"') 
cd./le<W\1 0Ide< I.om ~I 

1113& "'0'0"" .1.0"9 " 
lOR ... ANO EOR .... Oe 
S T'" ~OA.CMP.SUCI 
1800 Coon) 
I<lC,.,,,) 
(5 al'l(l6 Cy(; IUI 

111 30 "' I)SOI ... " l.on9 (J UMP) ., 
(J Io4P ) 
( IOOC~I 
, <10,,'1$ ) 

,<leye"'l 

• k . "'bIol",,. I.ong (J .. ",p to 
Suo'OI.Iun, I.ong) • 
IJSI.) 
I I 00 Coes-I 
(<ICy''') 
(7c:ye l,,) 

4. Ooreel" 
IBI T S TZ S TYLOY 
Cl> vCI> • . S T. ~O" 
~"'."NO EOA.ilOC 
S T .... ~OA.C .... I>.SSC) 
116 0 0 CooH ] 
120.,t .. ) 
, ) '&."dSo:yo:Ifl ) 

_0 0"+0:1 (A.M·W • • 
' .... S L.ROI. .I. SA.AQR 
OfC 'NC.TSS.TRS ) 
,600 Code" 
12 C.,'''' 
(S.6 .7 And 8 eyeln, 

3 "'ccu"'''' 'alOf ''' 

II ) 4i1 

, 
2 , 
• , 

(I) ~ 

( 2) 21 , 
ti l lit 

121 21 
J 

(I ) :lit 
(3) 4 

(') 5. , 
' ''SI. INC.AOL. .OEC I.SRAOA) 
1600 Coo •• ) 
( ' Cy", 
,2 e .,c lu, 

61 ''''0''.0 I 
10EV. INY. IN .... DE .... NOp. 
"'CE. n ... T .. y. Tx ... . TXS. 
T ...... . TS ... . TCS. TSC.TCD 
TDC T"'V.Tn CI.C.SEC. 
0 .. 1 SEI .CLV.Ct.O.SfD) 
(25 0 0 Cod .. ) 
( I c.,.te ) 
(2 Cy~ ... ) 

.1Ib. lmco1ltQ) 
(.lBAI 
I' OOCoOlI 
I ' O r lt) 
13 cyelesl 

• 6L: w., , ~. ,nl."ulll 

I"""''' , 'OOCoo8' Ill) 
" 0,.11) 
13 ~yelfll ' Ra.NUI 

• &d Sloo>Tn .. CtO<: ~ 
, STP) 
pO" Codtl 
"O~I" AES·, 
IJ e yel", RES ' O Ie 

AES ' O 10 
RES-' II 

, 
'. 

, , , 

PBR.PC·I 
peR.PC·2 

.....PC 
peAPC·1 
pBRPC ' 2 
OBA ... A 
OBA.A.A·. 

P5R.PC 
PeR.PC·' 
P8R.PC·2 
DBR .... A 

08R .... A·' 
08A .... A.' 
OBR .... A·' 

o OUA. ... ... 

peR PC 
PBA.PC· ' 
PBR}'C · 2 
P8R. NEWPC 

"9A.PC 
PSR pc. , 
"BA.PC·2 
PSR.PC·2 
0.' 
O.S-1 

I peR.NEWPC 

• • peR.pc 
o peR.pc" 
o PBA.PC·2 
o PBA.PC·3 

...... e ........ 
a MS.A.A.) 

peR.pc 
PeR.PC·' 
PBA.PC"2 
PBA.PC ·3 
NEW P8A.PC 

PBR.PC 
PSR.PC-I 
P8A.PC·2 
'.S 
' .S 
"9A.PC· 3 
0.5- ' 
0.S - 2 

, NEW PBRPC 

1 PSR.PC 
o I PeA.PC · 1 
o 0 PBR.PC· I 

o 0.0'00 
o 0.0 · 00·1 

I PeA.PC 
P5A.PC·' 
"BA.PC·I 
0.0·00 
0. 0·00 " 
0.0·00.1 
0.0'00" 
0.0-00 

peR.pc 
peA.pc" 

PUA.PC 
peR,"C·, 

1 PSA.PC 
o 0 PBA.PC· ' 
o 0 PBR.PC·I 

.or 

, PBIII .PC 
PBR.PC·' 
PeA .PC·1 

, PBR.PC·j 

, pBR .PC 
PeR .pC · ' 
"9R .PC ·' 
p8A .pC·' 

1 PBR."C" 
PUA.PC· ' 
peA .PC· , 

OpCou. .. , 
A'" 
0.'11 1.0-00 , , 0 
0 ... ""91'1 ' ;0 

OoCOCIe .. , ... 
Oil. LOw 

0". ""Qn 
'0 0.,. ""'iln 
O.ta lO .. 

00 COOl 
NEw PCl 
NEW PC", 
OQCOGI 

00 Codoo 
NEW PCI. 
NEW PC", 
' 0 , 
pc" , 
PC, , 
Nell 00 Cod. , 

0.<000 .... , 
.... -..... , 
OAI. La. 110 
0. •• ~n 110 

00 COOl 
NEW PCl 
NEW pc", 
NEW8R 
OpCode 

00 Coo. 
NEW PeL 
NEW PC'" 
'B. 
00 
NEW P6A 'C_ 
'c\' 
NI~IOoCOCII I 

OoC_ 
00 
'0 
0.1. Lo-oo 110 
0 ... "''91'1 '10 

0.<000 
00 
'0 
0&1.1.0. 
0 ....... 
'0 
0111 "',gn 
Ollta 1,..0 . 

Op Cgdt 
'0 

00 Coo. 
'0 
00 
RES(eAK) 
RES(8RK) 
RES(BRK) 
BEGIN 

15 

"'DOfIf:SS MOOE 

Q'I8CI IndirlCt IflOe • .:] Id)., 
10R .... ANO.EOFl.AOC. 
ST ... lO .... CMP.SBCI 
18 OpCOdea) 
(2oVl'" 
1~1i.1 ¥lO 8cYC'"1 

Ii 0"ec1 ,noo'lICl 
'nda-.d l.on9 !d}., 
(ORA.. ... NO.EOR. ... OC. 
STA..I.OA..Ct,jP.SBCI 
(8 OpCOdn) 
(20ytn) 
(6.7 Ind! cyc,", 

9. O,recl Indul(llnd!lecl '0' 
(OA ....... NO.EOA. ... OC. 
ST .... lO .... a..P.SBC) 
{8 00 Coonl 
(2 bVlII) 
(6J ana 8 c.,cl .. , 

10. Q'rwct)( d,1 
(8IT.STZ.STY.lOY. 
OFl ....... ND.EOR .... OC. 
ST .... lOA..CMP.S8C) 
(I' Op COOn) 
(20Vlnl 
( • . $ 111<1 6 c,.anl 

100. OllllCt..l (R· M,WI"" 
(ASl.ROLI.SA.AO A. 
OEC.lNC) 
(6 Op CoOM) 
12 D\Itft) 
(6.t .! aNi 9 eyel") 

I' OnKt.Y "" 
ISH .. lOX) 
(2 Op COdes) 
(20.,_1 
(4.5 Ind 6 cycle'l 

121 ... b&Olu,. ....... 
(SIT.LOY.STZ. 
OR ....... NO.EOR .... OC . 
STA.LO .... CMP.sSC) 
(I' 00 COOn, 
(J bVln) 
{<I.5.na 6 eyel .. , 

,2tI ... bsolull.X(R .. M-W) .... 
(ASl.AOLLSR.ROR. 
DEC. INC) 
(! 00 COOts) 

(3 DVI'" 
(7 and 9 cycle.!! ) 

_13 ... MOI .... l.OII9-X .... 
(OR ....... NO.EOA .... OC. 
sr .... Lo .... CUp.SBC) 
(8 Op COOM) 
(4 bytn) 

(5 Ir>O 6 CVC ... , 

,. "'bSOlu' • • ., e., 
(1.0 .. 0RA.. ... NO.EOR ..... OC. 
ST .... LOA..CMP.SeC) 
(900 CodM) 
(30y ... ) 
(4.5 Ina Ii cycle.) 

15 RII.t,~r 

(BpL.BMI.BVC.BVS.BCe. 
BCS.UNE.BEC.UR"', 
19 Op Codes) 
12 bVles} 
(2.J .n-d 4 cycl,,) 

.16. Rtllh~ lim...,,, 
(eAL, 
(1 OpCQdt) 

[30Vln) 
(4 cycJft) 

171 "'~lfIe IhOoleCI ,.) 
(JMP) 
I' OpCoda) 
(3 Dy1n) 
(5~1 

(JMU 
I I OpCoot. 
(3 byl8l1 
(6 cyelM) 

• '8 Ctr"'" 1ndo<lIClld' 
(OR ........ NO.EOR ... OC, 
ST ... . LO .... CUP.sUC) 
(800 CoGH) 
120.,tn) 
(.5.6 and 1 e.,elts) 

CYCLI WP. iii.. '10&.'1 ..... ADDAER .UI OAT .... US 

(2) 2, , 

(2) 2. 
J 

, 
6. 

(I) 6.a 

(1) 6.a 

(2) 2 • . , 
· (I) II. 

, 
2 

(2, 2 • . , 
• 

( I) .... 
(31 S 
(1J 6.a 

6 , 
2. 

(2) 2 • • 

J 

• 
(I) .. 

,. 
2. ,. 
• , 

!I I 5a. 
(3) II. 
(II h . , 

, 
2 , 
'. , 

I II ~ , , , 
(<I ) 31. 

, 
2. , 
.. 
2. ,. 
• ,. 
, 
2. , 

(~, 21 , 
('1 5a 

., 

, , , , , , , , , , , 

, , , , , , 

P8~. f'C OIl coo. 
PBR.PC-' 00 
PUR.PC-' 10 
0.0·00 ML 

o 0.0 ·00·, .. ilH 

oeR .... AH A.Al' VL'O 
08R.A .... V O&ta LO .. 

o OBl'I.AA,"" o.ul1llO" 
PSR.PC 
peR.PC·' 
peA.pc · 1 
0.0 ' 00 
0.0·00" 
0.0·00'2 
...... B.A ... ·., 
MB.M·Y·' 
peRPC 
P6RPC" 
P8A.PC·I 

a P8A.PC" 
0.0'00·11; 
0.0'00'11;-' 
OBA.M 
DBA ........ ' 

PBR.PC 
peR.PC·' 
PBR.PC·' 
P8A.PC·I 
0.0·00· ... 
0.0·00· ... ·' 

00 COOl 
00 
'0 
u, 
u. u. 
0.,. Low 

Oall '""an 
000 eo.. 
00 
'0 
00 .. , .. " 
Oat. Lo .. 
OI~H'<;lI1 

Op C<XIe 
00 ' 
'0 
'0 0.,. Low 0.,. H'9" 

PElR.PC Oil Cooa 
PeA.PC-l 00 

o PBA.PC·' 10 
PSA.PC· ' '0 
0.0 · 00·... Olta La .. 
0.0·00· ... · 1 0.1& H.gn 

0.0·00 . ... ·1 '0 
0.0·00· ... · 1 0111 H.gh 

o 0.0·00·... 011. Low 

PSR.PC Op COOl 
peR.pc" 00 
P8R.PC·' 10 
P8R.PC·' 10 
O.O·OO·y ON Low 
0.0·00-"',. O.t. HIgh 

PeR.PC Op Coda 
peR.PC·, ML 
PBR.PC·2 ...... H 
DeR ....... H.ML· XL 10 
OBR.M'II; 0111 Lo ... 
OSR ............ ' O.t. H'gIl 

PUR. PC Op Cod, 
PBA.PC·' A"'L 
peR.pc·2 A ... H 
DBA ....... H ....... l· ... L 10 
DBA ....... ·... Oltl low 
DBA ....... ·.l·, DIll Htgn 
DBA ...... ·.l· , 10 
OBR.M· j(" 0.11 HoQh 
OUR.A.A·X Ot~ LO .. 

• PBA.PC 00 COOl 
peR.pc. , ...... L 
PBR.PC'2 AAH 
PBA.PC · J "'AS 
AAB.AA.·... [nt. I.ow 
AAe.M· ... · 1 o.~ Htgn 

PeR.PC Op Code 
~.PC·I ...... L 
PeR.PC ·2 ...... H 

oeR.MH.ML·YL to 
oBA ....... ·.,. 0111 LO" 
08R.M·Y·, O.toll H'9h 

PBRPC 00 Coal 
peR.pc., OitMt 
peR.pc·, 10 
PBRpc., 10 
PUR.PC'OfIM, 00 COO, 

PSR.PC 
PBR.PC·' 
P8R.PC·2 
PeA.PC·2 
PBA.PC·01taeI 

PeR.PC 
P9R.PC·1 
PBR.PC·2 

'M 
0 ...... · ' 

• P8A.N£WPC 

..... oc 
p8A.PC·1 
P8R.PC·2 , ,-'" 

o O,M'I 
0.M·2 
NEWPSR.PC 

.... oc 
PSA.PC·I 
PeA.PC·' 
0.0-00 
0.0'00·, 
OUR ...... 
OBA.M·' 

Op COOl 
OIlUl' Low 
OIlSIl H,...,n 
00 
00 Coo. 
000 coo. 

'" A"'" 
NEW o>CL 
"""0< 
OOC_ 
00<:000 ...., 
A ..... 
NEWPCL 
NE ..... PCH 
NfVl ;leA 
O.Coo. 
O"Coc» 
00 
'0 .. , 
U" 
Oatil LO ... 
Ollila ... 

, .. 
,ro 

'" ' ro 

'10 
, .. 

'" ,,' 

, 
'" ,ro 

110 
,ro 

, , 

, 
,ro 
,ro 

, 
,,' 
'" 

, 
,,' ,,' 



Table 6. oelaUed Inslruclion Operation (continued) 

AOO""IIliOOI CYCLE Vii: iii. VOA, wf'A AooalU tUS DATA .... ... &OOI'I(UlllOOI C'CLI Vii. __ YDA. y~ ADO-Ell IUS OATAaus ,",iii" 
." 0 .. 4<.1 InCh'K'I.0t'0g (1111 , , PiA.PC ""C_ ." StKII R.~Ir'" Indore<:! , , PBA.PC aDCooe 

(OA"-ANO.EOA ACe 0 , PaAPe-' 00 1-·~t·I..I"r 0 , PaRPe· ! so 
srA..LOA.CWP.S8C) '" ,. 0 0 PeA,pC·, " ,O"' ........ NO.EOA .... OC. 0 0 P8A·PC·, '0 
,II0pC-, l 0 0.0-00 AAC S T .... LOA.C ... p.Soq 0 OS·so u , 
IZ Clyt .. ) 0 O,O-QQ-, u. II OP Codft) , 0 o.S-so·, ... 
;6.1 .aNl' eye .... 0 0,0-00'2 • •• ,2 Py\M) 0 , 0.5·SO-' ,0 , 0 "'Ae ....... 0.0111 la.- ,,' (1lna "eye,") 0 DBA ....... ·.,. Dlll l g ", 00 

'" .. 0 M8 ....... ·\ o..tltif9l'\ "0 '" " 0 DBA ..... ·y·, 0..,. "'in '0 
20. "'C'~ul'lnd .. '" '''Ch_'':1 (I . • ' , : ' ..... PC 00C- -Z'-I . 610cll Uove Po-...... 

N'{! 

, , .....PC OpC_ 
tJ-"P) , , peA.pc-, ." lIor"'~II-,c , P8A,P(:;' \ 0., 
,IOIlCodtI , .~ , PeA,PC" AAN (MVP) PBA,PC'2 SO. 
IJ oy''''1 • , PSA.PC·' '0 ,1 Op Code) S8A. ... Sourc.OIlI 
, IS eye' ... , , PBA. ...... • ... NEWPCl (3 bllet) 8V11 5 , , De .... " DnI OIU • PSA .... ,, · .. · , NEWOCH 17c:y('"' C' l Ii , , 00", " PSR. NEW PC 0 " Code . ' SowceAddress , , 08A," '0 

.>co .. etO'u'. , .. G' .. .., I_I PBR.PC 0,_ , . ~,,~,~ ~ P8R.PC 0,,,-
,Ju"''' 10 Sl..itl<OU"'" Inde.ed . , "8F1.1>C·' .... , c ' N ...... Def 01 8 yl" 10 I.AootII -, 2- , PBR.PC·, DB' 
'~''''KI' ! ... , l ' .S OCH 0 •. yo.cr.mt"' 3 0 IIBR.PC·' SB. 
tJSRl O,S - ' OC, 0 Mvl? " ulled ""e" me N- I 4 saA," - ' So.,.ce 0.1, 

, 'Op C"",,) , P8R.PC· 1 .AN d"llNIhon "'1'1 MI<Itns 8.". 5 , OBA . ., - , 0 • • , ~" 
1311." ,,) , , PBR.IIC · 2 10 ,. ~ognef tmQre pOS.uve, c · , II , 08A.Y_' " ,8 c.,e lt'l ) , , PBR.AIA ... N£WPCl In.., '"It lOUIe. lIart MI<I"'" J 

, , OBA.'( - I '0 

• , IIBR.M·lI·, NEW PC'" , PSA PC O,C-, PSA.NEWPC Neal OIl COI1t "rFFFF .•. ~ , PBA..PC·' OB' 

'" St.elo tt'14.d .. ". 
, , PSR.PC '0 ! ~'~." , , I>8R.PC·2 S" 

'''If''U.,.'' • oJ, , , PaR.PC '0 , Ln' • , SBA,'-';·2 Sou,e.O ... 

, 'RQ.i'llMl. ... SOAT.RES) '" 
, '.S oa' , t~SI" CoO 5 , 0 06 ... . ., · 2 CIt" O"iI , 

; . n,'d ... t. ,,,, .. 'upl.) 0 O.S- ' 'CH , on, End 6. , , 08A' Y'2 '0 
100""") , , 0.5'2 "'I. ...,.."'" , 0 08A.Y-2 '0 
11 • ...., Icycln) , , D.S-l 0 """'" 

, P8A.PC·l Ne " O" Cooe , , D.VA 'Ave 
• , , D.V ... ·' ,"VH .,.. Block ~ i'IItga'_ 

[' 
, .... PI; 0" Cooe , D. AlAV N.alOpCodto , (Ok~.iltO ) . , 0 , PBRK-, 0" ,,, SIK_ (SOt."' ... , , PBR.PC """- , ' '''VN) N- 2 l . , , PBR.PC·2 S" 

'" ' .... 'P") • '" , PeR.PC·' So9f\AlUt. , ( IOpCocM) 8y .... 0 sa"' ,JI SoUle.Oall 
IBRltCoPl '" ) OS .. , , IJD1_' C =2 5 , OB .... V ~, 0 ... 
12 Op Coot, ) (101 , O.S · ' PCH 0 11 C,cln) • , 0'" ' 0 
(2 0"'" '''' , , 0.5' 2 ... " 0 .' SO ... ~.Add~ , 0 OBA." '0 
,1 • ...., . ~,cln, ,,~ • , O.S-l fCO P LiMe",,") 0 , , • Onl,,,"oon , 0" ... AVl '·N'm .... "' .' ... "_·, [ PltR.PC O,eo.. 

0 0.V ... ·1 A"'V,", •. Y'nct ..... ", 2 
, , P8A.PC-' 0 .. , O.AlAV ,...., 00 CoOt FFFFFF N· , l 0 , DeIl ,PC'2 S.' 

IIVliI • , S8I\.JI·' SOule_a.l i1 

'" StIC_ (FieIU'" "0,," , , P8A. "C ODCoOIt j d"""'"' C.': 

0 08 .... .,·, De.1 0.,_ 
1~1""'DtJ • , 0 PaA.IIC-1 '0 , 08 ... .,-1 00 
IATI) '" 

, , , PBR.PC·' '0 0.11 EI'KI 1 , 0 8A."· ' 00 
I ' 0.:. Code) , 0.5" 0 SQu.e. SUt" 

O~COo. (' orl ., 0 0.S·2 pc, Desl. S'~n 
, "SR,PC 

IS~"'" 7 (yet .. ) , O.S·l OC" '-t 0 PltR.PC·' 09, 

,d,n"."1 otder "0'" N65021 ", , 0.5" ... """'" 
, , IIBR ,"C -2 SB' , P!:IR,PC Ne. 0 0 Code C' O • , se .... X·2 Sou.C<i o.t~ 

I,4\1N IS U.eG .. /'len.'" , , , 09 .... .,-2 Dell 0 ... 

'" 51,,1 \R.,u'" /'0,," , , llSA.PC Ope-
,,"1I"~IIOf1SUt"ilddr'" 

, , , 08 .... .,·1 '0 
5,,0'0"""'. ' , , P8A.PC· ' '0 .. 'ower (more negilllwel , 0 0 08 ... "'2 ,0 
"US, l , PSA.PC·, 00 tn~n .,.. SOOtC. N" , PS",PC'l NUIODCoae , 
,'00 Coo_, , 0.5-, PCI. Illdr"l. 
\ '0_1lI, 0 0.S-2 PCN 
,6 eyeln, , 0.5'2 00 , I?IIR.PC Op CocIe 

_. 
* 21 ' SI . elt 1~1Jt'" "0'" 

, PliR.PC 00"- j I t "'deI I Oyle "Of' ."'trIed .... pnlYJ '01' M' O ot JI ' O" _ 16 Dol d.UI ). MId , eye" '0< 1,4 ' 00< 1. ·0 
s...D.o..l."e Longl • , 0 PBA.PC·' " 12, Add I eye" tot dot":l '~'af" 'o.. lOLl "otft1~' 0 
,Att , , , PM.PC· I '0 Il) Spec,,, CilM lot ilt>OttInq ."" ..... eIoO". Tn,. 'S IN''''' e,cI ... P1KI'I mily!le iloorteclOt' '''II' SII 1Ul 
; 1 Op CooeJ , o.S·' NEWPCL PSR ot OBR • ...,lItItn .tli (Ie upCIlltl'd. 
(1 Dy'. , , 0.S·2 NEW PO-! 
\6e,GIe-s) , 0.5'3 NEW P8A fl ) "'dd I e, ... 'ot ... .,. . .,ng aQ"on ~OC/<.OI'IdiIroe .. 0' .. ",.. 0( JI · O Wflen X" ot ,,, 11'141 , NEWP8A.PC ,...., OIl Cooe , tfIIUliltJOn tI'IOOt. II'". eyd. eO"I_ '''vlhd MI<I.-. 

'" Sue. ,Pus'" I , , ..... PC 00"- (5) Add 1 e,c'" II 1)("""" '., .... 
IPI1PPI1'" "'"''1' ........... , , 0 P8A.PC-' 10 (6) Add , eyele tll)till'C " .. IaII ... Kl"oe, PiI9' bOund. " .. . " 6S02 ftftUllllOf1 mooe IE·', 
PI10._':.PI18) '" " 

, ' .S AI'Ii, .... H'9" , 
17) S\lt1trICI 1 e)lC>t 'Of 6502 e",,,,,I,on ",odoI IE· 1) 

; 100 Coon) l , 0.5-1 ~I''''lo. 
, 

III ... 0<11 eycle to. REI'.Si.P 
I' Oyll ' 

III) W',I ill e.,ete 2 10< 2 ey"''' iI" ... Niii 0< ii!R5' IC"'" '"OUI 13 • ...., I eyQl'l ' 

'" S'ac;a ,Putl) . , PIIR.PC O"CQdot I 10) AJW ,........ .......... ing ""'" 
IPl.P D\.A.PI." PLJI f't.O.PLB) 0 P8R.PC·' 10 AOOre","IOnI . 
( ()ol le",""~" f+66(2) , 0 PBA-PC" " 16 Op CoG .. 1 • 0.5'\ RtoQlIIOII' lO'a' , ...... 8 AOIoOlIIII "'001'", 8i11l~ 

; 1 ll yltl ," .. 0.5'2 Ati •• , ...... 0:1" , ......... "'blQlul. Add,_ I1oo:!" 

\' . "d 5 ey"nl 
"'Al ... Otolult AOCII" Lo. 

A"'V,", "'OlOlult Add'"1 VKIOt Hig" 
_ . 1" Slle_ IP~,~ ell,,"ve , , PBA.I'C Op COd' ...... VL AD.oIl1l. Adell", VKIOt LOW 

Ind"fCl "'00"$1) • , , P/:WI.PC·1 00 C Aecurnul"'Of" 
,pell ," " 

, PBR.PC·l ,0 
o OorKI RI'Ii'Il.r 

(' Op COd.l l , 0.0'00 .... 
OeA OetIlNllon ~"I AO<:J'". 

11011" 1 0 0.0-00" "N , 
DIIR Ollil s. .... R1QI11" 

,6 • ...., ~ ~ 'f'C,. I ) , ' .S UN , 
00 OUtel Qffyl • , O.s-\ ." 0 '011 ,mnMd'illtO_"',9!'I 

' 21 , SIIe_ ,Pusn E'/ec"'1 , ..... PC 0,,,- IOL '''''''IGat. 0iI1" lo .. 
"'Dlolute A601"'I ' , , PltR.PC,' .AC , 

'0 '"Ie'"" OP*tillJQI1 
,PE", 0 , P BR.PC-2 .AN , P $Ialul ~~ .. 
I' 00 Cod., 0 O.S ... , P8FI "'Oti,,/T'!knlt Rtog'llel 
, J O'f'HI , 0.5-1 ." , PC Ptoc,- eouno .. 
,5 c~c ... , R· " ·W R • ..:I_Uodrty ·W"t. 

* 21, St..:_ IPuan EUKI",. .... PC ""C_ S SU(lo. AOQ'H. 

PrOQl"'" COU" '" Ra .. ",.. PaR.PC· ' Otr .... l o .. se ... SOuoce Ba"" AOO<fH 

ACId'HIi • , , P9R.PC-2 OrtMt HtO" SO 5110:.011_ 

,PE'-' , , P8R.PC·2 '0 , VA VKIOI A4d ..... 

l 'OI>C-) , ' .S PC ... ·OH· , • . y ._. '-'V"'''' 
,JO,,", C"'RA" • , NlLw WMC41611al A.OOr_ng WoOeI 

,6 eyel"" , O.S-I PCl 'OFFSet 0 • • "" .. 'Mi5C:a.! AootMIOn9 Uodts . " SI'~ ' R".Iove ... , P!:lR.PC "" C_ ~'" • NMOS 6.502 Addr_ng WOdet 

.OR'" ... NO EOR ... Ol. , P6A.PC·1 SO 
ST"' lO"' ,ClrM'SOC, 0 118R.PC·' " 

, 
.8 Cp C<><MII 0.5 -50 Oil/ I low 

" IJ 0Y'H' '" .. 0.5'50·1 0iI1ill1'o:1'" ,,' 
,1.11d S e.,elal ) 

16 



Recommended W65C816 and W85C802 Auembler 
Syntax Standarda 
DI_H ... 
Assembler directives are those parts ot the assembly language source 
program which give directions to the aaaembler; thia includes the defini­
tion of data area and constanta within a pr~ram. This standard exclude. 
any definitions of assembler diractittBI. 

Commen.. . ..... 
An assembler should provide a way to use any line of the source program 
as a comment. The recommended way of doing this is to treat any blank 
line. or any line that starts with a semi-colon or an asterisk as .comment. 
Other special characters may be used as weN • . 

The SoYree Lin.' . 
Any line which causes the generation ot. single W85C816 or W65C802 
machine language instruction should be divided into four fields: a 'abel 
tield. the operation COde. the operand, and the comment fietd. 

The ubet Field-The label field begins in COlumn one of the line. A label 
must start with an alphabetic character, and may be followed by zero or 
more alphanumeric characters. An assembler may define an upper limit 
on thenumberofcharactersthatcan be in a label. so long as that upper 
limit is greater than or equal to six characters. An assembler may limit 
the alphabetic charactef'S to upper-case characters if desired. If lower .. 
case characters are allowed. they should be treated as identical to their 
upper-case equivalents. Other characters may be allOWed in the labet. SO 
long as their use does not conflict with the coding of operand fietds. 

The O,.,.Uon Code Flekt-The operation code shall contilt of a three 
character sequence (mnemonic) from Table 3. It shall start no sooner 
than column 2 01 the line, or one space .herthe label if a labet il COded. 

Many of the operation codes in Table3 have duplicate mnemonics; when 
two or more machine language instructions have the same mnemonic. 
the aasembler res04ves the difference based on the operand. 

If an assembler allows lower-case letters in labels, it must also allow 
lower-case letters in the mnemonic. When lower-case fetters are used in 
the mnemoniC, they shall be treated as equivalent to the upper<aae 
counterpart . Thus, the mnemonics LOA,lda. and LdA must all be recog­
nized. and are equivalent. 

In addition to the mnemonics shown in Table 3, an assembler may pro­
vide the alternate mnemonic. shown in Table 6. 

Table 7. Altama" Mnemonics 

Slon"'rd 
ecc 
BCS 
CMPA 
OECA 
INCA 
JSL 
JML 
TCO 
TCS 
TOC 
TSC 
XBA 

AlIa 
BLT 
BGE 
CMA 
OEA 
INA 
JSR 
JMP 
TAD 
TAS 
TOA 
TSA 
SWA 

JSL should be recognlZed as equivalent to JSR when it is spec:itied with a 
long absolute address. JML is equivalent to JMP with long addresaing 
forced . 

The Operend Field-The operand field may slart no sooner than one 
space after the operation code field. The auembler must be capable of 
at least twenty-four bit address calculations. The assembler should be 
capable of specifying addreues as labels, integ.r constants, and helle­
decimal COnstants. The assembler must allow addition and subtraction 
in the operand field. LabelS shall be r,ecognized by the fact that they stan 
alph'lbetic characters. Decimal numbers shall be recognized ascontain­
ing only the deCimal digits 0 ... 9. Hexadecimal constantl ~hall be recog­
nized by prefilling the constant with a "S" charactel'. foAlowed by zero or 
more of either the decimal digits or the hexadecimal digit,. "A" .,' "P'. If 
lower-case letters are allowed in the labet field. then they ahall also be 
allowed as helladecimal digits, 

17 

All constants, no matter what their format, shall provide at least enough 
precision to specify all values that can be represented by a twenty-four 
bit Signed or uns;gned integer represented in two's complement notation. 

Table 8 shows the operand formats which shaJl be recognized by the 
assembler. The symbOl d i. a label or valu. whiCh the aHambler can 
recognize as being less than Sl00. Thesymbolai,.alabel or value which 
the assembl.rcan recognize as greaterthe SFF but 'e. than Sloooo: tha 
symbOl ails a label or value thai the 8Hembler can recognize as being 
greater than SFFFF. The symbol EXT is a label which cannot be located 
by the assembler at the time the instruction is assembled. Un'" in­
structed otherwise, an auembler shall assume that EXT labels are two 
bytes long. The symbols rand r1are 8 and 16 bit sign.d displacements 
calculated by the assembler. 

Note that the operand does not determine whether or not immediate 
addressing loads one or two bytes; this is determined by the setting 01 
the status register. This torc .. the requirement lor a directive or directives 
that tell the assembter to generate one or two bytes of space lor imm .. 
diate loads. The directives provided shall allow separate settings tor the 
accumulator and indell regiaters. 

Tha assembler shall use the <, >. and 1\ characters atter the" character 
in immediate address to specify which byte or bytes will be selected from 
the value 01 the operand. Any calculations in the operand must be per­
formed before the byte selection lakes place. Table 7 defines the action 
taken by each operand by .howing the effect of the operator on an ad­
dress. The column that shows a two byte immediate value show the bytes 
In the order in which they appear in memory. The coding of tna operand 
is for an assembler which uses 32 bit addr .. calculations, showing the 
way that the address ahould be reduced to a 24 bit vah,~. 

Table 8. Byte Selection Operat~ 

O .... nd 

'$01020304 
K$OI020304 
'>$01020304 
• A$Ol020304 

an.ayte_ 
04 

lWo,."'_ 
04 03 

04 04 03 
03 03 02 
02 02 01 

In any location in an operand where an address, or ellpresSion resulting in 
an address, can be coded, theaasemblerlhall recognize the prefix char­
acters<.I. and >. Which force one byte (direct page), two byte (absolute) 
or three byte (long absolute) addreaaing, In cases where theaddresaing 
mode is not forced, the assembler shall allume that the address is two 
bytes unless the assembler Is able to determine the type of addressing re­
quired bycontellt. in which case that addr~ng mode will be uSed. Ad­
dr.ues shall be truncated without el'rOf' if an addressing mode is forced 
which does not require the entire value of the address. For ellamp&e, 

LOA $0203 LOA 1$010203 

are completely equivaktnt. If the addreaaing mode it not forced, and the 
type of addressing cannot be determined from context. the assembler 
shall as.ume that a two byte addreas is to be used. If an instruction does 
not have a ahon addressing mode (Uln LDA. which has no direct page 
indelled by Y) and a ahort addre"'a uMd in «he operand. the auembler 
shall automatically elltend the addr ... by padding the most significant 
bytes with zeroes in ordel' to 8l1tend the address to the length needed. As 
with immediate addf"HSing. any expreulon evaluation shall tue pface 
before the address it Mfected; thus, the addresa selection character is 
only uMd once, before the address of exp,....ion. 

The I (ex~mation point) character should b8 tupported as an alternative 
to the I (venical bar). 

A long indirect address is indicated in the operand field of an instruction 
by surrounding the direct page addr ... where the indirect address is 
found by square brackets; direct pageaddressu which contain ajllleen­
bit addressee are indicated by being surrounded by parentheaes. 

The operandS of a block move inSlruc;tion are specified as IOUrce bank, 
destination bank-tile opposite order of the object bytes gene.ated. 

Comment field-The comment field may stan no sooner than one space 
atter the operation code field Of' operand ffeki depending on instruction 
Iype. 



·-.. -Immediate 

Absolute 

Absolute long 

Direct Page 

Accumulator 
Implied Addressing 
Direct Indirect 

Indexed 

Direct Indirect 
Indexed Long 

Direct Indexed 
Indirect 

Direct Indexed by X 

Direct Indexed by Y 

Absolute Indeliled by X 

FOf1MI 

"d 
-a 
_al 
.EXT 
II<d 
. < a .' 

lI<al 
_< EXT 
.>d 
.>a 

' ''> 81 
_> EXT 
_Ad 

.'a 

."al 

.'EXT 
'd 
!a 
a 
!al 
!EXT 
EXT 
> d 
> a 
> 81 
al 
>EXT 
d 
< d 
< a 
< al 
<EXT 
A 
(no operand) 
(d).y 
«d),y 
«a),y 
«al),y 
«EXT),y 
(d),y 
«d),y 
«a),y 
«alJ,y 
«EXT),y 
(d,x) 
«d,x) 
«a,x) 
«al,K) 
«EXT,x) 
d,x 
< d,x 
<a.x 
< al.x 
<EXT.x 
d,y 
< d.y 
< a,'1 
< al,Y 
<EXT,y 
d,x 
!d.iIl 
a,x 
!a,x 
!al.x 
!EXT.x 
EXT.x 

.' 

Tabl. 9. Addr ... Moda Formata 

Add' .... ng Mode 
Abs~ute Indexed by Y 

Absolute Long Indexed 
byX 

Program Counter 
Relative and 
Program Counter 
Relative Long 

AbsoJute Indirect 

Direct Indirect 

Direct Indirect Long 

Absolute Indexed 

Stack Addressing 
Stack Relative 
I ndirect Indexed 

BlOCk Move 

Note: The alternate! (exclamation point) is used in place of the I (vertical bar). 

'0f1MI 
!d,,, 
d,y 
a,y 
!a.y 
!al,y 
!EXT,V 
EXT,y 
>d,x 
> a,x 
>al.x 
al,x 
>EXT,x 
d 
a 
al 
EXT 
(d) 
('d) 
(a) 
(!a) 
(!al) 
(EXT) 
(d) 
«a) 
«al) 
«EXT) 
[d) 
[<a) 
[<all 
[<EXT) 
(d,x) 
(!d,x) 
(a,x) 
Cta,x) 
(!al,x) 

. (EXT,x) 
('EXT,x) 
(no operand) 
(d,S),y 
«d.S),y 
«a.'),y 
«al,s),y 
«EXT,s),y 
d,d 
d,a 
d,al 
d,EXT 
a,d 
"a 
a,al 
a,EXT 
al.d 
al,a 
al,al 
al,EXT 
EXT.d 
EXT,. 
EXT,al 
EXT,EXT 

(the assembler calculates 
rand rt) 



I 
_""", UWlunon 

Inotrucllon Tl ..... 1ft ......,1Ief of Prog ..... 
In _mOfY Cycle. S .... nce.yW. 

i 0"'1 .... Now 0rigIn0I -I Addr ... M_ aBItNMOS WI5Ct11 aBHNMOS WI5Ct11 
, 

8502 1502 , 
1. Immediate - 2 2{31 2 2 (3) 

I - . 0-
I 2. Absolute 4tS) 4 (3.31 3 3 
: 3. Absolute Long - 5(3) - 4 , 
, 

4. Direct 3(5) 3 tU .5) 2 2 

i 5. Accumulator •• 2 2 1 1 
I 6. Implied 2 2 1 1 

7. Direct Indirect Indexed (d).y 5(1) 5(1.3.4) 2 2 
8. Direct Indirect Indexed Long (d) , y - 6(3.4 ) - 2 

9. Direct Ind8)(ed Indirect (d.x) 6 6 [3,4) 2 2 

i '0. Direct X 4(5) 413.4.5) 2 2 
I Direct. Y , 4 (3.4) 2 2 i 11. 

12. Absolute. X 4(1 ,5) 4(1.3.5) 3 3 

I 13. Absolute Long, X - S(3) - 4 

I 14. Ab~ute. Y 4(1) 411.3) 3 3 
I 15. Relative 2(1,0! ) 2(2) 2 2 

16. Relative Long - 3(21 - 3 

17. Absolute Indirect (Jump) 5 5 3 3 
18. Direct Indirect - 5(UI - 2 

19. Direct Indirect long - 6(3.4) - 2 

20. Absolute Indexed Indirect (Jump) - 6 - - 3 

21, Stack 3-7 3-8 '-3 ,-, 
22. Stack Relative - 4(3) - " 2 
23. Stack Relative Indirect Indexed - 70) - 2 

24. Block Move X. Y. C (Source. Destination, Block Length) - 7 - 3 

NOTES: 
1. Page boundary, add 1 cycle if page bOundary is crossed when 'orming address. 
2. Branch taken. add' cycle if branch is taken. ~ 
3. M = 0 or X = O. 16 bit operation. add 1 cycle, add 1 byte tor immediate. 
4. Direct register low lOLl not equal lero. add 1 CYCle. 
5. Read-Modi1y-Wrlle, add 2 cycles tor M = 1. add 3 cycles tor M = O. 

,. 



Cav.a" and AppUcatlon Information 
Sieck Addr_g 
When in the Native mOde. the Stack may use memory locations 00000o 
10 OOFFFFF. The ."eclive address of Stack. Stack Relative. and Stack 
Relative Indirect Indexed addreseing modes will always be within this 
range. In the Emulation mode. the Stack address range i, 000100 to 
0001 FF. The fOllowing opcodes and addresa;ng mOdes will increment or 
decrement beyond this range whe:n ~C~~~!bg two or three bytes: 

JSL; JSA(a,x) ; PEA; PEl; PEA; PHD; PLO; ATL; d,s; (d,s),Y 

Direct Addr"oIng 
The Oirwct Addressing mode. are otten used to access memory registers 
and pointers, The effective address generated by Direct; Oirect,X and 
Oirecl.Y addreSSing modes will always be in the Native mode range 
00000o 10 OOFFFF. When in the Emulation mOde. rhe direct addressing 
range is 00000o to OOOOFF, except for [Directl and [OirecII,Y addressing 
modes and the PEl instruction which will increment from OOOOFE or 
OOOOFF into the Stack area. 

When in the Emulation mode and DH is not equal to zero. the direct 
addresSing range isOOOHO(HoOODHFF. except for (Directl and {Oirect}.Y 
addressing modes and the PEl instruction which will increment trom 
OOOHFE or OOOHFF into the next higher page. 

When in the Emulation mOde and DL In not equal to zero. the direct 
addressing range is 00000o to OOFFFF. 

AIIIoIute Inde.ed AddritUlng (W65C816 Only) 
The Absolute Indexed addressing modes are used to address data out­
side the direct addressing range. TheW65C02 and W65C802 addressing 
range is 0000 to FFFF. Indexing trom page FFXX may result in a OOYY 
data letch when using the W65C02 or W65C802. In contrast, indexing 
from page ZZFFXX may result in ZZ+l,OOYY when using the W65C816. 

Futu .. Mlcroproc ... ol'l (I ••• , W65C832) 
Future WOC microprocessors will support all current W65C816 operat­
ing modes for both index and offset address generation. 

ABORT Input (WasC816 Only) 
~ Should be held low lor a period not to exceed one cycle. Also. if 
ABORT is held low during the Abort Interrupt sequence. the Abort Inter­
rupt w ill be aborted. It is not recommended to abort the Abort Interrupt. 
The ABORT internal latch is cleared during the second cycle of the Abort 
Interrupt. Asserting the A'§'O'R'f input atter the following instruction 
cyc les will cause registers to be modified : __ _ 
• RNd-Modify·Writ.: Processor status modified if ABORT is asserted 

after a modify CYCle. 
• RTI: Processor status will be modified if ABORT is asserted after 
~leL ___ _ __ 

• iRQ, HM •• ABORT IRK. COP: When ABORT is asserted after cycle 2. 
PBR and DBR will become 00 (Emulation mode) or PBR will become 
00 (Native mode) . 

The Abort Interrupt has been designed for virtual memory systems. For 
this reason, asynChronous ABORT's may cause undesirable resuits due 
to the above conditions. 

YDA Ind YPA Y.&I Me.....". AcIdne. Output Signa" (W65C816 
Only) 
When VDA or VPA are high and during all write cycles. the Address Bus 
is always .... alid . VDA and VPAshouJd beueed to qualify all memory cydes. 
Note that when VDA and VPA are both low. in .... alid addresses may be 
98nerated. The Page and Bank addresses could also be in .... alid. This will 
be due to low byte addition only. The cycle when only low byte addition 
occurs isan optional cycle for instructions which read memory when the 
Index Register consists of 8 bits. This optional cycle beComes astandard 
cycle for the Store instruction, all instructions using the l6-bit Index 
Register mode. and the Read-Modify·Write instruction when using 8- or 
16-bit Index Register modes. 

Apple II, lie, IIc Ind 11+ Disk Sy.lem. (W65C816 Only) 
VDA and VPAShouid not be used to qualify addresses during disk oper .. 
tion on Apple systems. Consult your Apple representative tor hardwarel 
software configurations, 

20 

DBIBA Operetlon when ROY Is Pulled Low (W65C816 Only) 
When ROY is low. the Data Bus is held in the data transfer state (i.e., $2 
high). The Bank address external transparent latch Should be latched 
when the ,,2 clock or ROY is low. 

MIX Output (W65C816 Only) 
The MI X output reflects the value of the M and X bits ot the processor 
Status Register. The REP. SEP and PlP instrUctions may Change the 
state of the M and X bits. Note that the MI X output is invalid during the 
instruction cycle following REP. SEP and PLP instruction execution. 
This cycle is used as the opcede fetCh cycle of the next instruction. 

All Opcode. Function In All Mod" 01 Operltlon 
It Should be noted that all opcodes lunction in all modes of operation. 
However. some instructions and addressing modes are intended for 
W65C816 24-bit add"",ing and are therefore less useful for the W65C802. 
The following is a tist 01 instructions and addre~ing modes whiCh are 
primarily intended for W65C816 use: 

JSL; ATL; Idl ; Id),y; JMP .,; JML; al ; al,x 

The fOllowing instructions may be used with the 'N6SC802 even thOugh 
a Bank Address is not multipklxed on the Data Bus: 

PHK; PHB; PLB 

The following instructions have " limited" use in the Emulation mode: 

• The REP and SEP instructions cannot mOdify the M and X bits when in 
the Emulation mode. In this mode the M and X bits will always be high 
(logic I). 

• When in the Emulation mode. the MVP and MVN instructions use the 
X and Y Index Registers for the memory address. Also. the '-tVP and 
MVN instructions can only move data within the memory range 0000 
(Source Bank) to OOFF (Destination Bank) for the W65C816. '~dOOOO 
10 DOFF lor the W65C802. • 

Indirect Jumpe 
The JMP (a) and JML (a) instructions use the direct Bank for indirect 
addressing, while JMP (a,x) and JSR (a. x) use the Program Bank for in­
direct address tables. 

Switching Modee 
When switChing from the Native mode to the Emulation mode. the X and 
M bits of the Status Register are set high (logic 1). the high byte of the 
Stack is set to 01 , and the high bytes of the X and Y Index Registers are 
set to 00. To save previous values. these bytes mUlt always be stored 
beforecnanging modes. Note that the low byte oftha S. X and Y Registers 
and the low and high byte of the Accumulator (A and B) are not affected 
by a mode Change. 

How Hardwlre Int ..... pta, BRK, Ind COP lnetrvctlone AnK! 
.... Progrlm Blnk Ind .... De" Blnk RegI ..... 
When in the Native mode. the Program Bank register (PBR) is cleared to 
00 when a hardware interrupt, BRK or COP is executed, In the Native 
mode, previous PBR contents Is automatically saved on Stack. 

In the Emulation mode. the paR and OBR registers a ... cleared to 00 when 
a hardware interrupt. aRK or COP is executed. In this case, previous con­
tents of the PBR are not automatically saved. 

Note that a Return from Interrupt (RlI) should always be e)(ecuted from 
the same "mode" whiCh originally generated the interrupt. 

BInar)'Mode 
The Binary mode is set whenever a hardware or software interrupt is 
executed. The 0 flag within the Status Register is cleared to zero. 

WAllnllrvc:tlon 
The WAf instruction~ls ROY low and places the processor in the WAI 
" low power" mode. NMI, iFfC" or RESET will terminate the WAI condition 
and trans'ercontrol to the interrupt handler routine. Note that an ABORT 
input will abort the WAJ instruction. but wit! not ""tart the processor. 
When the Status Register I flag is set (~disabled). the rRa interrupt 
will cause the next inltruction ~ollowing the WAI instruc1ion) to be 
executed w;thout going to the i'R'O' interr~ handler. This method re-­
suits In the highest speed response to an rRO input When an interrupt 



is received after an ABORT which Occurs during the WAI instruction, the 
processor will return to the WAI instruction. Other than ArS (highest 
priority) , ABORT is the next highest priority, followed by NMi or'ilRS 
interrupts. 

STP 'natruct'on 
The STP instruction disables the.2 clock to all circuitry. When disabled, 
(he '/)2 c lock is held in the high stale. IA this case, the Oala Bus will remain 
in Ihe data transfer state andlJ'te .aank· address will nol be multiplexed 
onto the Data Bus. Upon executing the STP instruction, the m signal is 
the only input which can realan the processor. The processor is restaned 
by enabling the '/)2 clock. which occurS on the falling edge of the RES 
input. Note that the external oscillator must bestable and oparating prop­
erly before RES goes.high. 

COPSlgnetu ... 
Signatures ()O..7F may be user defined. while signatures SG-FF are r. 
served lor instructions on future microprocessors (i.e., W65C832). Con­
tact WOC for software emulation of future microprocessor hardware 
functions. 

WDM Opcode U .. 
The WOM opcode will be used on future microprocessors. Forexample, 
the new W65C832 uses this opcede to provide 32-bit floating-point and 
other 32-bit math and data operations. Note that the W65C832 will be a 
plug-to-plug replacement forthe W65C816, and can be used where high­
speed. 32-bil math processing is required. The W65C832 will be available 
in the near future. 

RDY Pulled During Write 
The NMOS 6502 does not stop during a write operalion. In contrast, both 
the W65C02 and the W65C816 do stop during write operations. The 
W65CS02 stops during a wri te when in the Native mode. but does not 
stop when in the Emulation mode. 

woe Toolbox Sy.tem-Emuletor 
F .. tu ... 
• Real-Time emulation of the W65C802I816 and the W85C02 

• Uses an inexpensive Apple lie Computer 81 host (software proyided) 

• 18K bytes of Emulation RAM. mappable in 2K blocks 

• Optional RAM expansion to 258K 

• Optional hardware Real-Time Trace Board 

• Optional 802IS16 Emulation Pod Unit 

• Single-Step 

• 48 bit trace memory of up to 2048 machine eycl" 

• Three 4O-bit breakpoint control registers proyidlng: 
-Break on Address 
-Break on Data 
-Break on ContrOl 
-8reak on User Status 
-8reak on Nth Occurance 
-Coast Mode 

• Microsecond execution timer 

• Also aveilable in In--Circuit-Ewtuation chip or system test configuration 

Product Overview 
The Toolbox System-Emulator consista of a Main Unit and Interlace Card 
that plugs into one of the Apple Computer's expansion slots. The Main 
Unit provides all necessary logic tor breakpoinUng. single-stepping and 
mapping. In this configuration the uaer may perlorm basic debug opera­
tions or use the Toolbox In the Evaluation Mode. 

With the optional Real-Time Trace Board. the user now has 40 bits of 
trace memory wilhin a windOw of 2048 machine cycles. A optional 
Emulation RAM Expansion Board is also available which incre.,.." the 
user's emulation RAM by &4K byt" or 256K bytlPS, with memory confiOUr­
ation unJer software contrOl. 

The TOOlbo)( may be used with or without the optH)nal Pod Unit. With the 
Pod Unit. the user can p'ug into the prototype microproceuor socket for 
hardware debug. Since the Main Unit remains the same regardless of 
the microprocessor used, the user does not have to learn a new ee' of 
Toolbox commands tor each type of proceesor, 

Apple lie is a trademark of Apple Computer, Inc. 

21 

MVN .nd MVP An ... ,. on tile D.t. B.nk RegI.tw 
The MVN and MVP instructions change the Data Bank Register to the 
value of the second byte of the instruction (destination bank address). 

Interrupt PrIorIt ... 
The following interrupt priorities will be in effect should more than one 
interrupt occur at the same time: 

rn Highest Priority 
~RT 
NMI 
iJm Lowest Priority 

Tr.n.l.rs 'rom 8-BH to 18-BII, or 18-BII to 8-811 R ....... 
All transfers from one register to another will relUn in a full 16-bit output 
from the source register. The destination register sile will determine the 
number ot bits actually stored in the destination register and the values 
stored in the processor Status Register. The te>'lowing are always 16-bit 
tranafers, regardless of the accumulator siZe: 

TCS; TSC; TCO; TOC 

SlIICk Tran.ler. 
When in the Emulation mode. a 01 is forced into SH. In thil case, the 8 
Accumulator will not be loaded into SH during a TCS instruction. When 
in the Native mode, the 8 Accumulator is transferred to SH. Note that in 
both the Emulation and Native mod", the full 18 bets of the Stack Regis­
ter are transferred to the A, Band C Accumulators. regardless of the 
state of the M bit in the Status Register. 

Addltlonellntormetion 
For additional information on the W65C802I816, refer to the following 
publications.: 

Progrsmmlng th.1I5II18 
William Labiak 
SYBEX. lnc. 
2344 Sixth SI. 
Berkeley. CA 94710 

The 8502, 85C02 and 86818 H.ncIbook 
Steve Hendrix 
Weber Systems. Inc. 
8437 Mayfield Ad. 
Che.te~and. OH 404Q26 

l15li111851102 Aaembl, ung ...... Progrwnmlng 
Michael Fioher 
Osborne McGraW-Hili 
2eOO Tenth Sl 
Berkeley. CA 94710 

Prog .. mmlng lhe 1I5II18'nctudlng the 8502, 85C02, 8nd 851102 
David Ey .. and Ron Uchty 
Prentice Hall Preu 
A Diyision of Simon & Schuster. Inc. 
Gulf & Western Bldg. 
One Gun & Western Plaza 
New Vork. NV 10023 





Beta Draft 

Apple IIGs Hardware Reference 

Appendix A 

Roadmap to the Apple IIGS 
Technical Manuals 

A- I 9/16/96 



Apple ffGS Hardware Reference 

The Apple IIGS personal computer has many advanced features, 
making it more complex than earlier models of the Apple II. To 
describe it fully, Apple has produced a suite of technical manuals. 
Depending on the way you intend to use the Apple IIGS, you may 
need to refer to a select few of the manuals, or you may need to refer 
to most of them. 

The technical manuals are listed in Table A-I. Figure A-I is a 
diagram showing the relationships among the different manuals. 

Table A-I 
The Apple IIGS technical manuals 

TItI" 

Technical Introduction to the Apple IIGS 

Appk IIGS Hardware Reference 

Apple IIGS Firmware Reference 

Programmer's Introduction to the Appk nGS 

Apple IlGS Toolbox Reference: Volume 1 

Apple lIGS Toolbox Reference: Volume 2 

Apple IIGS Programmer's Workshop Reference 

Apple IIGS Workshop Assembler Reference' 

Apple lIGS Workshop C Reference' 

ProDOS 8 Reference 

Apple IIGS ProDOS 16 Reference 

Human Interface Guidelines 

Apple Numerics Manual 

-TI-lere i~ a Pocket Reference for each of these. 

Beta Draft A-2 

SubJect 

What the Apple JIGS is 

Machine internals-hardware 

Machine internals-firmware 

Concepts and a sample program 

How the tools work and some toolbox 
speCifications 

More toolbox specifications 

The development environment 

Using the APW assembler 

Using C on the Apple IIGS 

ProDOS for Apple II programs 

ProDOS and Loader for Apple JIGS 

Guidelines for the desktop interface 

Numerics for aU Apple computers 

9/76/96 



Figure A-I 
Roodmap to the technical manuals 

Beta Draft 

To start finding out 
about the Apple IIGS 

To learn how the 
Apple IIGS works ---

To stat learning to 
program the Apple IIGS 

To use the Toolbox 

To operate on nles 

To use the d .. velopment 
environmenf 

To use C 

To use assembly 
language -----

Apple fiGS Hardware Reference 

A-3 9/l6/~ 



Apple IIGS Hardware Reference 

An event·driven programwoits In 
a loop until it detects on event 
such as a click of the mouse 
button. 

Beta Draft 

Introductory manuals 
These books are introductory manuals for developers, computer 
enthusiasts, and other Apple IIGS owners who need technical 
information. As introductory manuals, their purpose is to help the 
technical reader under.;tand the features of the Apple llGS, 
particularly the features that are different from other Apple 
computer.;. Having read the introductory manuals, the reader will 
refer to specific reference manuals for details about a particular 
aspect of the Apple IIGS. . 

The technical introduction 

The Technical IntroductIOn to the Apple HeS is the fir.;t book in the 
suite of technical manuals about the Apple lIGS. It describes all . 
aspects of the Apple lIGS, including its features and general design, 
the program environments, the toolbox, and the development 
environment. 

Where the Apple Hes Owner's Guide is an introduction from the 
point of view of the user, the Technical IntroductIOn describes the 
Apple IIGS from the point of view of the program. In other words, it 
describes the things the programmer has to consider while 
designing a program, such as the operating features the program 
uses and the environment in which the program runs. 

The programmer's introduction 

When you start writing programs that use the Apple lIGS user 
interface (with windows, menus, and the mouse), the Programmer's 
IntroductIOn to the Apple lIes provides the concepts and guidelines 
you need. It is not a complete course in programming, only a 
staning point for programmers writing applications for the 
Apple IIGS. It introduces the routines in the Apple IIGS Toolbox and 
the program environment they run under. It includes a sample 
event-drlven program that demonstrates how a program uses the 
Toolbox and the operating system. 

A-4 9/ 16/96 



Beta Draft 

Apple IIGs Hardware Reference 

Machine reference manuals 
There are two reference manuals for the machine itself: the 
Apple JIGS Hardware Reference and the Apple IIGS Firmware 
Reference. These books contain detailed specifications for people 
who want to know exactly what's inside the machine. 

The hardware reference manual 
The Apple llGS Hardware Reference is required reading for 
hardware developers, and it will also be of interest to anyone else 
who wants to know how the machine works. Information for 
developers includes the mechanical and electrical specifications of . 
all connectors, both internal and external. Information of general 
interest includes descriptions of the internal hardware, which 
provide a better understanding of the machine's features. 

The firmware reference manual 
The Apple JIGS Firmware Reference describes the programs and 
subroutines that are stored in the machine's read-only memory 
(ROM), with two signincant exceptions: Applesoft BASIC and the 
toolbox, which have their own manuals. The Firmware Reference 
includes information about interrupt routines and low-level I/ O 
subroutines for the serial ports, the disk port, and for the DeskTop 
Bus interface, which controls the keyboard and the mouse. The 
Firmware Reference also describes the Monitor, a low-level 
programming and debugging aid for assembly-language programs. 

The toolbox manuals 
llke the Macintosh, the Apple IIGS has a built-in toolbox. The 
Apple JIGS Toolbox Reference, Volume 1, introduces concepts and 
tenninology and tells how to use some of the tools. It also tells how 
to write and install your own tool set. The Apple IIGS Toolbox 
Reference, Volume 2, contains information about the rest of the 
tools. 

A-5 9/16/95 



Apple fiGS Hardware Reference 

In applications that use the 
desktop user interface, 
commands appeol as options In 
pull-down menus. and material 
being worked on appears in 
rectangular areas of the screen 
called Windows. The user selects 
commands or other material by 
using the mouse to move a 
pointer around on the screen. 

Beta Drat! 

Of course, you don't have to use the toolbox at all. If you only want 
to write simple programs that don't use the mouse, or windows, or 
menus, or other parts of the desktop user interface, then you can get 
along without the toolbox. However, if you are developing an 
application that uses the desktop interface, or if you want to use the 
Super Hi-Res graphics display, you'll find the toolbox to be 
indispensable. 

The Programmer's Workshop manual 
The development environment on the Apple IlGS is the Apple IIGS 
Programmer's Workshop WW). APW is a set of programs that 
enable developers to create and debug application programs on the 
Apple IIGS. The Apple nGS Programmer's Workshop Reference 
includes information about the parts of the workshop that all 
developers will use, regardless which programming language they 
use: the shell, the editor, the linker, the debugger, and the utilities. 
The manual also tells how to write other programs, such as custom 
utilities and compilers, to run under the APW Shell. 

The APW reference manual describes the way yoo use the workshop 
to create an application and includes a sample program to show 
how this is done. 

Programming-language manuals 
Apple is currently providing a 65C816 assembler and a C compiler. 
Other compilers can be used with the workshop, provided that they 
follow the standards defined in the Apple llGS Programmer's 
Workshop Reference. 

A-6 9/16/~ 



'--

Beto Droft 

Apple IIGs Hardware Reference 

There is a separate reference manual for each programming 
language on the Apple IIGS. Each manual includes the 
specifications of the language and of the Apple IIGS libraries for the 
language, and describes how to write a program in that language. 
The manuals for the languages Apple provides are the Apple IIGS 
Workshop Assembler Reference and the Apple IIGS Workshop C 
Reference. 

Operating-system manuals 
There are two operating systems that run on the 
Apple IIGS: ProDOS 16 and ProDOS 8. Each operating system is 
described in its own manual: ProDOS 8 Refermce and Apple IIGS 
ProDOS 16 Refermce. ProOOS 16 uses the full power of the 
Apple nGS and is not compatible with earlier Apple II's. The 
ProOOS 16 manual includes information about the System Loader, 
which works closely with ProOOS 16. If you are writing programs for 
the Apple lIGS, whether as an application programmer or a system 
programmer, you are almost certain to need the ProDOS 16 
Reference. 

ProDOS 8, previously just called ProDOS, is compatible with the 
models of Apple II that use S-bit CPUs. As a developer of Apple IIGS 
programs, you need to use ProOOS 8 only if you are developing 
programs to run on S-bit Apple II's as well as on the Apple IIGS. 

All-Apple manuals 
In addition to the Apple IIGS manuals mentioned above, there are 
two manuals that apply to all Apple computers: Human Interface 
Guidelines and Apple Numerics Manual. If you develop programs 
for any Apple computer, you should know about those manuals. 

The Human Inteiface GuldJlnes manual describes Apple's standards 
for the desktop interface of programs that run on Apple computers . 
If you are writing an application for the Apple IIGS, you should be 
familiar with the contents of this manuaL 

A-7 9/ 16/% 



Apple fiGS Hardware Reference 

Beta Draft 

The Apple Numerics Manual is the reference for the Standard Apple 
Numeric Environment (SANE), a full implementation of the IEEE 
standard floating-point arithmetic. The functions of the Apple lies 
SANE tool set match those of the Macintosh SANE package and of 
the 6502 assembly language SANE software. If your application 
requires accurate arithmetic, you'll probably wam to use the SANE 
routines in the Apple lies. The Apple lIGS ToolBo:x: Reference tells 
how to use the SANE routines in your programs. The Apple 
Numerics Manual is the comprehensive reference for the SANE 
numerics routines. A description of the version of the SAl'!E 
routines for the 65C816 is available through the Apple 
Programmer's and Developer's Association, administered by the 
A.P .P.L.E. cooperative in Renton, Washington. 

<0> Note: The address of the Apple Programmer's and 
Developer's Association is 290 SW 43rd Street, Renton, WA 
98055, and the telephone number is (206) 251~548. 

Ml 9/ J6j1lS 



Beta Draft 

Apple IIGS Hardware Reference 

Appendix B 

International Keyboards 

Apple makes different versions of the Apple IIGS for different 
countries. 1he different versions have different keyboards and 
display characters that reflect the different typing conventions of 
the different countires. The ADB keyboard on the Apple IlGS is 
available in the following versions: 

• U.S.A. English 

• U.K. English 

• Canadian 

• French 

• German 

• Italian 

• Spanish 

• Swedish 

• U.S.A. Dvorak 

The keyboards on the loc.aIized versions of the Apple IIGS are all 
mechanically the same; that is, the shapes and arrangement of the 
keys are the same, only the legends are different. The character 
decodings for the different versions are all stored in the keyboard 
decoder ROM. Figures A-I through A-9 show the legends on the 
different keyboards. 

8-1 9/17/86 



Apple IIGS Hardware Reference 

Figure A-l 
U.S.A. English keyboard 

CO 
.sc clear / • 
tab 7 8 9 + 

4 5 6 

sh~ 2 J 

caps 
t lock 0 .-

Figure A-2 
U.K. English keyboard 

CO 
esc clear ,. / • 

tab 7 9 9 + 

4 5 6 

shrt 2 J 

caps t 0 lock .rter 

8eta Draff 8-2 9/17/86 



Apple IIGS Hardware Reference 

Figure A-3 
Canadian keyboard 

[D 
'ai' esc clear . I • 

Illb 7 B 9 + 

4 5' 5 

shit 2 3 

caps 
t lock 0 .rter 

Figura A-4 
French keyboard 

[D 
esc !XI I • 

"""'" 7 8 9 + 

4 5 5 

0 2 3 

~ t 0 ><' 

Beta Draft 8-3 9/77/86 



Apple IIGS Hardware Referenc e 

Figure A-5 
Germa n keyboard 

.sc 

-->-! 

-0 

~ 

Flgur .. A-6 
Italian keyboard 

qSC J: I~ F 
~ a z 

[LJ 

I; I~ 
E IR IT 

I: 

control A 5 10 IF IG 

-0 Iw Ix Ie Iv 
~ 1"lioJ~ :ltl: I 

Beta Draft 

17) I: I: I ~ 
Iv U I 0 

IH L K IL 

6 N I ~ L I~ . 
§ 

8-4 

tlQ I • 
7 8 9 + 

4 S 6 

2 3 

t 0 ,.. 

I=- I: IdO~ !Xl . I • 
A • 

p I I 7 8 9 + 

M I~ ~ 4 5 6 -

H I -0 , 2 3 

+-- -+ + t o · • ~ 

9/ 17/86 



Apple IlGs Hardware Referenc e 

Figure A-J 
Spanish keyboard 

@::J 

esc txl I • 
~ 7 8 9 + 

4 S 6 

0 2 J 

jf t 0 '"'" 

Figure A-8 
Swedish keyboard 

@::J 

esc txl • I • 
~ 7 8 9 + 

4 S 6 

0 2 J 

0 t 0 Q 

'"'" 

Beta Draft 8-5 9/ 17/&5 



Apple IIGS Hardware Reference 

Figure A-9 
U.S.A . Dvorak keyboard 

[LJ 
esc ~~ar - I • 
tab 7 8 9 + 

1 5 6 

shit 2 3 

caps 
t lock 0 .It ... 

Beta Draft 8-6 9/17/&5 



Figure C-l 
Uppercase characters 

Appendix C 

Character Generator 

This appendix describes the hardware character generator for the 40-
column and SO-column text displays. For information about text fonts in 
Super Hi-Res displays, refer to the QuickDraw II tool set in Apple JIgs 
Toolbox Reference, Volume 1. 

Character Generator ROM 
TIle ROM contains the dO! patterns making up the characters in the 40-
column and SO-column displays. 

u.s. Characters 
Figures Col, C-2. C-3 show the characters for the U.S. versions of the 
computer. 

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[ \ ]A 

Figure C-2 
Lowercase characters 

. ab c d e f g h i j k 1 rn n 0 p q r stu v w x y z { I } -

Figure C-3 
Special characters 

! " # $ % & I ( ) * +, - . 1 .01234567 89 ; < = > ? 

Beta Draft C-I 9/12/86 



Appie figs Hardware Reference 

BeIoDroft 

Intemational characters 

For other countries, localized versions of the Apple Ugs substitute 
appropriate characters for some of the special characters used in the text 
displays. Figure C-4 shows those characters. 

Figure C-' 
Intema1lonal charcx:tecs 

Language Equt¥alent ehalac1 .. 

U.S.A. English # @ [ \ 1 { } 

U.K. English £ @ [ \ 1 { } 

French £ a " <; § e 11 e 
Danish # @ 0 A 0 a 
Spanish £ § N l " n <; 
Italian £ § " <; e u a 6 e i 
German # § A () (j a 0 li ~ 
Swedish # @ A () A a 0 a 

., 

MouseText characters 
The characrer ROM includes several graphic characters used in 
displaying the desktop user inlerl'ace in text mode. Figure CoS shows 
those characters. 

C-2 9/12/86 

-" 



AppendIx C; Character Generator 

Figure C-S 
Mouse Text characters 

@ A B c o E F G 

H J K L M N o 

p Q R s T u v w 

II 
x y z \ 1\ 

Beta Draft 9/12/86 



Apple I/gs Hardware Reference 

Beta Draft C-4 9/12/86 



, 

· • .. · 
'0" . , 
, IF.l' ' 
"1'4 · · · · · · " ':' 

.. . . i ! i , ! 

1 
- ; 

• -0" o • 

- ; , 
. , 

I 
~' 

,~.~ .. i ________________________ 1 
• ! . 

.. -' .. 

~ 



' fFWl 

~ II 

III i 
, 

;'" ""~ ~ 

'" > ~ ~ 

In n r~ II 
11 [l ~ 

I L- • . 
l&r ~~; I i~; 1 I . " f: " i :; I 

! ! E ~; 

~ ~ 
, I , 

b ; r " 0 I "'" H " 

il~ W 



~0· " - ~ ~ . -- " 

. , . 
;; ! 
~ ~ ~ 





· , , . 
! 



':!~ ,-
§ jl 

~ ~~~~ i ~ 
j j j mj; ~ § l 
" Ii i • " ~H;~ ~ 
§ ~ ~ ~ §; ~§ ,. i iiii i i ~i 

; 
§ " ww 
u j l s~ !~W ~~ §, ! ! 
< ~ ~ ; ~ ~ ~~~~ i i ~~ i • < 
u 

i ~ • ~ ; j ; j 5 , 
i ~ < •• • • '. a ' . I ! , 

Iii . - , - .- , - , -
~r"1~ ~ t-=------l~ ~ f--=-! ~-t> ; f--=-! ~-'L...{> (Yf-o--l> ~~~ ;~ '.= -I~ 

L--1' 

~i ; 
I; -@! 

I -

~ ; i ! I, 
I 
I 

I 
I , 







Appendix E 

Conversion Tables 

Beta Draft E-l 9/10/86 



Apple JiGS Hardware Reference 

Beta Draft 

This appendix briefly discusses bits and bytes and what they can 
represent, and peripheral identification numbers. II also contains 
conversion tables for hexadecimal to decimal and negative 
decimal, and a number of 8-bit codes. 

These tables are intended for convenient reference. This appendix 
is not intended as a tutorial for the matcrials discussed. The brief 
section introductions are for orientation only. 

E.l Bits and bytes 
This section disOJsses the rclationships between bit valucs and their 
position within a byte. Here are some rules of thumb regarding the 
65C816, 

• A bit is a binary digit; it can be either a 0 or a 1. 

• A bit can be used to represent any two-way choice. Some 
choices that a bit can represent in the Apple IIGS are listed in 
Table E-1 . 

• Bits can also be combined in groups of any size to represent 
numbers. Most of the commonly used sizes are multiples of 
four bits. 

• Four bits comprise a nibble (sometimes speUed nybble). 

• One rubble can represent any of 16 values. Each of these 
values is assigned a number from 0 through 9 and 
A through F. 

• Eight bits (two nibbles) make a byte (figure E- 1). 

• One byte can represent any of 16 x 16 or 256 values. Thc value 
can be specified by exactly two hexadecimal digits. 

• Bits within a byte are numbered from bit 0 on the right to bit 7 
on the left. 

• The bit number is the same as the power of 2 that it represents, 
in a manner completely analogous to the digits in a decimal 
number. 

• Each memory location in the Apple IIGS contains one 8-bit 
byte of data. 

E-2 9/70/86 



Beta Draft 

Appendix E: Conversion Tables 

• How byte values are interpreted depends on whether the byte 
is an instruction in a language, part or all of an address, an 
ASCll code, or some other form of data. Tables E-5 
through E-8 list some of the ways bytes are commonly 
interpreted. 

-
• Two byteS make a word. The 16 bits of a word can represent 

anyone of 256 x 256, or 65536, different values. 

• 1llree bytes make an address. The 24 bits of an address can 
represent anyone of 256 x 65536, or 16,777,216, diffe rent 
values. 

• The 65C816 uses a 24-bit adress to identify a memory location. 
It can therefore distinguish among 16,m,216 (l6M) locations 
at any given time. 

• A memory location is one byte of a 256-byte page . The low­
order byte of an address specifies the location in the page. 
The middle byte specifies the memory page in a 65536-byte 
(64K) memory bank. The high-order byte specifies which 64K 
memory bank the byte is in. 

Table E-l 
What a bit can represent 

Con"'''' Repr • .."flng 0- 1-

Binary number Place value 0 I x that power of 2 
Logic Condition False True 

Any switch Position Off On 
Any switch Position Clear> Set 

Serial transfer Beginning Start Carrier (no 
information yet) 

Serial transfer DaIa o value 1 value 
Serial transfer Parity SPACE MARK 
Seria I transfer Fa! Stop bites) 
Serial transfer Communication BREAK Carrier 

state 

P reg. bitN Neg. result? No Yes 
P reg. bit V OverlJ.ow? No Yes 
P reg. bit B BRK command? No Yes 
P reg. bit D Decimal mode? No Yes 
P reg. bit I IRQ interrupts Enabled Disabled (masked 

out) 
P reg. bit Z Zero result? No Yes 
P reg. bit C Carry required? No Yes 

9/70/86 



Apple IIGS Hardware Reference 

• Sometimes ambiguously termed reset. 

Figure E-! 
Bits. nibbles. and bytes 

BInary Hex Dee BInary Hex Dec 

ro:tJ $0 0 1000 $8 8 
0001 $1 I 1001 $9 9 
0010 $2 2 1010 $A 10 
0011 $3 3 1011 $B 11 
0100 $4 4 1100 $C 12 
0101 $5 5 1101 $0 13 
0110 $6 6 1110 $E 14 
0111 $7 7 1111 $F 15 

E.2 Hexadecimal and decimal 
Use Table E-2 ror conversion of hexadecimal and decimal 
numbers. 

Table E-2 
Hexadecimal/Decimal conversion -
DIgIt $lIIXlO $QxIIl $OQxO $00lX 

F 61440 3840 240 15 
E 57344 3584 224 14 
0 53248 3328 nl 13 
C 49152 YJ72 192 12 
B 45056 2816 176 11 
A ~ 2:ffl Ito 10 
9 ~ 2304 144 9 
8 32768 <D48 128 8 
7 28672 1792 112 7 
6 24576 1536 % 6 
5 ;D4OO 128) 8J 5 
4 16384 1024 64 4 
3 122ffi ;ffl 48 3 
2 8192 512 32 2 
1 40% 2S6 16 1 

To convert a hexadecimal number to a decimal number, find the 
decimal numbers corresponding to the positions. of each 
hexadecimal digit. Write them down and add them up. 

Examples: 

Beta Draft 9/10/86 



Beta Draft 

Appendix E: Conversion Tables 

S3C ? SFD47 ? 

S30 4 8 SFOOO 6 111 4 0 

soc 12 S DOO ~ 3328 
S 40 ~ 64 
S 7 = 7 

S]C = 60 

$ f D47 = 648 ]9 

To convert a decimal number to hexadecimal, subtract from the 
decimal number the largest decimal entry in the table that is less 
than it. Write down the hexadecimal digit (noting its place value) 
also. Now subtract the largest decimal number in the table that is 
less than the decimal remainder, and write down the next 
hexadecimal digit. Continue until you have 0 left. Add up the 
hexadecimal numbers. 

Example: 

16215 :::< S ? 

1 62 15 - 122 88 .. 3927 12289 "" $ 7000 3927 -

3840 8 7 3840 = $ FOO 8 7 -
8 0 = --, 80 = 5 50 

7 7 = S 7 

162 15 $7F 57 

E.3 Hexadecimal and negative decimal 
If a number is larger than decimal 32767, Applesoft BASIC allows 
you to use the negative-decimal equivalent of the number. 
Table E-3 is set up to make it easy for you to convert a hexadecimal 
number directly to a negative-decimal number. 

Table E-3 
Hexodedrnal to negaltve dedmal conversion 

~ $lIIXIl $$0><00 $$00.0 $$(IX)x 

0 0 0 -1 

E -40% -256 -16 -2 
D -8192 -512 -32 -3 
C -12288 -768 -48 -4 
B -16384 -1024 -64 -5 
A -20480 -128) .a; .() 

9 -24576 -1536 -<;6 -7 
8 -2a6n -1792 -112 -8 

9/70/86 



Apple JIGS Hardware Reference 

Beta Draft 

7 -2048 -128 -9 
6 -2304 -144 -10 
5 -2560 -160 -II 
4 -2816 -176 -12 
3 -30n -192 -13 
2 -3328 -alS -14 
I -3584 -224 -15 
0 -3840 -240 -16 

To perform this conversion, write down the four decimal numbers 
corresponding to the four hexadecimal digits (Os included). Then 
add their values (ignoring their signs for a moment). The resulting 
number, with a minus sign in front of it, is the desired negative­
decimal number. 

Example: 

sea 10 = - ? 

$COOO: - 122 88 $ 000: - 3840 $ 10: 

16 

SCO IO -1 636 8 

224 S 0 : 

To convert a negative-decimal number directly to a positive­
decimal number, add it to 65536. (This addition ends up looking 
like subtraction.) 

Example: 

-151 - + ? 

655 36 + (-151) : 65536 - 15 1 : 6538 5 

To convert a negative-dedmal number to a hexadecimal number, 
first convert it to a positive-decimal number, then use Table E-2. 

E.4 Peripheral identification numbers 
Many Apple products now use peripheral identification numbers 
(called PIN numbers) as shorthand to designate serial device 
characteristics. The Apple II series Universal Utilities disk presenL' 
a menu from which to select the characteristics of, say, a printer or 
modem From the selections made, it generates a PIN for the user. 
Other products have a ready-made PIN that the user can simply type 
in. 

Table E-4 is a definition of the PIN number digits. When 
communication mode is selected, the seventh digit is ignored. 

9/70/86 



Table E-4 
PIN numbers 

x 

1 - Printer mode 

x x 

2 = Communication mode· 

1 - 6 data bits, 1 stop bit 
2 - 6 data bits, 2 stop bits 
3 = 7 data bits, 1 stop bit 
4 = 7 data bits, 2 stop bits 
5 = 8 data bits, 1 stop bit 
6 = 8 data bits, 2 stop bits 

1 - 110 bits per second 
2 = 300 bits per second 
3 - 1200 bits per second 
4 - 2400 bits per second 
5 - 4800 bits per second 
6 = 9600 bits per second 
7 - 19200 bits per second 

1 = No parity 
2 = Even parity (total on = even) 
3 = Odd parity (total on = odd) 
4 = MARK parity (parity bit = 1) 
5 = SPACE parity (parity bit - 0) 

1 = Do not echo output on screen 
2 = Echo output on screen 

1 = Do not generate LF after CR 
2 = Generate LF after CR 

1 = Do not generate CR' 

Beta Dratt 

Example: 252/1111 means: 

Communication mode 

8 data bits, 1 stop bit 

300 baud (bits per second) 

/ x x x x 

E-7 

Appendix E: Conversion Tobles 

No parity 

Do not echo output to display 

No line feed after carriage return 
Do not generate carriage returns 

9/ 10/86 



Apple IlGs Hardware Reference 

2 ~ Generate CR after 40 characters 
3 ~ Generate CR after 72 characters 
fJ ~ Generate CR after 80 characters 
5 ~ Generate CR after 132 characters 

• If you select communication mode, then seventh digit must equal 1. This value is supplied 
automatically when you use the UUD. 

Beta Draft 

E.S Eight-Bit code conversions 
Tables E-5 through E-8 show the entire ASCII character set. Note 
that character values are shown with the high bit off. Unless 
otherwise noted, all ASCII character values above $7F (127 decimal) 
generate the same character as that value with the high bit off. Here 
is how to interpret these tables, 

• The Binary column has the S.bit code for each ASCIl character. 

• The first 128 ASCII entries represent 7-bit ASCIl codes plus a 
high-order bit of 0 (SPACE parity or Pascal)-for example, 
01001000 for the letter E. 

• The last 128 ASCII entries (from 128 through 255) represent 7-bit 
ASCII codes plus a high-order bit of 1 (MARK parity or 
BASIC}-for example, 11001000 for the letter E. 

• A transmitted or received ASCII character will take whichever 
form (in the communication register) is appropriate if odd or 
even parity is selected-for example, 11001000 for an odd-parity 
H, 01001000 for an even-parity E. 

• The ASCII Char column gives the ASCII character name. 

• The Interpretation column spells out the meaning of special 
symbols and abbreviations, where necessary. 

• The What to Type column indicates what keystrokes generate the 
ASCII character (where it is not obviOUS). 

• The columns marked Prl and Aft indicate what displayed 
character results from each code when using the primary or 
alternate display character sel, respectively. Boldface is used for 
inverse characters; italic is used for flashing characters. 

Note that the values $40 through $5F (and $CO through $DF) in 
the alternate character set are displayed as MouseText characters 
(Figure 5-1) if the firmware is set to do so (Section 5.2.2), or if 
the firmware is bypassed . 

• > Note: The primary and alternate displayed character sets in 
Tables E-5 through E-8 are the result of firmware mapping. The 

9/10/86 



Appendix E: Conversion Tables 

character ge nerator ROM actually contains only one character 
set. The firmware mapping procedure is des cribed in 
Section 3.3 .6 . 

Tobie E-S 
Control characters, high bit off 

ASCI 

Binary Dec Hex CIlCII' Interprelatlon Whot to Type PIt Alt 

00000oo 0 $00 l'I1JL Blank Cnull) Control-@ ~ ® 
00<XXl01 1 $01 SOH Start of Header Control-A A A 
00<XXl1O 2 $02 SIX Start of Text Control-B B B 
00<XXl 11 3 $03 E1X End of Text Control-C C C 
0000100 4 $04 EOT End of Transm. Control-D D D 
0000101 5 $05 ENQ Enquiry Control-E E E 
0000110 6 $06 ACK Acknowledge Control-F F F 
000011 1 7 $07 BEL Bell Co.ntrol-G G G 
0001000 8 $08 BS Backspace Control-H or Left-Arrow-H H H 
0001001 9 $09 HT Horizontal Tab Control-! or Tab I I 
0001010 10 $OA Il' UneFeed Control-] or Down-Arrow-] J J 
0001011 11 $OB vr Vertical Tab Control-K or Up-Arrow K K 
0001100 12 $DC FF Form Feed Control-L L L 
00011 01 13 $00 CR Carriage Return Control-M or Return M M 

0001110 14 $OE SO Shift Out Control-N N N 
0001111 15 $OF SI Shift In Control-O 0 0 
0010000 16 $10 DLE Data unk Escape Control-P P P 
0010001 17 $11 DC1 Device Control 1 Control-Q Q Q 
0010010 18 $12 DC2 Device Control 2 Control-R R R 
0010011 19 $13 DC3 Device Control 3 Control-S S S 
DOlO I DO 20 $14 DC4 Device Control 4 Control-T T T 
D010101 21 $15 NAK Neg. Acknowledge Control-U or Right-Arrow U U 
DOI0110 22 $16 SYN Synchronization Control-V V V 
0010111 23 $17 ETB End of Text Blk. Control-W W W 
D011000 24 $18 CAN Can<EI Control-X X X 
DO 11001 25 $19 EM End of Medium Control-Y Y Y 
D011010 26 $lA SUB Substitute Control-Z Z Z 
D011011 Z7 $lB ESC Escape Control-! or Escape [ [ 
D011100 28 $1C FS File Separator Control-\ \ \ 
D011101 29 $ID GS Group Separator Control-] 1 1 
DOll 110 ~ SIE ~ Record Separator Control-/\ /\ /\ 

DO 11111 31 SlF lS Unit Separator Control-_ 

Tobie E-6 
Special Characters , high bit off 

Beta Draft E-9 9/10/86 



Apple IIGS Hardware Reference 

ASCI 
Binary Oec He. c.... Interprelalton What to Type PIt AIt 

0100000 32 $20 SP 5pKe Space bar 
0100001 33 $21 
0100010 34 $22 " 
0100011 35 $23 " # # 
0100100 36 $24 $ $ $ 
0100101 37 525 % % % 
0100110 38 $26 & Be Be 
0100111 Y) $27 Apostrophe 
0101000 40 528 ( ( ( 
0101001 41 $29 ) ) ) 
0101010 42 52A • • 
0101011 43 $ZB + + + 
0101100 44 $2C Ccmma 
0101101 45 $20 HyJful 
0101110 46 $2E Period 
0101111 47 $2F / / / 
0110000 48 $30 0 0 0 
0110001 49 $31 I 1 1 -
0110010 50 $32 2 2 2 
0110011 51 $33 3 3 3 
0110100 52 $34 4 4 4 
0110101 53 $35 5 S S 
0110110 54 $36 6 6 6 
0110111 55 537 7 7 7 
0111000 56 $38 8 8 8 
0111001 57 539 9 9 9 
0 111010 58 53A 
0111011 59 53B 
0 111100 00 $3C < < < 
0111101 61 $3D 
0111110 62 53E > > > 
0111111 63 $3F ? ? ? 

Table E-J 
Uppercase characters. high b~ off 

ASCI 
Binary Dec He. c.... tnterpretatlon Whalto Type PrI All" 

1000000 64 $40 @ @ 

1000001 65 $41 A A 

1000010 66 $42 B B 
1000011 67 $43 C C 

Beta Draft 9/10/86 



Appendix E: Conversion Tables 

1000100 68 $44 D D 
1000101 (f;) S45 E E 
1000110 70 $46 F F 
1000111 71 $47 G G 
1001000 72 $48 H H 
1001001 73 $49 [ I 
1001010 74 S4A J J 
10010 11 75 $4B K K 
100]]00 76 $4C L L 
1001101 77 $40 M M 
1001 110 78 $4E N N 
1001111 79 $4F 0 0 
1010000 00 $50 P P 
1010001 81 $51 Q Q 
1010010 82 $52 R R 
1010011 83 $53 S S 
1010100 84 $54 T T 
1010101 85 $55 U U 
1010110 as $56 V V 
10101]] 87 $57 W W 
1011000 88 $58 X X 
1011001 89 S59 y y 

1011010 ~ SSA z Z 
1011011 91 S5B [ Opening bracket f 
1011100 92 $5<: \ Reverse slant \ 
1011101 93 $5D 1 Closing bracket I 
1011110 94 S5E A Caret A 

10111 11 95 S5F Underline 

• If the high bit is se~ the MouseText characters are replaced with their equivalent in the primary 
character set with that value. 

Tabl .. E-6 
Lowercase characters, high bit off 

ASCI 

Binary Dec: Hex au Interpretation WhattaT~ PIt All 

1100000 % $60 Grave accent 
1100001 ':J7 $61 a ! a 
1100010 ~ . $62 b b 
1100011 99 $63 c " c 
1100100 100 $64 d $ d 
1100101 101 $65 e % e 
1100110 102 $66 f & f 
1100111 103 $67 g g 
1101000 104 S68 h ( h 

BefaDraff £-11 9/70/86 



Apple IIGS Hardware Reference 

1101001 lOS $69 ) I 
1101010 106 $6A j • I 
1101011 107 $6B k .. k 
1101100 108 $6C I I 
1101101 109 $6D m m 
1101110 110 $6E n n 
1101111 111 $6F 0 / 0 

1110000 112 $70 P 0 P 
1110001 113 $71 q 1 q 
1110010 114 $n 2 r 
1110011 115 $73 s 3 s 
1110100 116 $74 4 t 
1110101 117 $75 u 5 u 
1110110 118 $76 v 6 v 
1110111 119 $77 w 7 w 

1111000 120 $78 x 8 x 
1111001 121 $79 y 9 Y 
1111010 122 $7A z z 
1111011 123 $7B Opening brace { 
1111100 124 $7C I Vertical line < I 
1111101 125 $70 } Closing brace ) 

1111110 126 $7E Overline (tilde) > 

1111111 127 $7F DEL De1ete/rubout ? DE 

L 

BefaDratt E-12 9/10/86 



Beta Drart 

Appendix F 

Frequently Used Tables 

This appendix contains frequently-used tables from throughout the 
manual. 

F-l . 9/17/86 



Apple IIg5 Hardware Reference 

Beta Draft F-2 9/77/86 



Glossary 

Glossary 

This glossary defmes technical terms used in this book. Boldfaced terms within a 
definition are also defined in the glossary. 

accumulator: The register in a computer's central processor or microprocessor where 
most computations are performed. 

ACIA: Acronym for Asynchronous Communications Interface Adapter, a type of 
communications IC used in some Apple computers. See SCC. 

acronym: A word formed from the initial letters of a name or phrase, such as ROM 
(from read--{)nly memory J. 

ADC: See analog-to-digital converter. 

address: A number that specifies the location of a single byte of memory. Addresses 
can be given as decimal integers or as hexadecimal integers. A 64K system has addresses 
ranging from 0 to 65535 (in decimal) or from $0000 to $FFFF (in hexadecimal). The letter 
X in an address stands for all possible values for that digit. For example; $Oxxx means all 
the addresses from $0000 through $OFFF. 

American Simplified Keyboard: See Dvorak keyboard. 

American Standard Code ror Inrormation Interchange: See ASCII. 

analog: (adj) Varying smoothly and continuously over a range, rather than changing in 
discrete jumps. For example, a conventional 12-hour clock face is an analog device that 
shows the time of day by the continuously changing position of the clock's hands. 
Compare digital. 

analog RGB: A type of color video monitor that accepts separate analog signals for the 
red, green, and blue color primaries. The intensity of each primary can vary continuously, 
making possible many shades and tints of color. 

analog signal: A signal that varies continuously over time, rather than being sent and 
received in discrete intervals. Compare digital signal. 

analog-ta-digital converter (ADC): A device that converts quantities from analog to 
digital form. For example, computer hand controls convert the position of the control dial 
(an analog quantity) into a discrete number (a digital quantity) that changes stepwise even 
when the dial is turned smoothly. 

Apple key: A modifier key on the Apple lIas lceyboard, marlced with both an Apple 
icon and a spinner, the icon used on the equivalent key on some Macintosh keyboards. See 
Open Apple. 

AppleTalk : Apple's local· area network for Apple II and Macintosh and the LaserWriter 
and IrnageWriter II. Like the MaCintosh, the Apple lIas has the AppleTalk interface built 
in. 

Beta Drcift gl·1 9115186 



Apple lles Hardware Reference 

AppleTalk connector: A piece of equipment, consisting of a connection box, a short 
cable, and an 8-pin miniature DIN connector, that enables a Apple IIGS to be pan of an 
AppleTalk network. 

Apple II: A family of computers, including the original Apple II, the Apple II Plus, the 
Apple lIe, the Apple rIc, and the Apple rIGS. 

Apple lIe: A transportable personal computer in the Apple II family , with a disk drive 
and 8<H:olumn display capability built in. 

Apple lIe: . A personal computer in the Apple II family with seven expansion slots and an 
auxiliary memory slot that allow the user to enhance the computer's capabilities with 
peripheral and auxiliary cards. 

Apple lIe 8O-Column Text Card: A peripheral card that plugs into the Apple lIe's 
auxiliary memory slot and enables the computer to display text as either 40 or 80 characters 
per line. 

Apple lIe Extended 8O-Column Text Card: A peripheral card that plugs into the 
Apple lIe's auxiliary memory slot and enables the computer to display text as either 40 or 
80 characters per line while extending the computer's memory capacity by 64K. 

Apple II Plus: A personal computer in the Apple II family with expansion slots that 
allow the user to enhance the computer's capabilities with peripheral and auxiliary cards. 

ASCII: Acronym for American Standard Code for Information Interchange, pronounced 
ASK-ee. A code in which the numbers from 0 to 127 stand for text characters. ASCII 
code is used for representing text inside a computer and for transmitting text between 
computers or between a computer and a peripheral device. 

aspect ratio: The ratio of an image' s width to its height. For example, a standard video 
display has an aspect ratio of 4:3. 

asynchronous: Not synchronized by a mutual timing signal or clock. Compare 
synchronous. 

Asynchronous Communications Interface Adapter: See ACIA. 

auxiliary slot: The special expansion slot inside the Apple lIe used for the Apple lIe 
80-Column Text Card or Extended 8O-Column Text Card, and also for the RGB 
monitor card. The slot is labeled AUX. CONNECTOR on the circuit board. 

back panel: The rear surface of the computer, which includes the power swi tch, the 
power connector, and connectors for peripheral devices. 

baud: A unit of data transmission speed: the number of discrete signal state changes per 
second. Often, but not always, equivalent to bits per second. Compare bit rate. 

bit: A contraction of binary digit. The smallest unit of information that a computer can 
hold. The value of a bit (lor 0) represents a simple two-way choice, such as yes or no, 
on or off, positive or negative, something or nothing. 

BeraDraft gl-2 9115186 



'-

Glossary 

bit image: A collection of bits in memory that have a rectilinear graphical representation. 
The display on the screen is a visible bit image. 

bitmap: A set of bits that represents the positions and states of a corresponding set of 
items; for example, dots in an image. See bit image. 

bit rate: The speed at which bits are transmitted, usually expressed as bits per second, or 
bps. Compare baud. 

block va device: A type of device that reads or writes information in organized groups 
called blocks, which are typically 512 bytes long. A disk drive is a block device. 

boot: Another way to say start up. A computer boots by loading a program into 
memory from an external storage medium such as a disk. Boot is short for bootstrap load, 
a term suggestive of the difficulty of initial loading of loader programs into early computers 
that didn't have built-in fmnware in ROM. 

bootstrap: See boot. 

buffer: A holding area in the computer's memory where information can be stored by 
one program or device and then read at a different rate by another; for example, a print 
buffer. 

bus: A group of wires or circuits that transmit related information from one part of a 
computer system to another. In a network, a line of cable with connectors linking devices 
together. A bus network has a beginning and an end. (It's not in a closed circle or T 
shape.) 

byte: A unit of measure of computer data or memory, consisting of a fixed number of 
bits. On Apple II systems, one byte consists of eight bits, and a byte can have any value 
between 0 and 255. The value can represent an instruction, letter, number, punctuation 
mark, or other character. See also kilobyte, megabyte. 

carriage return: An ASCII character (decimal 13) that ordinarily causes a printer or 
display device to place the next character on the left margin. 

carry flag: A status bit in the microprocessor, used as an additional high-<Jrder bit with 
the accumulator bits in addition, subtraction, rotation, and shift operations. 

cathode-ray tube: A display device. 

central processing unit (CPU): The part of the computer that performs the actual 
computations in machine language. See microprocessor. 

character: Any symbol that has a widely understood meaning and thus can convey 
information. Some characters-such as letters, numbers, and punctuation--can be 
displayed on the monitor screen and printed on a printer. 

chip: See integrated circuit. 

circuit board: A board containing embedded circuits and an attached collection of 
integrated circuits (chips). 

Beta Draft gl-3 9/15/86 



Apple ffGS Hardware Reference 

clock chip: A special chip in which parameter RAM and the current setting for the date 
and time are stored. This chip is powered by a banery when the system is off, thus 
preserving the information. 

CMOS: Abbreviation for complementary metal oxide silicon, one of several methods of 
maldng integrated circuits out of silicon. CMOS devices are characterized by their low 
power consumption. CMOS techniques are derived from MOS techniques. 

code: (1) A number or symbol used to represent some piece of information. (2) The 
staternen ts or instructions that make up a program. 

column: A venical arrangement of graphics points or character positions on the display. 

component: A part; in particular, a part of a computer system. 

composite video: A video signal that includes both display information and the 
synchronization (and other) signals needed to display it. See NTSC, RGB monitor. 

computer: An electronic device that performs predefined (programmed) computations at 
high speed and with great accuracy. A machine that is used to store, transfer, and 
transform information. 

computer language: See programming language. 

configuration: (1) The total combination and arrangement of hardware 
components-CPU, video display device, keyboard, and peripheral devices-that make up 
a computer system. (2) The software senings that allow various hardware components of a 
computer system to communicate with each other. 

Control key: A specific modifier key on Apple II-family keyboards that produces 
control characters when used in combination with other keys. 

control registers: Special registers that programs can read and write, similar to soft 
switches. The control registers are specific locations in the I/O space ($Cxxx) in bank 
$EO; they are accessible from bank $00 if I/O shadowing is on. 

controller card: A peripheral card that connects a device such as a printer or disk drive 
to a computer's main logic board and controls the operation of the device. 

CPU: See central processing unit. 

cursor: A symbol displayed on the screen marking where the user's next action will take 
effect or where the next character typed from the keyboard will appear. 

DAC: See digital-to-analog converter. 

data: information transferred to or from or stored in a computer or other mechanical 
communications or storage device. 

data bits: The bits in a communication transfer that contain information. Compare start 
bit, stop bit. 

Beta Draft gl4 9115186 



Glossary 

data format: The form in which data is stored, manipulated, or transferred. For 
example, when data is transmitted and received serially, it typically has a data format of ont! 
start bit, five to eight data bits, an optional parity bit, and one or two stop bits. 

Data Carrier Detect (DCD): A signal from a DCE (such as a modem) to a DTE (such 
as an Apple TIc) indicating that a communication connection has been established. See 
Data Communication Equipment, Data Terminal Equipment. 

Data Communication Equipment (DCE): As defined by the RS-232-C standard, 
any device that transmits or receives information. Usually this device is a modem. 

Data Set Ready (DSR): A signal from a DCE to a DTE indicating that the DCE has 
established a connection. See Data Communication Equipment, Data Terminal 
Equipment. 

Data Terminal Equipment (DTE): As defined by the RS-232-C standard, any device 
that generates or absorbs information, thus acting as an endpoint of a communication 
connection. A computer might serve as a DTE. 

Data Terminal Ready (DTR): A signal from a DTE to a DCE indicating a readiness to 
transmit or receive data. See Data Communication Equipment, Data Terminal 
Equipment. 

DCD: See Data Carrier Detect. 

DCE: See Data Communication Equipment. 

Delete key: A key on the upper-right comer of the Apple TIe, Apple IIc, and 
Apple lIas keyboards that erases the character immediately preceding (to the left of) the 
cursor. Similar to the Macintosh Backspace key. 

digital: (adj) Represented in a discrete (noncontinuous) form, such as numerical digits or 
integers. For example, contemporary digital clocks show the time as a digital display (such 
as 2:57) instead of using the positions of \I pair of hands on a clock face. Compare 
analog. 

digital oscillator chip: an integrated circuit that contains thiny-two digital oscillators, 
each of which can generate a sound from stored digital waveform data. 

digital signal: A signal that is sent and received in discrete intervals. A signal that does 
not vary continuously over time. Compare analog signal. 

digital-to-analog converter: A device that converts quantities from digital to analog 
form. 

DIN: Abbreviation for Deutsche Industrie Normal, a European standards organization. 

DIN connector: A type of connector with multiple pins inside a round outer shield. 

8eraDrajt gl-5 9/15/86 



Apple lles Hardware Reference 

direct page: A page (256 bytes) of memory in the Apple lIGS that works like the zero 
page in a 6502 system but can reside anywhere in bank $00, rather than always starting at 
location $0000. Co-resident programs or routines can have their own direct pages at 
different locations. 

disk controller card: A peripheral card that provides the connection between one or 
two disk drives and the computer. (This connection, or interface, is built into the Apple 
lIc, the Apple IIGS, and all Macintosh-family computers. ) 

Disk II drive: An older type of disk drive made and sold by Apple Computer for use 
with the Apple II, II Plus, and lie. It uses 5.25- inch floppy disks. 

display: ( I) A general tenn to describe what you see on the screen of your display device 
when you 're using a computer. (2) Shon for a display device. 

display device: A device that displays information, such as a television set or video 
monitor. 

dithering: A technique for alternating the values of adjacent pixels to create the effect of 
intennediate values. Dithering can give the effect of shades of gray on a black-and-white 
display, or more colors on a color display. 

DOC: See digital oscillator chip. 

DSR: See Data Set Ready. 

DTE: See Data Terminal Equipment. 

DTR: See Data Terminal Ready. 

Dvorak keyboard: An alternate keyboard layout, also known as the American 
Simplified Keyboard, which increases typing speed because the keys most often used are 
in the positions easiest' to reach. Compare QWERTY keyboard. 

e flag: One of three flag bits in the 65C816 processor that programs use to control the 
processor' s operating modes. The setting of the e flag detennines whether the processor is 
in native mode or emulation mode. See m flag, x flag. 

effective address: In machine- language programming, the address of the memory 
location on which a particular instruction operates, which may be arrived at by indexed 
addressing or some other addressing method 

8-bit Apple II: Another way of saying standard Apple II, that is, any Apple II with an 
8-bit microprocessor (6502 or 65C02). 

8kolumn text card: A peripheral card that allows the Apple II, Apple II Plus, and 
Apple lIe to display text in 80 columns (in addition to the standard 40 columns). 

emulate: To operate in a way identical to a different system. For example, the 65C816 
microprocessor in the Apple IIGS can carry out all the instructions in a program originally 
written for an Apple II that uses a 6502 microprocessor, thus emulating the 6502. 

BeraDraft gl.() 9/15/86 

--~ 



Glossary 

emulation mode: A manner of operating in which one system imitates another. In the 
Apple IIGS, the mode the 65C816 is in when the Apple IIGS is running programs written 
for Apple II's that use the 6502. 

Escape character: An ASCII character that, with many programs and devices, allows 
you to perform special functions when used in combination keypresses. 

Escape key: A key on Apple II-family computers that generates the Escape character. 
The Escape key is labeled Esc. In many applications, pressing Esc allows you to return to 
a previous menu or to stop a procedure. 

even parity: In data transmission, the use of an extra bit set to 0 or 1 as necessary to 
make the total number of 1 bits an even number; used as a means of error checking. 
Compare MARK parity, odd parity. 

expansion slot: A socket into which you can install a peripheral card. Sometimes called 
a peripheral slot. See also auxiliary slot. 

Extended SO-Column Text Card: See Apple fie Extended SO-Column Text 
Card. 

firmware: Programs stored permanently in read-<>nly memory (ROM). Such programs 
(for example, the Applesoft Interpreter and the Monitor program) are built into the 
computer at the factory. They can be executed at any time but carmot be modified or erased 
from main memory. 

frequency: The rate at which a repetitive event recurs. In alternating current (AC) 
signals, the number of cycles per second. Frequency is usually expressed in hertz (cycles 
per second), kilohertz, or megabertz. 

game 110 connector: A 16-pin connector inside all the open models of the Apple II, 
originally designed for connecting hand controls to the computer, but also used for 
connecting some other peripheral devices. Compare hand control connector. 

GLU: Acronym for general logic unit, a class of custom integrated circuits used as 
interfaces between different parts of the computer. 

graph: A pictorial representation of data. 

graphics: (1) Information presented in the form of pictures or images. (2) The display 
of pictures or images on a computer's display screen. Compare text. 

hand controls: Peripheral devices, with rotating dials and push buttons. Hand contrOls 
are used to contrOl game-playing programs, but they can also be used in other applications. 

hand control connector: A 9-pin connector on the back panel of the Apple lIe , 
Apple IIc, and Apple IIGS computers, used for connecting hand contrOls to the computer. 
Compare game 110 connector. 

BetaDrajt gl-7 9115186 



Apple IIGS Hardware Reference 

handshaking: The exchange of status information between a DCE and a DTE used to 
control the transfer of data between them. The status information can be the state of a 
signal connecting the DeE and the DTE, or it can be in the form of a character transmitted 
with the rest of the data. See Data Set Ready, Data Terminal Ready, Data Carrier 
Detect, XON, XOFF. 

hertz: The unit of frequency of vibration or oscillation, defined as the number of cycles 
per second. Named for the physicist Heinrich Hertz and abbreviated Hz. See kilohertz, 
megahertz. 

hexadecimal: The base-16 system of numbers, using the ten digits 0 through 9 and the 
six letters A through F. Hexadecimal numbers can be converted easily and directly to 
binary form, because each hexadecimal digit corresponds to a sequence of four bits. 
Hexadecimal numbers are usually preceded by a dollar sign ($). 

high~rder byte: The more significant half of a memory address or other multi-byte 
quantity. In the 6502 microprocessor used in the Apple II family of computers, the 
low~rder byte of an address is usually stored first, and the high~rder byte second. 
(In the 68000 microprocessors used in the Macintosh family, the high~rder byte is stored 
first .) 

Hi-Res: A high-resolution display mode on the Apple II family of computers, 
consisting of an array of points, 280 wide by 192 high, with 6 colors. 

Hz: See hertz. 

128K Apple II: Any standard Apple II with both main and auxiliary 64K banks of 
RAM. That includes all models of the Apple IIc and some models of the Apple lIe, 
including those with the Extended 80-Column Text Card installed. The Apple IIGS is not a 
l28K Apple II in the strict sense, even though it includes both 64K banks of RAM and is 
capable of running programs designed for a 128K Apple II. 

IC: See integrated circuit. 

icon: An image that graphically represents an object, a concept, or a message. 

index register: A register in a computer processor that holds an index for use in indexed 
addressing. The 6502 and 65C816 microprocessors used in the Apple II family of 
computers have two index registers, called the X register and the Y register. 

indexed addressing: A method used in machine-language programming to specify 
memory addresses. See also memory location. 

input: (n) Information transferred into a computer from some external source, such as the 
keyboard, a disk drive, or a modem. 

input/output (I/O): The process by which information is transferred between the 
computer's memory and its keyboard or peripheral devices. 

instruction: A unit of a machine-language or assembly-language program 
corresponding to a single action for the computer's processor to perform. 

Beta Draft gl-8 9115186 



(€ii*, 
Microcircuits 

G65SC802 
G65SC816 

CMOS 8/16-Bit Microprocessor Family 

Features 
• Advanced CMOS design tor low power consumption and increased 

norse immunity 

• Emulalion mode for total software compatibility with 6502 designs 

• Full lG·bit ALU. Accumulator, Stack Pointer, and Index Registers 

• Direct Register tor "zero page" addressing 
• 24 addressing modes (inCluding 13 origin816502 modes) 

• Wart lor Interrupt (WAI) and Stop the Clock (STP) instructions ror 
reduced power consumption and decreased interrupt latency 

• 91 instruct ions with 255 opcodes 

• Co-F'rocessor (COP) instruction and associated vector 

• Powertul Block Move instructions 

Features (G65SC802 Only) 
• 8-8il Mode with both software and hardware (pin-to-pin) com--

patibil ity with 6502 designs (54 KByte memory space) 

• program sefectable l&obit operation 

• Choice of external or on· board clock generalion 

Featurel (G65SC816 Only) 
• FuUl6-bit operation with 24 address lines for 16 MByte memory 

• Program selectable 8-Bit Mode for 6502 coding compatibility. 

• Valid Program Address (VPA) and Valid Data Address (VDA) outputs 
for dual cache and OMA cycle steal implementation 

• Vector Pul l (VP) output indicates when interrupt vectors are betng 
fetched . May be used for vectoring/prioritiZing interrupts 

• Abon Interrupt and associaled vector tor interrupting any instruction 
Without mOdltylng internal regislers 

• Memory Lock (ML) for multiprocessor system implementation 

Simplified Block Diagram 

ii • a 
~ • 
~ 
i .. 

ADVANCE INFORMATION 

General Description 
The G65SC802 and G65SC816 areADV-CMOS (ADVanCed CMOS) 16-
bit microprocessors featuring lolal software compatibility With 8-blt 
NMOS and CMOS 6500 series microprocessors. The G65SC802 is pm· 
to-pin compatible with 8-bit 6502 deVIces currently available. while also 
providing full IS-bit internal operat ion. The G65SC816 prOVides 24 ad­
dress lines lor 16 MByteaddressing. while provid ing both S-blt and 16-blt 
operation. 

Each microprocessor contains an Emulation (E) mode for emulat ing 
8-bit NMOS and CMOS 6500-Seriesmicroprocessors. A soUware SWitch 
determines whether the processor is in the 8-bit emulatIon mode or In 

the Native l&obit mode. This allows ex isting 8·bit system designs 10 use 
the many powerful features of the G6SSC802 and G65SCSI6. 

The G65SC802 and G65SC816 provide the system engmeer With many 
powerful features and options. A 16-bit Direct Page Register is provided 
10 augment the Direct Pag8 addressing mode. and there are separate 
Program Bank Aegisters for 24-bit memory addreSSing. Other vatuable 
fealures include: 
• An Abort input which can interrupt the current Instruction without 

modifying internal registers. 

• Valid Data Address (VDA) and Valid Program Address (VPA) outputs 
which facilitate dual cache memory by indicating whether a data or 
program segment is being accessed. 

• Vector modification by simply monitOring the Vector Pull (V?) output. 

• Block Move instructions. 

GTE Microcircuits' G65SC802 and G65SC816 microprocessors offerthe 
design engineer a new freedom of design and apPlication, and the many 
advanta98S 01 state-of-the-art AOV-CMOS technology. 

Ii II Ii li-2-
''''1"I1It-..T 
COIIITItOI. ----

1 .... TIllUCTiO/il 
COtI1"IItOL OICOOI 
IIG/II"U .0. 

CO/ilTIIOl. 

C ... 
tU.TUS 

"G 

i04iCQI 

1"lflu ... e ... 
CLOCII:GI/II . 

. ZCOU1")tMl) 

..... .. r .... 

• nTl_ 
c_ 

v;. r'''~ I '''''O O'\.cc. leu "- t t l 

This Is advanced inlormation and specifications 
are subject to change without notice. 



-... .,........ 
Supply Voltage -Input Voltage VtH 

Operating Temperature TA 

Storage Temperature - T~. _ : . 

v_ 
-O.3V to +7.0V 

-O.3V to VOO +O.3V 

O"C to +70·C 

_"ee to +15O"C 

This device contains input protection against dameoedue to high stalic 
voltages or efec:tric fields; however, precautionSlhould be taken to avoid 
application of voltages higher than the maximum rating. 

Notes: 

1. Exceeding I~ raUngl may cause permanent damage. Functional 
operation under thee. conditions i, not implied. 

DC Characlerlilici (All Devices): Voo • 50V ±5'11o Vss' OV TA ' O· C 10 -70' C 

, . Per ..... ter Iymbol IIIn - UnIt 

Ine..!:!!.....High VOU_Cla V'H 
RES. ROV. IRQ. Oala. SO. BE 2.0 VDo" 0.3 V 
ABORT. NMI • • 2 (IN) 0.7_ VDo" 0.3 V 

I"Qul Low VO!!!ae VIc 
RES. RO'!...!BQ, Data, SO, BE -1).3 0.8 V 
ABORT. NMI •• 2 (IN) -1).3 0.2 V 

In~eakaQe Current (VIN - 0 to Vao) ItN 
RES. NMI. IRa. SO. BE. ABORT (Inl.rnal Pullup) -100 1 IlA 
ROY (Internal Pullup. Open Drain) -100 10 #.A. 
.2 (IN) -1 1 IlA 
Address. Data, R/W (Off Siale. BE = 0) -10 10 IlA 

Output High Voltage (10104 = -=J~AL VOH 
SYNC, Data, Address, RIW. Ml, VP. MIX. E. VOA. VPA. 
.' (OUT) • • 2 (OUT) 0.7 Voo - V 

Output low VoUage (10l = !.:..6m~)_ VoL 
SYNC. Oala. Addr .... R/W. Ml. VP. MIX. E. VOA. VPA • 
• ' (OUT) •• 2 lOUT) - 0.4 V 

Supply 'Current fa: 2 MHz 100 - 10 rnA 
(Nolood) r = 4 MHz - 20 i rnA 

f· 6 MHz - 30 mA 
f· 8 MHz - 40 rnA 

Standby curSer (No Load; Oata Bus = Vss or Veo; 158 ! 

.2(11'1) • A RT' m = NMi • 'im) • m5. BE • VOO) - 10 IlA 

Capacitance (YIN := OV. ToI. = 2.50 C. f .. 2 MHz) 
logic • • 2 (IN) C'N - 10 pF 
Address. Data. RlW (Off State) CTS - 15 pF 

AC Characterl.llci (G858CI02): VOO = 5.0V ±5'11o. VSS' OV. TA' O'C 10 +70'C 

211Ho 411Ho 611Ho lliHo 

Parameter Symbol IIln II .. IIIn II .. 111ft Mal - "'" Unit 

Cycle Time teyc 500 DC 250 DC 167 OC 125 ~C. nS 

CloCk Pulse Width Low Ipwe 0.240 10 0.120 10 0.080 10 0.080 10 IlS 

ClOCk Pulse Width High tpWH 240 ~ 120 ~ 80 ~ 60 ~ nS 

Fall Time, Rise Time IF,IA - 10 - 10 - 5 - 5 nS 

Delay Time. 412 (IN) 10.1 (OUT) 1~1 - 40 - 40 - 40 - 40 nS 

Delay T,me. 1/>2 (IN) 10 of>2 (OUT) 1~2 - 40 - 40 - 40 - 40 nS 

Address Hold Time IAH 10 - 10 - 10 - 10 - nS 

Address Setup Time tAOS - 100 - 75 - 60 - 40 . nS 

Access Time IACC 365 - 130 - 87 - 70 - nS 

Read Data HOld Time tOHA 10 - 10 - 10 - 10 - nS 

Read Dala Setup Time tOSA 40 - 30 - 20 - 15 - nS 

Write Data Delay Time tMOS - 100 - 70 - 60 - 40 nS 

Wnte Data Hold Time IOHW 10 - 10 - 10 - 10 - nS -. 
Processor ContrOl Setup Time . tpcs 40 - 30 - 20 - 15 - nS 

Processor Control H~d Time tPCH 10 - 10 - 10 - 10 - nS 

E Output Hold Time IEH 10 - 10 5 5 - nS 

E Output Setup Time tn 50 - 50 - 25 15 - nS 

Capaclflve Load (Address, Data, and R/ W) CeXT 100 100 35 35 pF 

2 



AC CharllCtettltlcs (G65SC818): VOO = 5.0V :!oS"', vss ' OV, TA = O·C to +70·C 

I 
i Par.meter 
, Cycle Time 

Clock Pu lse Widltllow , 

, Clock Pulse Width High 

Fall Time. Rise Time 

AO-A1S Hold Time 

I AO- A 1S Setup Time , . 
, BAO-SA7 Hold Time 

: BAD-SAl Setup Time , 
Access Time i 
Read Oat8 Hold Time 

Read Data Selup Time 

Write Data Delay Time 

I Write Dala Hold T ime 

Processor Control Setup Time 

Processor Control HOld Time 

E.MX Output Hold Time 

E.MX Output Setup Time 

Capacitive load (Address, 081a. and AIW) 

SE to High Impedance State 

BE to Valid Data 

Timing Diagram (G85SC80Z) 

",,2 (IN I 

IP_ , .... 

-:: 1--11>0' 
f---

\ 

\1iI110UT) 

\1iI2 (OUT) 

f-- ... --, AI'li, SYNC 
Act-A11 
lit, VI' W////~ 

AfAOOAU 

WRITE DATA 

iiQ. Niii. RU. 
OOY 

.... 
to~ ___ -
10" ____ 

2MIU 

SymbOl Min M .. 

leye 500 DC 

tF'WI. 0 .240 10 

IF'WH 240 ~ 

IF, tR - 10 

tA" 10 -
tAOS - 100 

tB" to -
tB" - 100 

lACe 365 -
tOI-iR 10 -

10SA 40 -
tMOS - 100 

to_ 10 -
Ipcs 40 -
tpc" 10 -

tE>< 10 -
tES 50 -

Cur - 100 

18HZ - 30 

lavo - 30 

'cye 

- 1--'. 
'\ ... '- l-

.... - 1-

lACe 

-
- -!PC. 

I 

4MIU 6 MHz I 8MHI I i , 
Min Mn Min Mil I Min Mil Unit I 

250 DC 167 DC 125 DC I nS i 
0.'20 10 0.080 10 0.060 10 I pS i 
120 ~ 80 ~ 60 x nS 

, 
- 10 - 5 - 5 nS 
10 - 10 - 10 - nS 

- 75 - 60 - 40 nS 

10 - 10 - 10 - nS 

- 90 - 65 - 45 nS 
130 - 87 - 70 - nS 

10 - 10 - 10 - nS 

30 - 20 - 15 - nS 

- 70 - 60 - 40 , nS i 

10 - 10 - 10 - nS 

30 - 20 15 - , nS 

10 - 10 - 10 - nS 
10 - 5 - 5 - nS 

50 - 25 - 15 - nS 

- 100 - 35 - 35 pF 

- 30 - 30 - 30 nS 

- 30 - 30 - 30 nS 

1--" 

'"" 

_'0" 
RUDDA-TAo 

_t"". 
WAJTfOATA 

'"""- r--
J. K= - -,""H - _!Pel - .. .. -

E __________________ ~~####/#ftftft~~---
Timing Note" 1, Typical output load z 100 pF 

2. Voltage levels are VL < 0.4'11, VH > 2.4V 
3. Timing measurement points are O.8V and 2.0V 



Timing Olegrem (G65SC816) 

,,2 (IN) 

A/W, JilL. VP 
40-At5, 'IDA, VPA 

RfAD DATA, 
BAD- BA7 

WRITE DATA, 
BAO-BA7 

lAO. NM!. RIE'S. 
AOY 

,,-

10M!! ___ 

tOM. ----.. 

f-"--..... -:::'"" 
,-

Wlln 
IA •• 

--.... 
~ 

W!!IJ 
,---

BAD-BA7 

BAO-BA7 

teyc f--- " 
j 

~ :;"':"'-,. .. - "I 
,occ 1-- .... 

READ DATA. 

- 1--, ... 

~III/;~ WRITEDAT" 
~ - --- ..... _IOC. 

). C - -I~" 

\i 
" 
~ 

',c'--1 ~ 

Mil If' rulllllllllllllllllllill I 11m, '1 ~ '1/11111111111111111111111111 I)J, 
,. 

- -1<" - -... - _II. ... --- --• 
Timing Notes: 

1. Typical output load :- 100 pF 
2. Vouage levels are VL < O.4V, VH > 2.4V 
3. Timing me8$urement pointe are O.SV and 2.0V 

Functional Description 
The G65SC802 oHers the design engineer the opportunity to utilile both 
'x ,sting sanwar. programs and hardware configurations. while also 
aChieving the added advantages of increawd regi5ter lengths and ruter 
execution times. TheG65SC802's "ease of use" deSign and implementa­
tion 'eaturM provide the designer with increased flexibility and reduced 
implementation costs. In the Emulation mode, the G6SSC802 not onty 
oHers software compatibility, but is also hardware (pin-la-pin) com­
patible with 6502 designs . . plus it provides the advantages of 16-bit 
internal operation in 6502-compatible applications. The G65SC802 is an 
excellent direct replacement microprocessor for 6502 designs. 

The G65SC816 prov ides the design engineer with upward mobility and 
software compatibility in applications where a 16-bit system configura­
tion is deJired. The G65SC816's 16-bit hardware configuration, coupled 
with current software allows I wide setection 0' system applications, In 
the Emulation mode, Ihe G65SC816 ott~ many advantages, including 
full sottwarecompatibility with 6502 coding. In addition. the G65SC816"s 
poweriul instruction set and addrnaing modes make it an elilcelleni 
choice for new 16-bH designs. 

Imernal organization of the G65SC802 and G65SC816 can be divided 
Into two pans: 1) The Register Section. and 2) The ContrOl Section. In­
structions (or opcodes) obtamed from program memory are elilecuted 
by implementing a series of data transfers within the Register Section. 
Signals that cause data Iransfers to be executed are generated within the 
Control Section. Both the G65SC802 and the G65SC816 have a 16-bit 
internal architecture with an S-bit eJ(ternal data bus. 

In.tructlon Regilt ... and Decode 
An opcedeente" the processor on the Data Bus, and is latched inlO the 
instruction Regiater during theinslruction fetCh cycle. This instruction IS 

Ihen decoded. along with timing and interrupt signais, to generate the 
vanous Instruction RegIster conlrol signals. 

TIming Control Unit (TCUI 
The Timing Control Unit keeps track of each instruction cycle as it Is eJ(-

r(!///III/////////////// / / / / / IJ t 

ecuted. The TCU is sel lozaroeaeh lime an instruction fetch is executed, 
and is advanCed al the beginning 01 eacn cycle tor as many cycles as is 
required to complete the instruction. Each data Ir8ml.r between regis­
ters depends upon decoding the contents of both the Instruction Regis­
ter and the Timing ContrOl Unit. 

Artthmallc end Logic Unit (ALUI 
All arithmetic and logic operations take place within the l~bit ALU. In 
addition to data op8rat;ons, the ALU also calculates the eHeetive address 
for retative and indexed addressing modes. The r .. ull of adalaoperation 
is stored in either memory or an internal register. Carry, Negative. Over. 
flow and Zero flags may be updated lollo";ng the AlU data operation. 

Interne! Reg ....... (Refer to Figure 2. Programming Model) 

Accuniuletor (AI 
The Accumulator is a general purpose register Which stores one of the 
operands. or the resufl of most arithmetic and logical operations. In the 
Native mode (E*O). when Ihe Accumuiator Select Bit (M) equaJszero. the 
Accumulator is established u 16 bits wide. When the Accumulator Select 
Bit (M) equals one, the Accumulator is 6 bits wide. In Ihlscne. the upper 
8 bits (AH) may be used for temporary storage in conjunction with the 
EJ(change AM and AL instruction. 

Data Bent (08) 
During the NaUve mode (E::rO), the 8-bit Data Bank Register hOlds the 
defauU bank addr8a!l for memory transfers. The 2 ..... bit address is com­
posed 01 Ihe 16-bit instruction eHective address and theS-bit Data Bank 
address. The ~egisler v&jue is multipleJ(ed with the data value and is pres­
ent on lhe Datal Ade. reaalines during the first half of a dala transter mem­
orycycle for the G65SC816. The Data aank Register il inilialiled to lero 
during Reset. 

Direct (01 
The 16-bit Direct Register provides an address offset for all instructions 
using direct addressing. The effective bank zero address is formed by 
adding the 8-bit instruction operand address to the Direct Register. The 
Direct Register is initialized to zero during Reset. 

.. ~ 



Index (X end Y) 
There are two Index Registers (X and Y) which may be used as general 
purpose registers or 10 provide an index value tor calculation of the at· 
'eclive address. When exec:uting an instruction with indexed addressing. 
the microprocessor fetches the opcode and the base address, and then 
modif ies the address by adding the Index Register contents to the ad· 
dress prior to performing the deli!sd operation. Pr~indexing or post­
indexing of indirect addresses maybe selected. In the Native mode (E=O), 
both Index Registers arB 16 bits wide (prOviding the Index Select Bit (X) 
equals zero) . If the Index Select Bit (X) equals one, both registers will be 
B bits wide. 

P'oc; ••• o' Statu. (P) 
The &obit Processor Status Register contains status flags and mode select 
bits. The Carry (C). Negative (N), Overflow (V) , and Zero (Z) status flags 
serve to report the status ot most ALU operations. These status flags are 
tested by use of Conditional Branch instructions. The Decimal (0), IRO 
Disable (I) , Memory/Accumulator (M) , and Index (X) bits are used as 
mode select flags. These flags are set by the program to change micro­
processor operations. 

The Emulation (E) select and the Break (B) flags are accessible only 
through the Processor Status Register. The Emulalion mode select flag 
is selected by the EXChange Carry and Emulation Bits (XCE) instruction. 
Table 2. G65SC802 and G65SC816 Mode Comparilwn, illustrates the 
features of the Native (E=O) and Emulation (E::1) mod ... The M and X 

r- 'H ~r INDUI 
(11 lilTS) 

i 
A ~ 0 INDEXY ,. 'l' {MILITS, 

E 
W 

;; ~ 

HI< ! 
,.tl-

D STACK POINTl"~ t; • (S) (1I"TI, • • ....,- ~ !. • "-w 
! E 

0 

~ • ~ 

flags are atways equal to one in the Emulation mode. When an interrupt 
occurs during the Emulation mode, the Break flag is written to stack mem­
oryas bit 4 of the Processor Status Register. 

P'OiI,.m Bank (PB) 
The 8--bit Program Bank Register holds the bank address for all instruc­
tion fetches. The24-bit addresS consists otthe 16-bit instruction effective 
address and the 8-bit Program Bank address. The register value is multi­
plexed with the data value and presented on the Datal Address lines during 
the first half of a program memory read cycle. The Program Bank RegiS­
ter is initialized to zero during Reset. 

PrOil,.m Count., (PC) 
The 16-bit Program Counter Register provides the addresses which are 
used to step the microprocessor through sequential program instruc­
tions. The register is incremented each time an instruction or operand is 
letched from program memory. 

Stack Pointer (S) 
The Stack Pointer is a 16-bit register which is used to indicate the next 
available location in the stack memory area. It serves as the effective ad­
dress in stack addressing modes as well as subroutine and interrupt pro­
cessing. The Stack Pointer allows simple implementation of nested sub­
routines and multiple-level interrupts. During the Emulation mOde. the 
Stack Pointer high-order byte (SH) is always equal to 01 . The Sank 
Address is 00 for all Stack operations. 

I--- mm' ,II" 
f.-;om .. 

INTERRUPT 
LOGIC -- -- '00 

_liD -- ." 
A ~ ALU 

V-
( ... .m) ~~- • :. 

~-v 

00-07 (102) 
D-IBAO-07/ .... 7 ('1., 

~ 
i 
• 

-'''~ ,.tI-~ "-: 
~ 

~ 
0 « 

• w • • ~ • .. .. 
~ 

~ 
Q 
Q 
« 
I « A 

~ 
~ • ... 
~ « 
0 

liE (Ill) 

~ = 
~ TIMING I--• CONT. 

~~ ~ i -v' T"ANIW'Efi 

fJ', SWITCHES 

~ ~rv 'v~ V .. 
ii ;; 
• ~~~ i f--.. A.CCUtlUl,ATOR 
~ 

!. '-- ~ • ( ... , ,MelTS, 
w 0 b 8 

CLOCK 

f---Q .. 0 ""10-~ • « • U EflATOR 
~ ; ~ « i !~ w .. f---i~ .. o • . cou ..... 

; °a zz •• 0 2i Ow ! (PC,('II .. TS, ~ ~ -~ 

; ~ 
~~ ~. 
UQ u-

A DI"ECT(D) 
~ • ~a ~a 

w • 

~ 
~ ~ ~~ ~ 

! .. .. .. 
f---,11.ITS) 6 ! I 

" ; • • 
~ • f---

~--.. ('IITa) 0 f--
.A • , 

D ... T ... IANK (DI, f---
" ('.'TS, A SYSTEM : ~ CONT. f---PfIIOCnSOR 

l- I----~ 
.T",TU. (.) 

(,IITS) f---
L O ... T ... ..... PflEOECO~E l- I: "7 LATeMl f---PAIDlCODE 

RD' 

~a(IN) 

~ I (OUT) (102) 

.a (OUT) (102, 

SyNC (102) 

VPA ('11) 

VDA ('11) 

iiilill 

;;'(1) 

~ INSTRUCTION REGISTER f---(I 'ITS) 

ml102~ , 
. 1. 16DIP Note. 

M' X ('11l 

8 and PLCC. 

Figure 1. Block Diagram - Internal Architecture 802 PLCC. 

5 



Signal Oeac,lplion 
The following Signal Description applies to bOth the G65SC802 and the 
G5SSC816 except as otherwise noted. 

Abort (ABORTI-G65SC818 
The AbOrt input prevents modification of. any internal registers during 
execution of the current Instruction. upon 'completion of this instruc­
t ion. an interrupt sequence is initiateci ' 'The location 01 the aborted 
opcode is stored as the return address in Stack memory. The Abort 
veclor address is OOFFF8. 9 (Emulation mOde) or OOFFES. 9 (Native 
mode) . Abor1 is asserted whenever there is a low level on the AbOrt 
,nput. and the <b2 clock is high. The Abort internal latch is cleared dur­
ing the second cycle of the interrupt sequence. This signal may be used 
to handle out-ot-bounds memory references in virtual memory systems. 

Add,e .. Bu. (AO-A151 
These sixteen outPut lin" form the Address Bus for memory and 110 
eXChange on the Oala Bus. When using Ihe G65SC816. the address lin" 
may be set to the high impedance state by the Bus Enable (BE) Signal. 

Bu. Eneble (BE) 
The Bus Enable input signal allows exlernal control of the Address and 
Dala Buffers. as well as the Rm signal. With Bus Enable high. the R/ iii 
and Address Buffers are active. The Data/Address Buffers a,e active 
dutlng the first half of every cyCle and the second half of a write cycle. 
When BE is low. these buffers are disabled. Bus Enable is an asynchro­
nous signal. 

Oeta Bu. (OO-07)-G85SC802 
The eight Data Bus lines provide an 8-bit bidirectional Data Bus for use 
dUring dala eXChanges between the microproceuor and external mem~ 
ory or peripherals . Two memory cycles are required for the trans'er of 
16-bit values. 

OetalAdd,e .. Bu. (OO/BAO-07/BA7)-G85SC818 
These eight lines muUiplex bits BAG-BA7 with the data value. The Bank 
address is present during the first half of a memOfY cycle. and the data 
value is read or written during the second half of the memory cycle. 
The Bank address external transparent latch should be latched when 
thelb2 Clock IS high or ROY is low. Two memory cycl,s are required to 
transfer l6-bit values. These lines may be set to the high impedance 
slale by the Bus Enable (BE) signal. 

Emuletlon Sletu. (E)-G65SC818 (ACto AppIIe.lo G65SC802, 
44-Pln VenIon) 
The Emulat ion Slatus output reflects the state of the Emulation (E) mode 
flag in the Processor Status (P) Register. This signal may be thought 0' 
as an opcode extenSion and used for memory and system management. 

Inlerrupl Reque.1 (IRQ) 
The Interrupt Request input signal is used 10 r&qUell1hat an interrupt 
sequence be initiated. When IhelRO Disable (I) flag is cleared. a low In-­
put logic level ,"itiates an interrupt sequence after the current instruc~ 
tion is completed. The Wait for Interrupt (WAil instruction may be eJe-
8CUted to ensure the interrupt will be recogniZed immediately. The Inter­
rupt Request vector address IsOOFFFE.F (Emulation mode) orOOfFEE.f 
(Nallve mode) . Since ~ is a lev-'-sensitive input. an interrupt will 
occur if the interrupt source wal not cleared since the last interrupt. 
Also. no lntetrupt will occur if the interrupt source is cleared prior to 
Inletrupt recognition . 

Memory Lock (ML)-G85SC81' (Alto AppftH 10 
G85SC802, 44-Pln Version) 
The Memory lock output may be used to ensure the integrity 0' Read­
Modify-Write instructions in a multiprocessor system. Memory Lock 
Indicates the need to defer arbitration of the next bus cycle. Memory 
Lock is low during the last thrM or five cyctes of ASl. DEC. INC. lSR. 
ROl. ROR. TRB. and TSB memory referencing instructions. depending 
on the state of the M lIag. 

Memoryllncle. Select Stalu. (MlX)-GessC818 
ThiS multip'eJeed output rellects the state of the Accumulator (M) and 
Index (X) selee111ags (bits 5 and 4 of the Processor Status(P)Register). 
Flag M is valid during the dl2 clock pOSitive IranSition.lnstructions PlP. 
REP. RTI and SEP may change the state of these bits. Note that the 
MI X output may be invalid in the cycle following a change in the M or 
X bits . These bits may be thought of as optode extensions and may 
be used for memory and system management. 

• 

Non-Me.keble Inlerrupl (NMI) 
A high-to-lOW transition initiatasan interrupt sequence arter the current 
instruction Is completed. The Wait tor Interrupt (WAI) instruction may be 
executed to ensure that the interrupt will be recogniZed immediately. The 
Non-Maskable Interrupt vector add,!!!.is OOFFFA.B (Emulation mode) 
or OOFFEA.B (Native mode). Since NMI is an edge-sensitive input. an 
i~terruPI will occur if there is a negativelransiti~hile servicing a pre­
VIOUS Interrupt. Also. no interrupt will occur if NMI remains low. 

Ph." 1 Oul (.1 (OUT))-G85SC802 
This inverted clock output signal provides timing for external read and 
write operations. Executing the Stop (STP) instruction holds this clock 
in the low state. 

Ph ... 2 In (.2 (IN)) 
This is the system clock inpulto the microprOC"SOf internal clock gen­
erator(equivalent to ~ (IN) on the6502) . During the low power Standpy 
Mode. ,2 (IN) should be held in the high slate to preserve the contents 
of internal registers. 

PIIeH 2 Out (.2 (OUT))-G85SC802 
ThiS clock output signal provides timing for external read and write op­
erations. Addresses are valid (after the AddrHS Setup T ime (TAOS) fol­
lowing the negative transition of Phase 2 Out. Executing the Slop (STP) 
instruction holds Phue 2 Out in the High slate. 

RelldlWrtle (RtW) 
When the RJW output signal is in Ihe high stale. the microprocessor is 
,eading data from memory or I/O. When in the low state. the Data Bus 
conlains valid data from the microprocessor which is to be StOfed at the 
addressed memory location. When using th~ G65SC816. the RiW signal 
may be set to the high impedance stale by Bus Enable (BE). 

Reedy (ROY) 
This bidirectional signal indicates that a Wait for Interrupt (WAI) instruc­
tion has been eJe.cuted allowing the user to halt operation of the micro­
processor. A low input logiC level will halt the microprocessor in its cur­
rent state (note that when in the Emulation mode. the G65SC802 stops 
only during a 'read cycle). Relurning ROY to the active high slate allows 
the microprocessor to continue fallowing the next Phale 2 In Clock 
negative transition. The ROY 'ignal is internally pulled low following the 
execution of a Wait for Interr1;6;;I) instructfon. and then returned to 
the high stale when a RES. • NMi. or ilm external interrupt is 
provided. This feature may be used to eliminate interrupt latency by 
ptacin..9..!...he WAI instruction at the beginning of the IRO servicing routine. 
If the fRO Disable flag has been set. the next instruction will be executed 
when the IRO occurs. The processor will not ,top art., a WAI instruction 
if ROY has been forced to a high state. The SlOp (STP) instruction has 
no effect on ROY. 

ReHl(MS) 
The Reset input Is used to initialize the microprocessor and start pro­
gram execution. The Reset input buffer has hysteresis such thata si~ 
R-C liming circuit mey be used with the internal pullupdevice. The RES 
signal must be held low for at least two ClOCK cycles arter VOD reaches 
operating voltage. RNdy (ROY) has noet1eclwhile AE§' is being held low. 
During this Relet conditioning perlod. the following processor initializa­
tion tak" ptece: 

II ....... 
0 0000 SH 01 
DB : 00 XH : 00 

PB : 00 YH • 00 

N II loA X 0 Z CIE 

P * * 0 L.:=---==---=_....:._-=-_~_.:*=--.:*:./.:Jl I • = Not Initialized 

STP and WAf instructions are cleared. 

E 
MIX 
RNi 1 
SYNC· 0 

SIgMIO 
IIOA • 0 
\P 1 
VPA • 0 

When Reset is brought high. an interrupt sequence is initiated: 
• AtW remains in the high state during the stack address cycles. 
• The Reset vector address is OOfFFC.D . 

-', 



Set O.er1low (SO)-GS5SC802 
A negative franSltion on this input sets Ihe Overflow (V) tlag. bil6 of the 
Processor Status (P) Reg ister. 

Synchronize (SYNC)-GS5SC802 
The SYNC output is provided to identify those cycles during which the 
microprocessor is fetChing an o~ode . The SYNC signal ia nigh during 
an opcode fetch cycle, and when combined with Ready (ADV), can be 
used for single instruction execution. 

Velld Det. Addrn. (VDA) Ind 
Valid Progrlm Add, ... (VPA)-G65SC818 
These two output signa's indiealethe type of memory being accessed by 
the address bus. The tollowing coding applies: 
VDAVPA 

o 0 !nternal Operation-Address and Data Bus available. 

.IITI I 
D8 I 

I 

.. 
P8 .. 

Address outputs may be invalid due to low byte addi­
tionsonly. 

.8ITI • lIlT. 

01 DATA lANK A!QlITIR 

XH XL INDEX R!GIITER (I) 

YH YL INDO "EGIITER (YJ 

IH SL ITACK POIHTE" (I) 

AH AL ACCUMULATOR (A) 

PCH PCL PROGRAM COUNT!A (Pel 
PROGRAM lANK "EOIIT "(PS) 

DH DL DIRECT "EOIITP (D) 

L = LOW, H· HIGH 

r 

o Valid program address- may be used tor program cache 
control. 

o Valid dala address-may be used tor data cache control. 
Opcode fetch-may be used for program cache contrOl 
and single step control. 

¥DD end 'iss 
Voo is the positive supply voltage and Vss is system ground. When 
using only one grolJnd on the G65SC802 DIP package. prn 21 is 
preferred. 

Vector Pull (VP)-G65SCS16 (Aloo Appf'-o to G65SCS02, 
44-Pln V_on) 
The Vector Pull output indicates that a 'lector location is being addressed 
during an interrupt sequence. Vfi is low during the last two interrupt 
sequence eye •• during which lime the processor reads the interrupt 
'lector. The VF' signal maybe used to select and prioritize interrupts from 
several SOurces by modi tying the 'lector addresses. 

8"""" 
o ON STACK AfTER I 

r EMULATION elT 

1 8 El 

ALWAYS llF E ~ , 

NTEARUPT IF I! : 1 

0: NATIVE MODI! 
1 ,.. 1502 EMULATION 

iN • M X D I Z C I PROCEIIOR STATUS REGISnR (P) 

I L:::~""Y ZERO 
IRQ DISAlLE 
DECIMAL MOOE 
tND!1 R!G. &ELleT 
MEMORY/ACC. ULE 
OYt:RFLOW 
HEGATIY! 

1 = TRUE 
1 • RESULT ZERO 
1 : DlSA8LE 
1 ~ DECIMAL MODE 
1 ='8IT.0= 11.,T 

CT 1 ='8IT.0 = 118IT 
1 ; TRUE 

' ''' NEGATIVE 

Figure Z. Progl'1lmmlng Model 

Teble 1, G65SC802 end G65SC816 Compatibility 

Function G85Sceo2Illl !muteUon GlISScoa NMDSI502 

Oeci mal Mode: 
• After Interrupts 0- 0 0 - 0 Not initialized 
• N. Z Flags Valid Valid Undefined 
• AOC. SBC No added cycle Add 1 cycle No added cycle 

Read-Modity-Wrile: 
• Absolute Indexed, No Page Crossing 7 cycles 6 cyc_ 7 cyCles 
• Write last 2 cycles last cyct8 last 2 cycles 
• Memory lock last 3 cycles Last 2 cyCles Not available 

Jump Indirect 
• Cycles 5 cycles 6 cycles 5 cycles 
• Jump Address, Operand: XXFF Correct Correct Invalid 

Branch or Index Across Page Boundary Read last pr09ram byte Read last plogram byte Read Invalid add~~ 

0- ROY During Write G65SC802: Ignored until read Processor stops Ignored until read 
G65SC816: Processor stops 

Write During Reset No V •• No 

Unused Opcodes No operation No operation Undefined 

.." (OUT) . ..,2 (OUT). SO, 5VNC 5,gnOI. Available with G65SC802 only Available Available 

ROV Signal Bidirectional Input Input 



Table 2. G65SC802 and G6SSC816 Mode Comparison 

Function Ernulllllon (E ' I, N.tlwe (E ; 0) 

Stack POinter (5) 8 bits In page 1 16 bils 

Direct IndeJIC Address Wrap within page Crosses page boundary 

Processor Slatus (P) : 
• 611 4 Always one, exceplzero in stack after X flag (8/l6-bit Index) 

hardware interrupt 

• BilS Always one M flag (8/lS-bit Accumulator) 

Branch Across Page Boundary 4 cycles 3 cycles 

I 
Vector Locations: 

ABORT OOFFF8.9 OOFFE6.9 
BRK OOFFFE.F OOFFE6.7 
COP OOFFF4.5 OOFFE4.S 
IRQ OOFFFE.F OOFFEE.F 
NMI OOFFFA.B OOFFEA.B 

, RES OOFFFC.D OOFFFC.D (1 - E, 

Program Bank (PS) During Interrupt, RT! Not pushed. pulled Pushed and pulled 

o - ROY During Write G65SC802: Ignored until read Processor stops 
G65SC816: Processor stops 

Write During Read-Modily-Write 

G65SC802 and G65SC816 
Microprocessor Addressing Modes 

Last 2 cycles 

The G65SC816 is capable of directly addressing 16 MBytes 0' memory. 
This address space has special significance within certain addressing 
modes, as follows: 

R ... I Ind Inllrrupl Veel .... 
The Reset and Interrupt vectors use the majority of the fixed addresses 
between OOFFEO and OOFFFF. 

Slick 
The Native mode Stack address will always be within the range 00000o 
to OOFFFF. In the Emulation mode, the Stack. address range is OCK)100 
to 0001 FF. The following OpcodeS and addressing modes can increment 
or decrement beyond this range when accessing two or three bytes: 
JSL: JSR (a, x, : PEA; PEl; PER: PHD: PLD: RTL: d . .: (d.o,.y. 

DlrKl 
The Direct addressing modes are often used to access memory 
registers and pointers. The contents of the Direct Register (0) is 
added to the offset contained in the instruction operand to produce 
an address in the range 000000 10 OOFFFF. Note that in the Emulation 
mode. (Direcl} and {Direct).y addressing modes and the PEl instruc­
tion Will increment from OOOOFE or OOOOFF into the Stack area, even 
if 0 =0. 

Program Add .... Spae. 
The Program Bank register isnot affected by the Aelative. Relative Long, 
Absolute. Absolute Indirect, and Absolute Indexed Indirect addressing 
modes or by incrementing the Program Counter trom FFFF. The only 
Instructions that affect the Program Bank register are: AT!. RTl. JML. 
JSL. and JMP Absolute Long. Program code may exceed 64K bytes al­
though code segments may not span bank bOundaries. 

Da .. Add, ... Spae. 
The data address space is contiguous throughout the 16 MBYle address 
space. WordS, arrays, records. or any data structures may span 64 
KByle bank bOundaries with no compromise in code efficiency. As a 
result. indexing from page FF 10 the G65Sca02 may result in data 
accessed in page zero. The following addressing modes generate 24-bit 
effective addresses. 

• Direct Indexed Indirect (d.x) 
• Direct Indirect Indexed {d),y 
• Direct Indirect (d) 
• Direct Indirect Long [dJ 
• Direct Indirect Indexed Long IdJ.y 
• Absolute 
• Absolute.x 
• Absolute. y 
• Absolufe long 

• 

Last' or 2 cycles depending on M flag 

• Absolute long indexed 
• Stack Relative Indirect Indexed (d,s),y 

The fallowing addressing mode descriptions provide addihonal detail as 
to how effective addresses are calculated. . 

Twenty-four addressing modes are available for use with the G65SC802 
and G65SC816 microproceS50rs. The "'ong" addressing modes may be 
used with the G65SC802; however. the nigh byte of the address is not 
available to the hardware. Detailed descriphons of the 24 addressing 
modes are as follows: 

1. Immediate Addressing-ll 
The operand is the second byte (second and third bytes when in the 
16-bit mode) of the instruction. 

2. Absolute-. 
With Absolute addreSSing the second and third bytes of the instruc­
tion form the 10w-order 16 bits of the effective address. Tne Data 
Bank Register contains the high-order e bits of the operand address. 

In,ltuetlon: LI --"O"P::..Cod::..:..:.-.L--=a.:d.:d,,"_-'----= • .:d.:d,,'h-'---' 
Operand 
Addr.,: DB add," addrl 

3. Absolute Long-al 
The second.lhird. and fourth byte 0111"18 instruction form the 24-bit 
effective address. 

In,tructlon: ~I =~O~P~Cod~~.~=:::==~.~d~d~"==J==~.~d~d~'h~==~==b~a~d~d~'=:J 
01*_ 
AddreM: baddr addrh addrl 

4.0Irect-d 
The second byte of the instruction is added to the Direct Register 
(0) to torm the effective address. An additional cycle ls required 
when the Direct Register is not page aligned (Dl not equal 0). The 
Bank register is always O. 

r--:--c...,--...,---;;:-:-;--, 
IMINetlon: ope ode offset 

Operand 
Addr",: 00 

5. Accumulator-A 

+ 

Direct Register 

offset 

effective address 

This 'arm of addressing always uses a si'ngle byte instruction. The 
operand is the Accumulator. 



W6SCS02 and W6SCS16 
Microprocessor Addressing Modea 
The W65C816 is capable or directly addressing 16 MBytes of memory. 
Th iS address space has special significance within certain addressing 
modes, as follows: 

Reset and Interrupt Veetol"l 
The Rese! and Interrupt vectors use tlJe maJority of the fL'Ied addresses 
between DOFFED and OOFFFF. . -

Slack 
The Slack may use memory from 000000 10 OQFFFF. The effecti .... e ad· 
dress of Slack and Slack Aelative addreSSing mod~ ','Viii always be within 
th iS range . 

Oirect 
The Direct addressing modes are usually used to store memory registers 
and pOinters. The eltecti .... e address generated by Direct. Direct,X and 
Dlrect.Y address ing modes is always in Bank 0 (QOOOOO-OOFFFF). 

Program Addre .. Space 
The Program Bank register is not affected by the Relative. Relative Long, 
Absolute. Abso lute Indirect , and Absolute Indexed Indirect addressing 
modes or by Incrementing the Program Counter frOm FFFF. The only 
lOslruct ions that affect the Program Bank reg ister are: RTI, RTL, JML. 
JSL. and JMP Abso lute long. Program code may exceed 64K bytes al· 
though code segments may not span bank boundaries. 

Oala Address Space 
The dala address space IS contiguous throughout the 16 MByte address 
space. Words. arrays, records, or any data structures may span 64 KBYle 
bank boundaries With no c ompromise in code effiCiency. The fOllow ing 
addresslOg modes generate 24-bit effective addresses: 
• Direct Indexed Indirect (d .x) 
• Direct Indirect Indexed (d),y 
• Direct Indirect (d) 
• Direcllndirect Long (d] 
• Direct Indirect long Indexed (dJ,y 
• Abso lute a 
• Absolute a.x 
• Absolute a,y 
• Absolute Long al 
• Absolute Long Indexed al,x 
• Slack Relati ve Indirect Indexed (d,S),y 

The fol lowing addressing modedescriplions provide additional detail as 
10 how effective addresses are calculated. 

Twenty-tour addressing modes are available for use with the W65C802 
and W65C816 microprocessors. The " Iong" addressing modes may be 
used w ith the W65C802: however, the high byte of the address is not 
available to the hardware. Detailed descriptions of the 24 addressing 
modes are as fOllOWS: 

1. Immediate Addressing-# 
The operand IS Ihe second byte (second and third bytes when in the 
16-b lt mOde) of the Instruction. 

2. Absolute-a 
With Absolute addressing the second and third bytes olthe instruc­
t ion form the low-order 16 bits of lne effective address. The Dala 
Bank Reg ister contains the high-order 8 bits of the operand address. 

Instruction: o pcode 
'--"-'-'-=-=-.L 

Operand 
Address: DBR 

3. Absolute Long-at 

addrl addrh 

addrh addrl 

The second. thud, and fourth byte of the instruct ion form the 24-bil 
effective address 

InllrtJction: 

1pe~and 

Address: 

4. 0irect-d 

opcode 

baddr 

addr! addrh baddr 

addrh addrl 

The second byte of th e Instruction IS added to the D irect Register 
(D) to fo rm the eflecl lve address. A n addit ional cycle is required 

9 

when Ihe Direct ,Reg ister is not page aligned (DL nOI equal 0), The 
Bank register IS alway s O. 

Inslructlon: r- opcode 
~_--'-_ _ --J 

offset 

D irect Register 

offset 

00 effective address 

5. Accumulator-A 
This form of addressing always uses a Single by te Instruchon, The 
operand IS the Accumulator, 

6. Implied-I 
Implied addressing uses a single byte instruction. The operand IS 
implicitly defined by the instruction. 

7. Direct Indirect Indexed-(d),y 
This address mode is often referred to as Indirect.Y. The second 
byte of the instruction is added to the Direct Register (D). The 16-bil 
contents of this memory localion is then combined with the Data 
Bank register 10 form a 24-bil base address. The Y Index Register IS 
added to the base address to form the erfect ive address. 

Inllructlon: opcode oftset 

Direct Aegister 
, 
I 

• offset 1 

00 direct address I' 
then: 

1 00 (direct address) 

• 1 
DBR 

base add ress 

• Y Reg 

Operand 
Addreu: effective address 

S. Direct Indirect Long Indexed-[ dJ,y 
With this addressing mOde, the 24-bil base address IS pOinted to by 
the sum ot the second byte of the instruction and Ihe Direct 
Aegister. The effective address IS this 24-bit base address plus the Y 
Index Register. 

In.tructlon: iL....::.o:::.pc:.o:.d:.e'--.L....::.0.c"::.se:.t,--.J 

then: 

Operand 
Addre .. : 

00 

• 

Direct Register 

• offset 

d irect address 

(direct address) 

Y Reg 

effective address 

9. Direct Indexed Indlrect-(d,X) 
This address mode is often referred to as Indirect,X. The second 
byte of Ihe instruction is added to the sum or the Direct Reg ister 
and the X Index Aegister, The result points to Ihe low-order 16 bits 
of the effective address. The Data Bank Register contains the high­
order 8 bits of the effective address. 



15. PrQ9r.m Count .. Re .. tlve-r 
Th is addr"s mode, relerred to as Relative Addressing . is used only 
with the BranCh instructions. 'f the condition being tested is met. 
the second byte of t he instruction is added to the Program Counter. 
which has been updateCilo point to the opCOd. Of the next instrue· 
l ion. The offset IS a signed 8-bilQuanlity in the rangslrom - 128 to 
127. The Program 8ank Regist.,. is not affected. 

16. PrQ9r.m Counter Relative Long-ri 
Th is address mOde, rel.rred to as Aelative Long Addressing. isuled 
only wilh the Uncondit ional Branch Long instruction (BAL) and the 
Push Effecti",. Relativ. instruction (PEA). The .second and third 
bytes 01 the instruction are added to the Program Counter. whic~ 
has been upclated to point to the opcode 0' the next instruction. Wilh 
the branch ,nstruction, the Program Counter ~ loaded with the 
result. With the Push EHective Relative instruction, the result is 
stored on the stack. The offset and result are both an unsigned 
H}-bit Quantity In the range 0 to 65535. 

17. Ab.olute Indlrect-(.) 
The second and third bytes ot the instruction form an addrns to a 
pOinter in Bank O. The Program Counter is loaded with the lirst and 
second bytes at this pointer. With theJump Long (JUL) instruction. 
Ihe Program Sank Register is loaded with the third byte or the 
pOinter. 

InlkYCUon: LI __ o~PC~od __ ' __ ~ __ ' _d_d_rl __ ~ __ '_d_d_rh __ ~ 

Indirect Addres. : 

New PC : (indirect addreSS) 
With JUL: 

00 

New PC : (indirect address) 
New P8 : (indirect address +2) 

18. Direct Indlrect-(d) 

addrh addrl 

Thesecond byte of the instruction is added tothe Direct Register to 
lorm a pointer to the low-order 16 bit. of the effective address. The 
Oala Bank Register contain. the high-order 8 bit. of the eHective 
address. 

Instruction: I opcode offset 

Direct Register 

• ollSe' 

I 00 direct addrep 

then: 

1 00 (direct address) 

·1 DB 

Operand 1 Address: eHective address 

19. Direct Indirect Long-[d] 
The second byte or the in.truction is added to the Direct Register to 
form a pomter to the 24-bit effective address. 

Inltruction: \L.~oP::..C_O,-d:".'-.L---,-OIlSe....;.:..t--, 

00 

• 

Direct Regrater 

offsei 

direct addr .. 

(direct address) 

20. Absolute Indexed Indirect-(a,X) 
The second and third bytes or the instruction are added to the 
X Index Register to form a 16-bit pointer in Bank o. The contents of 
thiS pOlnler are loaded in the Program Counter. The Program Bank 
Register IS not changed. 

IntkYeUori: 1L-~O~P~C~od~. __ L--='~d~d:..rl __ -L __ '~d~d~r~hc-~ 
addrh addrl 

X Aeg 

00 address 

then; 

PC = (address) 

21. Slack-. 
Stack addressing refers to all instructions that pu,h or pull data 
from the stack. such as PuSh. Pull. Jump to Subroutine, Return from 
Subroutine. Interrupts, and Return from Interrupt. The bank ad­
dr", is alway. O. Interrupt Vectors are always fetched from Bank O. 

22. Stack ReI.tlve-d,. 
The low-order 16 bits of the effective address is formed from the 
sum of the second byte of the instruct ion and the Stack Poinler. The 
high-ordar 8 bits ot the eHectiveaddress is always zero. The relative 
offset is an unsigned 8-bit Quantlly in the range of 0 to 255. 

IMtrucUon; 1 opcode offset 

Stack Pointer 

• offset 

Oper_ ,,- 00 effective address 

23. Stack Relative Indirect Inclexed-(d,.),y 
The second byte or the instruction is added to the Stack Pointer to 
form a pointer to the low-order 16-bit base address in Bank O. The 
Data Bank Register contains Ihe high-order 8 bits of the 6ue ad­
dress. The effective addreSl is the sum of the 24-bit base address 
and the Y Index Register. 

Inatructton; 1 opcode offlet 

Stack Pointer 

• oHset 

00 5 + offset 

then: 
5 + offset 

·1 DB 

1 base address 

• Y Reg 

Operoncl ,,-; effective address 

24. alock Source aMII, D .. tlnatlon a.nk-xyc 

10 

This addressing mode is u.ed by the BlOCk Moll'. instructions. The 
second byte otthe instruction contains th. high-order 8 bits of the 
destination address. The Y Index Register contains the low-order 
16 bits of the destination address. The third byte ot the in.truction 
contains the hioh--order 8 bits of the source addresa. The X Index 
Register contains the low-order 16 bit. or the Source address. The 
Accumulator contains one less than the number of bytes to move. 
The second byte of the block move instruction. is aiso loaded into 
the Data Bank Regaster. 

In_on; 1 -_: 0.0_ ,,-
opcode dstbnk srcbnk 

dstbnk DB 

srcbnk XAeg 

DB YAeg 

Increment (MVN) or decrement (MVP) X and Y. 
Decrement A. (if greater than lifO). then PC-3 - PC. 

- -, 



Not •• on G65SC802/816 In.trucHon. 

All Opcod" Funcllon In All Mod" of Operation 
It should be noted that all opcodes function in a/l modes of operation. 
Howe~er, some instructions ilnd addressing modes are intended for 
G65SC816 24-bit addressing and are therefore less useful for the 
G65SC802. The fOllowing is a Ust Of. instructions and addressing modes 
which are primarily intended for G65SC816 use: 

JSL: RTL; [dJ;Jdj:y;'JMP al; JML; al; al,x 

The following instructions may be used with the G65SC802 even 
though a Bank Address is not multiplexed on the Data Bus: 

PHK; PHB; PLB 

The following instructions have "limited" use in the Emulation mode: 

• The REP and SEP instructions cannot modify the M and X bits when 
in the Emulation mode. In this mode the M and X bits will always be 
high (logic 1). 

• When in the Emulation mode, the MVP and MVN instructions only 
move date in page zero since X and Y Index Register high byte is zero. 

Indirect Jumpi 
The JMP (a) and JML (a) instructions use the direct Bank for indirect 
addressing, while JMP (a,x) and JSR (a,x) use the Program Bank for in­
direct address tables. 

Switching Model 
When switching from the Native mode to the Emulation mode. the X 
and M bits of the Status Register are set high (logic 1). the high byte of 
the Stack is set to 01, and the high bytes of the X and Y Index Registers 
are set to 00. To save previous values. these bytes must always be 
stored before changing modes. Note that the low byte of the S, X and Y 
Registers and the low and high byte 01 the Accumulator AL and AH are 
not affected by a mode change. 

WAllnltructlon 
The WAI instruction pulls ROY low and places the processor in the WAI 
" lOw power" mode. NMi. rna or RESET will terminate the WAI condi-

11 

tion and transfer control to the interrupt handler routine. Note that an 
ABORT input will abon the WAI instruction. but will not res Ian the 
processor. When the Status Register I nag is set (IRQ disabled), the iRQ 
interrupt will cause the next instruction (following the WAI instruction) 
to De executed without going to the rm:l interrupt handler. This method 
results in the highest speed response to an IRQ input. When an inter­
rupt is received after an A1':rORi which occurs during I"e WAI instruc­
tion. the processor will return to the WAI instruction. Other than m 
("i~SI priority). ABORT is the next highest priority. followed by NMI 
or lAO Interrupts. 

STP InltrucUon 
The STP instruction disables the 1b2 clock to all circuitry. When disabled, 
the 1b2 clock is held in the high state. In this case. the Data Bus will 
remain in the data transfer state and the Bank address will not be multi­
plexed onto the Data Bus. Upon executing the STP instruction, t"e RES 
signal is the only input whic" can restart the processor. The processor 
is restarted by enabling the rb2 clock, which occurs on the falling edge 
of the ~ input. Note that the external OSCillator must be stable and 
operating property before 1tES goes high. 

Tr ... fe .. from 8-Blt to 15-Blt, or 15-Blito 8-BII Regilt ... 
All transfers from one register to another will result in a full 16-bir out­
put from the source register. The destination register size will determine 
the number 01 bits actually stored in the destination register and the 
values stored in the processor Status Register. The following are always 
16-bit transfers. regardleSS of the aCCumulator size: 

TCS; TSC; TCo; ToC 

Sieck Tranlf ... 
When in the Emulation mode. a 01 is forced into SH. In this case, the B 
Accumulator will not be loaded into SH during a TCS instruction. When 
in the Native mode. the B Accumulator is transferred toSH. Note that in 
both the EmulatiOn and Native modes, the full 16 bits of the Stack 
Register are transferred to the Accumulator, regardless of the state of 
the M bit in the Status Register. 



The Interrupt processing SeQuence is initiated as thedireet result 01 hard­
ware Abort . In terrupt ReQuest . Non-Maskable Interrupt, or Reset inputs. 

Hardware Interrupt-ABORT IRQ NMI RES Input • • . . • 
! Cyc;:te No. .' 
I E ~ 0 E ~ , A_ . DI" R/W SYNC 

I 
1 1 PC X 1 1 
2 2 PC X 1 0 
3 [ 1] S PB 0 0 

I 4 3 S PCH [2] 013] 0 
I 5 4 S PCl [2] 0[3] 0 

i 
6 5 S P [4] 0[3] 0 
7 6 Vl (Vl) 1 0 
8 7 VH (V H) 1 0 

Sonware Interrupt BRK COP In.tructlo", - • 
Cyole No. Rrw E ~ 0 E~' Add .... DI" SYNC 

1 1 PC-2 X 1 1 
2 2 PC- 1 X , 0 
3 [11 S PB 0 0 
4 3 S PCH 0 0 
5 4 S PCl 0 0 
6 5 S P 0 0 
7 6 Vl (VL) 1 0 
8 7 VH (VH) , 0 

Notes: 
11 J Delete this cycle in Emulation mode. 
12J Abon Writes address of aborted opcode. 
[3J A/ W remains In the high state during Rese .. 
(41 In Emulation mode, bi t 4 written to stack is changed to O. 

The interrupt sequence can also be initiated as a result of the Break or 
Co-ProceS30r instructions within the sottware. The fOllowing Ilstmgs 
describe the function of each cycle in the interrupt processing sequence: 

VDA VPA VP DMcrIpllon 

1 1 1 Internal Operat ion 
0 0 , Internal Operation , 0 1 Write P8 to Stack. S-1 - S 
1 0 1 Write PCH to Stack. S- 1 - S 
1 0 1 Write PCl to SlaCk. S- 1 - S 
1 0 1 Write P to Stack. S-1 - S 
1 0 0 Read Vector low Byte. 0 - PO, l - PI.DO - PB 
1 0 0 Read Vector High Byte 

VDA VPA VP D'-pilon 
1 1 , Opcode 
0 1 , Signature 
1 0 1 Write PB to Stack. 5-1 - S 
1 0 1 Write PCH to Stack, 5-1 - S 
1 0 1 Write PCl to Stack. S-1 - S 
1 0 1 Write P to Stack, S- l - S 
1 0 0 Read Vector low Byte. 0 - Po. 1 - PI, 00 - PB 
1 0 0 Read Vector High Byte 

Table 3. Vector Locatio", 

~ 
N_ 

PrIorIIy 
No.,. Sou .... (E = I) (E = 0) L_ 

ABORT Hardware OOFFF8,9 OOFFE8,9 2 
BRK Sottwara OOFFFE,F OOFFE6,7 N/ A 
COP Software OOFFF4,5 OOFFE4,5 N/A 
IRO Hardware OOFFFE,F OOFFEE,F 4 

N'" Hardware OOFFFA,B OOFFEA,B 3 
RES Hardware OOFFFC.O OOFFFC,D 1 

(1 - E) 

12 



ADC 
AND 
ASL 
BCC· 
BCS· 
BEQ 
BIT 
BMI 
BNE 
BPL 
BRA 
BRK 
SRL 
BVC 
BVS 
CLC 
CLD 
CLI 
CLV 
CMp· 
COP 
CPX 
CPY 
DEC· 
DEX 
DEY 
EOR 
INC' 
INX 

.INY 
JML·· 
JMP 
JSL·· 
JSR 
LOA 
LOX 
LOY 
LSR 
MVN 
MVP 
NOP 
ORA 
PEA 

PEl 

PER 

Table 4. G65SC802 and G65SC816 In.lructlon Sel-Alphabetlcal Sequence 

Add Memory to Accumulator with Carry 
"AND" Memory with Accumulator 
Shift One Bit left, Memory or Accumulator 
Branch on Carry Clear (Pc = 0) 
Branch on Carry sai"(pc ,.. 1) 
Branch if Equal (Pi:-'~ 1) 

Bit Test 
Branch if Result Minus (PH = 1) 
Branch if Not Equal (pz .: 0) 
BranCh if Result Plus (P~ = 0) 
Branch Always 
Force Break 
Branch Always Long 
Branch on Overflow Clsaf (Pv = 0) 
Branch on Overflow Set (Pv = 1) 
Clear Carry Flag 
Clear Decimal Mode 
Clear Intetrupe Disable Bit 
Clear Overflow Flag 
Compare Memory and Accumulator 
Coprocessor 
Compare Memory and Index X 
Compare Memory and Index Y 
Decrement Memory or Accumul810r by One 
Decrement Index X by One 
Decrement Index Y by One 
"EXClusive OR" Memory with Accumulator 
Increment Memory or Accumulator by One 
Increment Index X by One 
Increment Index Y by One 
Jump Long 
Jump to New Location 
Jump Subroutine Long 
Jump to New Location Saving Return Address 
Load Accumulator with Memory 
Load Index X with Memory 
Load I ndei Y with Memory 
Sl'I itt One Bit Right (Memory or Accumulator) 
Block Move Negative 
Block Move Positive 
No Operation 
"OR" Memory with Accumulator 
Push Effective Absolute Address on StaCk (or PUSh Immediate 
Oala on Stack) 
Push Effective Indirect Address on Stack (add one cycle 
if DL:;IIi 0) 
Push Effective Program Counter Relative Address on Stack 

·Common Mnemonic All .... 
__ AI ... 

BCe BLT 
BCS BGE 
CMP CPA 
DEC A DEA 
INCA INA 
TCD TAD 
TCS TAS 
TOG TDA 
TSC TSA 
XBA SWA 

13 

PHA 
PHS 
PHD 
PHK 
PHP 
PHX 
PHY 
PLA 
PLB 
PLD 
PLP 
PLX 
PLY 
REP 
ROL 
ROR 
RTI 
RTL 
RTS 
SBC 
SEC 
SED 
SEI 
SEP 
STA 
STP 
STX 
STY 
STZ 
TAX 
TAY 
TCD· 
TCS· 
TDC· 
TRB 
TSB 
TSC· 
TSX 
TXA 
TXS 
TXY 
TYA 
TYX 
WAI 
XSA· 
XCE 

Pusl'l Accumulator on Stack 
Push Oala Bank Reglsler on Stack 
Push Direct Flegisler on Slack 
Push Program Bank Register on Stack 
Push Processor Status on Stack 
PUSh Inde", X on Stack 
Push Index Y on Stack 
Pull Accumulator from St~ck 
Pull Data Bank Register from Stack 
Pull Direct Register from Stack 
Pull Processor Status from Stack 
Pull Index X from Stack 
Pull Index Y form Stack 
Reset Slatus Bits 
Rotate One Bit Left (Memory or Accumulator) 
Rotate One Bit RighI (Memory or Accumulator) 
Return from Interrupt 
Return Irom Subroutine Long 
Return from Subroutine 
Subtract Memory from Accumulator w ith Borrow 
$e. Carry Flag 
Set Decimal Mode 
Set Interrupt Oisable Status 
Set Processor Status Bits 
Store Accumulator in Memory 
Stop the ClOCk 
Store Index X in Memory 
Store Index Y in Memory 
Store Zero in Memory 
Transfer Accumulator to Index X 
Transfer Accumulator to Index Y 
Transfer Accumulator to Direct Register ' 
Transfer Accumulator 10 Stack Pointer Regisler 
Transfer Direct Register to Accumulator 
Test and Reset Bit 
Test and Set Bit 
Transfer Slack Pointer Reg ister to Accumulator 
Transfer Stack Pointer Register to Index X 
Transfer Index X to AccumUlator 
Transfer Index X to Stack POinter Register 

, Transfer Index X to Index Y 
Transfer Index Y to Accumulator 
Transfer Index Y to Index X 
Wait for Interrupt 
Exchange AH and AL 
Exchange Carry and Emulation Bits 

O' JSL should be recognized as equivalent to JSR 
when it is specified w ith long absolute addresses. 

JML is equivalent to JMP with long addreSSing torced . 



OPERATION 

£ ; 1 Of E-O 
M ... E· E=Oand ... 

MONIC .. II "1)1:; 1 MJX =O 

AOC Pm AL -a · pc- AL A"W·Pc-A 
AND Pm ALAB - AL " !l.W - A 
ASl (2) Pm Pc-B-O Pc- W- o 
BIT (1) Pm AUIB AAW 

CMP Pm AL -S A-W 
CPX p, XL - B X-W 
CPY p, '!'L-B Y-W 
DEC (2) Pm 8-1 - 8 w-, - w 
EOA Pm Al'W'S - AL A'IW - A 
INC (2) Pm 8 - 1- 8 W· l - W 
LOA Pm 8 - Al W-A 
LOX p, a - Xl W- X 

LOY p, B - Yl W- Y 
lSR (2 ) Pm o- a-pc o- w- Pc 
ORA Pm ALVB - Al AVW- A 

ROl (2) Pm Pc-B-Pc pc- w -Pc 

ROA (2) Pm PC - B- Pc Pc - W- Pc 

SBC Pm AL -B-Pc- AL A- W· Pc-A 

ST ... (7) P m AL - B A- W 
STX p, XL - B x-w 

STY p, YL-B Y- W 
STZ(7) Pm o-B O- W 
TAB (8) Pm AL./l.B-B AI\W- W 

TS8 (8) Pm AlYB - B AVW-W 

Emulation IE "' !) or cycles 
Natl~e (E.:O) Mode. 

bytes 
8 btt (MlX:1) 

Naltve Mode (E- O). cycles 

16 bII (M/ X=O) 
bytes 

V logical OR 
" logical AND 

-V- logical exclusive OR 
arithmetic addition 
arithmetic subtraction 

JI! not equal 
status bit not affecled 

Notes: 

J 
i 
69-· 
29 

.9 

C9 
EO 
CO 

4' 

A9 
A2 

AO 

09 

E9 

2 

2 

3 

3 

Table 5. Arithmetic: and Loglc:allnitruc:tlons 
Addr"""'t Mode 

I 
. ~ t 

65 
25 

OA 06 

2' 

C5 
E' 
C' 

3A C6 

45 
l A EO 

AS 
A6 

A4 
4A 46 

05 
2A 26 

6A 56 
E5 
B5 .. 
e. .. 
14 
04 

I 
2 3 

1 2 

2 • 
1 2 

~ 
~ ~ " • ~ 

i 
~ 

! 
... 

! ! j t i i i ! ! i • ~ 
75 72 61 71 67 71 60 7D 79 6F 7F 63 
35 32 21 31 27 37 2D 3D 39 2F 3F 23 
16 OE IE 
34 2C 3C 

D5 D2 Cl Dl C7 D7 CD DD D9 CF DF C3 
EC 
CC 

06 CE DE 

55 52 41 51 47 57 4D 5D 59 4F SF 43 
Fo EE FE 
85 B2 AI Bl A7 B7 AD BD B9 AF BF A3 

as AE BE 

B4 AC BC 
56 4E 5E 
15 12 01 11 07 17 OD 10 19 OF IF 03 
36 2E 3E 

76 eE 7E 
F5 F2 El Fl E7 F7 EO FO F9 EF FF E3 
95 92 .' 91 .7 97 80 90 !19 eF OF 83 

go eE 

9' ec 
7. 9C 9E 

lC 
OC 

- 1ICId00cycIINDl"'O- I 
4 

2 

5 

2 

4 

2 

5 

2 

B 
W 
r 
A 
X 
V 
Pc 
M/X 
W. 
Bs 

• 
2 

0 

2 

e 5 (3) e 0 • • (3) 

2 2 2 2 3 

7 6 7 7 • 
2 2 2 2 3 

byte per effective address 
word per effective address 
relative offset 

3 

5 

3 

• (3) • • 
3 • • 
5 6 5 

3 • • 

Accumulator, AL low half of Accumulator 
Index Register, XL low half of X register 
Index Register. YL low half of Y register 
carry bit 

• 
2 

5 

2 

effective mode bit in Status Register (Pm or Px, 
word per ,tack pointer 
byte per ,tack pointer 

u 
i 
0 

" " .. STATUS i ! N V .. X D I lC 

73 N V ZC ADC 
33 N Z AND 

N Z C AS<.. 
N V Z BIT 

03 N Z C CMP 
N Z C CPX 
N Z C CPV 
N Z DEC 

53 N Z EOA 
N Z INC 

83 N Z LOA 
N Z LOX 

N Z LOY 
0 Z C LSA 

13 N Z ORA 
N Z C ROL 

N Z C ROA 
.3 N V ZC SBC 
93 S TA 

STX 

,STY 
STZ 

Z TAB 
Z TSB 

7 

2 

e 

2 

1. BIT instruction does not aUec:t N and V flags when using immediate addressing mode. When using other addre$$ing mod". the N and V flags 
are respectively set 10 bits 7 and 6 or 15 and 14 of the addressed memory depending on mode (byte or word) . 

2. For all Read/ ModilylWrile instruction addressing modes except accumulator­
Add 2 cycles for E=1 or E=O and Pm=1 (&-bit mode). 
Add 3 cyCles for E=O and Pm=O l1&-bit mode). 

3. Add one cycle when indexing across page bOundary and E,. t except for STA and STZ instructions. 

4. If E::: l then l-SH and XL - SL If E=O then X-S regardless 0' Pm or Px. 

5. Exchanges the carry (Pc) and E bits. Whenever the E bit is set the 'oUowing registers and status bits are locked into the Indicated slale: 
XH ::.O. YH =O. 5H=, . Pm ~ I , Px"'t. 

6. Add 1 cycle.f branch'5 taken. In Emulalion (E=l) mode only- add t cycle if1he branch is taken and crosses a page boundary. 

7. Add 1 cycle in Emulallon mode (E=ll tor (dirl.y; abs.x; and ii)S.y addressing modes. 

8. With T5B and TRB instruction. the Z tlag is set or cleared by the result of M8 or MW. 
For all Read/Modify/ Write Instruction addressing modes except accumularor­
Add 2 cycles tor E=l or E=O and Pm=' (8-bit mode). 
Add 3 cyCles for E=O and Pm=O (16-bit mode). 

14 

--.. 



Tabl& 6< Branch, Tranlfer, PUI", Pull, and Implied Addrel.lng Mode In.trucllonl 

Mr.emonl<; I Operation OfMr."on 5t1itul 
, Byt.. M/X Cyelet 8 8M CrelM 18 BII Implied SIKk R.~II.. N Y II X D I Z C Mnemonic 

i BCC (6) 2 - 2 PC'r-PC 2 PC'r-PC 90 BCC 
I BCS (6) 2 - 2 PC' r-PC 2 PC+r-PC BO BCS 

i
l BEQ (6) 2 - Z PC'r-PC 2 PC'r-PC FO BEQ 

f----=B"'M"'I,.:(:;:6)'---jr_-=2'-+---- -I-"-" :.2-+-'p:'C:-• .:.r---':p-::C--+-..c2:--+:.pC,,-PC 30 BMI 

! 
BNE (6) 2 - 2 PC'r- PC 2 PC=-,,----=p"Co----I---+---+--::-OO- --+------+---B-N-E-i 

! 8PL (6) 2 - 2 PC+r-PC 2 PC+r-PC 10 BPL 
I BRA (6) 2 - 2 PC'r-PC 2 PC'r- PC 80 BRA 
I ave (6) :2 - 2 PC.,-PC 2 PC+r-PC 50 eve 
~~~--~~T-~r-~~~~~_+~~~-i BYS (6) 2 - 2 PC'r-PC 2 PC'r-PC 70 BVS 
I CLC ' ~2 I o-Pc 2 o-Pc'8 0 CLC
, CLD 1 - 2 o-Pd 2 o-Pd D8 0 CLD

CLI 1 - 2 o-Pi 2 O-Pi 58 0 CLI

CLV
DEX
DEY
INX

INY
NOP
PEA
FEI

PER
PHA

i
' PHB

PHD

1 - 2 O-PV 2 O-PV B8 0 CLY
, P. 2 XL-' - XL 2 X-'-X CA N Z DEX
1 Px 2 Yl-l -YL 2 Y-l-Y 88 N Z DEY
1 pj(2 XL+l-XL 2 X+l-X E8 N Z INX

2 Yl+l-YL 2 Y.l-Y C8 N Z rNY
1 2 no operation 2 no operalion EA NOP
J - 5 W-Ws. $-2-5 5 same F4 PEA
2 - 6 W-Ws. 5-2-5 6 same 04 PEl

3 - 6 W-Ws, 5-2-$ 6 same 62 PER
1 Pm 3 IIL- S..5-' - 5 4 A-W •• S-2-S 48 PHA
1 _- I 3 08-85.5-1-5 3 same 88 PHS
1 4 D- Ws. 5-2-5 4 same- OS PHD

PHK 1 - 3 PB-Bs.5-1-5 3 same 48 PHK
PHP t - 3 P-8s, 5-1-5 3 same 08 PHP
PHX , P. 3 XL-B •• S-'-S 4 X-WI. S-2-S DA PHX
PHY , P. 3 YL- Bs.5-'-S 4 Y-Wo. S-2-5 SA PHY

PLA I 1 Pm 4 5" - S. Bs-AL 5 S'2-5. Wo-A 68 N Z PLA
PLB I 1 - 4 5·1-5. Ss-DB 4 same AB N Z PLe
PLD 1 - 5 5+2-5, Ws-O 5 same 29 N Z PLO
PLP 1 - 4 S" - S. el-p 4 sam. 28 N V !A X D I Z C PLP

PLX 1 P. 4 S"-S, Bs-XL 5 5'2-S, W.-X FA N Z PLX
PLY 1 P.. " 5.'-5. Bs-Yl 5 5+2-$, Ws-Y 7A N Z PLY
SEC I - 2 I-Pc 2 '-Pc 38 1 SEC
SED , - 2 l - Pd 2 '-Pd F8 , SED

SEt 1 - 2 '-Pi 2 I-Pi 78 , SEI
TAX 1 Px 2 Al-XL 2 A-X AA N Z TAX
TAY 1 Px 2 AL-¥L 2 A-V A8 N Z TAY
TCD 1 - 2 A-D 2 A-D 5B N Z TCD

TCS 1 - 2 A- 5 2 A-S , B TCS
TDC 1 - 2 D-A 2 D-A 7B N Z TDC
TSC , - 2 S-A 2 S-A 38 N Z T5C
TSX 1 P. 2 SL-XL 2 S-X SA N Z TSX

TXA , Pm 2 XL-AL 2 X- A 8A N Z TXA
I TXS 1 - 2 see note 4 . 2 X-S 9A rxs
, TXY , P. 2 XL-YL 2 X-V 9B N Z TXY

L. TY_A ______ +-_l __ ~-P-m-'-'---2--~-Y~L-~A~L------r_-2--+-Y--~A~-----+--98---'-'r_--~------rN--------~Z~r_--_=T~Y-A ___
, TYX , P. 2 YL-XL 2 V-X BB N Z TYX
! XCE I 1 I - 2 see note 5 2 see note 5 FB C XCE

Sse Notes on page 13.

15

Tabla 7. Other Addresll"g Mode Instructions

Op s_
Mnemonic Addr ... lng MoeM Code Cycl •• Byt •• NVMXDI ZC Mnemonic Function

BAK stack 00 7/B 2 0 1 BAK See discuSSion in Interrupt Processing

BRL relative long :82 3
$equence SElelion.

3 BAL pc+r-PC where -32768<r<32767.
COP stack 02 7/B 2 o 1 COP See diSCussion in Interrupt Processing

sequence section.
JML absolute indirect DC 6 3 JML W-PC.B-PB

JMP absolute 4C 3 3 JMP W-PC
JMP absolute inod'irect BC 5 3 JMP W-PC
JMP absolute indexed indirec 7C 6 3 JMP W-PC
JMP absolute long 5C 4 4 JMP W-PC. B-PB

I JSL absolute long 22 8 4 JSL PB-BI. 5-1-5. PC-W •. 5-2-5. W- PC.
I

I
B-PB

JSA absolute 20 6 3 JSA PC-WI. 5-2-5. W-PC
JSA absolute indexed indirect FC B 3 JSA PC-Wo. 5-2-5. W- PC
MVN blod 54 7/byte 3 MVN See discussion in Addressing Mode

section

MVP block 44 7/byte 3 MVP
AEP immediate C2 3 2 NVMXO I ZC AEP p~li-p
ATI stack 40 617 1 NVMXO I ZC ATI 5+1-5. Bs-P, 5+2-5, Ws-PC. if E=O

then 5+1-5, Ba-PB
ATL stack 6B 6 1 ATL 5+2-5, Ws+l-PC, 5+1-5, Ba-PB

ATS stack 60 6 1 ATS 5+2-5, Wa+l-PC
SEP immediate E2 3 2 NVMXOI ZC SEP PVB-P
STP impHed DB 3 + 1 STP Stop the clock. Requires reset to

continue.
WAI implied CB 3· 1 WAI Wait for interrupt. ROY held low until

interrupt.

XBA implied EB 3 1 N Z XBA Swap AH and AL Stalus bits reflect"

I final condition of AL.

See Notes on page 13.

18

TabM 8. Opcode M.lnx

I: I ,
j D LSD ,
I • 1 • 3 • 5 • 7 • • A B C 0 E F

SRK 5 ORA (d, :,:) COPs ORA" d.s TSB d ORAd ASld ORA [dl PHP s ORA' ASL.A PHOs TSBa DRAa ASL a ORAal
0 2 , 2 6 2 , .' 'i 4 2 5 2 3 2 5 2 6 1 3 2 2 1 2 , 4 3 6 3 • 3 6 4

I
5

BPL r ORA (d),), ORA (d) ORA {d.sl.Y TAB d ORAd ... ASL d, .. ORA (dl,v CLCi ORAa,v INCA TCSi TABa ORA a,x ASL a,x ORAal.x
1 2 2 2 5 2 5 2 7 2 5 2 • 2 • 2 6 1 2 3 • 1 2 1 2 3 6 3 • 3 7 4 5

2
JSR a ANO (d .:!.) JSl al AND d,s BIT d ANOd ROLd ANO(d) PL.P' AND' ROLA PLO. BIT a AND a ROL. ANDal :
3 S 2 S' 4 , 2 • 2 3 2 3 2 5 2 6 1 4 2 2 1 2 1 5 3 4 3 4 3 6 4 5

3
8MI r AND (0) ,)' ANOld} AND (d,S) .), BIT d,x AND d,x ROl d,. ANO/d),y SEC i ANDa,y DECA TSCI BIT a,x AND a,x ROL a,x AND al.x
2 2 2 5 2 5 2 7 2 • 2 4 2 6 2 6 1 2 3 • , 2 1 2 3 • 3 4 3 7 4 5

4
RTls EQR (d,X) "'" EORd .• MVP xya EOR d lSA d EOR/d) PHA. EOR' lSAA PHKs JMPa EORa LSR a EOA al
1 7 2 6 2 2 2 • 3 7 2 3 2 5 2 6 1 3 2 2 1 2 1 3 3 3 3 4 3 6 4 5

eve r eOR (d).), EOR (d) EOR (d,S).y MVN xya EOR d,x L$R d,K EOR)d/,y CLli EORa.y PHYs Teo I JMPal EOR a,x LSA a,x EOR al,x , 5 2 2 2 5 2 5 2 7 3 7 2 4 2 6 2 6 , 2 3 4 1 3 1 2 • • 3 4 3 7 • 5

RTS s AOe (d,x) PER !I ADed,s STZ d AOCd RORd AOC)d) PLAs AOC' RORA ATL II JMP (a) AOCa ROFt ~ ADC~I
8 I

1 6 2 • 3 6 2 • 2 3 2 3 2 5 2 6 1 4 2 2 1 2 1 6 3 5 3 4 3 S 4 5

evs r AoCld) ,.,. AoC(dl ADe (d,s) • .,. STZ d.x ADC d,x ROA d,x AOC(d) • .,. SEI j AOCa . .,. PLY s TOCI JMP (.. x, AOCa.x AOA a.x ACCal.x
1 2 2 2 5 2 5 2 7 2 • 2 • 2 6 2 6 1 2 3 • 1 • , 2 3 6 3 4 3 7 4 5

BAA r STA (d.x) eRL r1 STA d.s STY d STA d STX d STA (dJ DEYi BIT. TXAi PHB. STY a STA. STXa STAal
S 2 2 2 • 3 3 2 4 2 3 2 3 2 3 2 6 1 2 2 2 1 2 1 3 3 • 3 • 3 • • 5

eCCr STA (d) ,.,. STA (d) STA {d,S) . .,. STY d,lt STA d.x STX d . .,. STA (dJ • .,. TVA; STA a,y TXSi TXYi STZa STAa,x 5TZ a,x STA al,x ,
2 2 2 S 2 5 2 7 2 • 2 4 2 • 2 6 1 2 3 5 1 2 1 2 3 • 3 5 3 ' 5 4 5

A
lDU LOA (d. x) LOX" LOAd,:, LOY d LOAd LOXd lOA)0) TAYi LOA' TAXi PLB S LOY. LOAa lOX • LOA al
2 2 2 S 2 2 2 • 2 3 2 3 2 3 2 S 1 2 2 2 1 2 1 4 3 • 3 4 3 4 • 5

BCSI LOA Id},.,. LOA (d) LOA (d.!).y LOY d,ll LOA d,x LOXd,'" LOA)d),y CLVi LOA a..,. TSX i TYX i LOYa,x LOAa .• LOX I ,y LOA al,x
B 2 2 2 5 2 5 2 7 2 • 2 • 2 • 2 6 1 2 3 • 1 2 1 2 3 • 3 4 3 4 • 5

C
CPV • CMP (d.x) REP. CMPd,:' CPYd CMPd DECd C"P(d) INY ! CMP' OEXi WAli CPYa CMP. OECa CMPal

2 2 2 • 2 3 2 4 2 3 2 3 2 5 2 • 1 2 2 2 1 2 1 3 3 • 3 4 3 6 4 5

BNE I CMP(d),.,. C"P(d) CMP (d,s),.,. PEl s CMPd,x OECd,x CMF' (d) • .,. CLOi eMP a.y PHX s STPi JML(a) CMPa,x OECa,. CMP atx
D 2 2 2 5 2 5 2 7 2 6 2 4 2 • 2 S 1 2 3 • 1 3 1 3 3 6 3 4 3 7 4 5

E CPX' SSC (d.x) SEP' sec d,s CPX d SaCd INed SBC (d) INXi SSC" NOP I XBAi CPXa saci INCa SaCal
2 2 2 6 2 3 2 4 2 3 2 3 2 5 2 6 1 2 2 2 1 2 1 3 3 • 3 4 3 6 4 5

SEOr SSC (dJ,y SBC (0) sac (d,s).y PEA, sac d,X INC d,x SBC (d),y SECI SBCa • .,. PLX$ XCEi JSA (I,X) SSC a,x 'NC a,x ssc al,x
F 2 2 2 5 2 5 2 7 3 5 2 4 2 S 2 • 1 2 3 4 1 • 1 2 3 • 3 4 3 7 • 5

0 1 2 3 • 5 • 1 • • A • C 0 E F

symbol .dd,nllng mod. Iymbol eddf'w.lng mod.

I immltC!'ilte [d) direct indirect long
A accumulat()()d),y direct indirecl indexltC!' long
I program countef" r.ativa • absoluta
11 program counter relative long o.x abaoiuta indexltC!' (with xl
i implied o.y abSOlute indexed (with .,.)

• stack .. abSOluc. long
d direct al,x ablolute indexed long
d.x direct if'ldexed (with x, d,1 stack rMti
d,y direct indexed (with y) (d,S) • .,. slack ralatiw indirect indexltC!'
(d) direc1 indintc:l (a) absolute Indirect
(d,x) direct indexed indirect (a.x) abSOlute indexed indirect
(d),y direct indirect indexed xyo bk)ck move

-Instruction addressing
mnemonic mode

base number of base number of
byte. cycles

17

1",_ .. 1,,-_
ILOY C~,C Pl LOI ORA,.
AN D (O A. OC 8 1T 1.0 A, 11)11 . 2"
C"'P.sse PEP SEPI
, ,, Op COGftI
12 . nGJoy,u.
I ~ " 1 cy.u...)

21. 4O.oILlI. -.
ie lT,sa Sf l . ~ OJ'
CP1" .C PJI: 51. LOI.
OAA " ... 0 EOA,ADC.
STA.l.e • . CuP S8C I
11(10IlCoo",
(3 11y'"1
,. I n(! .s e ye l., .

211 A~"OIU\' (fH",WI - '

.ASUlDL LSA.,RO A.
OfC.INC.TSB.TRfh
(80IlCocln)
13 II" ... ,
[6 anCI II e , c,"1

1<: AtlSOIul. (JUMPJ-'
{JUP" .CI
I' 0 11 COd"
I)OYI .. ,
(ley,,",

2C1 .t.t.QIul' (J"","1O
s.uorOlJI'~J -.
IJSA)
I IOpc...)

IJ~'
(I , ,.<:1n1
(~OI'c»I' fn)m JoII5Q2)

.~ ~Iul' Long-a!
(O R AND.E~.AOC

S, 1.0A..C MP.S8C)
11 0 11 COOn)
1"' &,1,"'
15 .nC 15 cyc;lel,

.It! At.oIu. Long (JUMP)- a!
,JMP)
(I Qg eoc-)
'''' OY'"' I" e.,C'IM)

'le;, A68cMut" L~ (Jump 100
SublOUtlM LOniU-a'
[JSl.)

11011 Code)
Iii bylftl
(1eycIM,

4.a 00'ec1-(1

I BIT STZ.STY.LOY.
CPY.cPl,ST"LDlt
Q"IANO.EQA..AOC.
S' LD C ... p.S8C'
(1600 C()OIIIJ
12 Dytn '
13 .• en()' 5 e yt ,"'

" I> O" .cl l Fl -A.l- W)-<I
IASl .AOLlS R,FtOR
DEC,INC.TS8.TR8)
(60pCod .. 1
, lttyl,,)
ISI,l l nG 'e"c' I'1

3

(I) ..

Il) 5
(1) 61 .

•

• ,
III S.

,
•

,.
(2) ~ • •

3
111 ~.

(2, ~I

3
(I) la
(3) ..
tl) Sol ,

~ Ao:cu",,,III OI' - A
IASlINC,ROlOEC.LS A.AOR)
t l5~eoo. ..
; T OVitt)
.2 c ~c'" l

5.1 I"'polea- I
tOEV. IN". INX DE":. NOP.
~CE. T"A. fA" rX A. TX S.
rAX.TSX.f CS TSC.TCO.
TOC.TXV.TU .C LC SEC.
Cll.SEI Cl CL.O.SEOI
(lSOQCoon)
,I tIyM)

12 c.,.e '
-.0. I ... ~-I

IX8A,
(lOpC_,
I I tty'l l
13~1

1 6(Wilt' For 1tI~"'0I
(WA il
I ' Op Codto l
(I by'.'
I J~y1;"'1

• 60 SI~T""'C'IX '
ISTP)
, IOQ COdIt I
II OV.I'
13 Cye"')

'" iFiD.NMI ,

REs"
~'O 'e m .O I.,
m ·, Iii ,

Table 9. Delailed Inatruction Operation

, ,
o
o
o
o
o

, , P8R.PC
o PBFI.PC- '
o P8A.PC-~

.....PC -, -, .
• 1 PBA,PC-'

, P8F1.PC- 2
o OBR.AA •

•

,
o
o

,
o
o
o

,
o
o
o

o OiIR.""o ,

',",PC
PBR.pco,

, P8F1,PC'2
o oeA
o O8FI.M-'
o OBA.Mo,
o OBA.M - '
o O8fl.M

, PeR.PC
PeA.pc"
PBR.PC-2

, PeR. IoIEW PC

PM.PC
PM.pcol

, P8R.pco2
o P8F1.PC ·2
o O.S
o 0.5 - 1
, ~.I<IEWPC

...... PC
PBR.PC·'
P8R,pc o 2

, PBFI .PC·3
o AA8.M

,
, 0
, • 0

o

o B.M . '
PBIII.PC
PilIA.PC·'
PBA .PC_~

, P8A.PC-J

,
o
o ,
o
o

,
o
o

,

, N€WPSR.PC

P8A.PC
PeR.pc.,

, PBA.PC·2
o O.S
o O.S

PeA.PC·3
0.5 - 1
O.S-~

, NEWP8A.PC
, PBR.PC
, PeA.PC·'
o P8A.pc o l
o 0.0-00
o 0.0'00"

, P8F1.PC
, 0 I P8R.PC·'
, 0 o PBA.PC·'
o
o
o
o
o ,

o

o 0.0'00
o 0.0-00"
o 0.0'00"
o 0.0'00"
o 0.0'00

PM.PC
P8A.PC-'

1 PeA.PC
o 0 P8A.PC-I
o 0 PeA.PC·'

0 ••

I , PM.PC
o 0 P8R.PC·'
o 0 P8F1.PC- '

,
o
o
o
o
o

PBA.PC· '

, PBR.PC
o PeA.PC-'
o PBR.PC·,
o I P8R.PC·'
o , P8R.PCo,
o PBA.PC·'

PM.pco'

o,e­
M'

"'" a.1. Lo_
o.~

,
". " 0

'" ,
0."P11gf1 0
0", l OW 0

Opcoo.
NEW PCl

NEW "'" ,..wOp Code' I

Op e­
NEWPCL
NEWPC"
,0
PC"
.<:c
Ncow Op Co.- ,
op e_

"" M"
M8
OMI LOw 110 0........ '10
o,C_
I<I(WPCL

. NEW F'CH
NEW'"
l<I.w~C/JOt

OpCooo
NIiWPCI.
NEW PCH 1
.... 0
'0 ,
I'tEW PeA ,
PC" 0
I'CL 0
"'.OpCode ,
o,C_
00
'0 ,
o.u W- 110
o.u.....,. 1.1)

0.<000
00
'0
DIU I.".

""'
'" D." HI9h
0.1. L.o­
Op"",,"
'0

00C­,a
'0

Ope­
,a
,a
IRO(8RKI

Ooe­
'0
'a
RES(8RK)
RES(BFtK)
RES(8111()

, ,
o
•

_
CVCLl Vii, ii'L ¥Oot..Yf'A AOOM .. tw OAT ... au&

T OoIilCllndor..::t I~ ... d-(d).y
(ORA.ANO.f OR,AOC.

I , 'PeR.PC OOCOOiI
2 0 1 PBA,PC>I 00

ST LOA.C ... P.SBCI
"Opeoc-J

(21 2.1 . 0 0 PeR.PC" 10
3 , 0 0.0--00 Ml

(2 ".,...1
IS.6.7 • ...s I eydM)

I . OUiId Ind::1
II'W5e ... dLOt'g-ld1,y
10RA..iI.NO.EOFt OC.
ST I.DA.CWP.S8C)
('Op eo.-,
(2~)

(IJ_'eyc:""

'. ,
(2) 2a ,.

•
5 ..

(" ...
t. Oi,..;l Indil • ..., IndW.ct-(d.lI)

(ORA.AI<IO.EOA,"'oc.
,.
2.

t2J 2,. ST LOA.CMP.S8C'
(lI~eoa.,

(2 byl_'
'11.7 1M • eye ... ,

10.. Oit«:I,X-<I ••
,e lT.STz.STY.I.DY.
ORA.ANO.EOR,ADC.
STA..I.OA..ClroIp.S8C1
(I~Op CodM)

t2 bJMil)
t • • S.nd Ic:ycloIII)

' Ob. Oi1"ed.)(tA W}---dII
(A&. .AOl..I.SA.AOR.
OEC,INC)
(I~~I

(2 b '
tl .' .• and'qdiI&J

" . 01,..;1, '1 -<1.'1
(ST)(.LO":)
12 Op CDdiIiI)
(2 by_1
(".5 and IIcyelnl

121. AbIoIuta.II--'.
(8 tT.lOY . .s1'Z.
OA AND.EOA OC.
ST L.DA.CIIIIP.S8C I
(ll~eo.-)
(3b,-1
, • • 5 and II cYC'-)

12b ~X(FI· W)-u
(A&. ,ROLLSIl.AOR.
OEC.'NC)
llQocoo.,
(3 b".,
(7 -:I' CJ'C*I'

.,). AbIoIIIt.l.otIQ.X-e1oJ:
(ORA..ANO.EOA.AOC.
5TA.LQA.C"'P.S8C,
"Op e-!
(.. ""..1
('Indlcye""

, .. AtIIGIut.,Y-I,y
(L.O..:.ORA.AHD.EOFl OC.
ST L.OA..CIIP.S8C1
(9Op ~,

(3 bVl_)
(" .5 W'>d I eyc,")

IS AeI.l i,..- .
IBPL. .B"'I.BVC.8Y$..8CC.
ecS,BNE.BEQ.BAA)
,,~ COOM)
120.,...1
(2.3 end .. CVC ... ,

.,'- A"".v.I.""9-"1
18AL.)
!1 ~CodiII
(3 b.,...,
(. cydiIiI)

11 • . AI:IeoM. lrodi..cl-(I) , "
II ~CodiI)
(3OV-I
,ScycIIiII)

PML)
(I OpC_,
(3b.".)
(6 cYe)

• II DoIWeI In"'1We1 -(d)
(OA AND.EOA OC.
ST LDA.CWP_S8C)
,I OpCOOM)
\2 byI ..)
(S .•,1cycl ..)

3

'.
5. ..

(1) ...

• III

, ,.
(21 2L

3

(,.
P) S.
(1) ,
(Z) 2.

3

•
(') ...

,. ,.
• ,., 3L

•
(') ...

,. ,. ,.
'. • (I) 5L

(3) 6.
(I) 7 • .

7.

,. ,
•
5

(I) Sol. , ,
3.

''') la •
(11 ... , ,.
(5) ~ • •
(I) ~.

.. ,
• •.
.. ,.
3.

•
5.

, ,.
• ,
•
, ,

'~I 21. ,
• ,

(I) 51.

,
o
o
o
o
o

, , ,
o
o
o
o

, 0 0.0'00" ""'"
o 0 OBR.AAH.M L· YL 10
, 0 08A..""." 0.,. l
,
o
o

,
o
o
o

,
o
o ,

,
o
o
o

,
o
o
o

,
o
o
o

,
o
o
o
,
o

o 08f!.AA'Y" OtliIHIQIl
I P8A.PC CoCOOil
, PM.PC· ' 00
o PM.PC-I 10
o 0.0-00 ML.
o 0.0'00" AAH
o 0.0'00'2 MB
o ""e " Oil. L" •
o Me.M·"·' o.ca H.g"
1 PeA.PC Op Coot

PeR.PC·' 00
P'8Ft.F'C" 10

o PeA.F'Col 10
o O.O·oo-x ML.
o 0.0'00''':'' H
o 08A.AA 0 I.
o OM..A.A·' 0.11 P1IgI'I

PBA1'C OPC_
I PeR.PC·' 00
o PeR.PC-' 10
o PeA.F'C·1 IQ
o 0.0 .CtC>. o.u L.a-
o 0.0 '00'." o.,,"'gfI

'P8A.PC 0 1' Coot
'PeA.PC·1 00
o p ... PC" IQ
o ~F'C" 10
o 0,0'00')(0 LOw
o 0.0'000)(" c." HoQh
o 0.0--00''':'' 10
o o.O·CtC>X·I 0 HIgh
o O.O·DO-..: 0.11 Lo.I

I PBA.PC Del co.'
, P~,F'C" 00
o PeA.PC" 10

~ ~.~:~ ~ L'"
o 0.0 '00' '''1 o.uHt9"
'PeA,PC Op CodiI
,P6It.F'C" AAl.
I P8A.PC'2 AAH
o 08A,MH,ML.')(L 10
o OM.""''': Dill. L.".
o OM ·x· , a..."'1Ih

PM.PC Op Coot
I P8R.pc. , AAI.

I PeA,PC'2 """
o OBR "'.AAL.· XI. 10
o 0".""')1 o.c.l.O_
o DBA,M· . · I O~ H.g/'I
o OINtM·X· ' 10
o 08A.)(., o.wHogrl
o 08ft..A.A')(o.&Ii LO-
I P8R,PC Op Code
I P8A.PC·' ""L
, PBA.PC·2 ""'"

" 0
1i0

,
,~

'"

'" ".
,
'" ,,'

,
,~

,~

".
,~

,
o
o ,

o
o
o , P'8A1'C'1 Mil ,

o AAB.""·X 0.,. L.". ItO
oA.A • ..:., o.t. HogPI lIO ,

o
o
o

, ~F'C 00 COdI
I PSR.PC·' L
, PBA.PC-2 MH
o OM.MH.ML·YI. 10 I
o 08A.M'V a.. L.Q. tlO
o oeA..iI.A· y· , DIIt.HIg.!'I I/O ,

o
o
o

PBA.PC 00 CIOOtt
, PBA.PC·' on
o PBR.PC'2 '0
o P8R,PC'ZoOFF 10

PBR. PC ~ CocIe

I I PSftPC
o I P8A.PC "
o , PllA.PC· 2
o 0 P8R.PC·2

, P8R. F'C

1 I PBA.PC
o , P8A,PCo,
o , PBA.pc·2

o OM
o OM· '

PM.I<IEW PC
, _PC
o , PlN\PC"
o I P8R.PC·2

o O.M
o 0 1

o 0.M·2
NewMtA.pc

, PBA.PC
o , PBR.PC · '
o 0 PBA.PC · '

o 0.0·00
o 0.0'00>1
o OBA
o aeR.""·'

o, c_
""'" L_

"""'
'0
Ncow 01' c:ocs. ,
Ope-....
MH
.. wl'CL
NEW""",
000.-
000.-
~,

MH
NEW PC,
NEW PC'"
NEW PeR ,....OpCod. I

a. Cooo
00

'"
'AH ,
08llL".. 110 D." L."'" 110

Table 9. Detailed Instruction Operation (continued)

AD!Ol"R-asa ~OOI CYCLI Y¥. --. 't'OA, YP''' "0011111' .UI OA'I'Aeu. .iii AOOAt:8S MOot CYCLI! ~, iiL. yI)A. " AOOIIII$l eue OA'I'''.US .;w
*111 D"~t Irld,rllCl Long-Id) PBR,PC opCooe *" SlilCk Rill_live Indulle! 1 paA,PC OD Coae

(ORA,AND.fOA,AOC peR.PC·' DC Indu.., -(d,I).Y P8RPC'! SO

C
STA,~DA,C:\,t)p.sec) '" " peA-PC-' '0 (OAA,ANo,eOA,AOG. peR·PC·, '0 - i!lOD GooM) 3 0.0-00 AAL STA.LOA.CMP.SaC) O,S'SO AAL
!~ b~'_1 0,0·00" AA" I.!IOi3CodQ:lI OS·SO., AA"
(5 i lind S CyCiMj 0,0·00*2 AAS 12 tlyunl O.S-SO*1 '0 , "AB.M Oil'" L" .. '" (7 and!! eyel.,., DBR,AA+Y Data Low , 0

(1) So ,- , "AB.AA" D"u HlgM '" '" " DaR,A.A.'Y" Dill. H'g" "
'" ""SOI 18 Indo~1Id Ind,,"c\ _(1.:0:) • 1 --, peA,PC QpCQdcI *2 •• BlOC. M~ POSII'~.

N-' [l
PBA.PC OOCoa.

(JMP) , PBA.PC·' AA' (lo' 'd) -"yc PBA.PC·' 0 ...
(10., Code) PBRPC+:/ AAH IMVPj PBA,PC'2 SSA

(J tlY:l:!I) P5A.PC·Z '0 {IOpCoOel SBA.X SQurce 0;11;1

,6 eve: ...) PBR.AA.X NEWPCL I] bytes) Byt. S OBA.Y Desl 0 .. 1 ..
P8A.AA'X+1 NEW PCH (7 eycl .. , C o2 1\ OeA.Y '0
peR, NEW PC New Op Cod. ~ = SQurc. Aadreu , 0 OBA.Y '0

."'" AbllohJ!G' :;)<jos~!!1ClIM,recl paA.pc OpCoOe
' ' On"",,,," f' , PBA.PC OpCQdcI

(Jump to Su!).aut,n .. Ind •• ..a P8RPC·' AAL c oNumber 01 9y1G~ 10 Moor. - I 2 PBR-PC" OSA

Ind,r~II_I!I.·' 0.' 'GH •. ~ O~r"t"I'IInl 1 PSA.PC·" S.A

(JSR) 0.5-. ,<" MVP ,5 UNd wl'l.n 1!'Ie N-I 4 SBA.X-' Sou'ceO;l';I

(10pCode) PBR.PC+2 AAH destlnlltlon SUlrl!Kld e~l. S OBA.Y-' Des' O;lt;l

13 b't'1&1) PBR.PC ·2 10 Ilnlgher(m00'8PQlltmlj C~' II OeA,Y-1 '0

(8 ~y~llJS) PBR.AAtX NEW Pel thin thf IQutcli 511n addras .J DBA.Y-l '0

Table9. Detailed In,trucllon Operation (conllnued)

"'OOP.i!:~ aDOI CTCU: vp, .. VOA, YPA AClOR"" lUI OATA au. ri AOOfIUlllfODiE CYCLE iii. iii. VGA. V_A AOOfII"S' lUI DATA'U' 'M .,. O"v.:11l10oreclI.OI'IQ_(d) !'SA.PC OD Co<I. ':t). s~ A ... lI Ind"'eel , """.PC Dileo.,.
(ORA.ANO.EOR.AOC , PSR,PC" 00 ._ •• - \d,I).,. , P6A.PC·, 50
STA.L{l.iII .CNP.seC) 1" " 0 PaR.PC·' '0 (O"A,AND.EOR.ACC. 0 PSR·PC· , " 18011 C"""' J . 0 0,0-00 u, STA.l..OA.CMP,S8C) 0 D.S·SO .. ,
12 bytes) • 0,0-00" A_ (S ()P Coowl , 0 0.5·SQ·, ...
15.7 1M. t;yGrU I .. 0.0-00'2 AA6 (2 cyt".) 0 0 O,S'SQ" ,0

• c , S ,M O ... l o_ "0 (7 and 8 Cye:,., 0 OBR, "·.,. Da'. l o_ " 1" .. ,. , 8 " · ' 01011 Hlgn "0 1" " 0 OBR. ·.,·! 0.', !J" • 0

"'" AD,Olu!ll In08ua Ind"II1;I _(...) - I • .. , , PSA,PC O,~ *2 6100:;;1{ Mo., POSlIIVI

N.{l
PBRPC 0,,,,,,,,,

IJ;l,jP) ,. 0 paR,pc" .. , (kI,w.rd) -.ye , PBR,PC" O.A
(1 00 Codl ' 3. 0 , paR.PC·' AA" (M\lP) 0 P&R.PC·' 58A

(3oyl"1 0 , peR.pc·2 '0 (' Qg COd<I) 0 SBA,. Source O.til ,
16c ... ~1M1 0 , PM.A"''';: NEW peL. (30)'1'" B)'te S , 0 oe '!' Dell D .. ta 0

0 , PeA""A'.·1 NEW PC ... 11 tycl." C ' 2 e, 0 0 08A.' '0 , PBA. "IEW PC ~OpCode • : Sou."e Adod , 0 0 DBA." '0 .,.., "blohAO I_ .. d If'ICI ;....ct '""PC O pC.". , . ~.- ~
, P8A.PC O,~

(Jump 10 S>.lD<oul,ne lncluad , PBA.PC·' M' , e ' Nun\oe<of 8yM1 lO - 1 2 PSA.PC-I DBA

'"dor""ll-(a."1 J . 0 0.5 PC" 0 • . '10.:'_1 3. , P8R,PC" 59A

(JSRI • 0 Q.S-l PC, 0 M'IP IS uled when In. N·' • . 0 SB" .• - ' Sou.ee 0-.

i1 Op Code) , PBR,PC'2 ...,. doHl",.t",n Ical1~"" 8yte ~. 0 08A.'I' - 1 On! Olte 0

(:3 bytn) • 0 0 PBR.PC·2 '0 Ilhlgher(morlpolIll~) C ' I 6. 0 0 OB".'I'-1 '0

(8 eye III) , PeR.A"·:': "lEW PCl Ll'IoIn the source SIlI1 I\jj(Ir", J 0 0 08".'1'-1 '0

0 PeR ·.·' NEW PCH ... [, , """.PC OpCoo. , PBR.NEw PC N_OIlCodi , ffffff 0 , PBA.PC·I 09A , .. 51.,;. 11'1.,0"", , , , PBA.PC '0 I k 5

".

0 , P8A.PC·2 S9A

Inl I'\0&) ..) - , IJ) ,. 0 0 "".PC '0 , "" . 0 S8A..-~ Sou'elOall

UAO."WI.A8OAT.RESI In J . , 0 0.5 "'" 0 ~ I;oIScatt C'O 5 0 OBA."·Z Oftl Oat.

I' nlld 'e .ntetfuPh) PO) .. 0 0.5- ' PC" 0 On< EM • 08,1\.'1 · ' '0

10 bY''') (10J • 0 0.5-2 PO. 0 Sowree End , 0 00 '1'·2 '0

(7 I nc! 8 el'eln) 110ill1) • 0.5-) • 0 00000o , PeA.PC-) -""~ , 0 MVL

• o.VA., """"
, '*24b. B)ac~ 1010'" ~II~

t'
, PBR.PC DpCode , O,MY N_OpCode 1 (tMc~ • .,CI)-x~ , 0 PBR.PC·I 09A

'" SIK~ (Soft , , , P8R.PC OpC_ , IM"""I N- 2 1 0 , PaR.PC·2 SSA

In!ItI"UClr.I -S III , 0 , PaR.PC·' Sognlllu", , tl 00 Cadi) Byflt • 0 S8A. ' Source olla

ISl'h(.COF) I" • 0 0.5 '9. 0 (l bytn) C =2 5 • 0 DeA.' o~t Dill

,2 Op Coon/ • 0 O,S-' pc" 0 (1 cyCIIS) • 0 0
_.

'0

12 byte:S! , 0 QS·~ PC' 0 • • So...-wAdor_ , 0 0 "... '0
~ 1 znd-Scyo.1,"J • , 0 O.S-l (CoPt.,ICn") • 0 Y · o.."nalOn

PBA.PC , 0 0 O.'1A ""VL ,. ""'., . .-.. _., t' O.~

• 0 0 O.'IA·' M'" • Y I"e men' 2 P8R.PC-' OBA

, O.AAY N_OpCode , FFFFFF ,)
, PBR.PC·2 5BA , , 0 S8A .• >, So<,o-c.o.lI ,

", Steelo (Rfi'wm Irom , , , PBA.PC Opo-
I d""'''''EO' C . ': 0 oBA.Y.' On! 01'. 0

Inl~rr .. "l) - ' , 0 0 PBR.PC· ' '0 0 oB Y.' '0
JAT!) Il) ,. 0 0 PBR.PC>' '0 j On> Eo' , 0 OS Y.l '0
P OQ Coo:;Q) • 0 0.5" • :=;~- ~

, , """.PC OpC.",.
I i tlyltl , 0 0.S·2 N_PCl , 0 , PBR.PC·1 DBA
16 .. " " 1 .;yeltt.) .. 0 O.S·l NewPCH

00000o N Byte J 0 PSA.PC-2 ' SA (dInG","' ord., !rom N55(2) I"
, 0 O.S· . 'BR 5eA.X·2 Source 0111 ,

PeA,"'" PC Op Code
CO.

M'JNI. uIoIIG.'-ttII S 0 DBA."·2 0.11 Dill 0

'" Sla.;k IRet ... n !rO"" , , PBA.PC OpCOIM dntlflOflOn tt.VI add\'ftJ 6 0 oBA.Y·2 '0
Subroul'"") -~ ,. , peR.pc" '0 1I10_lrno'I~INI'

, 0 oB y·l '0 ,
JRTS)

, 0 PBA.PC·' ' 0 Inan 11"10 II01.Ircl It8n
, peR.PC-l NewO",eoo. ,

II Op Cod,) ,. 0 O.S· ' NewPO.-l .adr",.
(I by til) ,. , 0 0.S·2 _PCH
III cyc!etlj • 0 0 0.5'2 ,0 , PBR.NewPC N_Opc:ocs. , ""'-

'21a Stad (Fl. turn "0," , , PaR.PC all Code II) Ad(Il bytllilor Immllld"teonly/ lor M· OOt .'01'1 18 tin a.ul . aoG 1 CYClelOf 1,1'0 or 11 '0

Sut-rouune L.ong/ -. 0 0 P6A.PC·' '0 121 Add \ cycle 10. dorKt revllter 10 ... (ol) nOl equat 0
(RTi.. l 0 0 PeA.PC·' '0 (l) 5Jlecletl298 lor aDort,ng InatrUChon. Ttl t!lelea eyellwtllCh froIy Ot'IDOIIVCi orll'101 5 1'IUt.
II OoCooe) 0 0.5" N£WPCl PeR 0' OOA "'V ... ~ .,11 till updOIed.
I ' by'l.' 0.5·2 NEWPCJooI

16cycionJ .. 0.5·3 NEWPBR (4) AOd (<:yQe'or 1P'H.,ng ecrow p.ge boundel_. Of _'Ie. Of K~o. w..... ;01. . , or.n tl'(l

NEW PeR.PC -""~
IlmUiaIion modII. (!lot eyell coni .. ", Invalid MJCI..-.

'" Stlel (PU''') - ' , , P8R.PC """"'"
IS) Add I eyclll! branert.t

(PHP.PI-!A.::>HY.PHJt 0 0 P8R.PC-' '0
, (6) "dO' eyelell tlrl/'lCflll \akaI'IICIOSS P-.got DQund'''" In 6502 emula!1orI mode IE ' I I

PMO.PMI(.Pl-tB) '" " 0 0.5 R~H9' 0 (7) Subtrlct 1 cyel" or 6502 emulatoon mOOt LE'l)
"0,, Cod ..) J 0 O.lH R~"lO'M 0 (8) Add 1 cycle .", AEP.SEP
II ~Y'II 19) Wa.1 II cycle 2 '0' 2 eyeln IIIII' Niir Of iMi K'_ .nOU1 (3 Ind • eye:(r.)

'" S.X .. \PulIl-~ , PBA,PC OpCOOI (10) AI"",eoT\4IIM!'IignourongR_.

1""P.I't.A.P',-'I' .P1.X.P1.O. PLB) 0 P8A.PC·' '0 (111 SAK bit 4 equal. "()"in EmulatIon modi.
(!),IfI!t8"ll'ro&-:~) ,. 0 PBA,pc·, '0
(is OpCoo.l , 0 0.&_1 ~" .. r lO-

,
Abt>' ' .. oonl.

(1 bY'!~) 1" ... 0 0.5>2 ~"'r""on
,

AAB "'btolut& Aod<_ 8MoII
I. an<! S cyeln) ""I-! "'blQlul. "adieu Hogn

*2'" S~II:;~ ,Pus,", E"""" '" , , , PBR,PC ""eooo AA'" "Osojull AOdr_ lo'"
Inc:"oc: "dOl'SIII-' 1. 0 , PBA.PC·I 00 AA I"I AbiolUII Addr", 100< 1'1'91"1
,P£I) >1, ... 0 0 PBA.PC-' '0 Vl Atosolull AOOIllSI YKIOo< lOW
,' O=, Codel 1 0 0.0.00 AAI. C "",cllmul.tor

12 by''''') 0 0.0-00'1 AAH , o OWIeI Reg,,,,,
10' 1 eyelet, 0 0.5 AA" 0 OBA O"t oon Banil. MClT ...

• 0 O.S-\ AAL 0 OaR 0 .. &In_ Regoll

*21' Slid: (Pu.n cltllCIIVIl , PaR.PC OpC_ 00 OoreclOltwl

"tI"'Iol ... :. Ad(Ilesa! -1 PSA.PC·' AAL 101"1 Im~ (R. •• ""'Qli"I
I~EA) 0 , PaR.PC-2 M" IDI.. I'-"" OI,,"'OW

I' O J) Code; 0 0.5 AAH 0)0 Int...-n" Opefl10011

I~ Oyles) 0 O,S- I AAL 0 P SII!U' Regoill.,

15 ey:; I"~) PBR P'ogr,m Banil. Re",_

*21) SI;aCI'. (?ulln f.J!OCilY' , PM.PC O,C- PC Prog •• m C"un,,,

" ' C>gllm Counter Rela".e 0 PBFL.PC-I 0f111t la- R,M· W R"a' MOC!lly, W,,'e

A<:O" &lI - S 0 P8~,PC-2 Of1_~n , S SII(;II "dd""

,PEA) 0 0 P8R,PC·2 '0
, SBA S<N<~ elne ACldr_

(1011 CQC!I) 0 0.5 FlGH. orr. 0 so StICIOIIYI

13 OYO"'""I - CARRY
VA '<'ector AdcI'"S

;6 cYC:&l ; 6 0 O.S·' FlGL • 0f'tNI 0 "'1 1<101_ Ae90ttlfl

." SIIC' Rel.l.htt -d.1 PC O,~
* • JII,ew oessca1el802 Ad<I~ng Model
• = GM.SCO:2 AdckeMing Mod_

ICRJo. . ,,~o.EOR AD , PBA.PC·' 50 81anlo • "'MOS 6502 AdOreuot>Q ~
S T",LDA,CMP.S8C) 0 PBA.PC·' '0
',80pCooft) 0 O.S·SO OOlla Lt •• '" i2oY1M) . " ... 0 0.5·S0·1 081' Hogr. ,,0

~f:' (. ~nd S cycles I

Iq

Pin Function Table

I Pin

AO-A15

I ABORT

i BE

, ~2 (IN)

I ~1 (OUT)

<p2 lOUT)

00- 07

DO/ SAO-Ol/SA7
I E ,

IRO

ML

MIX

Pin Conflgurallon

Noles

Oeecnptlon

Address Bus

Abort Input

Bus Enable ..
Phase 2 In Clock
Phase 1 Oul Clock

Phase 2 Out Clock

,Oala Bus (G65SC802)

Oala 8us, Multiplexed (G65SC816)

Emulation Select

Interrupt Request

Memory Lock

Mode SeleCt (PM or Px)

Niii
SYNC ...

7

• • .., ,.
A1 11

Net" 12

A2 ,.

•

G85SCI02

Pin

NC
NMI
ROY
RES
R/W

SO
SYNC
VOA
VP
VPA
Voo
Vss

31 II')

3IRIW
37 Ne

l
"

.00

31 Dl

.. D2

.. DO
.u ,4 32 04

A4 15 :11 01

AS ,. 30 DI

AI 17 21 07

_ 7

V, ,.
A' 11

NC l11 12

A2 ,.

A> ,.

M ,.

AS,.

= ~ I ~ A = ~ I I ~ I

• 1ft ~

•

GISSC81.

31 •

• AlW
37 He (:I)

• DGlBAD
35 01/ 1

34 O2IIAZ

~ mtl.u
:II 041

'1 DllaAi

• DIll,.
AS 17 :a D7taA7

= = R " ~ ~ X R I ~ I
o _ ~

c c U
z

1. Future G65SC802I816 PlCC device, will n.ve Vss added lothis pin.

2. Future G6SSC802I816 PlCC device. will have Voo added to thie pin.

3 New sIgnal pins on G65SC802 not .vailable on 4O-pin OIPvel"1ton.

.n

DHCrlptlon

No Connection

Non-Maskable Interrupt

Ready

Reset

Read/Write

Set Overllow

Synchronize

Valid Data Address

Vector Pull

Valid Program Address

Positive Power Supply (+5 Volts)

Internal Logic Ground

W.

"'" ., (OUT)

iiiii
He -SYNC

Woo

G85SCI02

1 ..

2 31

• 31
• J7 · .. · .. 7 ..

• 33

liD
•• (out)

~ .2 (IN)

He
He
IIIW
00 D'

Al ..

A2 "
A> "
M ..
AI 14

AI "
A7 1,

AI 17

AI ..

.'0 "
A11 20

., DO
,. DO

II D4
21 DO

27 DO
.. D7

2S All

26 A'4

23 A"
22 A12

21 v.

G85SC818 ..
2 ..

• 31
• 77 · ..
• 3.
7 '"

• 33

...
VDA
II/lt

"(IN)
.1

•
RJW

""'" .. • 32 01'IA1
Al 10 31 02JWiA2

11

" 13 ,.
" A7 l'

AI 17

AI 11
Al.

All " 2.

JO 0:a..A3

29 MI ..
21 DII8AI

27 DIll,.
2e 07/11A7

2:S All

14 A14

:z:J Ala
2.
21

Al.

v.

. ~

'--

Packaging Informallon

Cer.mlc P.cuge

T..I -

.r---=~ [, -- .. T
J JI 51

3

"

1" ,.
: :::1

., lli:~" f-'-,-
"=R

~"~~<

I.L

!
I.L
II

f '-r

Plastic Leaded Chip Carrier

PI •• llc • C.rclp P.ckage

, I

i I
• I

I il 0

IJ: 1
I .,

IT
II

WJL.
~$I"'TlNG '

PUIOI

N : NO. LEADS

21

,.

SYM-

e""
•
b

b ' ,
° •
E'

•
L

" 0 ,
" S2

·

"'" eOL

•
At

C

0

0'
0'
E
E1

E2

•
J

J' ..
" P

z

.t(I-PIN PACI(AGe

INCHES MILLIMETERS .. " "AX .. ,"
- 022> - 5"

00'. 0023 OJO 05'

00" 0010 "6 ".
0001 0015 020 OJ.
- ,ooa - 5'"

0510 0620 " .. 1$15

0520 0630 '321 '600
0100 esc 1~8SC

",. 0200 ". SOl

o .so , ..
0020 0010 051 '" OOM ".
"'" - 013

0005 - 0"
0' ". O' '5·

<U-t.EAO CARRIER

INCt-iES MILLIME TERS .. " MAX .. ," MAX
0.185 O. UIO '20 '" 0.000 ~'20 22. ,I><
M20 0.51

0 07<0 " 05
0.050 0 16.510 16.fiISl

0500 REF 12.108SC

0.0 .. I 0.885 17.-40 I 17.55

0050 I 0 .• 16.510 lIUi62

0.500 I O.6:XI '4.98 I 1500
O,~TYP 1 21 TVP

0,020 05'
0.042 0"" 1.061 I 1219

0021 0032 0 ... 0.fl12
0.0'3 I 0.021 OJ" o SJJ

0 I 0.060 .07 , .,

YOU SHOULD CAREFULLY READ THE FOLLOWING
TERMS AND CONDITIONS BEFORE USING THIS
SOFTWARE. ANY DOWNLOADING, REPRODUCTION,
COPYING OR OTHER USE OF THE SOFTWARE WILL
CONSTITUTE ACCEPTANCE OF THESE TERMS AND
CONDITIONS.

SINGLE-COMPUTER END USER
SOFlWARE LICENSE AGREEMENT

APPLE COMPUTER, INC. ("Apple") provides this software
and licenses its use. You assume responsibility for the selection
of the software to achieve your intended results, and for the
installation and use of, and results obtained from, the software.

LlCENSE
Pursuant to this license you may:

1. Use the software only on • single Apple computer. You
must obtain a supplementary license from Apple before
using the software in connection with systems and multiple
central processing units~ computer networks or emulations
on mainframe or minicomputers.

2 .. Download the software only on media that is compatible
with Apple manufactured computers.

3. Copy the software into any machine readable fonn for
backup purposes in support of your use of the software on
the single Apple computer.

4. Transfer the software and license to another party with a
copy of this Agreement provided the other party reads and
agrees to accept the terms and conditions of this Agreement.
If you transfer the software, you must. at thF,s~ ~
either transfer all copies, whether in printed·&r-'.tna:c1Une­
readable fonn, to the same party or destroy any copies not
transferred. Apple grants a license to such other party under
this Agreement and the other party will accept such licertse
by its initial use of the software. If you transfer possession
of any copy of the software, in whole or in part, to another
party, your license is automatically terminated.

This software is protected by United States copyright law.
You must reproduce the Apple copyright notice on any copy of
the software.

THIS SOFTWARE MAYBE ELECTRONICALLY DIS­
TRIBUTED ONLY BY AUTHORIZED ELECTRONIC
DISTRIBUTORS. IT MAY BE DOWNLOADED ONLY FOR
PERSONAL OR NON-COMMERCIAL USES ON APPLE
COMPUTERS AND MAY NOT BE REDISTRIBUTED OR
USED FOR COMMERCIAL PURPOSES WITHOUT AN
EXPRESS SOFTWARE DISTRIBUTION LICENSE FROM
APPLE. These licenses are available from Apple's Software
Licensing Department

YOU MAY NOT MODIFY, REVERSE COMPILE, DISAS­
SEMBLE, NETWORK, RENT, LEASE, LOAN OR DIS­
TRIBUTE THE SOFTWARE, OR ANY COPY, IN WHOLE
OR IN PART. YOU UNDERSTAND THAT UNAUTHOR­
IZED REPRODUCTION OF COPIES OF THE SOFTWARE
OR UNAUTHORlZED TRANSFER OF ANY COpy OF THE
SOFTWARE MAY SUBJECT YOU TO A LAWSUIT FOR
DAMAGES, INJUNCTIVE RELIEF, AND ATTORNEY'S
FEES.

Apple reserves all rights not expressly granted to you.

Export law assurances
You agree and certify that neither the software and documen­

tation nor any direct product thereof (1) is intended to be used
for nuclear proliferation or any other purpose prohibited by the
United States Export Administration Act of 1979, as amended
(the "Act") and the regulations promulgated thereunder, and
(2) is being or will be downloaded, shipped, transferred or
reexported, directly or indirectly, into any country prohibited
by the Act and the regulations promulgated thereunder.

Government End Users
If you are acquiring the software on behalf of any unit or

agency of the United States government, you agrce that: (a) the
software is "Commercial Computer Software" as that term is

defined in Paragraph 27.401 of the DoD Supplement to the
Federal Acquisition Regulations (the" Supplement") or is
wilhin the equivalent classification of any other federal agen­
cies' regulauons; (b) the software was developed at private
expense, and no part of it was developed with goverment
funds; Cc) the government's use of the software is subject to
"Restricted Rights" as that term is defined in clause
52.227-7013 (b)(3)(ii) of the Supplement or in the equivalent
clause of any other federal agencies' regulations; Cd) the
software is a "trade secret" of Apple for all purposes of the
Freedom of Information Act; and (e) each copy of the
software will contain the following Restricted Rights Legend:

"Restricted Rights Legend"
Use, duplication or disclosure is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at FAR
52.227-7013. Manufacturer: Apple Computer, Inc.
20525 Mariani Avenue, Cupertino, Calfornia 95014.
You agree to indemnify Apple for any liability, loss, costs

and expense (including court costs and reasonable attorneys'
fees) arising out of any breach of the provisions of this
Agreement relating to use by the government.

Term
The license is effective until terminated. You may terminate it

at any time by destroying the software together with all copies.
The license will also terminate upon conditions set forth else­
where in this Agreement or if you fail to comply with any of
the teons or conditions of this Agreement. You agree upon
such termination to destroy all copies of the software.

DisclairTlEll'. (If. y,rquanfy
The soffware is"Plovided "as is" without warranty of any

kind, either express or implied, with respect to its merchant­
ability or its fimess for any particular purpose. The entire risk
as to the quality and perfonnance of the software is with you.
Should the software prove defective, you (and not Apple or an
Apple authorized representative) assume the entire cost of all
necessary servicing. repair or correction.

Apple does not warrant that the functions contained in the
software will meet your requirements or that the operation of
the software will be uninterrupted or error free or that defects in
the software will be corrected.

Same states do not allow the cxclusion of implied warranties,
so the above exelusion may not apply to you. This warranty
gives you specific legal rights and you may also have other
rights which vary from state to state.

Umilatlon of Remedies
In no event will Apple be liable to you for any lost profits,

lost savings or other incidental, special or consequential
damages arising out of the use of or inability to use any soft­
ware even if Apple or an authorized Apple representative has
been advised of the possibility of such damages, or for any
claim by any other party.

Some states do not allow the limitation or exclusion of
liability for incidental or consequential damages so the above
limitation or exclusion may not apply to you.

Apple's liability to you for actual damages for any cause
whatsoever, and regardless of the fonn of the .action, will be
limited to the greater of $500 or the money paid for the soft­
ware that caused the damages or that is the subject matter of, or
is directly related to, the cause of action.

General
This Agreement, if any attempt to network, rent, le.ase, ?r

sublicense the software, or, except as expressly proVIded In

this Agreement, to transfer any of the rights, duties or obliga­
tions under thi:; Agreement, become:; void.

The Agreement will be construed under the ~aws ?f the st~te
of California, except for that body of laws dealmg Wlth conlhct
of laws. If any provision of this Agreement shall be held by a
court of competent jurisdiction to be contrary to law, th.at pro­
vision will be enforced to the maximum extent pennlsslble,
and the remaining provisions of this Agreement shall remain in

full force and effect.

